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ABSTRACT

distributed parameter groundwater management

model utilizing quadratic programming to develop
an optimal regional steady-state potentiometric surface
and its sustainred groundwater withdrawal strategy is
presented, It minimizes the regional cost of attempting
to satisfy the water needs of each finite-difference cell (a)
from groundwater and diverted surface water or (b) from
groundwater and reduction of water needs achieved by
reducing production acreages. Groundwater elevations,
withdrawal and recharge are constrained, satisfying legal
and hydrologic constraints. The technique is applicable
for assuring a regional sustained yield of groundwater in
a conjunctive water management setfing. It represents
the first application of optimization in the ‘‘target
objective’”” approach fo regional groundwater
management,

INTRODUCTION

In the Grand Prairie of eastern Arkansas (Fig. 1},
most of the irrigation water needs for rice and soybeans
have historically been provided by groundwater from an
unconsolidated Quaternary alluvium. This extensive
formation, the Mississippi alluvial aquifer, underlies
much of eastern Arkansas as well as parts of neighboring
states, An impermeable clay layer, however, prevents
recharge of the aquifer in the Grand Prairie, except at
some locations along the area’s periphery where streams
penetrate to the permeable material (Engler et al,, 1945;
Griffis, 1972; Peralta et al., 1985). As a result, recharge
has not kept pace with groundwater pumping, and the
potentiometric surface has been declining. Saturated
thicknesses are decreasing and in some locations
Quaternary groundwater cannot be obtained at usetul
discharge rates. This trend is projected to continue if
current groundwater usage continues (Peralta et al.,
1985). If stable groundwater levels are to be achieved and
maintained, alternative sources of water will have to be
developed to meet current water needs,

The Grand Prairie Water Supply Project was initiated
to determine how best to physically and legally
coordinate the uses of available water resources to meet
long-term water needs. This requires developing the
technical/institutional tools necessary to implement the
resulting water management straiegy, should that be
desired. An overview of the subprojects, funding
agencies and critical path approach to the effort is
described by Peralta et al. (1984).
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and approved for publication by the Scil and Water Div. of ASAE in
March, 1985,
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Fig. 1—The Grand Prairie study area.

One significant result of the project has been
acknowledgement in the state water plan (Peralta and
Peralta, 1984b) of the physical and legal feasibility of
achieving a steady-state potentiometric surface. The
approach, which requires the conjunctive use of
groundwater and surface water, is considered only for
areas with critical groundwater problems. In the
approach, a “steady-state™ potentiometric surface (i.e.,
target springtime groundwater levels) is maintained year
after year. A finite difference form of the Boussinesq
equation is used to determine the annunal volume of
groundwater which, if pumped from the aquifer in each
cell, will maintain a particular set of target levels. As
shown in Fig. 1 each celi is 5 km by 5 km in size.

Peralta and Peralta (1984a) presented an example,
using dynamic simulation, in which spring target levels
were maintained for ten years. In the example, simulated
water needs and groundwater usage differed from month
to month in accordance with climatologic influence on
evapotranspiration and user operations. In addition, the
sum of 12 consecutive monthly pumping values for a
particular cell equalled that cell's annual withdrawal
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volume as calculated by the steady-state equation. The
example demonstrated that maintaining a steady-state
potentiometric surface over the long term can be
achieved by limiting annual groundwater withdrawals to
the volume calculated using the Boussinesq equation.

There are many possible sets of steady-state (target)
groundwater levels for any area, each one corresponding
to a particular strategy of sustained groundwater
withdrawal. Depending on the management objective,
one set of target levels is more desirable than the others.
An important part of the Grand Prairie project is the
development of a means of determining optimal target
levels. The objective of this paper is to describe a model
used to determine the regional potentiometric surface
that results in the lowest annual expenditure for meeting
water needs from ground and alternative water
resources. The model s an optimizing computer
program that incorporates a medified version of the
quadratic programming subroutine written by Liefsson
et al. (1981). Equations describing porous media flow are
used as constraints to permit calculation of the
groundwater withdrawals that will maintain the optimal
surface. These spatially distributed pgroundwater
withdrawals thus represent a sustained-yield pumping
strategy.

