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ABSTRACT

Information Flow in the Spatiotemporal Dynamics of Cellular Automata

by

Akshay Thakre, Master of Science

Utah State University, 2012

Major Professor: Dr. Nicholas Flann
Department: Computer Science

Decision making in natural systems, such as the body’s immune response to a potential

pathogen or a bacterial colony’s initiation of fruiting due to food scarcity, is distributed over

many cells that posses only local information, and not determined globally. Understanding

how accurate decisions can be made in such systems where no individual decision maker has

complete information has important implications in distributed software and can provide

insights into the biological evolution of complexity. In this work, the process of distributed

decision making is modeled using the majority problem in cellular automata, and informa-

tion theoretic measures of Kolmogorov complexity are applied to quantify information flow

during the decision making process. Results show that (a) when the decision making pro-

cess converges the information content of the dynamics quickly reaches a peak then decays

to near-zero; (b) if the process does not converge and becomes chaotic, information content

oscillates over a large unstable range; (c)extensive statistically significant differences exist

in information flow dynamics between convergent and chaotic outcomes; and (d) there are

small, but statistically significant differences in information flow dynamics between conver-

gence to the correct answer compared to convergence to the incorrect answer. This last

result supports the hypothesis that correct decision making maximizes information flow

among agents in distributed decision making.
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PUBLIC ABSTRACT

Decision making in natural systems, such as the body’s immune response to a potential

pathogen or a bacterial colony’s initiation of fruiting due to food scarcity, is distributed over

many cells that posses only local information, and not determined globally. Understanding

how accurate decisions can be made in such systems where no individual decision maker has

complete information has important implications in distributed software and can provide

insights into the biological evolution of complexity. This work studies distributed decision

making in solving the majority problem: given a line of text with only T and F characters,

determine if there are more T characters than F characters. This problem is easily solved

with a single global decision maker by counting the number of characters. However, this

problem is much harder to solve with many local problem solvers that can only see one

character and its three adjacent characters, and only communicate at T or an F to other

local problem solvers. Local problem solvers that can only see their nearby neighborhood

model the individual cell in the biological system. This work simulates the distributed local

problem solvers working together to solve this problem and then studies the relationship

between the accuracy of the solution found with how much information is exchanged among

the problem solvers. The results show that under some circumstances, the problem solving

process can become unstable and never terminate. When the process terminates, results

support the hypothesis that the information exchanged is maximized when the correct

solution is found.
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CHAPTER 1

OVERVIEW

1.1 Complexity of problem solving in nature

Living organisms in nature have their own simplified way of solving problems which

has been evolving since the origin of life on earth. Various forms of living organisms face

various complex problems or situations like adverse changes in their environment, search for

food and water, deciding a mate for reproduction, defense against predators, competitors,

and invaders, etc.

No matter how big and complex the problem is they evolve to solve it. They solve

these problems in concert, for example, division of labor or task or skills, with synchronized

actions to build colonies in ants.

Another example of problem solving in nature is multicellular living organisms develop-

ing different organ systems to perform different function of body. They develop specialized

group of cells which arrange themselves to form an organ which is specialized to do a par-

ticular task, like wise they form different organs, each one is specialized to do a particular

task. These different organs together form a complete organ system (for example circulatory

system, nervous system, digestive system, reproductive system, urinary system, etc).

1.2 Decision-making in Nature

Living organisms decide on whether its a normal situation or a problem situation

based on the external stimuli. Deciding a particular situation is a problem situation is task

of decision making in concert. Living organisms respond to these stimuli in concert and

solve the problem. In multi-cellular organisms, millions of cells respond to these stimuli in

concert and solve the problem efficiently. For example, yeast cells changing their food from

glucose to ethanol and vice versa based on the availability of glucose and ethanol; immune
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system cells deciding on which type and how many cells are required, and how to attach a

particular pathogen, Mimosa Pudica (”touch-me-not”) plant folding its leaf in-words when

even a single leaflet is touched, it does so to protect itself from getting eaten by herbivores.

These organisms do not have centralized communication system, instead they have

simple system to communicate to their neighbors (a very small set of their own forms) and

still they are able to come up with a global consensus and respond to the situation very

efficiently and appropriately, which is known as distributed decision making.

An example of decentralized or distributed decision making is human body’s Immune

system’s CD4+ Lymphocytes, they are immune response controllers. They decide which

actions to take during an invasion, promoting or inhibiting all other immune cells via cy-

tokines. These cells activate cells that ingest dangerous material and also produce cytokines

that induce the proliferation of B and T cells [7].

Another example of distributed decision making in nature is, cells organized themselves

to get a particular form, structure and shape. Cells also decide on their coloration in

distributed decision making to form a particular pattern which is reasonably important for

their survival. A few examples of the patterning or organization occurring in the nature

are:

Tigers, as shown in figure 1.1 a), have a pattern of dark vertical stripes on reddish-

orange fur with lighter underparts. The pattern of stripes camouflage the animal in the

dense forest, specially tall grasses. It helps them to conceal themselves amongst the dappled

shadows and long grass of their environment as they stalk their prey as shown in figure 1.1

b).

