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ABSTRACT 
 
 

Effect of Deposition from Static Test Fires on Corn and Alfalfa 
 
 

by 
 
 

 Scout Mendenhall, Master of Science  
 

Utah State University, 2012 
 
 
Major Professor:  Dr. Laurie McNeill 
Department:  Civil and Environmental Engineering 
 
 

A greenhouse study was conducted to determine the effects of deposition from 

static rocket test fires on corn and alfalfa.  Seeds were germinated in a wide concentration 

range of depositional material, called test fire soil (TFS).  Additionally, the impact of 

chloride and aluminum, two major components of test fire soil, on germination was also 

evaluated.  Furthermore, plants were grown in packed columns and exposed to test fire 

soil, either in the root zone or on foliage.  Tissue was weighed and analyzed to compare 

biomass production and plant composition.   

Corn and alfalfa exposed to test fire soil in the root zone produced less biomass 

than controls, but foliar treatment had no effect on biomass production.  No kernels were 

produced by corn exposed to test fire soil in the root zone.  Leaves of plants exposed to 

test fire soil in the root zone accumulated more metals and nutrients than controls, 

whereas plant tissue treated with test fire soil on the leaves contained only elevated levels 

of aluminum, although levels were still within reasonable concentrations for plants.   
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Germination of seeds was not affected below 1% test fire soil in soil; however 

higher concentrations of test fire soil decreased percent germination.  Addition of 

chloride to soil also inhibits germination, but addition of aluminum has no effect on 

germination percentage.  Corn germination was restored in test fire soil leached with 200 

mm artificial rainwater.   

The results of this research contribute information regarding the potential impact 

of test fire soil from static test fires on crop production.  Test fire soil inhibits 

germination and growth if deposited in the root zone, and even foliar application alters 

tissue composition.  However, plant composition is not altered significantly in terms of 

feed criteria, and germination can be restored by irrigating the TFS.   

The effects of test fire soil are attributed to high levels of chloride that induce salt 

stress.  Crop damage may be avoided by conducting static test fires after crops are 

harvested or providing extra irrigation to soil impacted with the TFS.   

 
 

(91 pages) 
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PUBLIC ABSTRACT 
 

Effect of Deposition from Static Test Fires on Corn and Alfalfa 
 

Scout Mendenhall 
 
 

Alliant Techsystems, Inc (ATK) manufactures solid rocket motors for the 

National Aeronautics and Space Administration (NASA) at the Promontory, UT facility.  

Periodically ATK conducts static test fires, where the rocket is restrained horizontally 

and fired into a hillside.  The plume entrains native soil and is carried by the wind until it 

cools and settles.  Although the area around ATK is sparsely populated, residents of 

nearby Penrose and Thatcher, UT are concerned with the deposition of the test fire soil 

(TFS) from the static rocket tests.  In 2010, several crop fields nearing harvest were 

dusted with TFS, prompting the investigation of its effects on corn and alfalfa.   

The objective of this research is to determine the impacts of TFS on the 

germination, biomass production, and plant composition of corn and alfalfa exposed to 

TFS deposition.  One significant component of TFS is chloride, an inorganic anion that 

induces salt stress in plants.  If large amounts are deposited, TFS contains enough 

chloride to prevent germination and reduce growth.  This study was designed to 

determine the effect of a worst-case scenario, 1 inch of TFS deposition, which is the 

maximum amount that has been observed historically.   

Germination studies were performed with various concentrations of TFS in soil.  

The highest concentration evaluated was 10% TFS in soil.  This concentration was 

calculated from the worst-case deposition scenario, one inch of TFS tilled into the top 10 

inches of soil.  At concentrations of 1 - 10% TFS, germination was reduced, but below 

1% TFS, no effect was noticed.  A germination study was performed after washing the 
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TFS with artificial rainwater.  After 7 days there was no significant difference between 

corn germination in the leached TFS and controls, indicating that the adverse effects of 

the TFS can be mitigated by washing the chloride out of the root zone.   