METHODOLOGY

Governing Equation

Developing a regional steady-state set of target
groundwater levels requires the use of a steady-state
equation for each cell. The following has been developed
for two-dimensional steady flow in a heterogeneous
isotropic aquifer from both the linearized Boussinesq
equation (Iilangasekare and Morel-Seytoux, 1984) and
the Darcy equation (Peralta and Peralta, 1984b):

L=

BT e Siea g Genyzg Sieng T bongag
e Thgo1ye Ttjeagel sig

- ti‘j-—l 2 Si,j—l - ti,j+1[2 Si,j+1

where
Qi = the net vertical flux rate of groundwater
moving into or out of the aquifer in cell
(i,j). It is positive when flow is out of the
aquifer, nepative when flow is into the
aquifer, L3/T
vertical distance beiween a horizontal
datum located above the ground surface,
and the potentiometric surface, In this
paper s;; is a steady state drawdown, L
ti_y2; = is the geometric average  of the
transmissivities of cells (i,j) and (i—1,j),
LT
To express this equation in matrix form for a
groundwater system, the row-column notation is
replaced with single integer identification of each cell.
Thus for a groundwater flow system of n cells:

Q) ZITIS) e e et e (2]
where
(Q) = anx1 column vector of net steady-state tlux
values, L3/T
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j Fig. 2—-Unit cost of “alternative” water ($/dam?).
[T] = a n x n symmetric diagonal matrix of finite

difference transmissivities, L2/T

(S) = a column vector of steady-state drawdowns, L

In applying this equation to the Grand Prairie, one
considers the following. Transmissivities are based on a
hydraulic conductivity of 82 m per day (Engler et al.,
1945 Griffis, 1972: Peralta ef al., 1985). Validation of
an unsteady-state groundwater simulation model
AQUISIM, developed by Verdin et al. (1981),
demonstrated that the study area can be treated as a
groundwater system surrounded by constant-head cells
(Peralta et al., 1985}, In the validation, the groundwater
level in each constant-head cell equalled the average of
ten years of observed springtime groundwater levels in
that cell. Cells showing a 0 value in Fig. 2 were used as
constant-head cells in the validation and in the
management model presented in this paper.

The value in (Q) corresponding to a constant-head cell
is the annual volume of water entering (—) or leaving
{+) the aquifer at that cell. Since no groundwater
withdrawal by wells is considered at constant-head cells,
for those cells the value in (Q) represents the annual
volume of water moving between the aquifer and either
the surrounding aquifer system or a stream located
within the cell. In this paper the term “‘pumping”, p, is
used to refer to groundwater withdrawal via wells.

Vertical recharge of the aquifer in the Grand Prairie is
negligible for interior cells (non-constant-head cells).
Therefore, the net annual vertical flux for each interior
cell equals its groundwater pumping volume and the
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value in the (Q) vector corresponding to an interior cell is
nonnegative.

Estimating Unit Costs of Supplied Water

In this paper, the term “water needs” refers to current
groundwater usage. It is assumed that actual current
needs being met by other means will confinue to be met
by those means. The problem the management model
addresses is how best to replace current groundwater
usage with a combination of new alternative water
sources, use reduction, and groundwater. This section
briefly describes the determination of unit costs of
alternative water, reduction of water use and
groundwater,

For purposes of the paper, new alternative sources of
watet include water diverted from the Arkansas River
and water diverted from the White River. Diverted
surface water is the new alternative source in all cells
where surface water is assumed to be available. In all
other cells, reduction in use (by reducing irrigated or
aquacultural acteage) is the alternative. A state or local
water management agency may consider other
alternative water sources in using the model. Increased
use of on-farm reservoirs or reduced water needs due to
conservation measures can provide means of balancing
supply and demand. Harper (1983} provides a
preliminary assessment of the cost per unit volume and
the potential quantitative availability of water trom these
on-farm practices for the Grand Prairie.

The cost per cubic dekameter of an appropriate
alternative water source (c,) or the opportunity cost of
reduced pumping (also c,) for each cell is shown in Fig,
2. Preliminary U.S. Army Corps of Engineers
investigations indicate to which cells diverted Arkansas
River water can be delivered. These cells show a price of
$15 or 16 per cubic dam (personal communication, Joe
Clements) diverted from the Arkansas River, A price of
52 $/dams3 labels cells to which the Corps feels that water
from the White River can probably be diverted {personal
communication, Richard Coleman). Recent
reconnaissance-level evaluation indicates that legally and
physically available water from the Arkansas and White
Rivers is adequate to meet water needs in the cells
serviceable by those rivers, assuming average
climatologic and hydrologic conditions (Dixon and
Peralta, 1984).