Seashells: Patterns on some seashells, like the ones in Conus and Cymbiola genus, are

generated by distributed decision making. The pigment cells reside in a narrow band along

the shell’s lip. Each cell secretes pigments according to the activating and inhibiting activity

of its neighbor pigment cells, obeying a natural version of a mathematical rule. The cell

band leaves the colored pattern on the shell as it grows slowly, which is shown in figure

1.2(a).
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a) b)

Figure 1.1: Tigers are carnivores that have stripes on their hide or skin which help them
to camouflage in the dense forest, specially in tall grass. a) A Bengal tiger Panthera tigris
tigris in the wild in Ranthambhore National Park, Rajasthan, India (Courtesy of Bjrn Chris-
tian Trrissen). b) Tiger Camouflaged in tall grasses (Courtesy of Steve Winter, National
Geographic)

a)

Figure 1.2: a) Conus textile, a seashell which has the patterns generated by distributed
decision making of its cells (Courtesy of Richard Ling, Location:Cod Hole, Great Barrier
Reef, Australia)

Drosophila: The pattern formation of the cells along the future head to tail (antero-

posterior) axis of the fruit fly Drosophila melanogaster is exemplary to study how simple cells

in the embryo develop themselves in to the complex patterns using the information in the

genes. The development of Drosophila is particularly well studied, and it is representative

of a major class of animals, the insects or insecta. Other multicellular organisms sometimes

use similar mechanisms for axis formation. Figure 1.3
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a)

Figure 1.3: Male Drosophila melanogaster, also known as fruit fly, develops the patterning
along its head to tail, (Courtesy Andr Karwath aka, Wikipedia)

(a) Expression of hairy (yellow) in the
cellular blastoderm (Courtesy of Lan-
geland, S. Paddock, and S. Carroll,
HHMI)

(b) Expression of segment polarity
genes, wingless (wg ; green) and en-
grailed (en; red). Courtesy of C. Tom-
lin and J. D. Axelrod [21]

(c) Expression of seven Hox genes at
the extended germ band stage. (Cour-
tesy of Dave Kosman, UCSD)

Figure 1.4: Example of pattern formation in Drosophila embryos.

1.3 Models of Decision Making: Cellular Automata

Key structure of distributed decision making in living organisms:

They have very simple patterns of communication, for example, a few set of signals that

progress throughout the network (of their own forms) to make decisions in unity. There

is no central algorithm for making these decisions. It involves simple local agents who

communicate locally which in turn communicate to their local agents and so on, finally

they achieve global synchronization. Within a cell of component networks, for example
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plants, have small sensor systems conceded along the leaf surface through which they sense

environmental changes (stimulus) and communicate the information to the entire network

using simple signals.

Cellular Automata is a discrete model studied in computability theory, mathematics,

physics, complexity science, theoretical biology and microstructure modeling. It consists of

a regular grid of cells. Each cell has finite number of states, such as ”On” and ”Off”. The

grid can be in any finite number of dimensions. Each cell knows about its neighborhood

which is a set of cells. Most of the times the neighborhood includes the cell itself. A cells

neighborhood is defined relative to itself(its position in the grid). Cellular automata can

used to model any kind of distributed decision making in nature (including decision making

our day to day life).

For example, the neighborhood of a cell might be defined as the set of cells a distance

of 3 or less from the cell. An initial state is selected by assigning a state for each cell in the

system. A new generation which reflects the new state of the cells in the system at the next

time-step is created, according to some fixed rule that determines the new state of each

cell in terms of the current state of the cell and the states of the cells in its neighborhood.

Decision making is an evolving property in time-steps.

Models of Complexity:

Cellular Automata can be used to model complex systems. A cellular automata model

has simple cells that have simple functions or mode of operations or states, which can

generate complex systems. In nature there are millions of complex systems and structures

that are generated from very simples forms of same type. These complex systems can be

any thing from complex structures, complex organizations, complex functions, behaviors

etc [23].

An example of Cellular Automata Models is Conway’s game of life, he modeled the

natural process like life, death and birth of living beings in the nature. This model needs

only the initial conditions to start with, and it continues forever. The cell’s states represent

the life or death of the living beings and they follow certain rules to decide their fates. He
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tried to represent the spontaneity of the life in the universe [2].

Seashell models of Cellular Automata are developed to synthesize realistic images and

to gain better understanding of the mechanism of shell formation [12]. A sample pattern that

is generated from simple initial random states On or Off of the cells with equal, independent

probabilities is shown in figure 1.5 a). This pattern is reminiscent of the cone shell with a

pigmentation pattern shown in figure 1.5 b).

(a) Evolution of the simple cellular au-
tomaton defined from a disordered ini-
tial state in which each site is taken
to have value 0 or 1 with equal, in-
dependent probabilities. Evolution of
the cellular automaton even from such
a random initial state yields some sim-
ple structure (courtesy of Stephen Wol-
fram).

(b) A ’cone shell’ with a pigmentation
pattern reminiscent of the pattern gen-
erated by the cellular automaton of fig-
ure a), (Shell courtesy of P. Hut).

Figure 1.5: Seashell Model pattern formation
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1.4 Majority Problem

Majority Problem is also known as the task of Density Classification. The task of

density-classification [19] consists of correctly determining whether initial configurations

(IC’s) contain a majority of one of its discrete states or the other, by making the system

converge to a configuration in which all the states are same as the state in majority at IC.

For example, suppose that the system components have two discrete states viz On and

Off. Then the task of majority classification will consist of determining whether the IC’s

contain a majority of On’s or Off’s, by making the system converge, respectively, to an all

On’s state, or to a state of all Off’s.

The density of an IC is dependent on the number of components or cells in the system.

The local cells have limited information. Therefore the communication amongst the cells

must be coordinated properly to classify majority of the IC’s. As in [18] Density classifica-

tion task is only applicable to system of odd number of cells because the outcome could be

undecidable in the system with even number of cells. Also, devising CA rules that perform

this task is not trivial, because cells in a CA system update their states based only on local

neighborhood information.

