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Abstract. The ratio of the number of observed taxa to that expected to occur in the
absence of human-caused stress (O/E ) is an intuitive and ecologically meaningful measure
of biological integrity. We examined how O/E ratios derived from stream invertebrate data
varied among 234 unimpaired reference sites and 254 test sites potentially impaired by past
logging. Data were collected from streams in three montane ecoregions in California. Two
sets of River Invertebrate Prediction and Classification System (RIVPACS) predictive mod-
els were built: one set of models was based on near-species taxonomic resolution; the other
was based on family identifications. Two models were built for each level of taxonomic
resolution: one calculated O and E based on all taxa with probabilities of capture (Pc) .
0; the other calculated O and E based on only those taxa with Pc $ 0.5. Evaluations of the
performance of each model were based on three criteria: (1) how well models predicted
the taxa found at unimpaired sites, (2) the degree to which O/E values differed among
unimpaired reference sites and potentially impaired test sites, and (3) the degree to which
test site O/E values were correlated with independent measures of watershed alteration.
Predictions of species models were more accurate than those of family models, and pre-
dictions of the Pc $ 0.5 species model were more robust than predictions of the Pc $ 0
model. O/E values derived from both species models were related to land use variables,
but only assessments based on the Pc $ 0.5 model were insensitive to naturally occurring
differences among streams, ecoregions, and years.

Key words: bioassessment; biological integrity; California; invertebrates; logging; monitoring;
predictive models; RIVPACS; species-based vs. family-based models; streams; water quality.

INTRODUCTION

During the last 20 yr, water resource scientists have
developed a variety of biologically based approaches
to assess the ecological effects of pollution and land-
scape alteration (Ohio Environmental Protection Agen-
cy [EPA] 1987, Reynoldson and Metcalfe-Smith 1992,
Lenat 1993, Rosenberg and Resh 1993, Wright et al.
1993, Norris and Norris 1995, Southerland and Stri-
bling 1995). Two major approaches have emerged from
this activity: a multimetric approach based on the ideas
of Karr (1981) that uses the values of several indices
to measure biotic condition, and assessment schemes
that compare observed faunas to those predicted by
empirical models to occur in the absence of human
alteration (Wright et al. 1993, Wright 1995, Norris
1996, Moss et al. 1999). Although considerable effort
has been directed toward developing the multimetric
approach in the United States (e.g., Ohio EPA 1987,
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Plafkin et al. 1989, Kerans and Karr 1994, Barbour et
al. 1995, 1996, 1997, DeShon 1995, Fore et al. 1996,
Gibson et al. 1996, Karr and Chu 1999), little effort
has been directed at either developing or evaluating the
utility of predictive models in the United States.

Wright et al. (1993) and Norris (1996) describe the
British and Australian versions of these predictive
models. These models are conceptually and mechanis-
tically similar, and they differ only in two subtle as-
pects, which we describe. Because of their similarities,
we refer to them collectively as RIVPACS models, an
acronym Wright (1995) and coworkers derived from
the name of the original assessment scheme (River In-
vertebrate Prediction and Classification System). The
analyses on which this paper is based were performed
with a modified version of this method developed in
Australia (Australian River Assessment System, or
AUSRIVAS).

River Invertebrate Prediction and Classification Sys-
tem models allow an assessment of biological condition
by comparing the taxa observed at sites of unknown
or suspect biological condition (hereafter called ‘‘test
sites’’) with the biota expected to occur in the absence
of stress (see Wright [1995] for details). In brief, a
predictive model is built from biological and environ-
mental data collected from reference sites that are min-
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imally affected by human activities. For practical rea-
sons, reference sites are seldom pristine, but should
represent the least impaired sites within the area of
interest. Measurements at these reference sites provide
an empirical foundation from which to judge the rel-
ative condition of other sites (Bailey et al. 1998, Rey-
noldson and Wright 2000), and the model predicts the
biotic composition expected at a site from a suite of
environmental features unlikely to be influenced by
human activity (e.g., latitude, elevation, channel slope,
and alkalinity).

In RIVPACS assessments, the ratio of the number
of taxa observed at a test site that were expected to
occur to the number of taxa expected (O/E ratio) is
used as a measure of biological impairment. Low ob-
served-to-expected ratios (O/E K 1.0) imply that test
sites are adversely affected by some environmental
stressor. The number of taxa expected at a site is cal-
culated as the sum of individual probabilities of capture
(Pc) of all taxa found in the region of interest. In the
British models, all values of Pc . 0 are summed to
calculate the expected number of taxa (E), and this
number is compared to the total taxa observed (O) at
a site. In the Australian models, only taxa with Pc $
0.5 are used to calculate E, and this number is then
compared to the number of taxa with Pc $ 0.5 that were
collected.

Because these models predict the actual taxonomic
composition of a site, they also provide information
about the presence or absence of specific taxa. If the
sensitivities of taxa to different stressors are known,
this information can lead to derived indices and di-
agnoses of the stressors most likely affecting a site.

The primary goal of this paper is to describe the
potential utility of RIVPACS assessments for measur-
ing the biological condition of streams draining land-
scapes that have been altered by logging activities.
Comparing the sensitivity of these assessments to tim-
ber harvest practices should represent a particularly
rigorous test of their utility, because the composition
of stream biota can vary substantially with naturally
occurring local and regional conditions in the western
United States (Hawkins et al. 1997), and biotic re-
sponses to logging practices are often subtle, complex,
and difficult to distinguish from natural background
variation (e.g., Newbold et al. 1980, Hawkins et al.
1982, 1983).

We address two main objectives: (1) Do assessments
derived from species data differ from those derived
from data based on family identifications? (2) Do as-
sessments based on Pc . 0 differ from those based on
Pc $ 0.5. In addressing these objectives and evaluating
model performance, we focused on seven questions:
(1) was it possible to identify classes of sites that de-
scribed most of the natural biotic variability among
sites, (2) did the models correctly predict the condition
of known reference sites, (3) did assessment scores of
test sites vary in understandable ways with independent

measurements of catchment condition, (4) was there
any difference in assessments of the same location
made in different years, (5) did the ecoregion from
which samples were collected influence assessment
scores, (6) did the type of habitat sampled influence
assessment scores, and (7) were there specific taxa in-
dicative of logging effects?

METHODS

Study area

The study area included three montane ecoregions
in California (Omernik 1987, Barbour et al. 1997) that
differ in forest type and cover, geology, and precipi-
tation (Hawkins et al. 1994, 1997). One ecoregion
(Klamath Mountains; KM) was the mixed conifer forest
area of the interior portion of northwestern California,
including portions of the Klamath Mountains and the
Shasta-Trinity Mountains. The second ecoregion was
the drier Sierra Nevada (SN), consisting predominantly
of pine and fir forests. The third ecoregion, Eastern
Cascades Slopes and Foothills (ECSF), is drier than
the others and sparsely forested because it lies within
a rain shadow. Climate in all three ecoregions is warm
in the summer with rain and snow at higher elevations
in winter. Runoff in KM streams is heavily influenced
by rainfall, whereas runoff in the SN and ECSF ecore-
gions is largely related to snowmelt. Study sites
spanned ;68 latitude (368–428 N) and .2200 m in
elevation (330–2547 m). Bedrock geology underlying
basins in these three ecoregions varies considerably and
includes granitic, volcanic, and sedimentary rock
(Mount 1995). The dominant land use in these basins
is silviculture.

Sampling design and site selection

The sampling program was designed to assess the
degree to which landscape alteration associated with
timber harvesting has affected stream biota. Because
lack of statistical rigor and small sample size has com-
promised many past studies of the effect of manage-
ment on stream biota (Hall and Knight 1981, Hawkins
et al. 1983), we designed a geographically extensive
sampling program to quantify the physical, chemical,
and biological heterogeneity that existed both among
and within basins.

In 1988, we requested that 13 National Forests in
California (Region 5 of the U.S. Forest Service) submit
candidate basins for this study. We also requested that
background information on each basin be provided to
facilitate site selection. Our primary criterion for the
initial submission of candidate basins was that they be
3000–6000 ha in size. We also asked that basins with
a range of land use be submitted, which we initially
characterized as having low, moderate, and high
amounts of silviculture.

Of the 167 basins submitted in 1988, we selected 45
basins for study (Fig. 1), 15 in each of the land use
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FIG. 1. Locations of 45 basins in California. Shaded cir-
cles are basins in the Klamath Mountain ecoregion, open
circles are basins in the Sierra Nevada ecoregion, and tri-
angles are basins in the East Cascade Slopes and Foothills
ecoregion.

categories. These basins met the following sampling
design criteria: basin size ;4000–5000 ha (third- and
fourth-order streams; Strahler 1964), triplets of basins
in the low, moderate, and high land use categories oc-
curring within close proximity of each other (within
;50 km) and at similar elevation, and the number of
basins selected within the three 3 ecoregions occurring
in approximately the same proportion as their respec-
tive areas within California (70% SN and 30% KM,
with ECSF sites combined with SN sites). Twenty-four
basins were sampled during summer 1988; the re-
maining 21 basins were sampled during summer 1989.
To examine how much benthic faunas differed between
years, we sampled two streams (one low and one high
land use) in each ecoregion in both years, thereby pro-
viding 49 total sets of samples.

In each year, streams were sampled from south to
north, in order to minimize differences in assemblage
structure associated with sampling date. This sampling
design was based on the assumption that initiation of
life history phenomena in northern populations would
be delayed relative to more southerly populations be-
cause of a latitudinal gradient in the seasonal warming
of streams (see Newbold et al. 1994). Sampling began
in mid-June in the southern Sierra Nevada and ended
in mid-September near the California–Oregon border.

Data collection

We collected four types of data in each basin: benthic
invertebrates, channel conditions, chemical water qual-
ity, and hill slope conditions. Several fast-water hab-
itats were sampled at ;600-m intervals along 4–11 km
of the main stream channel in each basin. Fast-water
habitat types included runs, step runs, low-gradient rif-
fles, high-gradient riffles, and cascades (see Bisson et
al. [1981] and Hawkins et al. [1993] for descriptions
of habitat types). These habitat types represent a con-
tinuum of ‘‘riffle’’ type habitats from low-gradient,
low-turbulence units (e.g., runs) to high-gradient, high-
turbulence units (e.g., cascades). In this paper, we refer
to this combination of fast-water habitats collectively
as ‘‘riffles.’’