Opportunity cost is adopted as the unit price of the
loss in revenue due to reduced pumping in cells for which
diverted surface water is unavailable. The opportunity
cost associated with failure to satisfy water needs is
assumed to be 67 $/dam? for aquacultural production of
fish or minnows and 68 $/dam?3 for rice production,
These values reflect the reduction in net benefits caused
by having to replace aquacultural or riee production with
an unirrigated crop. Conversion to fallow could also be
considered.

The costs of delivering a unit velume of diverted
surface water to a watercourse within a cell (c,), that we
have used, do not include the cost of delivering the water
to a parficular field within the cell. For this paper we
assume that the total costs of conveying water from the
watercourse to a field equal the fixed costs of a well and
pump system for obtaining groundwater at the field.
Therefore, in order to economically compare the use of
diverted surface water with groundwater at a cell we
consider ¢, for that cell as well as the variable cost of
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obtaining a unit volume of groundwater at a field within

the cell. We use two different unit costs together, ¢, and
C,, to determine the variable cost of obtaining
groundwater at the field. The first unit cost includes
energy, repair and lubrication costs for the pumping
power plant, and is associated with raising a unit volume
one unit distance. The value used for ¢, $0.48 per
damd.m (cubic dekameter-meter), was developed
assuming a representative mix of electric, natural gas
and diesel power plants, current energy prices and a 500
gpm well pumping to meet irrigation needs. The second
unit cost, a function of pump maintenance costs alone, is
associated only with each unit volume of groundwater
that is pumped. The value selected for c for this paper,
$1.34 per dam?, is appropriate for a turbine pump.
Using these unit costs, if the total dynamic head (h) of a
sample well is 50 m, the total cost of obtaining one cubic
decameter of groundwater at the ground surface is [(0.48
$/dam*m) (50 m) + 1.34 $/dam?®] {1 dam3) — $25.34.
This appioach to determining groundwater costs is used
in the subsequent section dealing with model

formulation. It should be noted that the use of economic -

assumptions different than those deseribed above simply
requires the use of different unit cost values.

Formulation and Utilization of the Management Model

Assuming that the annual needed water volume win a
cell is met either by groundwater or alternative water, the
volume of alternative water used equals {w — p)}, where p
is the volume of groundwater used. Utilizing this
assumption, a simple statement of the objective of
minimizing the total cost, X, of satisfying annual water
needs for a system of m internal cells is:

m
min X :k§1 [{cek by + ka) Pt Cay, (W, - Pl

.................................... [3]

where
X = the total cost of satisfying annual
regional water mneeds from

groundwater and alternative
sources, $/ T
h, = an estimate of the total dynamic
head of a well pumping at the
center of cell k, L
P = the annual groundwater pumping
volume from cell k, L3/ T
(e, +c,)pe = the total annual cost of
groundwater pumped in cell k, $/T
= the total annual cost of alternative
water or oppertunity cost in cell k,
/T
Equation [3] is an objective function containing the
unknown variables h and p. There are two problems with
the manner in which it is formulated. First, the stated
goal is to design an optimal steady-state spring
potentiometric surface. Using h as a variable is not as
satisfactory for this purpose as the alternative of
expressing h in terms of steady-state drawdown. Second,
as discussed latet, it is also best for p to be described in
terms of steady-state drawdown. The next four
paragraphs explain how the reformulation is
accomplished, Needed definitions are presented first.

¢, (Wi — Py
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Static lift is the difference in elevation between a
steady-state potentiometric surface and the ground
surface, Recall that s is the distance between the
potentiometric surface and a horizontal datum located
above the ground surface. Detining s, as the distance
between the ground surface and the horizontal datum,
static lift equals {s — s,}. In this study area static lift is
the major contributor to h.

