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WATER FLOW PATTERNS IN HETEROGENEOUS SOILS 
UNDER TRICKLE IRRIGATION 

A. Nassehzadeh-Tabrizi, R. W. Jeppson, and L. S. Wi11ardson 

ABSTRACT 

Numerical solutions of the problem of unsteady unsaturated three­
dimensional axisymmetric flows from a trickle irrigation source in 
heterogeneous soils' have been obtained. The mathematical model permits 
any vertical heterogeneity of the soil to be specified and describes the 
heterogeneity so that the hydraulic properties of the soil vary con­
tinuously as a function of depth. The point relationship of satura­
tion and relative hydraulic conductivity to capillary pressure is 
defined by the Brooks-Corey (1966) parametric equations. At all dimen­
sioniess times the distribution of saturation, hydraulic head, and 
capillary pressure and extent and amount of lateral and vertical water 
movement and the rate of advance and position of the wetting front in 
the resultant flow field are determined as parts of the solution. Any 
one of the factors can be analyzed to define its interrelationships with 
respect to the magnitude and degrees of heterogeneity of the other 
hydraulic properties of the soil. 

The quality of trickle irrigation system design depends on better 
definition of shape of the wetting patterns and location of wetting 
front. Differences in the flow patterns in heterogeneous soils from the 
patterns in homogeneous soil are provided. 

INTRODUCTION 

Prediction capability to determine moisture content and soil water 
tension under a trickle irrigation point source is one of the important 
research needs at the present time. Knowledge of water movement in the 
soil is necessary for improvement of trickle irrigation design. Better 
design of trickle irrigation also depends on better definition of shape 
of the wetting pattern and the volume of wetted soil. 

For a noninteracting single emitter, the ponded area on the soil 
surface is approximately circular. Since the ponded area is relatively 
small compared with the total soil surface, water movement is essen­
tially three dimensional and axisymmetric. Considerable lateral spread­
ing occurs at the surface as unsaturated flow. 



2 

In the past the unsaturated flow equation has been solved analyti­
cally under simplifying assumptions, and for simple boundary conditions. 
The majority of these closed form solutions are for steady state iso­
thermal flow through saturated isotropic homogeneous media, an idealized 
case that does not exist in nature. Wooding (1968), Philip (1968, 1969, 
1971), and Raats (1971, 1972) linearized the flow equation by using the 
matrix flux potential and solved for the case of steady infiltration 
from both circular areas and point sources'. Brandt et ale (1971) 
developed a numerical solution for unsteady infiltration from a trickle 
source into homogeneous soils. 

During the past decade knowledge of soil water flow under unsatura­
ted conditions has advanced rapidly. High speed computers make prac­
tical the numerical solution of these difficult and strongly nonlinear 
initia1-boundary-va1ue problems. 

PROCEDURE 

It is now practical to give more detailed attention to a transient 
unsaturated flow system in heterogeneous media. Steady state flow 
~onditions exist only in theory and heterogeneity of the soil is the 
rule rather than the exception. At the present time, mathematical 
node1s for transient flow in heterogeneous porous media, with the 
~xception of a model by Watson and Whisler (1972), assume that a hetero­
~eneous soil consists of discrete layers of homogeneous soil. In these 
node1s the hydraulic head and pressure head, but not the moisture 
:ontent, are assumed continuous across the interface of ,the two layers. 
rhe validity of this approach may be questioned because the development 
)f a differential equation describing soil water flow, obtained by 
;ubstituting Darcy's law into the differential form of the continuity 
!quation, is based on the assumption that all variables and their 
lerivatives are continuous. However, only the integral form of the 
:ontinuity equation is valid across a true interface since the other 
rariables are discontinuous. 