Biomass production was measured by weighing the tissues collected from plants 

exposed to TFS in a greenhouse.  Exposure to TFS occurred in either the soil (root zone) 

or on the leaves of the plant.  Plants treated with TFS in the root zone had severely 

reduced biomass production.  Corn did not produce any appreciable yield, and alfalfa 

production decreased drastically after exposure to TFS.   

Plant tissue was analyzed for metals and anions.  Corn and alfalfa exposed to TFS 

in the root zone accumulated higher levels of metals and nutrients than controls and 

foliar-treated plants.  Plants whose leaves had been treated with TFS accumulated more 

aluminum than controls.  Although treatment caused significant differences in plant 

composition, the metal or nutrient levels were not high enough to be considered 

detrimental to plant health.   

This study shows that high amounts of deposition from static test fires at ATK 

could result in damage to field crops especially during more sensitive growth stages.  

Adopting test-fire guidelines that will reduce TFS deposition on seeds and young plants 

may reduce the impacts of static test fires and prevent crop damage.  Conducting test fires 

after harvest would further prevent the change in plant tissue composition.  Providing 

extra irrigation to soil impacted with the TFS may also help to mitigate potential impacts.   
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Background 

 
Alliant Techsystems (ATK) is a worldwide company specializing in aerospace 

and defense systems.  They are the world’s leading producer of ammunition and solid 

rocket propulsion systems, with facilities located throughout the USA (Alliant 

Techsystems Inc. [ATK] 2011).  ATK supplies US armed forces with munitions and 

missiles.  Under contract with the National Aeronautics and Space Administration 

(NASA), ATK also provided the solid rocket motors (SRMs) that propelled the space 

shuttles into orbit.   

ATK manufactures SRMs for NASA’s space program at their Promontory 

facility, located in northern Utah.  SRMs contain propellant consisting of powdered 

aluminum, ammonium perchlorate, polybutadiene acrylic acid acrylonite, iron oxide, and 

an epoxy curing agent (NASA 2006).  Combustion of an SRM provides 11.6 million 

newtons (2.6 million pounds) of thrust during liftoff to propel the space shuttle into orbit 

(ATK 2007).   

In order to promote safety and success of NASA’s missions, ATK is contracted to 

periodically evaluate the capability and reliability of the SRMs before sending payload 

into orbit.  Solid rocket motors are evaluated by performing static test fires.  The first 

static test conducted at the ATK Promontory Facility was in 1977 (ATK 2010).  Since 

then, 54 tests have been conducted for NASA’s space program (Jason Wells, ATK, 

personal communication, 20 May 2011).   
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In a static test fire, the SRM is fixed in a horizontal position, blazing the exhaust 

into a hillside.  After ignition, the propellant burns for approximately two minutes at a 

temperature of 3315 K (6000 F) (Williams and Malone 1999) and forms an exhaust cloud 

composed mainly of soil, aluminum oxide, hydrochloric acid, and water.  Nearly 1.5 

million kg of native soil, rocks and debris are entrained in the searing plume as the motor 

is fired into the hillside (Jason Wells, personal communication, 31 August 2010).  The 

plume of rocket exhaust and native soil, called Test Fire Soil (TFS), rises in the air, 

carried by wind currents until it cools and settles back to the ground.   

Because wind direction and velocity vary, deposition does not fall in the same 

location every time a motor is fired.  The TFS has fallen on several nearby communities, 

fields, wetlands, and salt flats that surround ATK property.  To the north, Thatcher, 

Bothwell, and Tremonton have been sprinkled with TFS.  East of the test site, the town of 

Penrose and the Salt Creek Wetland Management Area are often dusted with deposition.  

TFS has also been deposited on rangeland and salt flats south and west of the test site.  

ATK dispatches cleanup crews to remove the TFS from roofs and vehicles when 

deposition affects nearby communities.   

As much as 2.5 cm (1 inch) of TFS accumulated on a house in Penrose, UT 

during one test fire event, although that much deposition is unusual (Reggie Petersen, 

personal communication, 6 July 2011).  Deposition rates of TFS from the February 2010 

static test were observed to be highest directly downwind from the test site, ranging from 

6.7 x 10-4-0.09 g m-2s-1 (0.04-5.4 g min-1m-2), with higher rates observed closest to the 

test site (Doucette and McNeill 2011).   
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Local residents raised concerns that TFS deposition increased corrosion of cars, 

mailboxes, and barbed wire fences.  This prompted ATK to ask Utah State University to 

perform a corrosion study investigating the impact of TFS on metal surfaces in 2009.   