The optimization procedure requires initially assumed
values of steady-state drawdown for all cells. In the
process of minimizing the value of X, these steady-state
drawdowns change. A change in h caused by a change in
the steady-state drawdown Is approximately proportional
to the change in static lift. Therefore, an estimate of h,
for a new (optimal) groundwater level for a cell is
expressed as:

he=hy (se-8)/(8i=5e) + - v v (4]
for

85— S >0
where

h, = the total dynamic head for the optimal steady-
state drawdown for the cell, L
h; = the initially estimated total dynamic head for

the cell, L.

s, — the optimal steady-state drawdown for the cell,
L

s; = the initially assumed steady-state drawdown

for the cell, L

Prior to optimization, h; is estimated for a
representative well and irrigation system in the center of
each cell. 1t is developed using simulated pumping rates
cortesponding to irrigation scheduling, and the aquifer
saturated thickness appropriate for the initially assumed
groundwater level. It equals the average difference
between the ground surface elevation and the
groundwater level at the well during simulated pumping,.

Since the h of equation [3] equals h,, at optimality, the
right-hand side of equation [4] can be used to replace h
in equation [3]. If in addition, f is defined as ¢,h/(s;, —
s.), (8/1%), equation [3] can be rewritten as:

m
min X =k;—21 [fk S*k. Pr ~ (fk Sek - ka+ Cak) P

+Cak Wk] ........................... [5]

As mentioned previously, the annual net vertical flux
for each internal cell in the Grand Prairie equals the
annual steady-state pumping volume for that cell. Thus
p in equation [S] is equivalent to q in Equation 1 and can
be expressed as a function of steady-state drawdowns.
We next explain why this substitution is made,

The quadratic programming subroutine used in this
model is based on the general differential algorithm
(Wilde and Beightler, 1967) that was developed in
considerable computational detail by Morel-Seytoux
(1972). In order to insure that a local minimum is also a
global minimum, the objective function must be convex.
Convexity is assured if the symmetric n by n matrix
{(Hessian matrix) of second partial derivatives of the
objective function with respect to the variables is positive
definite. This is achieved by replacing each p in equation
[5] with the right-hand side of equation [{]. Convexity is
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verified using the method of principal minors.

Equation [6] below is the resulting objective function
for minimizing total regional cost, expressed in standard
quadratic programming form. Equation [6] and its
attendant constraint equations [7] and [8] represent the
optimization management model. In these equations,
IT,] is the m x m matrix of finite difference
transmissivities (analogous to that of equation {2]) for
the m intertor cells of the system.

Min X = (1/2) (34)" [Tial (84) - [Tip] (54) +(Y)

.................................... [6]
subject to
(L) S ITIS)={Q S(U e v eceveenienenns [71
(Te) <(Sa) (Ugs) o voee e ieeane e [8]
where

(5,)t = the 1 x m transpose of the column vector of
opiimal drawdowns for the interior cells, L

[T;,] = the square symmetric matrix that results
when each element of [T, identified by its
row k and column £, is multiplied by a
coefficient: 2f, when k equals £ and (f, + 1)
when k does not equal £, $/12T

[T,] = the matrix that results when each column {
of [Ti] is muitiplied by ((f)(s,) — ey, T
¢, $/L- T

(Y) = am x1 vector of constants. If the k™ cell is

an internal cell, the value of the k element
equals (c, w,). If the k® cell is a constant-

head celi, the elemeni also contains
constants reflecting boundary conditions.
(Y) is not inciuded in the optimization, but is
added to the output value to determine the
total annual least cost, $/ T

(Ly) = actually a n x 1 column vector of the right-
hand side of constraint equations. Since the
equations equal net flux, however, it is
referred to as the vector of lower bounds on
net flux. The individual value is zero for all
internal cells since no recharge occurs
internally. For constant-head cells the lower
bound on net flux is a negative number
representing the estimated maximum
physically feasible recharge at those cells,
LY/ T

(Q) = a column vector representing the optimal
steady-state flux values, i.e., optimal
sustained-yield pumping values for all
internal cells and the optimal volume fluxes
for all constant-head cells, L3/ T

{Uy) = a column vector of upper bounds on the net
flux in the cells. In this paper the upper
bound for a particular internal cell is that
cell's current annual gronndwater pumping.
The upper bound for constant-head cells
equals a large positive number. This is our
standard procedure since the total recharge
for the entire system is limited to the total
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discharge. Limiting discharge from one
system boundary may result in
unnecessarily limiting recharge along a
different boundary where recharge is
needed, L3/ T

(L.} = a column vector of lower bounds on the
optimal steady-state drawdown for internal
cells, i.e., the ground surface elevation, L