An alternate method is presented in this study that describes soil 
leterogeneity by specifying that the physical and hydraulic properties 
If the soil vary continuously as a function of depth. No interfaces are 
lresent in the system. Reisenauer (1963), Jeppson and Nelson (1970), 
reppson and Schriber (1972), and Watson and Whisler (1972) used this 
Ipproach to describe unsaturated flow in a system in which only satura­
:ed hydraulic conductivity is allowed to vary. The problem which has 
.een studied herein is for three dimensional axisymmetric unsteady flow 
hrough heterogeneous porous media resulting from water being applied on 
I horizontal soil surface. In this problem, heterogeneity is described 
.y specifying that the hydraulic properties of the soil vary contin­
lous1y with depth. The Brooks-Corey (1966) parametric equations are 
.sed to describe the hydraulic properties. These equations are rela­
,ive1y simple and also provide a reasonably good fit to capillary 
'ressure-saturation and capi11ary-pressure-hydrau1ic conductivity data, 
,nd involve only three parameters, the residual saturation, S , the 
·ore size distribution exponent, A, and bubbling pressure, Pb~ 
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Plotting the Brooks-Corey (1966) equation for degree of saturation 
and capillary pressure on log-log paper produces a straight line having 
an intercept, P '=Pb ' at S =1.0, where S is the effective saturation, 
Pb ' is the bubbling pressu~e and P , is ~he capillary pressure. For 
capillary pressures greater than tfie bubbling pressure, Pb ', (closer to 
zero), S =1.0. Under trickle irrigation (infiltration processes) the 
soil nev~r becomes fully saturated and therefore it has been assumed 
that capillary pressure will always be greater than or equal to the 
bubbling pressure (Ip '1~lpb' I). Since this problem deals only with the 
infiltration and not aesaturation, in the derivation of flow equation it 
is assumed that there is a unique relation between the pressure and 
water content (no hysteresis). 

Description of the soil heterogeneity is accomplished by letting 
the saturated hydraulic conductivity, K , the soil porosity, n, the 
residual saturation, S , the pore size ~istributing exponent, A, and the 
bubbling pressure Pb ' ~ll be continuous functions of depth. This des­
cription allows for specification of an infinite number of different 
conditions. Different solutions were obtained for different problem 
specifications. The influence of various degrees of heterogeneity on 
the amount and distribution of soil moisture, capillary pressure and the 
extent and amount of horizontal and vertical moisture spreading and the 
rate of advance and position of wetting front, all of which are of 
interest in the trickle irrigation, were investigated. 

It is not the intent of this paper to describe the detailed mathe­
matical formulation used to obtain the solution. This formulation and 
solution mrrhod would require considerable explanation and is given 
elsewhere.- Results from the numerical solutions will be discussed as 
they affect trickle irrigation design. However, to understand the 
solution results it is necessary to point out the following: 

1. The degree of soil saturation, S; and the relative hydraulic 
conductivity, K , for heterogeneous porous media are described by the 
following equations, respectively: 

and 

in which 

[
Pb(Z) ] A(Z) 

S = Sr (z) + [1 - S/z)] pc(r,z) for Ipcl~lpbl (1) 

K 
r 

(2) 

S saturation as a function of depth, z 

1c1ph •D• dissertation by the first author, Utah State University, also 
additional professional papers are anticipated to cover this. 
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S = residual saturation as a function of depth, z 
r p' 

b d· . 1 Pb = :L' 1menS10n ess 
f'Inction of depth, Z 

2 
bubbling pressure, with P~ in lb/ft or N/m2, 

p' 
Pc = LC , dimensionless pressure head, with p' in 

a functionYof depth, z, and radial coordinate, r c 

R 
r = L ' dimensionless radial coordinate 

Z z L' d.imensionless axial coordinate or depth. Origin is at 
bottom of problem. 

A= pore size distribution exponent, function of depth, z 

L = scaling length used to nondimensionalize the radial and axial 
coordinates and pressure heads 

K = ~ , relative hydraulic conductivity at each position where K 
r K 

is the effegtive hydraulic conductivity and K is the saturated hydrau­
lic conductivity, which is constant for homoggneous soil. The saturated 
hydraulic conductivity, K , is defined as the product of a constant, 
K , with units of velocitOy and a dimensionless quantity, K , which is a . v 
a function of the depth, or 

Therefore, 

K (z) 
o 

K K (z) 
a v 

The parenthesis enclose variables upon which that variable is 
dependent. With the exception of P (r,z) which is a dependent variable 
for the formulation, this dependenc~ is specified in equation form a 
priori. 