Prior to the February 2010 static test fire, mild steel coupons were placed at three 

locations where meteorologists at ATK expected the plume to deposit TFS.  A fourth 

location was identified upwind to act as a control site.  Mild steel coupons were attached 

to a piece of plexiglass and placed on tripods, subject to the deposition of TFS following 

the test fire.  After the TFS had stopped falling, another set of mild steel coupons that had 

not been exposed to TFS was placed next to the exposed coupons.  The coupons exposed 

to TFS initially corroded at a faster rate, but after several months the corrosion rates of 

the exposed and non-exposed coupons were similar (Doucette and McNeill 2011).   

ATK contracted USU to investigate the effects of TFS on other surfaces in 

addition to mild steel.  USU prepared to perform another corrosion study in August 2010, 

comparing corrosion rates of mild steel, painted metal, autobody finish, and vinyl siding.  

Plume predictions indicated that test racks should be positioned east of the SRM test site.  

Instead the wind carried the plume northeast, missing the coupons.  TFS was deposited 

on the town of Thatcher, UT and surrounding farmland, and crops nearing harvest were 

dusted with TFS.   

Deposition from the static tests has fallen on the small farming communities of 

Thatcher and Penrose numerous times, but rarely so close to harvest.  Local residents 

depend heavily on crop production.  Farmers wondered if the TFS had a negative impact 

on their crops, perhaps reducing yield or polluting the corn and alfalfa.  Residents posed 

their concerns to ATK, who agreed to work with USU to explore the effects of TFS 
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deposition on corn and alfalfa.  This thesis presents a study to determine the effects of 

TFS on the germination, growth, and contaminant concentration of corn and alfalfa.  

Plants grown in a greenhouse were exposed to TFS.  Plant tissue was analyzed and 

biomass production was measured to quantify the impact of TFS on crop growth and 

development.   

 
1.2 Literature Review 

 
1.2.1 Test Fire Soil 

Large quantities of TFS are deposited after each test fire event.  NASA estimates 

the test fire of one 504,000 kg solid rocket motor releases 107,000 kg of HCl and 152,000 

kg of Al2O3 (NASA 1977).  ATK estimates 1.5 million kg of native soil are entrained in 

the exhaust cloud (Jason Wells, personal communication, 31 August 2010).  TFS was 

collected from three test fire events, including the February 2010 firing of Flight Support 

Motor (FSM)-17, the August 2010 firing of Development Motor (DM)-2 and the 

September 2011 firing of DM-3.  TFS from the September 2009 firing of DM-1 was 

provided by ATK.   

TFS was collected from DM-1, FSM-17, and DM-3 on polyethylene tarps spread 

on the ground prior to the static test.  The TFS was then transferred to HDPE buckets and 

air-dried at USU.  DM-2 TFS was collected off roofs, vehicles, and driveways.  The TFS 

was analyzed for metals and common inorganic anions at USU.  Aluminum was the only 

metal that was significantly higher in all four types of TFS than in native soil collected at 

the test fire site.  It exists in concentrations 2 to 4 times higher than the native soil.  
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Chloride was also significantly higher in TFS than in native soil, but at concentrations 

two to three orders of magnitude higher in TFS than in soil.   

Aluminum and chloride may contribute to problems in agriculture.  A summary of 

the aluminum and chloride concentrations for the four test fire events is shown below, in 

Table 1.     

Although similarities are noted between types of TFS (high aluminum, chloride 

levels), TFS is not identical in composition or texture from test to test.  The ratio of 

rocket exhaust to entrained soil also varies with environmental conditions.  Temperature, 

humidity, and grooming of the hillside around the test site are other factors influencing 

the heterogeneous nature of TFS.   

