
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Reports Utah Water Research Laboratory 

January 1969 

The Effect of Sediment Properties of an Ultrasonic Plane Wave The Effect of Sediment Properties of an Ultrasonic Plane Wave 

G. H. Flammer 

N. E. Stauffer Jr. 

E. Y. Liu 

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep 

 Part of the Civil and Environmental Engineering Commons, and the Water Resource Management 

Commons 

Recommended Citation Recommended Citation 
Flammer, G. H.; Stauffer Jr., N. E.; and Liu, E. Y., "The Effect of Sediment Properties of an Ultrasonic Plane 
Wave" (1969). Reports. Paper 481. 
https://digitalcommons.usu.edu/water_rep/481 

This Report is brought to you for free and open access by 
the Utah Water Research Laboratory at 
DigitalCommons@USU. It has been accepted for 
inclusion in Reports by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/water_rep
https://digitalcommons.usu.edu/water
https://digitalcommons.usu.edu/water_rep?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/water_rep/481?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F481&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


I 

I 

PREC 3().1 

Utan State University 

~b5or~"l>" 
The Effect of Sediment Properties 
of an Ultrasonic Plane Wave 

Utah W8ter Research Laboratory I College of Engineering 
by G. H. Flammer, N. E. Srauffer, Jr., and E. Y. Liu 
September 1969 

l~q;n. VIIh 813?1 



THE EFFECT OF SEDIMENT PROPERTIES ON THE ATTENUATION 

OF AN ULTRASONIC PLANE WAVE 

by 

G. H. Flammer. N. E. Stauffer. Jr .. and E. Y. Liu 

5'01- 750 - 'Z8{'3 

2775 

Utah Water Research Laboratory 
College of Engineering 
Utah State Univers ity 

September 1969 

PAEC30· 1 



THE EFFECT OF SEDIMENT PROPERTIES ON THE ATTENUATION 
OF AN ULTRASONIC PLANE WAVE 

Synopsis 

Experimental results of the attenuation of an ultrasonic plane wave by monodisperse 
suspensions of sediments are presented fo r a variety of sediment properties. The results are 
compared with the theoretical equations over the viscous, the scattering, the transition, and 
the diffraction loss ranges. Significant differences between theory and experiment are 
shown. In some cases the theoretical equations are improved; whereas in other cases the 
d isparity between theory and experiment is so great that both equations are given for 
comparison. Experiments were made in water using particles of specific gravity greater than 
2.0. 
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THE EFFECT OF SEDIMENT PROPERTIES ON THE ATTENUATION 
OF AN ULTRASONIC PLANE WAVE 

Introduction 

Previous ' studies of the attenuation of an ultrasonic pl ane wave passing through a 
monodisperse sediment suspension have been primarily theoretical with limited 
experimental verification. Because of the complexity of the problem, simplify ing 
assumpt ions have been necessary in the derivat ions. This study stresses the use of 
experimental results to verify or improve existing theoret ical expressions and to point the 
way to future theoretical studies. 

Theory 

The basic retation for the additional energy loss of an ultrasonic plane wave due to the 
presence of suspended sediments in the fluid media is 

where 
E 

E 
e 
a 

x 

o 

E ; E 
o 

-a x 
e ( 1 ) 

is the sound energy flux at a given point with sediment present in the transmitting 
media, 
is the sound energy flux at the same point if no sediment were present, 
is the base of the Naperian Logarithm. 
is the attenuation coeffic ient due to the sediment alone in decibels per 
centimeter, and 
is the distance from the sound source to the point of measurement. 

The attenuation coefficient , a, is made up of three loss mechanisms. The first of these 
is due to shear waves set up at the liquid-solid interface when the particle vibrates in 
response to the sound wave but lags it. The range where these shear waves predominate the 
sound wave attenuation is called the "viscous loss range." The second loss mechanism arises 
from the scattering of energy from the sound path due to a rerad iation by the particle of the 
incident plane wave. The pattern and intensity of the reradiated wave are functions of the 
ratio of the sound wave length, A, to the particle circumference, 2nr. For A» 2nr the 
rerad iated wave spreads out more or less uniformly in al l directions. This range has been 
called the "scattering loss range." As A approaches 2m, the scattering pattern becomes more 
complicated and changes rapidly as the frequency changes. The writers have named this 
region " the transition loss range" because it is situated between two very different, but 
stable, radiation patterns. For f..» 2nr, half of the scattered wave is concentrated 
straightforward, thus interfering with the incident wave and causing the sediment particle to 
cast a shadow. The other half of the scattered wave is spread out uniformly over all 
directions. Th is region is the "diffraction loss range." The third loss mechanism is due to 
heat conduction down thermal gradients. It is significant only when the suspending media or 
suspended particle is compressible . 