Benthic invertebrates, macroalgae, and moss.—Nine
0.1-m2 benthic samples (modified Surber sampler with
250-mm mesh) were collected per riffle and combined
in the field to provide a single sample from each riffle.
In conjunction with the benthic invertebrate samples,
we used a 100-cell, 30 3 30 cm transparent grid to
estimate the percentage of each sample area covered
by visible growths of algae and moss.

Invertebrate samples were sorted in the laboratory
and individuals identified to the lowest possible tax-
onomic level (usually genus or species; hereafter called
operational taxonomic units; OTU).

Riffle habitat conditions.—The following environ-
mental data were collected at the time of sampling from
each riffle: riffle slope (%), mean depth (m, calculated
from 20 measurements taken along five to seven tran-
sects); mean width (m, calculated from five to seven
measurements); mean length (m, calculated from three
to five measurements); pool volume (m3, calculated
from mean depth, mean width, and mean length); me-
dian substrate size (D50, calculated from measure-
ments of 50–100 individual particles collected at 0.3-
m intervals along systematically spaced transects and
reported as a phi (log2) scaled index, where 0–1 mm
5 1, 1–2 mm 5 2, 2–4 mm 5 3, etc.; see Wolman
1954); percent embeddedness of cobble substrates es-
timated as the relative depth (0–20%, 20–40%, 40–
60%, 60–80%, and 80–100%) that bed particles $64
mm were buried by fine material; percent shade over
the riffle estimated with a spherical densiometer and
calculated as the percentage of the riffle shaded by
riparian vegetation; and percentage of the near-stream
floodplain occupied by herbaceous, deciduous, and co-
niferous vegetation.

Stream temperatures.—In addition to these sample
site measurements, we also recorded water temperature
at hourly intervals while in the stream, and used the
.60 hourly measurements taken over the eight days
required to sample a stream to calculate mean daytime
temperature at the time of sampling (see Hawkins et
al. 1997).

Near-stream erosion.—Between each sampling lo-
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cation, we measured potentially active areas of erosion
on the stream bank and nearby off-channel hillside
(,50 m from channel). Areas of potentially active ero-
sion were defined as regions .1 m2 with exposed soil.
Values of both stream bank and hillslope erosion were
summed between each sampling location and for the
entire sampled channel upstream of a sampling loca-
tion. These values were then summed to give an index
of total erosion occurring immediately above a site. A
standardized estimate of the cumulative amount of
eroding area upstream of each site was estimated by
summing all eroding areas observed upstream of each
site and then dividing by the length of channel surveyed
upstream of each site. Both site and cumulative values
were expressed as number of square meters of eroding
area per 100 m of stream channel.

Water chemistry.—We collected water chemistry
samples at two locations on each stream. One location
was the basin outlet (first sampling site), and the other
site was located approximately midway between the
first and last sampling sites. At each location, water
chemistry (Na, K, Mg, Ca, NO3, PO4), specific con-
ductance, and pH were sampled at 3-h intervals over
a 24-h period. Because of funding constraints, water
chemistry samples were collected from the 25 SN and
3 ECSF basins in the summer and fall of 1990 and from
the 17 KM basins in the summer of 1991. For these
analyses, we assumed that conditions at the time of
chemistry sampling were similar to those when inver-
tebrate samples were collected, an assumption we be-
lieve is reasonable because climatic conditions during
1988–1991 were generally similar because of a modest
7-yr drought. We used 24-h means in all statistical anal-
yses.

Basin conditions.—Information describing water-
shed boundaries, stream networks, resource type and
abundance data (e.g., soils, vegetation), management
history data (e.g., roads, timber harvest, fire history),
and stream sampling locations were entered into a geo-
graphical information system (GIS). All data were
compiled at 1:24 000 scale. The GIS allowed us to cal-
culate basin conditions upstream of every sampling
point. For this paper, we used the following derived
basin scale variables: basin area, drainage density, el-
evation, latitude, longitude, length of permanent stream
channel above the sampling location, area of basin
burned above the sampling site, and azimuth of the
stream channel. Azimuth was measured as the differ-
ence in decimal degrees between the orientation of the
stream channel and due south, where due south was
given by 08. Direction of flow was ignored in order
that orientation of all channels could be scaled from
2908 to 1908 (Bartholow 1989). In our statistical anal-
yses, we used the absolute value of azimuth, because
streams with orientations of equal magnitude but dif-
ferent sign would generally receive the same amount
of solar radiation.

Identification of reference and test sites

River Invertebrate Prediction and Classification Sys-
tem (RIVPACS) assessments require comparison of bi-
ota collected at potentially disturbed test sites with bi-
ota collected from environmentally similar reference
sites (Norris 1994, Reynoldson et al. 1997, Bailey et
al. 1998). We used sites with minimal upstream logging
activity as reference sites and considered all other sites
as potentially degraded. Because no data exist describ-
ing how stream invertebrate assemblages change with
the amount of logging among these basins, we used an
arbitrary, but conservative, criterion for defining ref-
erence sites. Reference sites were defined as sites in
which timber had been removed from ,5% of the basin
up-gradient from the site, as measured from maps dat-
ing to ;1960. The five-percent criterion was chosen
after inspecting how percent upstream logging was dis-
tributed among sites, and represents a compromise that
balanced the need for minimum possible upstream hu-
man disturbance with a sample size sufficiently large
to allow adequate statistical analysis.

During the field surveys, 668 separate riffles were
sampled for benthic invertebrates. However, we were
unable to obtain some basin-level information for some
sites, and data were missing for one or more environ-
mental variables from other sites. We also discovered
that invertebrate assemblages collected from riffles
dominated by large boulders or bedrock were usually
statistical outliers in the analyses we conducted. We
therefore eliminated all sites with missing data and
those dominated by bedrock and large boulder substrate
from subsequent analyses. Removal of these sites pro-
vided initial sample sizes of 261 reference and 281 test
sites, although we excluded several more test sites be-
cause they did not belong to the same statistical pop-
ulation as the reference sites (see Models: Model per-
formance: Check on applicability).

Model construction and calculation of O/E

The statistical procedures used in constructing RI-
VPACS models have been described in detail elsewhere
(Wright et al. 1984, Moss et al. 1987, Wright 1995,
Clarke et al. 1996, Norris 1996, Parsons and Norris
1996, Marchant et al. 1997), and only a brief descrip-
tion is given here. To construct and implement models,
we used the following procedures:

1) A biological classification of reference sites was
derived from cluster analysis (unweighted pair–group
arithmetic averaging with b 5 20.1; Belbin and
McDonald 1993) following calculation of Bray–Curtis
dissimilarities (Faith et al. 1987). For the site classi-
fication, but not subsequent predictions of biotic com-
position, we deleted all taxa that occurred at .95%
and ,5% of the sites, because taxa that occur every-
where will not discriminate groups and very rare taxa
have a high probability of being accidentals and thus
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could obscure our ability to detect biologically signif-
icant differences between sites.

2) Stepwise multiple discriminant analysis (MDA)
was used to create discriminant functions models
(DFM) that estimate the probabilities of group mem-
bership of test sites from environmental data.

3) Probabilities of group membership were used in
conjunction with frequencies of occurrence of specific
taxa within the different reference site groups to esti-
mate taxon-specific probabilities of capture (Pc) for in-
dividual sites.

4) Probabilities of capture (Pc) were used to identify
the specific taxa predicted to occur in samples for both
Pc $ 0 and Pc $ 0.5 and estimate the number of taxa
expected to occur within the sample for both Pc thresh-
olds. These data were then used to calculate O/E values
for both Pc thresholds, i.e., O/E0 and O/E50.

5) Model error was estimated by comparing the
number of taxa observed at reference sites to that ex-
pected from the model and generating a distribution of
reference site O/E ratios. This population of O/E ratios
describes the distribution of errors in predicting taxa
richness and is used to determine if the O/E ratio of a
test site is different than that expected from model error
alone.

6) Environmental data from test sites were then in-
put to the models, and O/E ratios were calculated as
described.

Model performance

Training and evaluation data.—To determine the ac-
curacy and precision of each model, we used data from
80% of the reference sites to build the models (training
sites), and we used data from the remaining 20% of
reference sites (evaluation sites) to evaluate the ability
of the models to correctly assess sites of known con-
dition. To ensure that evaluation data represented the
range of biotic conditions found among sites, and that
groups were proportionately represented in these anal-
yses, we selected every fifth site as arrayed in the clus-
ter tree as an evaluation site.

From these analyses, we examined how well the dis-
criminant models predicted group membership and if
O/E scores for the evaluation sites differed from those
predicted by the models. We used two cross-validation
procedures to evaluate the DFMs. First, we used the
jackknifing procedures within the SYSTAT (Version 8)
discriminant functions routine to predict group mem-
bership of each site in the training data from models
constructed after removing them one at a time from the
data set. We then compared the jackknifed results with
how well the model predicted group membership of the
evaluation sites.

Effects of taxonomic resolution on assessments.—To
explore how the level of taxonomic resolution affected
sensitivity of assessments, we built models from two
data sets that were identical, except in the level of
taxonomic resolution used in classifying individuals.

The first model was built with data in which taxa were
identified to the lowest level possible, generally genus
or species, and the second with identifications only to
family.

Check on applicability of models to test sites.—Be-
fore calculating O/E values for test sites, we determined
if the environmental attributes of each test site be-
longed to the same statistical population as the refer-
ence sites (i.e., was the test site within the experience
of the models). This test followed the procedures de-
scribed by Moss et al. (1987) and Clarke et al. (1996),
in which the Mahalanobis squared distances between
a test site and each classification group in multivariate
discriminant space are calculated. These distances are
distributed as a x2 function, and a new site is inferred
as being outside the range of the model if the smaller
of these values exceeds a predefined critical x2 value
(here a 5 0.05) in which the number of degrees of
freedom equals the number of discriminant functions.
We eliminated any test site that failed this test from
further consideration.