2. The unsaturated flow is assumed to be axisymmetric. Figure 
shows the physical problem and typical assumed boundaries of the flow 
field. 

3. The outer boundary of the flow field is far enough removed 
from the source of water that no flow occurs in its vicinity. 

4. The ground sur face is horizontal. 

5. No evapotranspiration occurs. 

Ii. The initial condition assumes hyd ros ta tic equil ibrium, i.e., 
10 Wrt ter movement. 

7. The circular sur face of water application can be held at any 
:lesired constant water content or receive water at any specified time 
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Figure 1. Physical condition for evaluation of transient flow of water 
from a trickle source at soil surface. 



dependent rate. For later conditions, when the intake capacity of the 
soil is exceeded, the capillary pressure becomes zero and the soil 
surface becomes fully saturated. When a computed saturation of about 
95 percent is reached, the solution continues using the first alterna­
tive where the upper boundary condition is a circle of water applica­
tion. 

REPRESENTATIVE SOLUTIONS AND ANALYSIS OF RESULTS 

6 

In this study, many solutions have been obtained by varying soil 
parameters systematically in order to define the trends, solution sensi­
tivity and effect of heterogeneity of the soil on the soil water flow 
patterns. Herein only one parameter in any given solution is varied. 
To simplify presentation, these variations have been selected to be 
linear with depth. Selected items from these solutions are compared to 
the same item for a homogeneous soil that has parameters Pb , A, S ,n, 
Dr K equal to the average of the varied parameters for the soilsrin the 
compgrison. Prior to initiation of infiltration, it is assumed that the 
water in the soil profile is in static equilibrium and that along the 
soil profile, the hydraulic head, h, is constant and taken as -8.0 feet 
(2.44 meters). The circular pondedoarea through which water is infil­
trating was assumed to have a constant saturation at all times of 90 
)ercent. For all problems the dimensionless depth of soil was D = 2.0 
gnd the dimenrfonless radius of circular area was taken as r = 0.3. A 
iimensionles9- time increment In of .005 was used to start he solu­
tion. Thereafter values of b.T are periodically multiplied by values 
larger than 1 to increase the efficiency of computation. The solutions 
~ere terminated before the wetting front had penetrated to the cylin­
irical outer boundary or bottom of soil profile. 

Table 1 summarizes the specifications used in obtaining the 
,olutions presented in the various figures hereafter. In the discus­
,ions these solutions are referred to by the number contained in the 
first column of Table 1. 

As the water moves into the soil filling a portion of the voids, 
:he capillary pressure is increased (decreased in absolute magnitude) 
Jith a resulting increase in hydraulic head, providing the elevation 
lead does not vary. Therefore, an examination of the variation of 
:apillary pressure in the flow field reveals much about the nature of 
Jater movement. By noting the extent of the change in initial capillary 
lressure in the lateral and vertical directions, an indication of the 
importance of soil heterogeneity effects on the flow pattern can be 
;een. Lines of constant capillary pressure are shown in Figures 2 
:hrough 6 for dimensionless times, T = 0.0 and T= 1.46. The Figures 
Jere drawn using the solution results from problems number 1 through 11 

~/r is defined by t. 
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Table 1. Summary of Specification of Problems 

Inl.t~al 

Soil Parameters Hydraulic 
Problem Head Depth 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Pb A S n J\, ht r 