(U,) = a column vector of upper bounds on the

steady-state drawdown for internal cells, L

The upper bound on steady-state drawdown for each
cell equals the drawdown that maintains 6 m of saturated
thickness in the aquifer in that cell. Peralta et al. (1985)
showed 6 m to be the spring saturated thickness at which
representative wells pumping to meet the scheduled
irrigation needs of rice in the Grand Prairie will begin to
go dry during the irrigation season. In their simulations,
they assumed one well per S0 acres of rice, no
interference between wells, no hydraulic gradient other
than that of the cone of depression, and average
climatologic conditions. Site-specific studies can be
conducted to more accurately determine the saturated
thickness needed to satisty certain conditions, For
example, Dutram and Peralta (1984) show that 4 mis an
adequate spring saturated thickness i cell (10,9),
assuming droughty climatologic conditions, current
acreages, existing wells, and the present hydraulic
gradient,

The objective function of equation [6] uses
transmissivities that are based upon the saturated
thicknesses of initially assumed drawdowns. The
optimization procedure changes the drawdowns, As
drawdowns change, so should transmissivities. To
accommodate this without introducing nonlinear
constraints, sequential optimizations are performed: the
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second optimization uses as input the transmissivities
corresponding to the optimal potentiometric surface of
the first optimization, the third optimization uses the
transmissivities appropriate for the results of the second
optimization, etc, until the resulting optimal drawdowns
are within an acceptable tolerance of the input
drawdowns. In this example, after four successive
optimizations, convergence to within 0.3 m was achieved
for all cells. At the same time that the transmissivities are
modified, values of f, are changed to reflect total
dynamic heads appropriate for the optimal drawdowns.

RESULTS AND DISCUSSION

The optimal steady-state potentiometric surface based
on the stated assumptions is shown in Fig. 3.
Comparison of this surface with the potentiometric
surface existing in 1982 (Fig. 4) indicates that in some
locations, for example cell (14,11), the optimal surface is
up to 8 m higher than the 1982 surface, while in other
locations, for example cell (3,6), the optimal surface is
down to 3 m lower than the 1982 surface.

The total cost per unit volume of groundwater in each
cell, based on the optimal surface, is shown in Fig. 5.
Study of Figs. 2 and 5 indicates that for the optimal
potentiometric surface, groundwater is the less expensive
source of water in most ceils. Fig. 6 shows the percentage
of the water needs of each cell met by groundwater in the
optimal strategy. Comparing the cells serviced by surface
water in Fig. 2 with the cells utilizing groundwater in
Fig. 6, one realizes that under sustained-yield
conditions, it is regionally less expensive to use surface
water in most cells where it is available, despite the fact
that groundwater is generally less expeasive.

Fig. 7 shows cells in which water needs are not met by
either groundwater or diverted surface water under the
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Fig. 7—Volume of unmet water needs under the minimum-cost
strategy {dam?),

adopted strategy. In these cells, the opportunity cost of
lost aquacultural or rice production is used in the
determination of the least-cost solution. Study of Figs. 2
and 7 reveals that water needs are unmet only in cells
without diverted surface water. The volume of unmet
water needs in these cells can be divided by 2.2 m or 0.6
m to estimate the acres of aquaculture or irrigated rice,
respectively, that cannot be supported in these cells
under the least-cost strategy.

The minimum value of the objective function,
including the vector of constants (Y), is $9.1 million. Of
this, $1 million is opportunity cost caused by conversion
of aquacultural and rice acreage to nonirrigated corn
acreage. The total volume of groundwater and diverted

surface water provided is 341,000 dam’ at an average

cost per cubic decameter of $24. As previously stated,
preliminary evaluation indicates that the necessary
volume of diverted surface water is physically and legally
available from these rivers during climatologically
“average” summers. A more detailed assessment of
streamflow and demand is necessary before complete
hydrologic feasibility can be determined, Of course,
geohydrologic feasibility is assured by the use of bounds
on recharge at peripheral cells and the inclusion of two-
dimensional flow equations as constraints in the model,

The strategy described above uses specified unit costs
for water. With time, these costs may change. One is
interested in knowing how sensitive the optimal water-
use strategy is to the assumed costs. In particular, one
wants to know whether groundwater use and unmet
water requirements will change.
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Simple evaluation of the sensifivity can be performed
by changing the cost per unit volume of alternative water
{c,) and the unit costs of groundwater, c, and ¢, If all
values of c,, ¢, and ¢, are increased by either 50 or 100%,
the total volumes of groundwater pumping and unmet
water needs do not change. If groundwater unit costs are
increafed by S0% but all values of ¢, remain the same,
the changes are —4.5% and +2.6%, respectively. If the
unit costs of groundwater are kept the same and the cost
of alternative water increases 50%, the volume changes
are 6.8% and 10.9%, respectively. Thus the optimal
solution is relatively stable for minor changes in unit
costs.