In this report, we have referred IC’s as problems in general. The problems are solved

by CA rules to perform the task of density classification. The solution of a problem is

determining the state in which majority of the cells are, which is determined by the DCT.

The solution is correct when the DCT matches the state of the majority of the cells at the

IC. The initial state of the system has random On and Off cells.

Each cell’s contextual knowledge consist of its own state and the state of its nearest

local six neighbors. Each column in the grid represents a time stamp or a time-step. At each

time-step, each cell decides its state in the next time-step either On (black) or Off (white)

based on the configuration of states of seven cells in its context (neighborhood) in that

time-step, which is explained in Figure 1.6. This process continues till a fixed maximum

number of time steps are completed or all the cells in the system are in the same state.

Some sample patterns generated from DCT are shown in Figure 1.7.
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Figure 1.6: A cell (in red color) in the CA grid deciding its state in the next time-step.
The cell in red color looks at the states of its six neighbors in Blue color and its own state,
and encodes that configuration of seven states into a binary number and then to its integer
equivalent, which is used as an index to determine its state in the next time-step from the
rule’s look up.

The CA model of distributed decision making is very simple to implement and under-

stand and it demonstrates the important characteristics of the systems to be studied:

1. Simple local rules which govern the communication in a distributed network and

2. Global decision is an emergent property.

1.5 Information Flow

In the DCT, the local decision making agents (cells) determine the majority state in

their neighborhood using CA rules and set their state in the next time-step to the majority

state. In this way, at each time-step, this information about the majority state is conveyed

to each agent from its neighborhood, which is known as Information flow.

The information flow in a system is high when there is less difference between the

number of cells in majority state and the number of cells in minority state between two

time steps. The measure of information flow can help us to determine the type of system

under consideration.

This work considers the information flow within these natural decision making pro-

cesses. Because the computation is local, information must be propagated among the simple

decision making agents. This work applies an information theoretic measure to quantify

the amount of information flowing through the system as it reaches its decision.
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(a) (b)

(c) (d)

Figure 1.7: Examples of Correct and Incorrect termination of Result Patterns (all black or
all white cells). a) and b) are the correct result patterns, that is the DCT has identified
the majority correctly. c) and d) are incorrect result patterns, which means the DCT has
failed to identify the majority.

1.6 Measuring Information in Distributed Systems

[10]. general introduction to measuring information in dynamical systems. Information

flow of the dynamics during decision making process. A full review is beyond the scope

of this paper, focus on Kolmogorov measures. Why useful, intrinsic information based on

compression. Use normalized compression distance and set-complexity described in Section

2.2.

1.7 Hypothesis:

This work seeks to test the following hypotheses:
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1. Set-complexity is a useful measure of information of distributed information processing

in cellular automata.

2. Solving hard majority problems with cellular automata requires maximal information

flow.

3. Therefore, if claims of 1 are true, we expect that set complexity is maximized when

CA’s solve hard problem correctly.

The remaining report is organized as follows. Chapter 2 describes the experiment’s

parameters, classification of result patterns and the use of set-complexity to measure the

information flow in the system. Chapter 3 explains the five experiments to evaluate set-

complexity, rule accuracy, rule robustness, set-complexity trajectory and Mann-Whitney

test, we have done. Chapter 4 summarizes the key results of this study and concludes the

findings from the results.



11

CHAPTER 2

EXPERIMENTAL SETUP

Parameters we have used to evaluate set-complexity, rule accuracy, rule robustness,

set-complexity trajectory and Mann-Whitney experiments are:

Problem size, that is, the number of bits in the problem state = 599

Number of steps limit = 600

Standard 8 rules used are specified in the table 2.1

To represent the temporal-spatial state of the problem solving without loss of generality,

we assign black(1) to be the majority in all problems. We used a two-dimensional grid of

fixed number of rows (of length = 600, time-steps) and columns (of height 599, problem

state). Each column represents the state of the cells or components of the system at a

particular time-step. The state of cells in the first column represents the initial random

number of 1’s and 0’s, problem (Po) and the state of cells in the last column represents the

result of the DCT.

For our experiments we have selected eight well known and high performing rules,

which are shown in table 2.1. Each rule is a particular binary sequence of 128 On (1) and

Off (0) bits representing each output of rule for all 128 possible inputs in binary counting

order. These rules are used in DCT of ICs (Po). The problems are classified based on their

difficulty levels, determined by the difference between the number of cells with value 1 and

the number of cells with value 0. The hardest problem will have difficulty level 1 and easiest

will be n/2. The difficulty level of a problem is inversely proportional to the density of the

1 valued cells.

ρ =
(n/2)− p

n
(2.1)
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Table 2.1: Rules Used In Experiments

Rule# Name Hexadecimal Reference Accuracy

1 GLK 005F005F005F005F005FFF5F005FFF5F Gacs et al. (1978) [13] 81.60%
2 Davis 002F035F001FCF1F002FFC5F001FFF1F Davis (1991) [9] 81.80%
3 Das 000F730F001FFF0F000FFF0F001FFF1F Das Rule [8] 82.3%
4 K96 00550055005500555F55FF5F5F55FF5F K96 [15] 82.3%
5 Coe1 011430D7110F395705B4FF17F13DF957 Coe1 (1998) [22] 85.1%
6 BOO1 145500CC0F14021F1715FFCf0F17FF1F Bortot et al. (2004) [20] 86.16
7 ABK 050055050500550555FF55FF55FF55FF Andre, Bennet, Koza [1] 82.4%
8 Unknown 0506158707041557647705017DFFB77F Unknown

where, p is the difficulty level of the Po and n is the number cell in the Po. Therefore, for

the hardest problem, ρ = (599/2)−1
599 , that is ρ = 0.498 and for the easiest problem, ρ = 0.