O/E values and environmental conditions.—We con-
ducted two types of analyses to determine if O/E values
varied with both naturally occurring environmental
conditions and channel and basin conditions likely
caused by land management. ANOVA was used to de-
termine if test site O/E values differed from those of
reference sites, and if O/E values differed between site
classes, year of sampling, type of fast water habitat
sampled, and ecoregion. To determine if test site O/E
values varied with site class, we assigned each site to
its most probable class as identified by the DFM. To
determine if O/E values varied with factors associated
with land use above each test site, we first conducted
a principal components analysis on management-relat-
ed variables to describe statistically independent axes
of environmental variation. We then regressed O/E val-
ues on the three principal components axes that de-
scribed most of the variation in management variables.

Taxa missing from and present at test sites.—To
identify those taxa that appeared to be most sensitive
to logging practices, we compared how densities of
each taxon varied, on average, between reference and
test sites. Differences in densities were calculated in
two ways: (1) as the logarithm (base 10) of the dif-
ference between the two means with positive values
assigned to taxa with highest densities in reference
sites, and negative values assigned to taxa with highest
mean densities in test sites; and (2) as the proportional
difference in the means calculated as the logarithm of
reference site density divided by test site density. These
values were then plotted against the rank abundance of
taxa found at the reference sites. The first plot revealed
which taxa differed most strongly in absolute densities
between reference and test sites, whereas the second
plot revealed which taxa differed the most, relative to
their densities in reference sites.

Differences between reference and test sites in dom-
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TABLE 1. Range of channel and basin conditions observed among the reference and test sites.

Variable

Reference sites

Minimum Mean Maximum

Test sites

Minimum Mean Maximum

Sampling variables
Sampling date (Jan 1 5 0) 158 211 256 161 211 255

Basin variables
Azimuth (8)
Elevation (m)
Basin area above site (m2 3 107)
Length of stream above site (km)
Drainage density (m/ha)
Calcareous geology (ha)
Area burned (ha)
Total area cut (ha)

2
330

0.3
4.3
6.1
0
0
0

44
1484

3.1
36.7
12.1

142
227

55

84
2547

10.0
95.5
20.6

2424
5941

403

0
410

0.1
2.0
7.4
0
0

16

40
1346

3.1
37.4
12.4

265
299
792

86
2353

6.2
70.9
18.2

17449
25041

3584
Percent of basin cut
Length of roads (km)
Stream-road crossings (no.)

0
0
0

1.5
29
18

5
167
112

5
1.3
0

26
66
32

77
152

97

Riparian variables
Riparian shade (%)
Herbaceous cover (%)
Deciduous cover (%)
Coniferous cover (%)

0
0
0
0

45
35
45
21

96
100
100

98

0
0
0
0

58
33
53
24

96
100
100
100

Channel variables
Channel gradient (%)
Riffle depth (m)
Riffle width (m)
Particle size (mm)
Substrate diversity (1/S)
Embeddedness (%)
Moss cover (%)
Macroalgae cover (%)

0
0.02
0.7
0.5
1.0

10
0
0

2.8
0.13
3.5

32
5.7

25
3
6

26
0.70

12.8
1536

10.4
64
68
62

0
0.03
0.6
0.5
2.1

10
0
0

3.1
0.13
3.3

31
5.8

25
3
3

26
0.56

11.4
1536

11.0
80
56
96

CV macroalgae cover (%)
Large woody debris (no. pieces/100 m)
Site erosion (m2/100 m)
Upstream erosion (m2/100 m)

0
0
0
0

1.1
5

218
203

3.0
49

5216
2034

0
0
0
0

0.9
5

158
154

3.0
42

1956
988

Water variables
pH
Conductivity (mS/cm)
Sodium (1 mg/kg H2O)
Potassium (1 mg/kg H2O)
Magnesium (1 mg/kg H2O)
Calcium (1 mg/kg H2O)
NO3/NO2 (1 mg/kg H2O)
PO4 (1 mg/kg H2O)
Temperature at site (8C)

6.3
34
0.8
0.2
0.4
2.7
3.2
0.8
8.4

7.6
91
6.1
1.3
5.1

15.8
21.1

3.5
15.4

8.3
447

24.8
4.1

15.1
48.7
74.2
12.7
19.8

6.8
29
0.8
0.5
0.4
2.2
3.3
1.1

11.6

7.7
91
5.0
1.5
5.4

15.7
24.8

4.4
16.0

8.1
447

19.9
3.9

15.1
48.7
76.8
12.7
20.3

Notes: Site erosion is the area of near-channel banks and hillslopes eroding within 600 m upstream of each site, standardized
to a 100 m length of stream channel. Upstream erosion is the cumulative area of near-channel banks and hillslopes eroding
upstream of a site, standardized to a 100 m length of stream channel. Substrate diversity is calculated as the inverse of
Simpson’s diversity index (S).

inance–diversity relationships.—To determine if dif-
ferences in the performance of O/E0 and O/E50 were
associated with either an increase or decrease in dom-
inance by taxa, we compared the dominance–diversity
curves derived from the mean abundances observed at
reference and test sites.

RESULTS

Invertebrate fauna

Two hundred ninety three operational taxonomic
units (OTUs) in 83 families were recognized from the
study sites, of which chironomids represented the larg-
est taxonomic group (31% of all OTUs). Only 14 non-

insect OTUs were collected, although 11 of these OTUs
were only identified to family or higher levels of clas-
sification. The number of OTUs collected from indi-
vidual sites ranged 9–80. Of the 222 OTUs collected
from reference sites, 79 OTUs and 27 families occurred
at #5% of the sites. Six OTUs and six families occurred
at $95% of sites. Elimination of these taxa resulted in
143 OTUs and 50 families on which subsequent site
classifications were based.

Variation in physical and chemical conditions among
sites

Both naturally occurring and human-caused environ-
mental conditions varied widely among sites (Table 1).
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TABLE 2. Mean values of environmental factors for sites located in the three ecoregions: Sierra Nevada (SN), Klamath
Mountains (KM), and Eastern Cascade Slopes and Foothills (ECSF).

Variable SN (265) KM (169) ECSF (30)

Sampling variables
Sampling date (Jan 1 5 0) 191 240 224

Basin variables
Azimuth (8)
Elevation (m)
Basin area above site (m2 3 107)
Length of stream above site (km)
Drainage density (m/ha)
Calcareous geology (ha)
Area burned (ha)
Total area cut (ha)
Percent of basin cut
Length of roads (km)
Stream-road crossings (no.)

48
1749

3.3
39
12.3

8.0
126
537

17
51
31

34
804

2.9
36
12.9

217
498
323

12
41
17

32
1893

3.1
11.9

7.6
0

329
26

1
50
16

Riparian variables
Riparian shade (%)
Herbaceous cover (%)
Deciduous cover (%)
Coniferous cover (%)

42
28
41
29

73
37
65
15

19
68
28

9

Channel variables
Channel gradient (%)
Riffle depth (m)
Riffle width (m)
Particle size (mm)
Substrate diversity (1/S)
Embeddedness (%)
Moss cover (%)
Macroalgae cover (%)
CV macroalgae cover (%)
Large woody debris (no. pieces/100 m)
Site erosion (m2/100 m)

2.6
0.14
3.5

31
5.7

25
3
4
1.1
4.0

166

3.6
0.12
3.2

32
6.0

26
4
5
0.9
8.3
.205

2.2
0.12
2.9

27
5.5

20
0
2
1.0
2.5

120
Upstream erosion (m2/100 m) 146 220 94

Water variables
pH
Conductivity (mS/cm)
Sodium (1 mg/kg H2O)
Potassium (1 mg/kg H2O)
Magnesium (1 mg/kg H2O)
Calcium (1 mg/kg H2O)
NO3/NO2 (1 mg/kg H2O)
PO4 (1 mg/kg H2O)
Temperature at site (8C)

7.5
74

7.1
1.4
2.9

13.7
18.0

3.8
16.1

7.9
145

3.6
1.4
9.4

21.0
33.3

4.2
14.8

7.6
46

3.7
1.3
2.5
5.8
8.6
5.0

16.6

Notes: Numbers of sites are shown in parentheses. Site erosion is given by area of near-channel banks and hillslopes eroding
#600 m upstream of each site, standardized to a 100 m length of stream channel. Upstream erosion is given by cumulative
area of near-channel banks and hillslopes eroding upstream of a site, standardized to a 100 m length of stream channel.
Substrate diversity is calculated as 1/Simpson’s diversity index (S).

Few substantial differences existed between reference
and test sites in mean values of naturally occurring
factors, although the average reference site was slightly
higher in elevation than the average test site, and test
sites tended to occur in slightly more calcareous re-
gions than references sites. In contrast, the mean values
of several variables associated with land use varied
markedly between reference and test sites. Area cut,
percentage of the basin above each site that had been
cut, length of road above each site, number of stream–
road crossings, percentage of the channel shaded by
riparian vegetation, bankside cover by deciduous veg-
etation, and potassium and phosphate stream water con-
centrations were all higher on average for test sites.

Sodium stream water concentrations were lower on av-
erage for test sites.

In contrast to the few differences among reference
and test sites in naturally occurring factors, pronounced
differences existed both within and among ecoregions
in elevation, drainage density, calcareous geology, ri-
parian shade, deciduous and coniferous cover sur-
rounding stream banks, substrate particle size, stream
water pH, conductivity, and ionic concentration of most
cations (Table 2). Klamath sites (KM) were generally
more heavily shaded, lowest in elevation, coolest, and
generally had the highest amounts of woody debris and
stream water concentrations of most ions. Eastern Cas-
cade Slope and Foothill (ECSF) sites had low drainage
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FIG. 2. Dendrograms showing species and
family site classes. Individual sites are not
shown. Linkage distances are those calculated
from raw Bray–Curtis pairwise distances by the
flexible b unweighted pair group method using
arithmetic averages (UPGMA) clustering al-
gorithm of Belbin and McDonald (1993) and do
not therefore scale exactly from 0 to 1.

densities and were sparsely shaded. However, these
sites also had the most bankside cover of herbaceous
plants, had the lowest specific conductivity and stream
water ionic concentrations, and had little woody debris
within their channels. Sierra Nevada (SN) sites were
generally intermediate to Klamath and ECSF sites.