At the point of greatest difference between them, the
spring 1982 potentiometric surface is about 8 m lower
than the optimal potentiometric surface. At a different
location, the optimal surface is about 18 m below a
natural, unstressed potentiometric surface simulated for
the area (using the same constant-head cell eleyations).
Thus, the optimal surface lies between the unstressed
and the current surfaces.

As presented in this paper, the steady-state approach
to determining an optimal solution does not include
consideration of the time required for the optimal
potentiometric surface to be attained. It is important to
know how long it may take for groundwater levels to
evolve to the optimal from specified initial conditions.

Tt has taken most of this century to dewater the aquifer
to its present condition, Assuming that, beginning in
1982, the optimal pumping strategy presented in this
paper were implemented, years would pass before actual
levels approximated target levels. Dynamic simulations
using AQUISIM (Verdin et al., 1981), validated for the
Grand Prairie (Peralta et al., 1985), show that 95% of
the cells would be within 4.5 m and 86 percent of the cells
would be within 3 m of their target elevation within 10
years. After 30 years of pumping in accordance with the
optimal strategy, 100% and 94% would be within 4.5 m
and 3 m, respectively, of their target levels.

Had the optimal strategy been implemented at the
initiation of aquifer development (i.e., beginning with
unstressed conditions), after 10 years of pumping, 45%
of the cells would have been within 4.5 m and 30% would
have been within 3 m of their target elevations. After 30
years, 90% and 43% would have been within 6 and 3 m,
respectively. Note that the water levels resulting from 30
years of implementation under this scenario are not as
close to the optimal levels as are the levels resulting from
30 years of implementation beginning from 1982 levels,
This results from the fact that the unstressed levels are
much farther from the optimal levels than are the 1982
levels.

Assuming that the ¢, unit cost of raising groundwater
is $0.48/dam3-m, the 4.5-m difference between a
simulated ‘““actual” elevation and a target elevation
represents a $2.16/dam’ difference between “actual”
price and the price assumed in the development of the
pumping strategy. Since optimal drawdowns are less
than current drawdowns, the simulated total cost per
unit volume of groundwater used for a particular cell is
less than the cost that would actually be incurred were
the strategy invoked at this time. However, the effect of
this price difference on how much groundwater should
be used is not greater than that resulting from increasing
¢. and ¢, by 50% without changing c,, as described
above. On the other hand, if an optimal pumping
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Fig. 8—Ratio of optimal recharge rate to maximum feasible rechaxge
rate for constant-head cefls under the minimum-cost sirategy.

strategy is invoked at a time when actual drawdowns are
less than the optimal drawdowns designed by the model,
actual pumping costs during the evolutionary era are less
than those predicted by the model.

USING CONSTRAINED DERIVATIVES TO
REFINE THE MANAGEMENT STRATEGY

Consider the situation simulated for the northern
section of the Grand Prairic. In cell (1,4), 100% of the
feasible recharge is utilized (Fig. 8). Fig. 7 shows that
there is unsatisfied water demand in cell (2,4), directly
south of cell (1,4). From the 67 $/dam’ cost of
“alternative” water at cell (2,4) in Fig. 2, it is evident
that no surface water is available in the cell. In Fig. 6 we
see that only 43% of its water needs are met by
groundwater.

Four subsequent examples illustrate how one may
proceed to refine the optimal strategy to reduce unmet
needs in cell (2,4). In the first two examples, approaches
that will increase groundwater availability by relaxing or
tightening existing constraints or bounds are explored.
Of the four examples, the last three each result in
increased regional expense. To aid the discussion,
equation [6] is expressed as follows.

b/ 5 T [9]
where
Z = the quadratic and linear portions of X which

are optimized, /T
(Y) — the vector of constant terms, $/ T
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under the minimem-cost steategy ($100/m).