Elemental components vary in different types of TFS.  For example, the ratio of 

aluminum to chloride varies between 1-1.6 for the TFS shown in Table 1.  The ratio of 

aluminum to chloride in soil is orders of magnitude higher.  Other differences are noted 

between types of TFS.  Levels of beryllium, selenium, and cadmium are statistically 

similar for DM-1 and DM-2 TFS, but less than DM-3 TFS.  On the other hand, DM-3 

TFS levels are lower than DM-1 and DM-2 for aluminum, vanadium, manganese, iron, 

copper, barium and lead.  There are no statistical differences in concentrations of 

chromium, cobalt, nickel, zinc, arsenic, antimony, and thallium (data not shown here).   

 
Table 1 Concentrations of aluminum and chloride in four Test Fire Soils  

and one native soil 

Sample Aluminum 
(mg/kg) 

Chloride 
(mg/kg) 

DM-1 TFS (Sept 2009) 65100 56100 
FSM-17 TFS (Feb 2010) 59000 35900 

DM-2 (Aug 2010) 70400 69100 
DM-3 (Sept 2011) 31500 25200 

Native Soil 17300 50-120 
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Moisture content of TFS also varies from test to test.  The TFS fell from the sky 

like muddy rain in February 2010, and pH < 2 was noted in some cases (Doucette and 

McNeill 2011).  A local resident described the deposition of TFS from earlier test fires to 

be like dirty snow that collected on roofs, cars, mailboxes, and crops (Reggie Petersen, 

personal communication, 6 July 2011).   

 
1.2.2 Impacts from Shuttle Launches and Vertical Static Tests 

Actual Space Shuttle launches at Kennedy Space Center (KSC) and vertical static 

tests produce exhaust clouds that have been studied by NASA (1978, 1979), Hinkle and 

Knott (1985), Anderson and Keller (1983), Dreschel and Hall (1990), and others.  The 

launch pad at KSC is flooded with water before a launch or test fire to protect the launch 

vehicle from sound waves (NASA 1987).  The water vaporizes and mixes with the 

exhaust products, forming an exhaust cloud largely consisting of aerosols and gases, but 

little soil.  In contrast, at ATK the plume does contain large quantities of soil.  Although 

the character of deposition is different, similarities exist between the exhaust clouds of 

launches or vertical static tests and horizontal static tests.   

Hinkle and Knott (1985) gave an overview of damage caused by the exhaust 

cloud from space shuttle launches at the KSC, including damage to vegetation, changes 

in water chemistry, decreased buffering of surface soil, and elevated levels of several 

heavy metals after deposition of the exhaust cloud, which will be discussed separately 

below.  Residents have complained of similar effects after test fires, although no 

documentation is available regarding TFS impacts.   
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1.2.3 Impact on Vegetation 

Vegetation can be affected by the deposition of the acidic exhaust cloud. 

According to Schmalzer et al. (1985), vegetative cover surrounding the launch pad at the 

KSC generally decreased in response to the exhaust cloud, with the loss of several shrub 

species.  Grasses seemed to be more resistant, except in places of high impact or frequent 

exposure.  Zammit and Zedler (1988) investigated the effect of low pH on seeds and 

seedlings in a laboratory setting that mimicked deposition from shuttle launches in 

Florida.  They found that germination of seeds was inhibited below pH 1.0.  Seedlings 

and seeds that did germinate below pH 2.0 generally did not live beyond 30 days.   

Acid rain events were also reported to cause damage to the surrounding 

environment (NASA 1978, 1977).  Acid rain is produced when droplets of rain scavenge 

gaseous hydrochloric acid in the exhaust cloud, lowering the pH of the rainwater and 

forming aerosols which cause extensive damage to plant tissue (Foster et al. 1988; Heck 

1980; Schmalzer et al. 1985).  After a test fire in Homestead, Florida in 1967, citrus crops 

were marred by acid rain, and in 1975, rainfall with pH values 1-2 was observed after the 

launch of a Titan Centaur Launch Vehicle at the KSC (NASA 1978, 1977).   

Humidity impacts the extent of damage to vegetation.  Effects of hydrochloric 

acid are more pronounced at high humidity, when water in the air scavenges the 

hydrochloric acid (Heck 1980; Schmalzer et al. 1985).  Heck (1980) explains that plant 

damage is enhanced if dew is present on leaves, suggesting that early-morning launches 

may have a greater impact to vegetation.   
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1.2.4 Impact on Water Chemistry 

Water chemistry is altered by the hydrochloric acid in the exhaust cloud, causing 

a decrease in pH of stagnant or shallow water that may be accompanied by fish kills 

(Dreschel and Hall 1990; Hawkins et al. 1984; Hinkle and Knott 1985; Schmalzer et al. 