1.0 1.0 .15 .40 1.0 - 8.0 

.70 + .3z 1.0 .15 .40 1.0 - 8.0 

1. 30 - .3z 1.0 .15 .40 1.0 - 8.0 

1.0 .70 + .3z .15 .40 1.0 - 8.0 

1.0 1.30 - .3z .15 .40 1.0 - 8.0 

1.0 1.0 .05 + .1z .40 1.0 - 8.0 

1.0 1.0 .25 - .1z .40 1.0 - 8.0 

1.0 1.0 .15 .18 + .22z 1.0 - 8.0 

1.0 1.0 .15 .62 - .22z 1.0 - 8.0 

1.0 1.0 .15 .40 .60 + .2z - 8.0 

1.0 1.0 .15 .40 1.40 - .2z - 8.0 

in Table 1. In each figure, a few of the constant capillary pressure 
(iso-pressure) lines have been plotted. The computer program defines 
the wetting front at a position where hydraulic head exceeds the 

D 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

initial hydraulic head by 0.0003 dimensionless units. The vertical 
position of the wetting front represents the depth of water penetration, 
and the difference between the maximum radial movement and the radius of 
the circle of the water application zone, r , equals the amount of 
lateral movement at that time step. Figure~ 2 through 6 show the effect 
of soil heterogeneity on the position of wetting front. The distri­
bution of dimensionless capillary pressure prior to the start of the 
solution (i.e., initial capillary pressure distribution, T = O. 0) is 
the same for all problems and is given by horizontal lines consisting of 
a long line and two dots. In order to find the difference between the 
results of the heterogeneous condition and the homogeneous condition, 
three solutions are plotted on the same graph for each varied parameter 
considered. In all figures presented hereafter, the same parameter has 
the dashed line and shows that the magnitude of the variable parameter 
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linearly increases with depth and dash-dot-dash line indicates that the 
magnitude of the variable parameter linearly decreases with depth. 
Finally, the homogeneous soil condi tion where the soil parameter', are 
constant, is shown by solid lines. The saturation condition before 
there is water movement is shown for each problem at the right side of 
Figures 8 through 14. 

The increase in relative saturation from the beginning of water 
application is another item of interest. Distribution of saturation at 
several time steps from results of the solution to problem 1 (homogen­
eous soil), upon a plane passing through the axis of symmetry are 
plotted in Figure 7. The individual graphs show the vertical penetra­
tion and lateral movement of the wetting front at different dimension­
less times. 

The resultant flow patterns from the solutions to the problems in 
Table 1 have been plotted for several dimensionless times, T, in Figures 
8 through 14. These figures show how heterogeneity effects satur~'tion 
with depth and how changes continue during the infiltration process. 
Each different heterogeneity causes a different initialization of 
saturation except the porosity, n' and saturated hydraulic conduct­
ivity, K. For these two parameters the initial saturation is identical 
to the h8mogeneous case. In Figure 8, the value of bubbling pressure 
used in solution of problem 1, the homogeneous case, is the average of 

the bubbling pressure heads of problems 2 and 3 (.70 +2 1•30 ) = 1.0. 

Introducing this heterogeneity not only causes the initial saturation 
under no moisture movement (T = 0.0) to be different in each problem, 
but also influences the position of subsequent iso-saturation lines. 
Figure 8 shows that the iso-saturation line of 30 percent at dimension­
less time T = 1.46 has occurs at a depth of approximately 1.5 units for 
homogeneous soil (problem 1). For the same 30 percent iso-saturation 
line from problem 3, in which the bubbling pressure increases linearly 
with depth of soil, it is at a depth of 1.7 units. The lateral water 
movement for homogeneous and heterogeneous soil (Problems 1 and 3) is 
about 0.80 and 0.65 units, respectively, from the edge of the circular 
water application area. Where the bubbling pressure decreases linearly 
with depth (problem no. 2), at the same dimensionless time as T = 1.46 
the vertical and lateral movement of the 30 percent iso-saturation 
line is 1.35 and 1.05, respectively (Figure 8). Thus Figure 8 shows 
that the rate of penetration of the wetting front is more rapid and 
lateral (or radial) movement of the wetting front is slower for soils 
with larger values of bubbling pressure near the surface, provided the 
other conditions and soil parameters are held constant. Small bubbling 
pressures generally correspond to coarse textured soils. Water applied 
to the surface of coarse soils will normally enter more rapidly than it 
does into fine soils. The pores are larger in coarse soils and the 
movement of the free water is under less restriction than in the fine 
soils with smaller pores. In the problem 2, where the soil texture 
becomes coarser with depth, i.e., Pb decreases, the wetting front has a 
tendency to spread laterally in the soil profile and the ratio of 
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Figure 7. Distribution of Saturation at Several Dimensionless Times 
Resulting from Maintaining the Surface Circle of Application at 90 
Percent Saturation for Homogeneous Soil (Problem No.1) • 
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norizontal movement and vertical penetration is ~ = .83. Whereas the ~ 
ratio for the problems 1 and 3 is .61 and .44, respectively. 