For easy problems the rules take less time-steps as compared to hard ones. For hard

problems the rule some times can never find solution and also does not appear to terminate.

That is, it never appears to get all bits in the same state, it takes large number of time

steps. For computational limitations, we set the time-step limit to 600.

For our experiments we have determined the difficulty level of the problems on a scale

1 to 30. Problem of difficulty Level 1 is hardest one and the problem of difficulty level 30

can be solved almost perfectly.

We determined this by studying, how accuracy of a rule is affected by the difficulty

level of the problem (Po) and is discussed in detail in section 3.2. Also we studied rule

sensitivity to mutations. This is discussed in detail in the in section 3.3.

2.1 Outcome Classification

A space/time pattern is the graphical representation of the state of all the cells in the

system at each time-step. The ’1’ state is represented as a black colored cell and the ’0’

state is represented as a white colored cell in the pattern. A pattern corresponds to the

different states through which the cells in the system go through from initial time-step to

the final time-step in the DCT.

There are numerous patterns generated as a result of DCT. We classified the patterns
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based on the outcome in solving the DCT. If the DCT correctly classifies the majority of a

Po, then the pattern is classified as correct-ordered. Examples of correct-ordered pattern is

shown in the figure 2.1 (a) and 2.2 (a). If the DCT terminates with an incorrect majority

classification then the corresponding pattern is classified as incorrect. Example of incorrect

pattern is shown in figure 2.1 (d) and 2.2 (d). We have classified the patterns into two

major types:

1. Correct-Ordered: A pattern is classified as Correct-Ordered if the DCT(Density Clas-

sification Task) terminates correctly, which means it has determined the correct ma-

jority in the Po. Example, figure 2.1 (a) and 2.2 (a).

2. Incorrect: A pattern is classified as Incorrect if:

(a) The DCT does not terminates (fails to determine the majority) in certain upper

limit of time steps, or

(b) The DCT terminates incorrectly (determines incorrect majority).

we have classified the incorrect patterns into three sub types:

Incorrect-Same : If the DCT is terminated incorrectly with all 0’s, which means

that the DCT has determined incorrect majority. Example, figure 2.1 (d) and

2.2 (d).

Incorrect-Ordered : If the DCT does not terminate in certain upper limit of time-

steps and it is repeating same configuration of states of the cells in the system

after fixed number of time steps, then the result is classified as Incorrect-Ordered.
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Figure 2.1: Examples of pattern types. Each row in the above figure is numbered alpha-
betically, represents a type of pattern. (a) Correct-Ordered , (b) Incorrect-Chaotic, (c)
Incorrect-Ordered, (d) Incorrect-Same

Example, figure 2.1 (c) and 2.2 (c).

Incorrect-Chaotic : If the DCT does not terminate in certain upper limit of time-

steps and it is generating a non-repeating configuration of states of the cells, then

the result is classified as Incorrect-Chaotic. Example, figure 2.1 (b) and 2.2 (b).
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Figure 2.2: More examples of pattern types. Each row in the above figure is numbered
alphabetically, represents a type of pattern. (a) Correct-Ordered , (b) Incorrect-Chaotic,
(c) Incorrect-Ordered, (d) Incorrect-Same

2.2 Information measurement

To study the information flow in the system we chose set-complexity, which is based

on algorithmic complexity, introduced by Kolomogorov [16]. Set complexity [14] has been

used to measure the information content of regulatory networks, their temporal dynamics

and the spatial patterns produced [11]. By measuring information content, set complexity

can distinguish between critical systems that encode maximal information, and ordered

and chaotic systems that encode low information. Set complexity (referred to as Ψ) applies
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Kolmogorov’s intrinsic complexity to quantify contextual information in a set of objects

by discounting pairs of strings that are randomly related or redundant. Set complexity is

independent of any specific application, so long as each object in the set can be encoded as

a string.

In this application, set-complexity is used to compute the information content of a

sequence of spatial states Pi...Pi+w, where, w is the window size [4].

2.2.1 Definition

The Kolmogorov complexity of two strings is the length of the shortest algorithm that

can transform one string to the other. Exact computation is undecidable, but minimum

algorithm length can be approximated by the normalized compression distance (NCD) [5,6].

NCD is defined below, where x and y are strings, xy is the concatenation of x and y and

C(x) is the compression size of x:

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
, 0.0 ≤ NCD(x, y) ≤ 1.0 (2.2)

NCD is a measure of the similarity of the two strings and estimates the normalized size

of a program that can transform x to y. [4]. Consider the following cases, where dissimilar

strings could be a random string paired with a string of a single repeated character:

Similar strings: x ' y, C(xy) ' C(x) ' C(y) then NCD(x, y) ' 0

Random strings: x 6= y, C(xy) ' C(x) + C(y) then NCD(x, y) ' 1

Dissimilar strings: x 6= y, C(xy) ' C(x), C(y) = 0 then NCD(x, y) ' 1

To ensure accurate measurement of compression length the block size of the compressor

must be greater than the string length. Here we used the bzip2 compression algorithm with

a block size of 900 Kbytes [3].
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Then set complexity of a set of n strings S = {x1, . . . , xn} is defined:

Ψ(S) =
1

n(n− 1)

∑
xj∈S

C(xj)
∑

xj 6=xk

djk(1− djk) (2.3)

where dij = NCD(xi, xj). The distance dij measures the information between the two

strings and is maximized when NCD(xi, xj) = 0.5 and minimized when NCD(xi, xj) = 0.0

or NCD(xi, xj) = 1.0. When strings in the set are similar, Ψ(S) ' 0 indicating the set

belongs to the ordered domain and contains little information. Chaotic systems generate

strings that appear random and then Ψ(S) is minimized, but not zero because of the C(xj)

multiplicative term. In [14] it is shown that Ψ(S) is maximized when the set of strings

describe a critical system.