Model development

Site classification and annual variation in group
membership.—We identified 10 groups when species
data were used in the cluster analysis, and seven groups
when family identifications were used (Fig. 2). For the
species-level classification, sites within the same basin
tended to cluster within just one or two groups implying
basin-level features (including proximity to potential
colonists) were strongly associated with faunal com-
position (see the Appendix, Table A1). In contrast, for
the family data, sites from the same basin were spread
across as many as five groups (see the Appendix, Table
A2). On average, Bray–Curtis distances between sites
were greater for species data than for family data (Fig.
2, mean site distances 5 0.61 for species data and 0.33
for family data).

For both the species- and family-level classifications,
sites sampled from the same basin in different years
tended to occur in the same groups (see the Appendix,
Tables A1 and A2). Nineteen of 24 samples from
Thompson Creek (KM) were assigned to species Group
2 (11 samples from 1988 and eight from 1989). The
remaining samples were assigned to adjacent Group 1.
Of the 16 samples from the SN basin (North Fork
American River), 15 (six from 1988 and nine from
1989) occurred in Group 5. One sample from 1989
occurred in Group 8. Within groups, sites sampled the
same year tended to cluster together (data not shown).

Site fidelity for family-based groups was not as
strong as observed for species data (see the Appendix,

Tables A1 and A2). Thompson Creek sites occurred in
four widely separated groups (1, 2, 4, and 5), and sites
from the North Fork American River occurred in three
of the seven groups (2, 3, and 5). However, 88% of
Thompson Creek sites occurred in two contiguous
groups (1 and 2), and 80% of North Fork American
River sites occurred in Group 3. Unlike the species
data, there was no tendency for sites from the same
year to cluster together within family-defined groups
(data not shown).

Discriminant functions models (DFM) classification
errors.—Jackknifed evaluations of internal consistency
and external tests with independent sites both showed
that the species DFM was substantially better than the
family DFM in predicting group membership (see the
Appendix, Tables A3 and A4). The jackknifed estimate
of error for the species DFM was 23%, and the estimate
based on the external test was 18%. The jackknifed
estimate of error was 45% for the family DFM, and
the estimate based on external data was 49%. The spe-
cies model was least successful in predicting member-
ship of sites from Group 5 and misclassified a high
percentage of these sites into Groups 7 and 8. Mis-
classification rates were generally high for all family
groups except Group 7. For the species, but not the
family model, the percentage of within-group misclas-
sifications were directly related to both the number of
sites (r 5 0.91, P , 0.001) and the number of basins
(r 5 0.93, P , 0.001) within a group.

Discriminant functions models predictor vari-
ables.—Because the internal and external estimates of
error were nearly identical, we combined data from
both the training and evaluation reference sites to es-
timate the contribution of different predictor variables
to the models. These analyses identified 11 and 9 pre-
dictor variables for the species and family models, re-
spectively (Table 3). For both models, variables that
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TABLE 3. Predictor variables identified by stepwise discrim-
inant analysis for the species- and family-level models.

Variable F

Species-level model
log(Specific conductance)
Longitude
Basin area
Elevation
log(Depth)
Latitude
Stream length
log(Width)
Sampling date
log(Stream slope)
Azimuth

29.6
21.0
13.1
14.6
13.1
11.9

9.5
7.2
5.2
4.8
4.3

Family-level model
log(Specific conductance)
log(Depth)
Longitude
Sampling date
Elevation
log(Stream slope)
Basin area
Stream length
log(Width)

13.9
11.1
10.0

8.6
8.1
5.6
3.9
3.9
3.4

Note: Variables are listed in order of their importance as
measured by model F values.

FIG. 3. Distribution of observed-to-expected ratios (O/E)
for reference sites. O/E values based on probabilities of cap-
ture .0 and $0.5 are shown for both the 10-group species
and 7-group family models.

described water chemistry (conductivity), climate re-
gime and ecoregion (elevation, latitude, longitude), and
stream size (basin area, length of channels upstream of
the site, and stream width and depth) were most im-
portant in discriminating groups.

Error in predicting the expected fauna: the distri-
bution of reference site O/E values.—The distribution
of O/E values derived from both the training and eval-
uation reference sites was close to being normally dis-
tributed for both the species and family models (Fig.
3). For all models, the distributions of O/E values de-
rived from the evaluation reference data were statis-
tically indistinguishable from those obtained from the
training data (Table 4), implying that all models gen-
erated stable and unbiased estimates of error in pre-
dicting the number of taxa at unimpaired sites. Mean
O/E values for both species and family models were
very close to unity, which showed that both models
produced unbiased estimates of the number of taxa ex-

pected to occur at a site. Standard deviations of O/E50

(i.e., models based on Pc $ 0.5) were lower than that
of O/E0, implying there was greater error predicting
rarer taxa than more common ones. Although the dis-
tribution of overall error appeared to be unbiased in all
models, bias occurred for some site classes in some
models (Fig. 4). For example, 8 of 10 species site
groups had O/E0 means near unity, but the mean for
Group 5 was significantly higher than the mean for
Group 7 (Tukey’s pairwise comparison, P , 0.004),
implying that this model produced biased estimates of
richness for these two groups. This bias was not no-
ticeable among species groups for O/E50, but was clear-
ly apparent for both of the family models with Groups
5, 6, and 7 having consistently and significantly (Tu-
key’s pairwise test, P , 0.05) lower mean O/E values
than the other groups.

Differences among reference and test sites in O/E
values.—Mean O/E values for the test sites were sig-
nificantly lower than mean values for reference sites
for species but not family models (Table 4). This dif-
ference in the ability of species and family models to
detect differences in mean O/E values between refer-
ence and test sites was not related to model error; stan-
dard deviations of reference site O/E values were sim-
ilar for the two models (Table 4).

The species model based on Pc $ 0.5 was slightly
more sensitive than the model based on Pc $ 0. Mean
test site O/E values were significantly lower for the O/
E50 model than the O/E0 model (Table 4; ANOVA, P
, 0.01), a consequence of the smaller standard devi-
ation for O/E50 values than O/E0 values.

Observed-to-expected ratios (O/E50 and O/E0 values)
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TABLE 4. Means and standard deviations of O/E values for training (T) reference, evaluation (E) reference, and test sites
for species- and family-level models calculated using probabilities of capture (Pc) .0 and .0.50.

Data set N

Species models

Pc . 0

Mean 1 SD

Pc . 0.50

Mean 1 SD

Family models

Pc . 0

Mean 1 SD

Pc . 0.50

Mean 1 SD

Combined groups
Reference (T)
Reference (E)
Test

203
51

234

1.03
1.03
0.92†

0.28
0.23
0.26

1.02
0.98
0.87†

0.17
0.16
0.18

1.00
1.00
1.03

0.22
0.23
0.17

1.01
1.01
1.03

0.17
0.17
0.13

Combined reference sites by group
1
2
3
4

2/19‡
9/41‡
2/66‡
5/68‡

1.04
1.00
1.02
1.02

0.24
0.15
0.18
0.19

1.02
1.04
1.00
1.02

0.15
0.10
0.14
0.11

1.04
1.11
1.01
1.16

0.15
0.14
0.16
0.13

1.02
1.08
1.05
1.04

0.09
0.11
0.12
0.11

5
6
7
8
9

10

7/44‡
10/5‡
6/10‡
11
11
11

1.15
1.01
0.92
0.98
0.96
1.01

0.37
0.16
0.28
0.28
0.28
0.26

1.02
1.00
0.96
0.99
0.97
1.02

0.17
0.11
0.22
0.20
0.25
0.22

0.75
0.79
0.65
—
—
—

0.16
0.25
0.16
—
—
—

0.84
0.81
0.64
—
—
—

0.14
0.20
0.12
—
—
—

† Indicates means for evaluation and test sites that are statistically (P , 0.05) different from means for the training data.
‡ Slash (/) separates N values for species- and family-level groups.

FIG. 4. Box plots showing the distribution of O/E values by site class and site condition (reference vs. test sites). For
each site class, reference data are on the left, and test data are on the right. Asterisks are outliers, and the open circle is a
distant outlier.
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FIG. 5. Relationship between O/E50 and O/E0 for the spe-
cies data from reference (top panel) and test (bottom panel)
sites. The diagonal lines represent the line of perfect agree-
ment between the two measures. For reference sites, O/E0 5
0.014 1 1.012(O/E50), n 5 254, r2 5 0.39, P , 0.001 for H0:
slope 5 1. For test sites, O/E0 5 0.182 1 0.853(O/E50), n 5
234, r2 5 0.37, P , 0.001 for H0: slope 5 1 and H0: intercept
5 0.

were linearly correlated with one another (Fig. 5), al-
though they were not strongly related for either ref-
erence or test sites (r2 5 0.39 and 0.37, respectively).
Fig. 5 gives the impression that the relationship be-
tween O/E0 and O/E50 was nonlinear, but residuals from
the 1:1 were unrelated to O/E50. Furthermore, fitting
the data to a power function did not improve the overall
fit. Although O/E50 was only a slightly biased predictor
of O/E0 for reference sites (intercept, 0.014; slope,
1.012), it was more strongly biased for the test site data
(intercept, 0.182; slope, 0.853). On average, O/E50

overestimated O/E0 with the amount of bias greatest at
low O/E50 values.

The difference between reference and test sites also
varied with site group (Fig. 4). For O/E0, test sites

predicted to occur in Groups 1, 4, and 6 had substan-
tially lower O/E values than reference sites, whereas
reference and test values were similar in other site
groups. For O/E50, test sites predicted to occur in
Groups 2, 4, and 6 had lower O/E values than reference
sites. For both family models, test site O/E values were
higher in family Groups 5, 6, and 7 than reference site
values.