• 
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Several theoretical studies have been made to determine the attenuation 
coefficient for uniform si ze suspensions. Lord Rayleigh (1945), Sewell (19101,_Epstein 
(1941 1. Lamb (1 9451, Urick (19481. Carhart (19501 , and Vigoureux (1 9501. have derived 
mathematical expressions for c: when f.,» 2m. Thus, they studied either the viscous loss 
range or the scanering loss range or both. Weinel (1953) showed that for rigid particles in 
water , the results of Urick, Epstein, and Carhart are identical for the viscous loss range. 
Urick and Sewell's expression for t he scattering loss range are special cases of Lamb's more 
general expression. Anderson (1950) and Faran (1951) studied the transition loss region. 
They found that in this range the particles are elastic and cannot be assumed to be rigid. 
Morse (1948) derived an expression for the anenuation coefficient a for the diffract ion loss 
range, i.e. where i\» 211'r. 

Simplifying assumptions have been necessary to solve the complex relations. The first 
assumption generally made is that the particles are rigid spheres. Anderson showed that for 
particles in water having a specific gravity greater than 2.0 and a sound velocity greater than 
twice that of water, that the particles may be considered rigid for 21Tr(A greater than 3.0 and 
less than 0.5. The transition from the scattering loss to the diffraction loss ranges includes 
this region and it has been called by the authors "the transition loss range." The second 
assumption is that the particles are far enough apart so they do not interfere with each 
other. This assumption has been proven valid up to concentrations as high as 20 percent D,,/ 
volume. 

Severa! experimental investigations have been made covering one or more of these loss 
ranges. Urick's work was in the viscous loss range. Stakutis, et a!. (1955), and Busby and 
Richardson (1955) partly covered both the viscous and scattering loss ranges. Killen (1956) 
covered the diffraction loss region and Flammer (1958) covered both the transition and 
di ffraction loss ranges. Stauffer (1964) covered all four ranges . Liu (1965) studied the 
diffract ion and transition loss ranges using natura l sands. 

The exper imental results of some cases do not agree with theory. Undoubtedly , this is 
due to the simplifying assumptions and failure to include pertinent variables in the 
theoretical stud ies. The lack of agreement between theory and experiment prompted th is 
study. A National Science Fou ndation grant supplied the necessa ry financial support . 

Experimental Results 

The experimental equ ipment was a standard pulse system using matched transmitting 
and receiving x·cut qua rtz crystals. The frequency range was from 1.5 to 55 meso The 
ultrasonic path length was 2 inches ac ross a rec irculating vertica l chamber. I ~ e"j'. 

In order to simpl ify plotting, dimensional analysis was used to reduce the number of 
variables. The general anenua tion coeffic ient may be expressed as 

where 
C 
d 

C =. Ole, d , A,p , Po' v, :3 1 , e o' cr . C s ) 

is the concen trat ion in parts per million by vo lume, 
is the particle diameter, 

(21 



A is the sound wave length, 
p and p are the densities of the particles and fluid respectively, 
v is {he kinematic viscosity of the fluid, 
r3

1 
and eo are the bulk moduli of the particle and fluid respectively, 

t]" is Poisson's ratio of the particle, and 
C is the shape factor . 

• 

The shape factor is defined as C
1 

= L, / L2 where L, i~ the I.onge~t axis and L,2 is the 
mean diameter of the particle normal to the longest aXIs. ThiS ratio was obtained by 
averaging the measurements from projections of microphotographs containing 
approximately 50 particles each. The two-dimensional measurements assumed that the 
particles were rounded normal to the longest axis which was reasonably true for the 
sediments studied. 

Water was the suspending fluid and all sediments had specific gravities greater than 2.0. 
Certain of the theoret ical equations were chosen for comparison with experimenta l results 
based on the assumptions made in their derivation. 

Viscous loss range. Urick's expression for this range is, 

CKS('Y - l )2 
2 2 

S +('Y+T) 
x 8.68 db /em (3 ) 

where K • 2n/A, 'Y ' p/Pey S • [9/ (2Bd)) [1 + 2/( Bd )), B • [w /( 2v)) " , w = 2nf, f is the 
frequency, and T= 112 + ij(2Bd). Other symbols are as previously defined. 

'Vl~k 
For the viscous loss range 

(4 ) 

For all ranges a is a linear f irst order functio n of C so that the concentration need not be 
further considered. The size fractions in this range were obtained by sedimentation methods 
which inherently give an equivalent spherical size; therefore, shape factor was ignored. By 
Buckingham's Pi Theorem 

(4a) 

thus a'A. is a function of a Reynolds number and the relative density. 