The change in X resulting from any fine-tuning of the
strategy is the sum of the changes in Z and (Y). From the
description of (Y) following equations [6] to [8], we know
that the value of (Y) changes if any product c, w,
changes. A change in the value of Z is estimated through
the use of constrained derivatives (shadow prices).

Consfrained derivatives are linear coefficients that
estimate the effect on Z or on a variable caused by a unit
change in another variable. Therefore, the change in Z
approximately equals the product of the change in a
variable and the appropriate constrained derivative. This
procedure for determining the effect onZ of a change in
a variable or variable bound can be applied as long as the
change does not cause any other bounds or constraints to
be exceeded. Because of the necessity of satisfying this
criterion, the reductions of unmet water needs achieved
in the four examples are not of comparable magnitude.

Figs. 9, 10 and 11 contain the constrained derivatives
of Z with respect to pumping, recharge and drawdown
respectively. A positive constrained derivative for Z
indicates that the variable is at its lower bound, whereas
a negative value shows that variable is tight against its
upper bound,

Another type of constrained derivative is also utilized.
This second type indicates the precise effect on variables
caused by changes in other variables. They are not shown
in the figures but are detailed where appropriate in the
discussion. The sign of these constrained derivatives does
not indicate tightness against a bound, buf merely
indicates the direction of resulting change.
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Approach 1

Net flux at cell (1,4) is negative, meaning that the
cell is a source of recharge. The constrained derivative
showing the effect on Z caused by a change in tTux at cell
{1,4) is 113 $/dam? (Fig. 10). Because this is a positive
value, flux at cell (1,4) is at its lower bound. Relaxing the
bound on recharge and decreasing flux (increasing
recharge) at that cell by 40 dam?® will change Z by about
(1138/dam’®) {(—40 dam?) or —$4520. Changing the
volume of recharge does not change the value of (Y);
therefore, the change in X is also —$4520.

The value of the constrained derivative that describes
the effect on pumping at cell (2,4) caused by a unit
change in flux at cell (1,4) is —2.71. (This constrained
derivative is not shown in the figures.) Thus, by changing
the recharge bound to permit a recharge increase of 40
dam at cell (1,4), one changes the pumping at (2,4) by
(—2.71) (+40 dam?) or 108.4 dam3. This 2.71-unit
increase in pumping for each unit of relaxed recharge
constraint, coupled with the decrease in total regional
cost, is attractive from a management perspective. In
this situation the physical feasibility of relaxing the
recharge constraint is seriously considered.

Approach 2

From the negative values in Fig. 11 we see that total
regional cost can be reduced if the upper bound on
drawdown at any of cells (3,5), (6,7) or (8,8) can be
relaxed (increased). Reviewing the constrained
derivatives (not shown) of the effect of drawdown at those
cells on pumping at cell (2,4), however, indicates that in
order to increase pumping the drawdown bound must be
tightened rather than relaxed. In other words, one
cannot both increase pumping at cell (2,4) and decrease
total regional expense by altering any drawdown bounds,

The most desirable way of increasing pumping at cell
(2,4) via changes in drawdown bounds is to force the
mode! to provide at least 6.5 m of saturated thickness,
instead of the original 6.0 m, in cell (3,5). The
constrained derivative of drawdown at cell (3,5) on
pumping in cell {(2,4) is —163.5 dam3/m. The increase in
pumping in cell (2,4) caused by a 0.5-m increase in
saturated thickness (decrease in drawdown) in cell (3,5)
is (—163.5 dam3/m) {—0.5 m) = 82 dam?. This is a 4
percent increase in the percent of water needs met by
groundwater (from 43 to 47%) in cell (2,4).

Other consequences of this action, however, are to
change the percent of water needs met by groundwater
from 97 to 93 percent in cell (3,5) and from 9 to 10
percent in cell (3,7), This means that unmet water needs
increase in cell (3,5) and decrease in cell {3,7).

The constrained derivative (Fig. 11) of drawdown at
cell (3,5) on the total regional cost is —$7100/m, The
increase in Z resulting from the 0.5-m increase in
saturated thickness is approximately (—7100 $/m)
(—0.5 m} = $3550. Since there is no change in (Y), the
increase in X is also $3550. Whether the relatively slight
increase in satisfied water needs in cells (2,4) and {3.7) is
worth the increase in unmet water needs in cell {3,5) and
the increase in total regional expense is a more difficult
decision to make than that of the first example.