2.2.2 Encoding of the states as strings

In this section we will discuss about encoding of the dynamics in the states of the

cells at each time-step into strings which are used to calculate the Normalized Compression

Distance(NCD) which in turn, is used to calculate Set-Complexities of the pattern at each

time-step.

A cell’s state which is either true (On) or false (Off) in the grid, is encoded as an

integer 1 or 0 respectively. In this way, for each column in the pattern, a string of 0’s and

1’s is encoded. Each string directly corresponds to the state of the cells in the system at a

particular time step. By comparing the strings corresponding to w consecutive time steps,

where, w is the window size, we can determine the information flow content of the CA

during step t to t+ w. By graphing the set-complexity over the whole trajectory, the flow

of information during problem solving can be visualized. Information flow can be used to

determine the type of system viz. critical, ordered or chaotic.

Set Complexity algorithm that utilizes caching and bzip:

The encoded strings are compressed using Bzip2 compression algorithm and the com-

pression length for each column (time-step) is stored. The pseudo code to calculate NCD
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and then set-complexity using the NCD values of NCD calculations is explained in Algo-

rithm 1. The calculateSetComplexity procedure call used in this algorithm is explained

in Algorithm 2 and the calculateNCD procedure call is explained in Algorithm 3.

By caching compression values, the compressor is only called n times (number of time

steps) for each individual state. By caching string concatenations the compressor is only

called n ∗ w times, rather than n ∗ w2 times, where, w is the window size.
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Algorithm 1 Pseudo-code to calculate set-complexity of the contextual information in the
system at each time-step

input:
problemSize← 599
timeSteps← 600
windowSize← 10
pattern[problemSize][timeSteps]
initialize:

columnString . array of strings
colCompress . array of longs
pairCompress[timeSteps][windowSize] . 2D array of longs
NCD[problemSize][timeSteps] . 2D array of doubles
stComplexity[timeSteps] . array of doubles

for step = 0→ (timeSteps− 1) do
for rowNumber = 0→ (problemSize− 1) do

convert boolean value at pattern[rowNumber][step] to int, then to string and append it
to the string at columnString[step]

end for
end for

for step = 0→ (timeSteps− 1) do
compress the string at columnString[step] and store its compression length at
columnCompress[step]
end for

for step = 0→ (timeSteps− windowSize) do
for windowNumber = 1→ (windowSize− 1) do

append the strings at columnString[step] and columnString[step+ windowNumber]
compress the appended string and store its compression length at
pairCompress[step][windowNumber]

end for
end for

for step = 0→ (timeSteps− windowSize) do
for windowNumber = 1→ (windowSize− 1) do

pairSize← pairCompress[step][windoNumber]
oneSize← columnCompress[step]
twoSize← columnCompress[step+ windowNumber]
NCD ← returncalculateNCD(pairSize, oneSize, twoSize)

end for
end for
setComplexity ← returncalculateSetComplexity(NCD, columnCompress, windowSize)
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Algorithm 2 procedure to calculate set-complexity

procedure calculateSetComplexity(NCD, columnCompress, windowSize)
for timestep = 0→ (timeSteps− windowSize) do

doubleSC ← 0.0;
for windowJ = 1→ (windowSize− 1) do

doubleinformation← 0.0;
for windowK = 1→ (windowSize− 1) do

if windowK 6= windowJ then
information ← information + NCD[timestep + windowJ ][windowK] ∗ (1.0 −
NCD[timestep+ windowJ ][windowK]);

end if
end for

SC ← SC + columnCompress[timestep+ windowJ ] ∗ information;
end for

setComplexity[timestep]← (1.0/(double)(windowSize ∗ (windowSize− 1))) ∗ SC;
end for
return setComplexity

end procedure

Algorithm 3 Procedure to calculate Normalized Compression Distance (NCD)

input:
pairSize . compression length of the two appended strings
oneSize . compression length of first string
twoSize . compression length of second string

procedure calculateNCD(pairSize, oneSize, twoSize)
ncd← (pairSize−Math.min(oneSize, twoSize))/(double)Math.max(oneSize, twoSize);

return (Math.max(Math.min(ncd, 1.0), 0.0));
end procedure
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CHAPTER 3

EXPERIMENTAL STUDIES

To support our hypothesis described in section 1.7, we did five experiments:

Evaluate set-complexity: to verify the correctness of the set-complexity calculations we

did in the set-complexity trajectory experiment. This experiment is discussed in de-

tail in section 3.1.

Rule accuracy: To verify that the observed accuracy values of the rules used in our ex-

periments are same as their known values. Therefore we can verify that DCT is done

correctly in our experiments which is discussed in detail in section 3.2. Also to deter-

mine the hardest problems which lowers the accuracy of the rules.

Rule robustness: To validate that the accuracy of the rules used in our experiments have

locally maximal accuracy. Section 3.3.

Set-complexity trajectory: To study the trends and to determine if there is any differ-

ence in the set-complexity curves of different class of outcomes generated from the

DCT of hard problems. Section 3.4.