F ive metal powders were tested in this range as shown on Tab!e 1. Fig. 1 shows the 
exper imental results. The equation fitting these points is 

3 
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Eq. ( 5) 

• Stauffer 

• Ur i ck 

0.1 '--..L-__ ..L-_L-..L-..L-L.L--'--'..L-__ ..L-_L-~ 

10 50 

P / Po 

Fig. 1. Nondimensional plot of the theoret ical equation, empirical equation, and experimen tal data in the 
viscous loss range with fd 2/ '1 :0 500 and C II: 1000 ppm by volume. 



Table 1. Sediments tested in the viscous loss range and their pertinent 

properties. 

Sediment 

silicon 
antimony 
t in 
molybdenum 
tungsten 

( 

2 ) 1/2 
a A = 22. S C f~ 

2 

Specific Gravity 

2.4 
6.6 
7.2 
9.6 

19.0 

(In p!") decibels (S) 

Comparing this equation with Urick's equation expressed in nondimensional form shows the 
equations to be similar if the log term js expanded in an infinite series. Urick's equation 
includes a term which approximates the first term of the infinite series. For the range of 
data taken, 52 < 0.065 and 1 ISr < 0.1, simplifies his equation as follows: 

(
fi ) -1 / 2 ( p I po _ I )2 

a A = 138 C --;;- p i p + 1/ 2 
o 

Eq, 5 with the log term expanded is 

if i ) - 1/2 
a A = 90 C \-;;-

4 

(
P / Po - 1) + 
p i p + I 

o 

Fig. 1 shows that Eq. 5a fits the data much better than Urick's equation. 

Scattering Joss range, lamb's expression for the scattering loss range is 

(
' p - Po)2 JC K4 d3 db l em . 

2p + P 
o 

For this range the following variables are considered 

a = <P( C,d, A,p, p , C ) 
o 5 

. (3 a) 

.. ] 
. (Sa ) 

(6 ) 

(7 ) 
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which reduces in dimensionless terms to 

Eq.6 in nondimensional form is 

at. = 54.5 [1 /3 + 1 / 4 

· (70) 

1rd 3 
t. C · (60) 

Twelve sediments were tested in the scattering loss ranges as listed with their pertinent 
properties in Table 2. The resulting empirical equation is 

1.74 

at. = 6.68 C(p / p )l!2 
o 

(~d)~P / PO - I 28 C . 
5 

(8 ) 

This equation is plotted on Fig. 2. Eqs. 6a and 8 are not comparable since Eq. 8 actually is 
for an apparent scattering loss- i.e., it includes viscous loss with the scattering loss and Eq. 
6a does not. In order to compare the results, the viscous loss was subtracted from Eq. 8 and 
the results compared with Eq. 6a on Fig. 3. The slopes of the curves are the same, but the 
intercepts are shifted. Liu found the equation for the natural sands tested by Stauffer to be 

( 
d ) I.IS 

at. =1 1. 3 7 C r~ C -2.0 
5 

i9) 

For these sands S ~:: 2.65. Fig. 4 shows Eq . 9 and the experimental data. 

Diffraction loss range. Morse 's expression for the diffraction loss range is 

a = 13. 03 ~ · (1 0) 

The attenuation is a function of 

Cl = 'I> (C, d, t. C) 
5 

· (I I ) 
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Fig. 2. Comparison of experimen tal scattering 1055 curves with theoretical scattering and diffraction lou 
curves with density ratio as parameter. C :z: 1000 ppm by volume and C, .. 1.5 . 
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Fig. 3 . Comparison of the true scattering loss curves (i.e, with viscous attenuation subtracted out) with 
theoretical curves. C == 1000 ppm by volume. 
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Table 2. Sediments tested in the scattering loss ranoe and their properties. 

Sediment Specific gravity Average shape factor 

Tungsten 19,0 1,97 
Molybdenum 9,6 1.80 
Cobalt 8,7 1.75 
T in 7,2 2,05 
Z inc 7,1 1.96 
Antimony 6,6 1,90 
Aluminum Oxide 3,9 1.76 
Silicon Carbide 3,2 1.77 
Aluminum 2,7 1,88 
Glass beads 2,5 1.00 
Silicon 2,4 1.80 
Pumice 2,2 2,30 

Table 3. Sediments tested in the diffraction loss range and th eir average shape factor . 

Sediment Average shape factor* 

Silicon 1.80 
Zinc 2.00 
Molybdenum 1.90 
Pumice 2,10 
Aluminum Oxide 1.75 
South Fork White River Sand 1,45 
Pigeon Roost Creek Sand 1,58 
Fort Collins White Sand 1.60 
Fort Collins River Sand 1.65 
Minnesota Silica Sand 1,56 
Arches Monument Sand 1.63 
Missouri River Sand 1.70 
Kansas River Sand 1.65 
Loup River Sand 1.55 
Kiowa Creek Sand 1.70 
Elkhorn River Sand 1,50 
Mississipp i River Sand 1.42 
Glass Beads 1.00 

·Stauffer used an average shape factor tor the entire size distribution. Lru used the shape factor for each 
size fraction, which improved his resu lts considerably . 