Differences among reference and test sites in faunal
composition and dominance diversity relationships.—
On average, the abundances (hence their probabilities
of capture) of many taxa observed at test sites differed
considerably from those observed at reference sites,
with some taxa being less abundant and other taxa be-
ing more abundant at test sites (Fig. 6). Taxa that were
most abundant at reference sites were most likely to
show large numerical responses to management with
the magnitude of differences generally diminishing
with the rank abundance of taxa at reference sites. Fur-
thermore, the 100 most common taxa were less abun-
dant, on average, at test sites than reference sites,
whereas rarer taxa (i.e., rank . 150) were more abun-
dant at test sites (Fig. 6). The proportional differences
in abundances between test and reference sites were
generally similar for all taxa, regardless of rank abun-
dance (Fig. 6). This analysis also showed that taxa that
were rare at reference sites tended to respond positively
to the conditions found at test sites.

Although test sites clearly differed from reference
sites in the abundances of many individual taxa and
hence assemblage composition, on average, little dif-
ference existed in total densities or in assemblage dom-
inance diversity relationships. For example, the ten-
dency for test sites to have lower abundances of some
taxa was generally matched by higher abundances of
other taxa such that there was little difference in total
densities between reference and test sites (Fig. 6). Fur-
thermore, when composition was ignored, there was
essentially no difference in the overall assemblage
structure of reference and test site assemblages as mea-
sured by dominance diversity relationships (Fig. 6).

Compositional differences between reference and
test sites.—Several taxa were substantially less abun-
dant at test sites than reference sites and would thus
have been less likely to be captured at test sites than
predicted (Table 5). These taxa would therefore have
had a strong influence on O/E values of test sites. Den-
sities of 50 taxa were 3–5003 less abundant at test
sites than reference sites (Table 5). Blackflies (Simu-
liidae), aquatic mites (Hydracarina), the riffle beetles
Optioservus quadrimaculatus and Zaitzevia parvula,
five chironomid midges (Cricotopus [Nostococladius],
Cladotanytarsus [vanderwulpi], Polypedilum [Penta-
pedilum], Corynoneura, and Orthocladius [Eudactyl-
ocladius]), aquatic worms (Oligochaeta), the caddis
Micrasema, the stoneflies Taenionema and Chloroper-
lidae, copepods, and the clam Pisidium appeared to be
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FIG. 6. Top panel: Relationship between the absolute dif-
ference in mean taxon abundances between reference and test
sites (log10[reference site density 2 test site density]) and the
rank order of reference taxa abundances. Taxa with values
greater than 0 were more abundant at reference sites. The
smoothed line describes how, on average, densities varied
between reference and test sites as a function of rank abun-
dance. The line was fitted by distance-weighted sum of
squares. Middle panel: Relationship between the proportional
difference in mean taxon abundances between reference and
test sites (log10[(reference site density)/(test site density)]) and
the rank order of reference taxa abundances. The smoothed
line was fit as in the top panel. Bottom panel: Dominance–
diversity curves derived from mean abundances of taxa found
at reference (circles) and test (triangles) sites. Because the two

←

curves almost exactly overlap each other, the data for the test
sites are offset 0.5 units on the ordinate to make both curves
visible. For both sets of data, log(X 1 1) densities were plotted
against their respective rank abundances.

most sensitive (i.e., .303 difference in abundance) to
conditions at test sites.

Densities of an additional 50 taxa were 3–3003 more
abundant at test sites (Table 5). The taxa most indic-
ative of conditions at test sites (.303 more abundant
than at reference sites) included the midges Microp-
sectra/Tanytarsus, Tvetenia [bavarica], Eukieferiella
[brevicalar/claripennis], E. [devonica], Pagastia,
Rheocricotopus, and Orthocladius (Orthocladius); the
stoneflies Zapada/Malenka; the mayflies Baetis and
Paraleptophlebia; and the caddis Apatania.

Taxa within certain higher taxonomic groups ap-
peared to be more sensitive to conditions at test sites
than those in other groups (Table 5). For example, may-
flies as a group appeared to respond positively to con-
ditions at test sites: of the 100 taxa that showed the
largest difference between reference and test sites, 11
mayfly taxa were most abundant at test sites, whereas
only two taxa were most abundant at reference sites.
Conversely, only one beetle was most abundant at test
sites, whereas eight beetles were most abundant at ref-
erence sites. No obvious trends existed for Diptera (27
taxa most abundant in reference sites and 27 in test
sites), Plecoptera (3/1), or Trichoptera (6/8). Although
little change occurred in overall representation at ref-
erence and test sites for these groups as a whole, the
specific taxa that were most abundant within each
group of taxa at these two groups of sites differed mark-
edly.

Variation in species O/E values with year, ecoregion,
and habitat type.—Effects of habitat type, year, and
ecoregion were tested with ANOVA for both reference
and test sites (Table 6). These analyses showed that
habitat type did not influence either O/E0 or O/E50 val-
ues for reference sites, but both O/E0 and O/E50 values
from test sites varied significantly among habitat types.
Samples from high-gradient riffles and step runs had
lower O/E values than samples from low-gradient rif-
fles and runs, implying these habitat types were more
sensitive to land use than the other habitats.

Values of O/E0, but not O/E50, differed between the
two years of sampling, with 1988 values being higher
than 1989 values. Year had a similar effect on both
reference and test site O/E0 values and was associated
with ;28C difference in mean July water temperatures
between the two years (1988, 17.78C; 1989, 15.68C).

Ecoregion had no effect on reference site O/E values,
but test sites from the Klamath ecoregion had slightly
lower O/E values than sites from the Sierra Nevada for
the Pc $ 0 model, but not the Pc $ 0.5 model. Test
sites from the ECSF ecoregion were all outside the
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TABLE 5. Mean difference between test and reference sites in abundance of different taxa.

Taxon
Operational taxonomic unit

(OTU) log(RD 2 TD) log(RD/TD)

Most abundant at reference sites
Simuliidae
Hydracarina
Coleoptera
Chironomidae
Oligochaeta
Chironomidae
Chironomidae
Chironomidae
Trichoptera
Plecoptera

Simuliidae
Hydracarina
Optioservus quadrimaculatus
Cricotopus (Nostococladius)
Oligochaeta
Cladotanytarsus (vanderwulpi) ‘‘A’’
Polypedilum (Pentapedilum)
Corynoneura
Micrasema
Taenionema

2.722
2.103
2.098
1.923
1.809
1.796
1.670
1.663
1.658
1.649

0.167
0.128
0.421
0.186
0.211
0.514
0.249
0.232
0.176
0.798

Copepoda
Bivalva
Coleoptera
Plecoptera
Chironomidae
Chironomidae
Chironomidae
Ephemeroptera

Copepoda
Pisidium
Zaitzevia parvula
Chloroperlidae
Orthocladius (Eudactylocladius) ‘‘A’’
Sublettea
Thienemanniella
Diphetor hageni

1.607
1.566
1.553
1.501
1.470
1.417
1.393
1.390

0.525
1.108
0.392
0.163
0.389
1.121
0.196
0.103

Chironomidae
Chironomidae
Coleoptera
Chironomidae
Coleoptera
Chironomidae
Chironomidae
Turbellaria
Plecoptera

Stilocladius
Synorthocladius
Heterolimnius
Stempellina
Eubrianax edwardsii
Rheosmittia
Cladotanytarsus (vanderwulpi) ‘‘B’’
Turbellaria
Yoroperla

1.209
1.161
1.143
1.096
1.090
1.031
1.031
1.016
1.010

0.334
0.136
0.159
0.818
0.155
0.907
0.415
0.264
0.169

Coleoptera
Coleoptera
Chironomidae
Coleoptera
Trichoptera
Chironomidae
Chironomidae
Trichoptera

Rhizelmis nigra
Ordobrevia nubifera
Paratrichocladius
Cleptelmis
Wormaldia
Heterotrissocladius (marcidus)
Potthastia (gaedii)
Agapetus

0.955
0.946
0.843
0.842
0.836
0.821
0.808
0.789

0.266
0.218
0.713
0.086
0.226
0.447
0.112
0.034

Diptera
Trichoptera
Chironomidae
Trichoptera
Chironomidae
Chironomidae
Chironomidae
Chironomidae
Trichoptera

Bezzia
Brachycentrus
Microtendipes (pedellus)
Gumaga
Orthocladius (Eudactylocladius) ‘‘B’’
Phaenopsectra
Polypedilum (Tripodura)
Pentaneura
Rhyacophila (nevadensis)

0.779
0.767
0.759
0.749
0.748
0.657
0.641
0.609
0.588

0.069
0.430
0.183
0.141
0.479
0.259
0.141
0.084
0.384

Chironomidae
Chironomidae
Ephemeroptera
Diptera
Coleoptera
Chironomidae

Cricotopus (Isocladius) (laricomalis)
Diamesa
Cloeon
Hexatoma
Hydraena
Cardiocladius

0.576
0.571
0.548
0.514
0.496
0.487

0.065
0.291
0.143
0.133
0.457
0.189

Most abundant at test sites
Diptera
Trichoptera
Ephemeroptera
Trichoptera
Diptera
Chironomidae
Ephemeroptera
Chironomidae
Trichoptera
Chironomidae
Chironomidae
Ephemeroptera
Chironomidae

Maruina
Heliocopsyche borealis
Drunella coloradensis/flavilinea
Rhyacophila (hyalinata)
Atherix
Parametriocnemus
Attenella
Microtendipes rydalensis
Glossosoma
Nanocladius ‘‘A’’
Cricotopus (bicinctus)
Drunella spinifera
Virgatanytarsus

20.490
20.494
20.502
20.513
20.529
20.534
20.547
20.602
20.613
20.621
20.634
20.642
20.650

20.232
20.453
20.117
20.325
20.351
20.025
20.302
20.099
20.120
20.419
20.218
20.145
20.631

Ephemeroptera
Ostracoda
Ephemeroptera
Trichoptera

Caudatella heterocaudata
Ostracoda
Serratella teresa
Rhyacophila (brunnea)

20.655
20.671
20.737
20.751

20.392
20.011
20.282
20.236
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TABLE 5. Continued.