Mann-Whitney test: To determine, if there is significant difference the set-complexity

curves of different class of outcomes and complex patterns corresponding to correct

results show maximal information flow. Section 3.5.
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3.1 Experiment One: Evaluating Set Complexity

We did experiments to verify that set-complexity can distinguish between random and

ordered pattern trajectories, described in the Equation 2.3. We have created synthetic

patterns of six possible pair wise combinations of three basic encoded string types viz.

simple, random and complex which are described and named conventionally as follows:

Regular: Pattern formed by a single string repeated in all the time-steps. This string

consist of a repeated substring which has fixed number of bits (0’s and 1’s).

Simple: Pattern formed by strings which consist of a repeated substring. This substring

has fixed number of bits(0s and 1s). These fixed number of bits are chosen randomly

for each time-step. Example, figure 3.1 (a1).

Random: Pattern formed by random strings of 0s and 1s, having fixed number of 1’s.

These fixed number of 1’s are same for each time-step. Example, figure 3.1 (b1).

Complex: Pattern formed by strings that have fixed number of bits(0s and 1s) which are

repeated after a fixed number of random bits. These fixed number of bits are chosen

randomly for each time-step. Example, figure 3.1 (c1).

Simple-Complex: Pattern formed by repeatedly alternating simple and complex strings.

Example, figure 3.1 (d1)

Simple-Random: Pattern formed by repeatedly alternating simple and random strings.

Example, figure 3.1 (e1).
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Random-Complex: Pattern formed by repeatedly alternating random and complex strings.

Example, figure 3.1 (f1).

Simple-Random-Complex: Pattern formed by repeatedly alternating simple, random

and complex strings. Example, figure 3.1 (g1).

For each synthetic pattern generated, the set complexity is calculated and plotted for

each time step. Example graphs and the corresponding patterns are shown in the figure

3.1.

3.1.1 Results

Results show that the set-complexity is near zero for regular patterns, high for simple

patterns. Set-complexity of complex patterns is higher than that of simple patterns. Other

patterns also have high set-complexities. However, against the expectations, complexity of

random patterns appears to have high value.
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(g1) (h1)
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Figure 3.1: Synthetic Patterns and their Set-Complexity curves, with set-
complexity(vertical axis) at each time-step(horizontal axis). (a1) Simple Pattern (a2) set-
complexity curve Simple Pattern, (b1) Random Pattern, (b2) set-complexity curve, Ran-
dom Pattern, (c1) Complex Pattern, (c2) set-complexity of Complex Pattern, (d1) Simple-
Random Pattern, (d2) set-complexity of Simple-Random Pattern, (e1) Simple-Complex
Pattern, (e2) set-complexity of Simple-Complex Pattern,(f1) Random-Complex Pattern,
(f2) set-complexity of Random-Complex Pattern, (g1) Simple-Random-Complex Pattern,
(g2) set-complexity of Simple-Random-Complex Pattern, (h1) Regular Pattern, (h2) set-
complexity of Regular Pattern
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3.2 Experiment Two: Rule Accuracy

In the two dimensional cellular automata, not all the majority problems (IC) are solved

or classified correctly by any rule (existing so far) in the DCT.

For example, the hardest problem of length 599 has 300 ’On’ states (ρ = 0.49) and 299

Off states(0’s or white cells) randomly arranged in the initial configuration, and the easiest

problem will have all the same states (either On or Off, ρ = 1) in the IC.

To make sure the results of our experiments are correct, specially the problems are

correctly solved by the eight rules(given in 2.1) and the results are classified correctly, we

calculated the accuracy of all the rules we have used in our experiments. The accuracy of

a rule is calculated to determine how well it solves a set of random problems and how its

accuracy is affected by varying the difficulty level of the problem.

Measure of accuracy will help to confirm the results we have got in our experiments

satisfy previous evaluation of rules. For example, if we are solving the problems of difficulty

level 1 using a particular rule and its known accuracy is 90%, which means out of hundred

random majority problems, a rule is expected to correctly classify approximately 90 of them.

Therefore we can always check if the accuracy of rules is in the expected range, otherwise

something has gone wrong in the experiments.

Accuracy of a rule for fixed number of on-bits is the percent of times a rule succeeded

in the DCT. At each iteration a rule tries to determine the majority in a random majority

problem (Po). For the number of 1 bits in random Po, the percent of times the rule succeeds

to classify the density is recorded. The fixed number of 1 bits in the problem are varied

from 0 till the problem length (row-length = 599). For each number of 1 bits the accuracy

is calculated. The pseudo-code of the algorithm used to determine the accuracy of rules is

shown in Algorithm 4.

3.2.1 Results

The plot of the accuracy against the number of on-bits (horizontal axis) in the problem

gives an idea of the over all accuracy in percent (vertical axis) of the rule for number of

on-bits. The graphs for accuracy of different rules are shown in Figure 3.2.
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Algorithm 4 Pseudo-code to calculate accuracy of rules based on the number of On-Bits
(difficulty level of the problem)

for numberOfRules = 1→ 8 do

for initialNumberOfOnes = 0→ 599 do

for timesPerInitialNumberOfOnes = 1→ 100 do

create a random problem with exact initialNumberOfOnes (bits true).
solve the problem
if resultisasexpected then

countOfCorrectResults← countOfCorrectResults+ 1
end if
countOfAttempts← countOfAttempts+ 1

end for
accuracy ← countOfCorrectResults/countOfAttempts ∗ 100

store the accuracy for the initialNumberOfOnes

end for

end for

The results confirm that problems with density 50% are the hardest and most inter-

estingly, problems with density greater than 60% or less than 40% are easily solved by the

rules.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Graphs of Rule Accuracy for Number of On-bits. Each graph is the plot of
accuracy(vertical axis) of the rule against number of On-Bits(horizontal axis) in the problem
(IC). (a) Fixed1, (b) Fixed2, (c) Fixed3, (d) Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7, (h)
Fixed8, from the graphs its very clear that accuracy of a rule increases with increase int
the density of the majority bits (state)