1985).  Aware of these occurrences, Milligan and Hubbard (1983) performed a field 

study where fish were exposed to the exhaust cloud of the Space Transportation System-5 

launch and collected to determine the cause of death.  Fish in an open container died from 

exposure, whereas fish in a covered container did not.  The water in the open container 

had a pH of 2.4, contrasted against a pH of 7.2 in the closed container.  In the shallow 

water at the edge of the lagoon, a fish kill occurred 1.5 hours after the launch where a pH 

of 6.2 was noted.  Although concentrations of heavy metals were elevated in the exposed 

container, they did not exceed the threshold of toxicity, and were not assumed to 

contribute to acute fish kills (Milligan and Hubbard 1983).  Hawkins et al. (1984) 

furthered the study by examining the bodies of fish who met their demise in a launch-

related fish kill, finding evidence of damage to the gills from the acid exposure.   

 
1.2.5 Impact on Soil Chemistry 

Exposure to the acidic plume induces a rapid drop in soil pH that generally 

recovers with time, as acid is neutralized by soil.  Hinkle and Knott (1985) observed 

increasing drops in pH and longer recovery times in soils near the Kennedy Space Center, 

where the soils are repeatedly subject to the exhaust cloud.  Diminishing acid neutralizing 

capacity correlates with increased concentrations of dissolved metals in the soil (Dreschel 

and Hall 1990).   

 



9 

 

1.2.6 Aluminum 

Aluminum (Al) toxicity is common in acidic soils, where Al is in a mobile and 

readily-exchangeable form (Langer et al. 2009; Mora et al. 1999).  Aluminum inhibits 

development of plant roots, prevents water and nutrient uptake, and reduces overall plant 

growth (Delhaize and Ryan 1995).   

Agricultural production can be affected by high levels of aluminum when the soil 

is acidic.  Aluminum toxicity has been reported to stunt growth in several crops, 

including wheat (Miyasaka et al. 1989), barley (Ali et al. 2011), soybean (Abo et al. 

2010), cucumber (Pereira et al. 2010), and corn (Bennet et al. 1987).  To mitigate 

aluminum toxicity in cocoa seedlings, lime or organic matter may be applied to prevent 

toxicity (Shamshuddin et al. 2004).   

Some cultivars of plant species may exhibit tolerance to Al toxicity by producing 

exudates in the root zone as a defense mechanism (Langer et al. 2009; Pereira et al. 2010; 

You et al. 2005).  These exudates, produced by the roots, form chelated Al compounds 

(Delhaize and Ryan 1995), or precipitate Al in the cell wall (Gaume et al. 2001).  Other 

plants may not exhibit tolerance to aluminum, and even within species, some cultivars are 

more susceptible than others (Delhaize and Ryan 1995; Langer et al. 2009; Miyasaka et 

al. 1993).   

The soils in the area around ATK are neutral or alkaline with pH 7 or higher.  The 

availability of aluminum is expected to be very low because aluminum is predominantly 

in precipitated form in alkaline soil.  The effects of aluminum toxicity are not expected to 

be evident in crops affected by TFS.   
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1.2.7 Chloride 

Deposition of the exhaust cloud introduces large quantities of chloride, which 

remain after neutralization of the hydrochloric acid by the carbonates in the soil.  

Chloride is a mobile inorganic anion which does not sorb appreciably to soil particles, but 

is transported by water (White and Broadley 2001; Xu et al. 2000).  Chloride is necessary 

for plant growth in small amounts, but at high levels causes salt stress and ion toxicity 

(White and Broadley 2001).   

Chloride ions contribute to osmotic potential, which affects the flux of water.  Salt 

stress occurs when elevated concentrations of ions induce high osmotic potential in the 

soil (Munns 2002; Taiz and Zeiger 2006).  Plants must expend greater energy to generate 

water potentials exceeding the osmotic potential to maintain uptake of water.   