Taxon
Operational taxonomic unit

(OTU) log(RD 2 TD) log(RD/TD)

Diptera
Nematoda
Chironomidae
Chironomidae
Trichoptera
Chironomidae
Chironomidae
Diptera
Ephemeroptera

Chelifera
Nematoda
Heleniella
Cricotopus (tremulus) ‘‘A’’
Rhyacophila (betteni)
Rheotanytarsus
Nilotanypus
Pericoma
Ameletus

20.792
20.797
20.815
20.829
20.834
20.901
20.930
20.954
20.956

20.215
20.122
20.244
20.075
20.157
20.032
20.347
20.111
20.105

Ephemeroptera
Chironomidae
Ephemeroptera
Chironomidae
Trichoptera
Chironomidae
Trichoptera
Ephemeroptera

Serratella sequoia
Psectrocladius (sordidellus)
Epeorus
Larsia
Hydropsyche
Eukiefferiella (gracei)
Amiocentrus aspilus
Heptagenia

20.956
20.961
20.975
20.989
21.021
21.080
21.083
21.126

20.427
20.887
20.047
20.177
20.114
20.108
20.251
20.358

Coleoptera
Chironomidae
Chironomidae
Chironomidae
Ephemeroptera
Chironomidae
Chironomidae
Chironomidae
Chironomidae

Ampumixus dispar
Cricotopus (tremulus) ‘‘B’’
Brillia
Eukiefferiella (brehmi)
Serratella michneri
Paraleptophlebia
Orthocladius (Orthocladius)
Rheocricotopus
Pagastia

21.150
21.267
21.391
21.403
21.460
21.490
21.571
21.582
21.649

20.160
20.083
20.187
20.144
21.303
20.163
20.117
20.227
20.364

Chironomidae
Chironomidae
Trichoptera
Ephemeroptera
Chironomidae
Plecoptera
Chironomidae

Eukiefferiella (devonica)
Eukiefferiella (brevicalcar)/(claripennis)
Apatania
Baetis
Tvetenia (bavarica)
Zapada/Malenka
Micropsectra/Tanytarsus

21.733
21.740
21.808
22.144
22.163
22.364
22.478

20.337
20.327
20.503
20.046
20.294
20.271
20.177

Notes: The 100 taxa showing the largest absolute difference in abundance between test and reference sites are listed in
rank order, from most abundant in reference sites to most abundant in test sites. RD 5 reference site density, and TD 5 test
site density; log(RD 2 TD) is sensitive to absolute difference in abundance between sites, whereas log(RD/TD) is sensitive
to relative differences in abundance between sites.

experience of the model, so no comparisons were pos-
sible.

Variation in mean species O/E values between ba-
sins.—Mean O/E values are based on a mix of reference
and test sites that occur within each basin and estimate
the overall condition of the invertebrate biota within
basins. These mean values varied substantially across
the 49 study basins (by a factor of 1.81 for O/E50 and
a factor of 2.79 for O/E0; Table 7), implying that basins
varied, on average, in the biological integrity of their
stream invertebrate fauna. Although mean values of O/
E50 and O/E0 were generally similar to one another, in
some cases values of O/E0 were markedly higher than
O/E50 (e.g., see values for basins 20, 45, 13, and 19 in
Table 7). The two measures therefore behaved some-
what differently across basins and would thus provide
somewhat different inferences of biological quality at
this scale of observation, an observation consistent
with the relationship between O/E0 and O/E50 at the
site scale (Fig. 5).

Relationships between O/E values and land use var-
iables.—Principal components analysis showed that
variation among test sites in the eight land use variables

could be collapsed onto three independent axes of var-
iability (Table 8). Variables describing the amount of
timber harvest and length of roads above each test site
all loaded strongly on Factor 1; percent riparian shad-
ing and stream water NO3/NO2 concentration loaded
on Factor 2; and streambed particle embeddedness and
stream water PO4 concentration loaded on Factor 3.
Regression analysis of O/E values showed that esti-
mates of the amount of timber harvest and road con-
struction were not associated with O/E values for any
model (Table 9). However, O/E values for both species
models were negatively related to riparian shading and
concentration of NO3/NO2, but family model values
were not. Finally, values for three of four models were
negatively related to percent substrate embeddedness
and PO4 concentration, the exception being the family
O/E0 model. In combination, land use variables were
associated with only 8–11% of the variation in test site
O/E values, suggesting land management activities in
these basins have had subtle effects on stream biota.

DISCUSSION

In large measure, our results corroborated previous
work from Great Britain and Australia that show pre-
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TABLE 6. Relationships between mean O/E values, habitat type, year, and ecoregion.

O/E Site

Habitat type

HR LR R SR P

Year

1988 1989 P

Ecoregion

KM SN ECSF† P

Pc . 0 R

T

1.02
(86)
0.85
(94)

1.06
(68)
1.10
(46)

1.00
(36)
0.96
(41)

1.06
(38)
0.89
(50)

NS

0.001

1.07
(110)
0.98
(105)

0.99
(121)
0.87
(129)

0.02

0.001

0.99
(82)

0.87
(145)

1.05
(120)
0.95
(88)

1.00
(32)
—
—

NS

0.03

Pc . 0.5 R
T

1.00
0.85

1.04
0.96

0.98
0.84

1.00
0.85

NS

0.001
1.01
0.86

1.00
0.88

NS

NS

0.99
0.86

1.01
0.87

1.00
—

NS

NS

Notes: Site abbreviations: R, reference; T, test. Habitat-type abbreviations: HR, high-gradient riffle; LR, low-gradient riffle;
R, run; and SR, step run. Ecoregion abbreviations: KM, Klamath Mountains; SN, Sierra Nevada; and ECSF, Eastern Cascade
Slopes and Foothills. Sample sizes are shown in parentheses for each set of contrasts and are the same for both O/E0 and
O/E50 models.

† Test sites within the ECSF ecoregion were not assessed because of missing data.

dictive models can provide a powerful means of as-
sessing the biological condition of streams (Wright et
al. 1984, 1993, Moss et al. 1987, Parsons and Norris
1996, Marchant et al. 1997). Given the similarities
among these studies, the River Invertebrate Prediction
and Classification System (RIVPACS) approach may
offer a standard method of biological assessment that
can be applied to streams throughout the world. This
latter point is important in that such a standard ap-
proach would potentially allow direct comparison of
the biological condition of streams at local, regional,
and global scales. Further work will be necessary, how-
ever, before such comparisons can be made with con-
fidence. For example, RIVPACS-type models have
largely been developed for small, easily sampled (i.e.,
wadeable) streams. Applying this approach to larger
rivers, which tend to be more degraded, will likely
require use of reference sites located within least-im-
paired reaches of river. Given that the current condi-
tions of the best river sites are clearly less pristine than
that of the best small-stream sites, observed-to-ex-
pected ratios (O/E values) derived from these two types
of lotic environments will not be absolutely comparable
in terms of their historical potential. However, they may
very well provide comparable assessments in terms of
the biotic conditions that society believes to be real-
istically attainable in different types of systems.

Predictor variables and biotic structure

That models developed in Great Britain (e.g., Wright
1995), Australia (Parsons and Norris 1996), and Cal-
ifornia (this study) use largely the same variables to
predict biotic composition has interesting implications
for both our understanding of the factors influencing
stream biota and our ability to assess biological con-
dition. For example, good predictions of biotic com-
position in Great Britain, Australia, and California sug-
gest stream invertebrate assemblages in different parts
of the world are highly structured by environmental
filters (sensu Poff 1997) and not random assemblages,
as has been implied by some stream ecologists (e.g.,
Winterbourn et al. 1981, McCreadie et al. 1997). These
results also imply that local richness in streams is not

simply proportional to regional richness, as seems to
be the case for many other assemblages (see Cornell
1993, Caley and Schluter 1997). Instead, richness ap-
pears to conform best to a niche model in which species
composition and richness varies with the diversity of
resources available at each location, an idea supported
by a large literature on stream invertebrates (see review
by Vinson and Hawkins [1998]).

The predictor variables used in these models provide
insight into the specific niche axes that are important
in partitioning taxa among sites. For example, the im-
portance of geographic variables such as latitude, lon-
gitude, and elevation implies temperature is a primary
factor determining the composition of stream inverte-
brate faunas, a result consistent with the ideas of Ide
(1935), Vannote and Swenney (1980), Hawkins et al.
(1997), and others. The importance of alkalinity or con-
ductivity as predictors suggests that either the ionic
composition of the water or the geologic parent ma-
terial from which bed materials are derived are also
important determinants of biotic structure. Finally, the
importance of several measures of stream size, such as
width, depth, basin area, and length of stream above a
site, corroborate previous observations that taxonomic
composition shifts in predictable ways from headwaters
to larger rivers (Vannote et al. 1980). The similarities
in the predictor variables used in models from the three
regions are all the more remarkable given that these
regions are distinctly dissimilar in both physical setting
and their biota.

Perhaps the most valuable practical aspect of these
results is that most of the important predictor variables
can be easily and quickly measured at low cost. Geo-
graphic variables usually can be easily measured in the
office. Alkalinity or conductivity, stream depth, and
stream width take only a few minutes to measure, thus
adding little cost to that associated with the primary
biological sampling.

Presence–absence and biotic structure

RIVPACS models use information on the presence
and absence of taxa to measure biotic structure and
ignore abundance information. We might therefore ex-
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TABLE 7. Mean species-level O/E values, with one standard deviation, for individual study basins.