3.3 Experiment Three: Rule Robustness

The accuracy of the rules used in CA, can drop or increase after mutations to the

rules output. A high robustness rule is one where its accuracy stays considerably high after

mutations. The sensitivity of the rule is inversely proportional to its robustness. In this
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experiment, we tested the sensitivity of the rules to mutations. A single mutation to a rule

is a single bit flip of one of its output bits in the 128 bit word given in the table 2.1. Based

on the sensitivity of a rule, we can validate that the rule’s accuracy has locally maximal

accuracy.

3.3.1 Results

The accuracy for number of mutation Bits of a rule is calculated using the accuracy

for Number of On-Bits for the same rule as described in the previous section 3.2. A rule is

mutated for fixed number of bits (0 to 7) at random locations, then accuracy for Number

of 1 bits in the majority is calculated for the mutated rule. These calculated accuracies are

plotted against number of on-bits in the problem. The resultant graph will be accuracy

plot for fixed number of mutation bits for a rule. Similarly, accuracies can be calculated

and plotted with varying number of mutation bits from 0 to 7. Hence, for each rule, eight

different curves are generated. The graphs for accuracies for different number of mutation

bits for different rules are shown in Figure 3.3.

The results show that each rule has locally maximal accuracy. Since accuracy falls off as

bits are mutated. Interestingly, the graphs of accuracy under mutations are not symmetric.

This happens because some mutations force the rule to always converge to 1 or 0.
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Algorithm 5 Pseudo code to calculate accuracy of rules based on the number of mutated
bits and number of on Bits.

for numberOfRules = 1→ 8 do

for numberOfMutationBits = 0→ 7 do

mutate the rule with numberOfMutationBits

for numberOfT imesPerMutation = 1→ 100 do

for initialNumberOfOnes = 0→ rowLength do

for timesPerInitialNumberOfOnes = 1→ 100 do

create a random problem with exact initialNumberOfOnes (bits
true).

solve the problem
if resultisasexpected then

countOfCorrectResults← countOfCorrectResults+ 1
end if
countOfAttempts← countOfAttempts+ 1

end for
accuracy ← countOfCorrectResults/countOfAttempts ∗ 100

averageAccuaracyList[initialNumberOfOnes][numberOfT imesPerMutation]←
accuracy

end for

end for
calculate and store averageAccuracy for 100 runs of the mutated rule from

averageAccuaracyList[][] for each initialNumberOfOnes.

end for
end for
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Figure 3.3: Rule Accuracy for Number of Mutation Bits, x-axis is number of 1’s in the
problem (of size 599), y-axis is accuracy in percent. Each graph corresponds to accuracy
plot of 8 mutations (0 to 7 bit) of a rule named (a) Fixed1, (b) Fixed2, (c) Fixed3, (d)
Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7, (h) Fixed8, from the graphs its very clear as the
number of mutation bits increase the accuracy drops.
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3.4 Experiment Four: Set Complexity Trajectory

We calculated the set-complexity trajectory using real patterns that emerge by solving

the different levels of problem difficulty for all eight of the famous rules shown in table 2.1,

over a large set of random problems.

Pseudo-code used in our experiments for calculating multiple set-complexity trajecto-

ries and the median-complexity at each time-step is shown in Algorithm 6. For the DCT

of a majority problem by a particular rule, set-complexity at each time-step for the window

of size w, patterns is calculated. Plotting the graph of these complexities against time-

steps provides a clear picture of set complexity at each time-step, precisely the measure of

information flow at each time step.

Algorithm 6 Pseudo code to calculate the set-complexity

for numberOfRules = 1→ 8 do

resultArray[timeSteps][list < double >]

for numberOfT imes = 1→ 1000 do

create a random problem
solve the problem calculate the set-complexity and store it in

trajectory[]
classify the result Pattern[][] in to one of the four classes viz correct,

incorrect-chaotic, incorrect-same, incorrect-ordered

for all timeStep such that 0 ≤ timeStep < trajectory.length do

for the current value of timeStep, add complexityMeasure value in
trajectory[] to resultClassList[]

calculate median of complexityMeasure for the current value of
timeStep in resultClassList[] and store in the medianResults[] for
the corresponding timeStep.

end for
end for

end for

We can compare the set-complexities at each time-step of the different class of patterns

generated by a particular rule. The complexity graph for each rule (each row in the figure
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represents a rule) for each class of results (each column in the figure represents class of

result) is shown in the Figure 3.4 and 3.5. These graphs are plotted for results-patterns

generated by solving a particular class of problems, difficulty level-1, in this case.

Trajectories are classified based on the outcome (defined in section 2.1). For these

graphs a log time scale is used to focus attention on the initial phases of the problem

solving.

3.4.1 Results

In all trajectories, the set-complexity initially rises then either trends lower for ordered

outcomes, or begins wide irregular oscillations for chaotic dynamics.