Ion toxicity occurs when excess ions interfere with uptake of nutrients, disrupting 

synthesis of proteins and enzymes (Taiz and Zeiger 2006).  Plants may accumulate 

chloride in plant tissue as a result of transpiration (Munns 2002).  As chloride 

concentrations increase, the cells become dehydrated and die if accumulation exceeds 

toxic levels.   

To some degree, effects of high chloride can be offset if sufficient nutrients are 

available (Kinraide 1999; Munns 2002).  For example, the growth of olive trees subject to 

salt stress was not affected as drastically when sufficient calcium was available (Melgar 

et al. 2007).  Tattini and Traversi (2008) studied the response of Mediterranean 

evergreens to salt stress at low and high levels of calcium, finding that calcium mitigated 

salt stress in some species.  
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Soils are considered saline when the electrical conductivity (EC) of a saturated 

soil paste exceeds 4 dSm-1 (Munns and Tester 2008; Waskom et al. 2007).  The EC of a 

saturated TFS paste (1g TFS:0.25 mL de-ionized water) exceeded the maximum 

detection limit of available equipment, so de-ionized water was added until a reading 

could be obtained.  The diluted mixture (1 g TFS:50 mL water) had an EC of 2.85 dSm-1.  

Although the measurement was not obtained using a saturated paste, the results suggest 

that the EC of TFS is definitely greater than 4 dSm-1.  Multiplying the dilution factor by 

the EC of the mixture, the EC of the paste is estimated to be approximately 570 dSm-1.  

This corresponds to an extremely high osmotic potential of -20.5 MPa.  The osmotic 

potential of seawater ranges from -2.6 to -2.9 MPa (Taiz and Zeiger 2006).  The high 

osmotic potential induced by TFS is expected to have a detrimental effect on crop 

growth, especially if TFS is deposited in large quantities.   

The threshold of sensitivity to salinity depends on crop type.  Field corn may be 

affected when EC exceeds 2.7 dSm-1.  Yield losses of 50% are expected when the soil has 

an EC of 7.0 dSm-1.  Alfalfa yield is affected at 2.0 dSm-1, with a 50% reduction in yield 

expected when the EC is 8.8 dSm-1 (Kotuby-Amacher et al. 2000).  The EC of TFS is 

much higher than the tolerance of corn or alfalfa, and dramatic yield reductions are likely 

if plants are heavily impacted by TFS.   

 
1.2.8 Foliar Deposition 

Another much greater short-term concern of TFS deposition is the exposure of 

plant foliage.  Although foliar uptake is usually low compared to uptake via root systems, 

it can play an essential role in plant health.  When nutrients are not readily available in 

soil or when plants are nutrient deficient, foliar sprays can be used to improve plant 
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nutrition (Fernandez and Eichert 2009; Marschner 1995, 2012).  For example, symptoms 

of chlorosis in peach trees were relieved after leaves were dipped in solutions containing 

iron (Fernandez et al. 2008).  Foliar application of ferrous sulfate to strawberry leaves 

seemed to reverse chlorotic effects but was less effective than addition of iron fertilizers 

in the root zone (Pestana et al. 2012).  Foliar sprays containing phosphorous may improve 

phosphorus-deficient wheat (Mosali et al. 2006; Noack et al. 2011) and persimmons 

(Hossain and Ryu 2009).   

Foliar exposure to certain substances can also damage plants.  For example, 

herbicides are sprayed on foliage to maintain weed control.  Irrigation water may even 

damage plant tissue.  Pepper foliage was injured from exposure to saline water from a 

sprinkling irrigation system (Maas 1993), as were corn (Isla and Aragüés 2010) and 

alfalfa (Isla and Aragüés 2009).  High levels of sodium and chloride accumulated in plant 

tissue watered with saline irrigation water, resulting in low potassium concentrations and 

ion toxicity.  Exposure of foliage to depositional TFS may result in uptake of metals or 

chloride that could harm the plant.   

Leaves are protected by a waxy cuticle which prevents loss of water and leaching 

of minerals from plant tissue (Marschner 2012).  However, the cuticle is not completely 

impervious, and substances on leaves may permeate into plant cytoplasm (Noack et al. 