• 
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which reduces in dimensionless form to 

(12 ) 

Eq. 11 in nondimensional form is 

( 
d) -1.0 

a ll = 40 . 80 C ~ (1 3) 

Eighteen sediments were tested in this range as given in Table 3, along with their 
respective average shape factors. F lve of these sediments were metal powders, twelve were 
natural sediments, and one was glass beads, The resulting empirical equation is 

all 
- 0 9 

= 11. 28 C (~d ) . C 1.9 
5 

(14 ) 

Liu improved this equation by defi ning the diffraction range as /-rrO)!).. > 12.5. Stauffer used 
(1Tdl /r.. > 3.0; however, the data begins to curve below hrd) /A = 12.5. Liu 's equation for 
quartz sands is 

-1 0 
aA = 16. 4 1 C C

s
1. 7 ( ~d) . 

The power of the diameter agrees with theory. 

(15) 

Transition loss range. The theoretical equation for this range involves infinite series, so 
no attempt was made to find an empirical relation. However, the curves for the twelve 
quartz sands covering three different shape factors are shown in Fig. 5. 

According to theory, the elastic propert ies of the particles become important in this 
range, but these properties are essentially constant for the natural sediments tested . 

Since the density , shape factor , bulk modulus, and Poisson ratio are all important for 
the transi tion loss range, it wasn 't possible to separate out the respective effects; however, a 
few observations can be made. The slope of the curve fo r the diffraction range is a constant; 
whereas for the scattering loss range, it is a function of the relative density of the particle. 
Since the transition curve joins these two ranges, its shape is obviously a function of the 
relative density. In fact , any variables in ei ther Eq. B or 15 affect the shape of the transit ion 
curve. I nsufficient data were available to define the effects of the elastic propert ies . These 
properties enter into the theoretical equations in complicated infinite series. Furthermore, 
the size fractions used were not monod isperse but had a fin ite spread of sizes which tended 
to mask the un ique scattering pattern and attenuation properties of the ind ividual particle. 
Fig. 6 shows two metal powders tested over all four ranges . The reason for the excess ive 
scaner for -rrdl/' < 1.0 is that the viscous loss becomes increasingly important 

" 



c 

"­
::l. 

.0 
"0 

<. 

500 

Il 100 

30 
I 

£ 
~ 9 

?' .~ ~~,-. • 
't. 

~~ 
~ ~ 
~ 'j' , 

~ 

TId / ?\ 

, , , 
• 
~ 

~'" 
"'''' '" Eq. 15 ~ ~ 

I' 

10 25 

Fig. 5. Transition loss curves for quartz sands of various shape facton. C - 1000 ppm by volume. (o,C$ '" 
1.45 ,ooCs .. , .55, +-C

S 
= , .65.1 



lj 

~ . 
o <: 
t N 

~ , 
= VIa 
.!: t: 

Iii 8 > .­o :: 
"VI 

" + • • lC'l 
o ~ 
" , 
~ a 
.VI 

E • 
o ~ 
d , . 
~I-o . 
0 2 

.~ <Ii 

• E g ~ 
• 0 ~ > 

• > • .0 

.. E 
o " o " ';;; 0 .0 
E;;! 
is II 



14 

as Trd /'f... decreases, and ft 2/V is the correct abscissa for viscous loss-not TTd/'" The diffraction 
loss data is limited . 

Conclusions 

Experimental results of tests on a wide variety of natural sediments and metal powders 
for the various loss ranges are compared with the theoretical relations. For the viscous loss 
range, the empirical equation is an infinite natural log series the first term of which is nearly 
identical with the theoret ical equation. The experimental data fits the natural log series 
considerably better than present theoretical equations. Experimental resul ts yield only an 
apparent scattering loss equation because th is range is short and the viscous loss is included 
in it for the smaller sizes. The slope of th is line is a functio n of the re lative density of the 
sed iment and fluid . When the viscous attenuation is subtracted from the lower end of the 
apparent scattering loss equation, the slope of the scattering loss curve compares favorably 
with theory. The diffraction loss equation agrees in slope with theory when Trd!f., > 12.5. 
When this range is defined for rrd/t.. > 3.0 a frequency dependence appears in the relations. 
Therefore, the upper boundary of the transition region between the diffraction and 
scatter ing loss ranges is set at nd/ t.. = 12.5. 

The authors wish to acknowledge the financ ial support of the National Science 
Foundat ion in the form of Research Grant NSF G·971. 
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