Ecoregion and basin N

O/E0

Mean 1 SD

O/E50

Mean 1 SD

KM ecoregion
East Fork Beaver Creek (28)
Indian Creek (1988) (4)
Indian Creek (1989) (38)
Thompson Creek (1988) (9)
Thompson Creek (1989) (49)
Patricks Creek (8)
Walker Creek (51)
Jones Creek (5)
Thompkins Creek (50)
Kelsey Creek (41)
North Fork Russian River (46)
Nordheimer Creek (7)
Big Creek (Shasta) (2)
Grouse Creek (3)

7
13
13
13
11

6
15
10
15
13

9
12

4
10

1.058
0.966
0.869
0.960
1.036
1.019
0.785
0.966
0.839
0.891
1.124
0.870
0.955
0.769

0.230
0.158
0.212
0.118
0.152
0.249
0.144
0.294
0.112
0.224
0.140
0.198
0.171
0.190

0.889
1.037
0.881
1.034
0.975
0.976
0.795
0.960
0.905
0.845
1.122
0.962
0.846
0.640

0.172
0.129
0.130
0.078
0.138
0.191
0.105
0.257
0.137
0.148
0.127
0.141
0.090
0.118

Upper Rattlesnake Creek (11)
Upper East Fork of the South Fork Trinity River (10)

13
13

0.992
1.195

0.177
0.235

0.982
1.069

0.150
0.117

ECSF ecoregion
Lassen Creek (42)
East Creek (35)

16
16

0.964
1.045

0.180
0.218

0.966
1.025

0.139
0.110

SN ecoregion
Nelson Creek (43)
Jamison Creek (39)
Poplar Creek (48)
Canyon Creek (32)
Lavazolla Creek (20)
Haypress Creek (1988) (17)
Haypress Creek (1989) (37)
Middle Fork Yuba River (21)
North Fork American River (1988) (22)
North Fork American River (1989) (45)
Alder Creek (12)
North Fork Consumnes River (23)

7
15
15
10

8
13
10
11

9
12
11
11

1.144
0.967
1.106
0.939
1.368
1.023
0.889
1.187
1.141
0.735
1.299
0.848

0.224
0.207
0.212
0.310
0.444
0.250
0.202
0.278
0.340
0.153
0.382
0.167

1.067
1.060
0.973
0.947
1.033
0.910
0.974
0.967
1.124
0.982
0.883
0.920

0.135
0.173
0.141
0.145
0.203
0.176
0.193
0.161
0.279
0.171
0.221
0.170

Cole Creek (14)
Blue Creek (31)
Deadman Creek (33)
Beaver Creek (27)
Bourland Creek (13)
Jawbone Creek (19)
Jackass Creek (18)
Big Creek (Sierra) (30)
Kaiser Creek (40)

11
12
10
15

7
7
6

10
7

1.012
0.779
1.016
0.860
1.657
1.252
1.078
0.953
0.913

0.262
0.170
0.260
0.123
0.419
0.244
0.166
0.357
0.173

1.019
0.872
1.010
0.885
0.982
0.687
0.878
0.907
0.907

0.218
0.173
0.200
0.138
0.123
0.107
0.127
0.299
0.109

Dinkey Creek (34)
Deer Creek (15)
Rancharia Creek (25)
Ninemile Creek (24)
Freeman Creek (36)
Peppermint Creek (47)
Fish Creek (16)
Rattlesnake Creek (26)
Nobe Young Creek (44)

6
6
6

11
6
2

11
5
9

0.670
0.912
1.179
0.994
0.837
1.039
0.834
0.593
0.890

0.249
0.189
0.129
0.158
0.156
0.228
0.277
0.114
0.127

0.721
1.007
1.142
0.977
0.800
0.919
0.820
0.628
0.838

0.188
0.067
0.082
0.133
0.138
0.201
0.255
0.111
0.259

Notes: Basins are ordered from north to south within ecoregions. The number following the basin name is the basin code
that corresponds with those given in the Appendix.

pect these models to be insensitive to many stressors,
because individual populations can suffer considerable
degradation before going locally extinct. However, at
the assemblage level, presence–absence data appear
sufficiently robust to allow detection of reasonably sub-
tle differences among sites. Although not explored
here, previous work has shown that RIVPACS can dis-
tinguish four bands of degradation with acceptable er-

rors in misclassification (Clarke et al. 1996). These
bands represent classes of biological impairment rang-
ing from equivalent to reference to poor. The robustness
of presence–absence data in allowing an assessment of
biological condition has important implications for
how we approach bioassessment in the United States
and elsewhere. If presence–absence data allow a rea-
sonably accurate assessment of biological condition,
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TABLE 8. Loadings of the original land use variables on three principal component axes.

Variable

Principal component axis

1 2 3

No. km2 of basin cut
No. km of roads
Percent basin cut
No. stream-road crossings
Percent riparian shading
NO3/NO2 (1 mg/kg H2O)
Percent substrate embeddedness
PO4 (1 mg/kg H2O)

0.943
0.880
0.861
0.682
0.088

20.066
20.112

0.253

0.028
20.026

0.104
20.090

0.840
0.752
0.033
0.173

20.062
0.252

20.164
0.371
0.056
0.099
0.802
0.634

Note: All variables were transformed (square root) prior to extraction of principal components,
and principal axes were rotated (varimax) to reveal best separation of variables.

TABLE 9. Results of multiple regression analyses testing relationships between test site O/E values and principal component
(PC) scores of the land use variables shown in Table 8.

Variable

Species O/E0

(R2 5 0.08)

SRC P

Species O/E50

(R2 5 0.11)

SRC P

Family O/E0

(R2 5 0.02)

SRC P

Family O/E50

(R2 5 0.11)

SRC P

PC-1 (timber harvest and roads)
PC-2 (shading and NO3)
PC-3 (embeddedness and PO4)

20.074
20.267
20.134

0.282
,0.001

0.039

20.091
20.209
20.261

0.179
0.002

,0.001

0.104
0.120
0.088

0.139
0.086
0.186

0.121
0.063

20.287

0.074
0.344

,0.001

Notes: Standardized regression coefficients (SRC) and probabilities of significance (P) given for each O/E model. N 5 230
for all analyses.

we may not need to find ways of detecting abundance
changes in taxa that show inherently high seasonal and
annual variation in population densities.

Adequacy of one-season sampling

Wright et al. (1993) recommend that models and as-
sessments be based on samples collected from three
different seasons to ensure that all taxa present at a site
are sampled. However, we were able to build sensitive
and accurate models with data collected from one-time
sampling. Because both the misclassification errors in
the discriminant functions models (DFM) we con-
structed and the standard deviations of reference site
O/E values were generally lower than reported by Moss
et al. (1987) for British models, it may be possible to
relax the three-season sampling criterion in this region
without significant loss of sensitivity. However, if one-
season sampling is used for assessments, we concur
with the recommendations of others (e.g., Gibson et al.
1996, Barbour et al. 1997) that sampling be restricted
to a standard index period to minimize the influence
of phenological shifts in taxonomic composition.

Taxonomic resolution and assessment sensitivity

Previous studies have reported only slight to mod-
erate loss of sensitivity when using family identifica-
tions (Furse et al. 1984, Marchant et al. 1995, Norris
1996). However, in this study, assessments based on
family data were unable to detect differences among
reference and test sites. There are at least two possible
reasons for the difference in sensitivity between species
and family assessments. First, the degree of impairment

at test sites may be too subtle for family assessments
to detect. This explanation is plausible given the slight
differences detected by the species assessments. Al-
ternatively, family assessments would also be less sen-
sitive than species assessments if families were com-
prised of several species that differ considerably in
their ecological requirements. We believe this second
explanation may apply to the California invertebrate
stream fauna. Several families show extensive adaptive
radiation in diet and use of habitats (e.g., ephemerellid
mayflies and limnephilid caddisflies). This type of spe-
cialization within families is not as apparent in the
British or Australian (Victoria) faunas (Hawkins and
Norris 2000). For regions with few genera and species
per family, species and family assessments would be
expected to perform similarly. For regions with many
genera and species per family, important information
on species-specific taxon–habitat relationships could
easily be lost by adopting a coarser level of taxonomic
resolution. Although this idea requires careful scrutiny,
we expect family assessments may be relatively inac-
curate in environmentally heterogeneous regions, such
as many parts of the western United States. However,
family assessments are also likely to work adequately
in environmentally diverse regions that have been re-
cently glaciated and where taxonomic richness would
be expected to be low (such as the parts of the Canadian
Rockies).

Quantifying site and regional biological conditions

River Invertebrate Prediction and Classification Sys-
tem predictive models were developed to provide site-
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specific assessments of the biological quality of
streams. In this respect, use of species models revealed
distinct effects of timber harvest practices at some test
sites. Previous attempts to measure effects of timber
harvest on aquatic invertebrates have provided ambig-
uous results (cf., Newbold et al. 1980, Hawkins et al.
1982). Lack of a standard scientifically defensible
method has also greatly hindered our ability to describe
the condition of stream biota on basin and regional
scales. Such assessments are critical, however, in de-
veloping forest management plans. We believe RI-
VPACS models can be a potentially powerful means
of describing how conditions vary among basins and
entire regions. For example, our study showed that, on
average, some streams have clearly been more degrad-
ed than others (Table 7) and that throughout the region
studied land use associated with timber harvest has
resulted in a subtle but distinct loss of ;10% of the
invertebrate fauna occurring in streams draining altered
catchments (Fig. 3, Table 4). Presentation of O/E values
in this way provides a means of meeting the Environ-
mental Monitoring and Assessment Program’s (EMAP;
a branch of the U. S. Environmental Protection Agency)
goal of describing resource status and trends on a re-
gional basis (Paulsen and Linthurst 1994). By tracking
how O/E values vary over time among randomly sam-
pled test sites (probability-based sampling), we would
be able to determine if the condition of the stream
invertebrate fauna in a region was improving, declin-
ing, or stable and thus provide critically needed infor-
mation to resource managers and policy makers.