The effects of variation of the pore size distribution exponent, A , 
on the flow patterns for solutions of problems I, 4, and 5 are shown in 
Figures 9, and 10. The different distribution of saturation at the 
beginning of water application in Figures 9 and 10 shows how A affects 
the water movement patterns. Usually sandy soils which have a narrow 
range of pore sizes have larger values for pore size distribution 
exponent than soils with finer texture. That is, a larger range of pore 
sizes in a soil causes A to be smaller. Figure 9 shows that at 
dimensionless time T = 0.50, the iso-saturation line of 40 percent for 
10mogeneous soil (problem no. 1) lies between the heterogeneous cases 
(problems 4 and 5) where the wetting front has not penetrated to the 
niddle of the soil profile. The vertical penetration for the problems 
I, 4, and 5 are .87, .72, and .94 and lateral movement are .42, .21, and 
.50, respectively. At later times, where the wetting front has passed 
the middle of the soil profile, the condition changes. For example, in 
figure 10 at dimensionless time T = 1.46, the 40 percent iso-saturation 
Line for homogeneous soil (problem no. 1) has moved faster in the 
{ertical direction and is ahead of the other 40 percent than lines from 
)roblems 4 and 5. Iso-saturation lines for problem 4 are always inside 
the isosaturation lines of the homogeneous soil (problem 1). The 
iso-saturation lines of the problem 5 in which the values of A 

lncrease with depth, are crossed by the iso-saturation lines of homo­
~eneous soil after the wetting front has passed the middle of the soil 
>rofile. In problem 5 the value of pore size distribution exponent, 
, linearly increases with depth (A = .70 at soil surface) and at the 

niddle of soil profile its magnitude is A= 1.0. The pore size distribution 
!xponent affects the relative hydraulic conductivity as given by the 
lrooks-Corey's equation (2). An examination of the Equation (2) shows 
:hat smaller values of the, A, will result in higher relative conductivity. 
;onsequently, smaller values of, A, are related to a high hydraulic 
:onductivity of the soil, and soil with larger values of, A, may act as 
i hard pan. 

Figures 11 and 12 indicate the influence of the variation of 
residual saturation, S , on the water distribution before infiltration 
>n and on the positionrof the iso-saturation lines during infiltration. 
rhe range of variation of the initial saturation (at T= 0.0) for prob­
Lems 6 and 7 is larger than for all problems shown in Table 1. The 
nagnitude of residual saturation directly affects the value of cOmputed 
laturation from the Brooks-Corey equation (I) and as Figures 11 and 12 
Ihow, the vertical penetration of water has not been greatly affected. 
10re effect can be seen in lateral water movement. For example, for 
time T= 0.50 (Figure 11) and T= 1.46 (Figure .12) the iso-saturation 
Lines of 40 percent show that the difference between vertical penetra­
tion for the three problems I, 6, and 7 is small and that this differ­
!nce increases with time. Also, Figures 11 and 12 show that the rate of 
lertical penetration of the wetting front is decreased when the values 
)f residual saturation are decreased. At dimensionless time T= 0.50 as 



Figure 11 shows, the iso-saturation line of 40 percent for problem 1 
lies between the iso-saturation lines of the problems 6, 7. Later on, 
at T = 1.46, the iso-saturation line of 40 percent of problems 6, 7 is 
shifted. In the lateral direction the water movement pattern is con­
sistent at all times. Since the initial value of saturation is high 
(32.50 percent for the problem 6 on the soil surface) and decreases 
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with depth, the wetting front moves more rapidly. Also the increasing 
residual saturation causes the wetting front to move more rapidly in the 
lower layers. 