Approach 3

One hundred percent of the water demand of cell (2,3)
is being met by groundwater (Fig. 6). To evaluate the
effect of using some of that groundwater in cell (2.4}, the
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consirained derivative of pumping in cell (2,3) on
pumping at cell (2,4) is used. This value, —0.317, is not
shown in the figures. In addition, the constrained
derivative of pumping at cell (2,3) on Z {(—30 $/dam?) is
used. By reducing the pumping in cell (2,3) by 10 dam?,
the pumping in cell (2,4) increases by (—0.317) (—10
dam3} or 3 dam?®. This change in pumping causes a
redistribution of some unmet water needs from cell (2,4)
to (2,3) and a change in Z of approximately (—30
$/dam3) (—10 dam?) or $300. Since there is no change in
the value of (Y), the total annual regional cost X
increases by $300. The rate of exchange in this example
is not tfavorable, but the approach may be socially
desirable,

Approach 4

Assume that through improved on-farm water
management and without additional personal expense,
the water users of cell (2,3) can reduce water needs and
consequently can reduce pumping by 10 dam3. The
change in (Y) equals the product of the change in water
needs and the opportunity cost at cell (2,3), (—10 dam?)
(67 $/dam?) = —$670. The change in 7 is estimated by
the product of the change in pumping and the
constrained derivative of pumping at cell (2,3} on Z,
{—10 dam?) (—30 $/dam3) = $300. Using Equation 9,
the resulting change in total regional cost X is $300 -
{(—5%670) = —3%370. As in the third approach, the
pumping in cell (2,4) increases hy 3 dams,

As these examples illustrate, there is considerable
flexibility in designing a sustained-yield groundwater
water management strategy via a steady-state approach.

SUMMARY

This paper presents a procedure for minimizing, in
steady-state, the cost of attempting to satisfy spatially
distributed regional water needs currently supported by
an aquifer system. Groundwater and either one
alternative source of water or reduction in water needs
(by reducing production acreages) can be considered in
each cell (square) of the study area. The total cost for
each cell is the sum of the costs of groundwater, and
either alternative water or opportunity costs caused by
reducing production in that cell. The cost per unit
volume of the alternative water (i.e., diverted surface
water) and the opportunity cost of reducing water needs
by reducing production, are known as a priori.

It is assumed that the cost per unit volume of
groundwater is a linear function of the distance between
the ground surface and the potentiometric surface in
each cell. The steady-state drawdowns (distance between
a horizontal datum and the water table) comprising the
potentiometric surface are the variables, The total cost of
using groundwater is a function of both the volume of
groundwater usage and the distance that water must be
raised. The distance through which the water is raised in
a particular celi is represented by the total dynamic head
of a hypothetical well in the center of the cell. A finite
difference form of the Boussinesq equation is used in lieu
of the volume of groundwater withdrawal in the objective
function and constraint equations. The result is an
objective function that is quadratic in the drawdown
variables.

The solution space of drawdowns is constrained by
lower and upper bounds. The upper bounds serve fo
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assure that sufficient saturated thickness exists to insure
groundwater availability. For internal cells, functionai
equivalents of groundwater withdrawal are constrained
to be nonnegative and to be less than water needs.
Similarly, for constant-head cells (recharge SOUTces),
recharge is constrained to be less than a physically
feasible upper limit. Thus, the constraints are used to
imbed within the management model the necessatry
equations describing steady-state two-dimensional flow
through a porous media. Because steady-state equations
are used and recharge is limited to that which is assumed
feasible, the groundwater withdrawal (pumping) strategy
that will maintain the optimal steady-state
potentiometric surface is a sustained-yield pumping
strategy. Several approaches for refining the optimal
strategy through the use of constrained derivatives are
presented.

Depending on the difference between a current
potentiometric surface and an optimal surface, it may
take many years of pumping in accordance with an
optimal sustained-yield pumping strategy before the
optimal surface is attained. The optimization does not
consider the period of evolving groundwater levels. It
develops only the optimal steady-state levels. Simple
analysis of the sensitivity of the results to the evolutionary
era are presented. The approach’s greatest potential lies
in situations where a long-term guaranteed supply of
groundwater is desired.
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