Effects of rare taxa on assessments

In the British RIVPACS models, O/E values are cal-
culated from all nonzero probabilities of capture. In the
Australian River Assessment System (AUSRIVAS)
models, O/E values are calculated from only those
probabilities $0.5. Theoretically, it seems sensible that
using all of the information available would provide a
more sensitive measure of biological condition, espe-
cially given that rare taxa are typically more at risk of
extinction than taxa that are more common. In fact, the
sensitivity of RIVPACS in detecting impairment of
British streams appears to decrease as the minimum
probability of capture used to calculate O/E increases
(J. Wright, personal communication). This behavior is
implied by the data in Fig. 5, which shows the slope
of the O/E50 vs. O/E0 plot to be less than one. A slope
that is less than one should occur among test sites if
O/E50 underestimates faunal richness at good sites, or
overestimates richness at poor sites. Cao et al. (1998)
provide additional empirical support for this view by
showing that the assessed difference between biolog-
ically rich and depauperate sites declined as rare taxa
were excluded from the comparisons. However, across
the range of O/E values observed, the magnitude of
this bias was much smaller (,0.1 O/E units) than the
random sources of variation observed in the relation-

ship between O/E50 and O/E0 (Fig. 5). The relatively
weak correspondence between O/E50 and O/E0 values
implies that the confidence intervals associated with
individual assessments are relatively large, regardless
of which O/E measure is used.

Our overall results, however, imply that more infor-
mation is not always better for making assessments and
appear to support the view tentatively adopted in Aus-
tralia that O/E values that are based on intermediate Pc

values provide more robust assessments. Our study also
provided some basis for understanding why O/E50 may
be a more robust measure than O/E0, in spite of being
based on less information.

The reason O/E50 was more sensitive than O/E0 seems
to be related to how common and rare taxa varied in
response to land use. Although there was essentially
no difference in the dominance diversity curves for
reference and test sites (Fig. 6), the difference between
reference and test sites in individual taxa abundances
depended on their rank abundance in reference streams.
For example, common taxa (i.e., those with high to
intermediate Pc’s) tended to be less abundant at test
sites. Many of these taxa would have had Pc . 0.5 at
reference sites but Pc , 0.5 at test sites, and their ‘‘ab-
sence’’ at test sites would have caused O/E ratios to
be less than unity. However, taxa with rank abundances
.150 tended to have higher abundances in test sites,
implying land use either directly or indirectly benefited
these taxa. This tendency for rare taxa to increase in
abundance at test sites would have partly compensated
for the tendency of the loss of more common taxa to
lower O/E0, which includes data on all taxa. However,
this increased probability of capturing rare taxa at test
sites would have been ignored in the calculation of O/
E50, because these taxa would have had Pc , 0.5 at
reference sites. O/E50 thus appears to be more sensitive
in assessing initial stages of degradation in these oli-
gotrophic streams than does O/E0. Furthermore, O/E50

was less sensitive to natural sources of variation
(stream type, habitat type, year, and ecoregion) than
was O/E0.

Spatial and temporal robustness of models

To be most useful, predictive models should be ro-
bust to natural environmental variation in both space
and time. The process of model construction directly
addresses natural spatial variation through the creation
of stream classes and the use of spatially varying en-
vironmental data to predict sites into classes. Although
we had limited data from which to address the issue
of temporal robustness, the initial results were en-
couraging. Mean O/E50 values for the two reference
catchments sampled in 1988 were within 6% and 14%
of the mean values observed in 1989 (Table 7), and
species O/E50 values for both reference and test sites
were not related to year of sampling.



1474 CHARLES P. HAWKINS ET AL. Ecological Applications
Vol. 10, No. 5

Model predictions and responses of specific taxa

To fully evaluate the utility of RIVPACS models for
assessing effects of timber harvest practices, we need
to scrutinize the predictions of the models. We need to
be particularly aware of whether the models are pro-
ducing false positives (i.e., inference of impairment
when none exists). False positives could potentially
arise if important predictor variables were missing from
the model. In the absence of being able to compare
predictions with the true condition of a site, one way
of assessing the overall accuracy of a model is to ask
if the observed trends in biotic composition among test
sites make ecological sense.

Inspection of how abundances of specific taxa varied
among reference and test sites (Table 5) suggests that
at least some taxa are responding to land use in ways
consistent with model predictions. The tendency for
some taxa to have lower abundances at test sites and
others to have higher abundances is consistent with the
idea that logging causes changes in sediment and nu-
trient loads that would adversely affect some taxa while
benefiting others. In general, increased scour and ac-
cumulation of fine sediment would be expected to ex-
clude some bare-surface and moss dwellers as would
increased periphyton growth associated with increased
nutrient loading. The tendency for test sites to have
lower densities of blackflies, which require clean sur-
faces for attachment; riffle beetles and fingernail clams,
which inhabit interstitial spaces; the caddisfly Micra-
sema, which inhabits moss; and several ‘‘clean-water’’
stoneflies, caddisflies, and midges is consistent with
this idea. The trend for certain taxa to have higher
densities at test sites is also interpretable. For example,
Tanytarsini midges (Micropsectra/Tanytarsus in this
study), the small nemourid stoneflies (Malenka/Zapa-
da), and the ubiquitous grazing mayfly Baetis have
been previously observed in either light- or nutrient-
enriched streams (Newbold et al. 1980, Hawkins et al.
1982, Gregory et al. 1987, Campbell and Doeg 1989).
Unfortunately, we know too little about the habitat and
feeding requirements of most of the taxa collected dur-
ing this study to draw inferences regarding why they
were more or less abundant at test sites.

The most rigorous way to evaluate the accuracy of
these models would be to experimentally mimic the
stressors of interest and determine if the taxa that are
predicted to occur, but missing from sites, were sen-
sitive to a stressor of interest. To our knowledge, such
experiments have not been conducted; furthermore, so
little basic knowledge exists regarding the habitat re-
quirements and pollution tolerances of different taxa
that it is difficult to determine if model predictions are
consistent with the ecology of different taxa. Experi-
mentally testing model predictions will be a rich and
rewarding research endeavor for many years to come.

It is clear from our results that not all species within
an order or family respond similarly to the same stress.

In many cases, substitutions occurred within the same
taxonomic group that compensated for those taxa that
decreased in abundance at test sites (Fig. 6). It follows
then that assessment methods, like the EPT index (may-
flies [Ephemeroptera], stoneflies [Plecoptera], and cad-
disflies [Trichoptera]; see Barbour et al. [1997]), that
count taxa but ignore composition may be insensitive
to changes in composition caused by a stressor unless
that stressor also alters overall taxa richness (Ford
1989, Gray 1989).

CONCLUSIONS

The ultimate goal of biological water quality as-
sessment is to provide an accurate measure of the biotic
integrity of aquatic ecosystems that can be easily un-
derstood by managers and policy makers who may have
little biological training and that is cost efficient
(Schindler 1987, Karr 1991). We believe the predictive
model approach meets each of these criteria. One of
the main advantages of the predictive-model approach
to bioassessment is that it is grounded in long-estab-
lished empirical generalizations regarding the impor-
tance of specific environmental factors to aquatic in-
vertebrates and one of the most robust ecological prin-
ciples known: that of niche theory. We believe these
models work well because stream invertebrate taxa dif-
fer in their habitat requirements, streams vary sub-
stantially in both regional and local habitat features,
and stream invertebrate habitat relationships can be de-
scribed by the models to predict what taxa should occur
at new sites.

Although some have argued that multivariate ap-
proaches to resource assessment are too complicated
to be used by anyone other than a few highly trained
professionals or that they obscure important biological
information (e.g., Gerritsen 1995, Fore et al. 1996, Karr
and Chu 1999), we believe this is a specious argument
when applied to predictive models. Model output is
intuitive, logically derived, biologically meaningful,
and easily interpreted. Furthermore, the specific taxa
responsible for deviations of O/E values from unity can
be identified, thus providing a basis for inferring the
mode of action of a stressor. Model development does
require both sophisticated biological and statistical
knowledge (building a bridge or a car requires equally
sophisticated knowledge), but routine model imple-
mentation and interpretation of output does not. These
predictive models are now becoming available in com-
puter programs that are easy to access and use. For
example, the models described here run within a
spreadsheet environment by executing a series of mac-
ros. To use these models, managers need only collect
biota and data for a few environmental variables from
suspect sites and enter these data into the computer
using an interactive interface. The computations are
automatic and ‘‘painless,’’ and the outputs we have
described are easily interpretable. As a further example
of ease and economy of use, the Australian River As-
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sessment System (AUSRIVAS) program has region-
specific models loaded in a central computer that is
accessible to users in every state and territory of Aus-
tralia.6 All the user need do is upload data from test
sites, then call up and run the appropriate model.

We recognize that there may be significant psycho-
logical and perhaps institutional reluctance by the
bioassessment community in the United States and
elsewhere to embrace a predictive-model approach to
assessment. For example, none of the 38 chapters in
two recent books edited by Loeb and Spacie (1994)
and Davis and Simon (1995) examine the predictive-
model approach to monitoring and assessment, nor was
it referred to by Fore et al. (1996), even though one of
their objectives was to make a comparison between the
major approaches to bioassessment. This lack of atten-
tion in the United States occurred even though the pre-
dictive-model method was first described in 1984 in a
well-established and easily accessible journal (Furse et
al. 1984, Wright et al. 1984, Moss et al. 1987).

Our results for streams in California show that the
predictive model approach should be seriously evalu-
ated in the United States and elsewhere for use in
streams and other environments. We have already cre-
ated models for littoral wetlands associated with small
high-mountain lakes, and these models work well in
quantifying the effects of exotic fish on benthic inver-
tebrate assemblages (C. P. Hawkins, unpublished data).
Furthermore, use of the predictive-model approach
does not exclude use of multimetric indices as often
practiced in the United States (e.g. Karr 1991, Karr and
Chu 1999). In fact, these two approaches could com-
plement one another in much the same way as indices
are used in both Great Britain and Australia (Armitage
et al. 1983, Chessman 1995). Essentially the same data
are used in both approaches; where predictive models
require additional data, they should be easily obtained
with little extra cost. We believe the potential strengths
of the predictive-model approach in satisfying the main
criteria for biological monitoring listed by both Schin-
dler (1987) and Karr (1991) are too compelling to ig-
nore.
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APPENDIX

Further data regarding site classification and discriminant functions model performance are available in ESA’s Electronic
Data Archive: Ecological Archives E081-008.