Variation of soil porosity does not effect the initial distribution 
of saturation because the computed saturation is independent of the 
porosity. Consequently, the initial saturation conditions of the 
homogeneous and heterogeneous cases are the same., An examination of 
Figure 13 shows that for the three problems 1, 8, and 9 whose solutions 
are plotted, the 30 percent iso-saturation line for homogeneous soil 
lies between the heterogeneous solutions. This is caused by the linear 
variation of the porosity, n with depth. In the case where the porosity 
decreases with depth the volume of wetted soil is smaller than for the 
both homogeneous and the heterogeneous case in which porosity increases 
linearly with depth. Soils with high porosity at the upper layers have 
larger water storage capacity and therefore the rate of advance of 
wetting front is smaller. A longer time is required to fill the pore 
spaces. 

The positions of the iso-saturation lines from solution of problems 
I, 10, and 11 are shown in Figure 14. The heterogeneity is caused by 
linear variation of saturated hydraulic conductivity with depth. Since 
the values of the computed saturation are independent of the magnitude 
of the saturated hydraulic conductivity,K , the saturation at the 
beginning of the solution (at T= 0.0) forOthe problems 10 and 11 is the 
same as for homogeneous soil (problem 0.' The saturated hydraulic 
conductivity is defined as the product of a constant, K , with units of 
velocity and a dimensionless function of the depth, K ,arK (z) = K 
K (z)]; in which the constant K is taken tp be equalVto tRe saturited 
h~draulic conductivity on the s3il surface. Therefore on the soil 
surface the value of K is always equal to one for all problems and 
linearly decreases or Increases with depth, and the magnitudes of all 
soil parameters <A, Pb' Sr, n, and Ky) are the same in problems I, 10, 
and 11. For this reason the rate of lateral movement near the soil 
surface is the same for all cases. It can be concluded that the hetero­
geneity caused by the variation of the saturated hydraulic conductivity 
does not have a significant eff.ect on the resulting flow patterns in the 
upper layers. As in the distribution of iso-saturation lines in Figure 
13 for variable porosity, the 30 percent iso-saturation line for homo­
geneous soil lies between the lines for the heterogeneous soils (pro­
blems 10, and 11). Also Figure 14 indicates that as saturated hydraulic 
conductivity increases with depth, the wetting front moved faster than 
when its magnitude decreased with depth. But the differences between 
the vertical penetration of the iso-saturation lines for heterogeneous 
cases and homogeneous case are not great. These differences may be 
greater for a greater range of variation of saturated hydraulic con­
ductivity. Otherwise, the properties of the soil near the surface is 
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governing the resulted water flow patterns. Since near the soil surface 
these properties are almost the same, it is expected to get a unique 
iso-saturation line for three problems 1, 10 and 11. 

However, it is erroneous to draw final conclusions concerning the 
effects of various degrees of heterogeneity on the water flow pattern 
from the extremely limited number of solutions given in this paper, 
particularly in view of the number of parameters involved in specifying 
the problem. With data from solutions obtained in a more systematic 
manner, water movement trends can be defined more adequately. Other 
series of solutions in which more than one parameter is varied at a time 
are needed to investigate the possible interaction between the soil 
parameters. 

CONCLUSIONS 

The actual water flow patter in the field and location of the 
wetting front for any irrigation event can be found as a function of the 
5 soil properties used in the study. A precise estimate of the shape of 
wetted ,volume and flow patterns will be useful in determinating of 
emitter spacing, irrigation interval and discharge rate, for a specific 
soil. To use the results of this study the soil parameters at different 
depths must be determined. The measurements should be defined by a 
continuous curve as a function of depth. This analysis will give more 
guidance and help in gaining greater insight into the factors affecting 
trickle irrigation design. 
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