The initial rise in set-complexity is due to the organization of the original random

problem state by the application of the rule, the fall from the peak is due to the introduction

of the regions of regularity into the state as the system moves towards an answer. Chaotic

systems replicate the random results of the synthetic data in section 3.1.
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Figure 3.4: Rule Complexities. The columns represent the class of patterns. First column
has Correct-Ordered, second column has Incorrect-same patterns and the rows represent
the rules, (a) Fixed1, (b) Fixed2, (c) Fixed3, (d) Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7,
(h) Fixed8
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Figure 3.5: Rule Complexities. The columns represent the class of pattern. First column
Incorrect-Ordered, second column Incorrect-Chaotic patterns and the rows represent the
rules, (a) Fixed1, (b) Fixed2, (c) Fixed3, (d) Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7, (h)
Fixed8
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3.5 Experiment Five: Mann-Whitney

The Mann-Whitney statistical test [17] is conducted to determine, if there are signifi-

cant differences between the medians of all pairs of outcome classes at any time step. This

test is selected because it is parameter free and works without distributional assumptions.

The pseudo code used for conducting Mann-Whitney Test is shown in Algorithm 7. The

set-complexities calculated at each time-step of the pattern produced as a result of DCT

are used in the Mann-Whitney test.

3.5.1 Results

The p-values obtained for each time-step by the Mann-Whitney test can be plotted

as a function of time-step. Thus graphs (Figure 3.7) are obtained that show at what

time-steps different between the classes are significant. There was no significant difference

observed between any of the classes of results. The reason might, since there are almost

3600 tests performed, that calculation came from 6 pair-wise comparisons across 600 time

steps. There are likely errors in the handling of ties in the calculations as well as some

unknown errors causing the p-values to be bounded below at 0.5 making it impossible to

determine significance.
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Algorithm 7 Pseudo code to determine measure of difference amongst the set-complexities
of a given pair of results for a particular time-step. These pair of results are produced by
the same rule. The inputs are two arrays of set-complexity values at a particular time-step
of two set of results, it will return a p-value

initilization
set1[] is a sorted the list of setComplexties for a particularT imeStep for a particular
Rule for a type Of Result.

set2[] is a sorted list of setComplexities for a particularT imeStep for a particular Rule
for a type Of Result.

resultSet1 and resultSet2 are ranked combined

now the set1RankSum and set2RankSum for set1 and set2 respectively are calculated.

UResultSet1 and U1ResultSet2 is calculated using following equation

UResultSet1← set1RankSum−
(
set1Size∗(set1Size+1)

2

)

minU ← min(UResultSet1, UResultSet2)

mean← (set1Size ∗ set2Size)/2
standardDeviation←

√
set1Size ∗ set2Size(set1Size+ set2Size+ 1)/12

zV alue← (minU −mean)/standardDeviation

pValue is calculated from zValue
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Figure 3.6: Mann-Whitney Test Graphs. Each row has graphs of a rule, (a) Fixed1, (b)
Fixed2, (c) Fixed3, (d) Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7, (h) Fixed8. Each column
has graphs that compare two specific class of patterns. First column compares correct-
ordered vs incorrect-same, second column compares correct-ordered vs incorrect-ordered,
third column compares correct-ordered vs incorrect-chaotic patterns.
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Figure 3.7: Graphs of Mann-Whitney Test. Each row corresponds to graphs of a rule (a)
Fixed1, (b) Fixed2, (c) Fixed3, (d) Fixed4, (e) Fixed5, (f) Fixed6, (g) Fixed7, (h) Fixed8.
Each column has graphs that compare two specific class of patterns. First column compares
incorrect-same vs incorrect-ordered, second column compares incorrect-same vs incorrect-
chaotic patterns, third column compares incorrect-ordered vs incorrect-chaotic patterns.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

We did five experiments to verify our hypothesis. The first experiment is ”Evalu-

ating Set-complexity”. We created different synthetic patterns and evaluated their set-

complexities. The results of this experiment have confirmed that complex patterns have

maximal information flow. This result marked a mile stone in the process of verifying

the first part of our hypothesis that the set-complexity measure we have used is correctly

measuring the information in cellular automata.

Second experiment is ”Rule Accuracy”. To determine the hardest problems, we solved

problems of different densities to observe their effect on the accuracy of the rules. Results

of the experiment confirmed that problems with density 50% are the hardest.

Third experiment ”Rule Robustness”. To determine the sensitivity of the rules to mu-

tations, we solved problems of different densities with mutated rules. The results confirmed

that each rule has locally maximal accuracy. Which also means that there is no doubt on

the accuracy of the rules used to solve the majority problems.

Fourth experiment ”Set-complexity Trajectory”. To find out if there is difference in the

information flow of the systems that converge to different outcome, we calculated and ob-

served their set-complexity trajectories. This experiment’s result leads us to the conclusion

that there is difference between the set-complexity trajectories of the systems with ordered

outcomes and systems with chaotic outcomes. Hence, from the results of the second, third

and fourth experiment, we prove the second part of our hypothesis, solving hard majority

problems with cellular automata requires maximal information flow, is true.

Last experiment ”Mann-Whitney”. We did Mann-Whitney test, to determine if there

is significant difference between median set-complexity trajectories of the systems with

different outcomes at each time-step. That is, to test, if there is significant difference in the
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information flow of different systems. The results showed no significant difference between

the classes of results. There are some potential errors in the calculation of p-values that

failed to determine significance. Fixing these problems may help in determining significance.

Currently, with the results of our last experiments the last part of our hypothesis, that set

complexity is maximized when CA’s solve hard problem correctly, is inconclusive.
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Figure 5.1: Additional Sample Correct Result Patterns
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