2011).  Environmental factors such as relative humidity, temperature, and age of the leaf 

affect the thickness and permeability of the cuticle (Devine et al. 1993).  As relative 

humidity decreases, the driving gradient increases, and more wax is necessary to prevent 

water loss.  In a greenhouse where humidity is high, plants produce less wax than in the 

field where the moisture content of the air is lower.  As a result, greenhouse plants may 
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be more susceptible to foliar exposure of TFS.  Impacts may be seen in greenhouse 

studies where no effects would be observed in the field.   

 
1.2.9 Ground Deposition 

The deposition of TFS on top of the soil may create a crusty layer that prevents 

the diffusion of oxygen into the soil.  Many plants do not grow well in oxygen deficient 

soil conditions (Taiz and Zeiger 2006).  Wetland plants whose roots are often submerged 

in water form aerenchyma, air space between cells that provides transport of oxygen from 

shoots to the roots (Justin and Armstrong 1987).  Some plants, like corn, develop 

aerenchyma if soil conditions become flooded or otherwise oxygen deficient (Fukao and 

Bailey-Serres 2004).  On the other hand, alfalfa does not develop aerenchyma, and is 

more sensitive to flooding (Torabi et al. 2011).  TFS deposition could impact plant 

growth simply by its presence on top of the soil if it reduces oxygen transfer into the soil.   

 
1.3 Objectives 

 
Although environmental impacts associated with rocket launches have been 

observed at the Kennedy Space Center in Florida, the impact of the static tests conducted 

by ATK are likely to be different since the rockets are horizontally restrained and are 

directed into a hillside.  However, the environmental effects of ATK’s static test fires 

have not been studied in detail and little data has been collected at the ATK Promontory 

Facility.  Deposition on fields and communities near this area sparked local concern in 

recent years, prompting ATK to evaluate the environmental impact of the deposition 

from static test fires.   
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The main objective of this thesis is to determine the impacts of TFS on the growth 

and nutrient composition of corn and alfalfa exposed to deposition from the static rocket 

tests at the ATK Promontory facility.  These effects were observed primarily by exposing 

corn and alfalfa to TFS under a variety of conditions.  Plant mass and tissue 

concentrations of metals and anions were compared to establish effects on yield and plant 

composition.  The impact of TFS in the soil and root zone was investigated using column 

leaching studies to evaluate the mobility of two major components of TFS:  aluminum 

(low mobility expected) and chloride (high mobility expected).  The findings of this study 

will be used to determine if ATK needs to take steps to prevent crop damage.  The 

objective was met by performing several specific tasks:   

1. Studies were performed to determine the impact of TFS and its major components 

(chloride and aluminum) on germination.   

2. Plants were exposed to TFS under a variety of conditions in a controlled 

greenhouse environment.  Plant tissue was collected periodically and weighed to 

compare mass production in the exposed and non-exposed treatments.  Plant 

tissue was also analyzed for total metals and anions to compare plant 

composition.  Variables considered in this study include plant maturity at 

exposure, point of exposure, and length of exposure.  Four exposure conditions 

were tested:   

a. Corn and alfalfa were grown in soil that contained TFS at a concentration 

of 10%.   

b. Corn and alfalfa were grown in soil.  TFS was added to the top of the soil 

after 54 days, approximately halfway to plant maturity.   
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c. Plants were grown in soil and TFS or soil was applied to foliage after 54 

days, approximately halfway to plant maturity.   

d. Plants were grown in soil and TFS or soil was applied to foliage after 54 

days.  TFS was rinsed off after one week.   

3. Column leaching studies were performed to determine the mobility of chloride 

and aluminum in soil.  Soil columns contained TFS either on the surface or mixed 

homogenously in the soil column to match the plant exposure studies.   
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CHAPTER 2 
 

MATERIALS AND METHODS 
 
 

2.1 Germination Studies 
 
 

Studies were performed to observe the impact of TFS on corn and alfalfa seed 

germination.  These studies followed the 120-hour Standard Toxicity Test for lettuce seed 

germination described by the Environmental Protection Agency (United States 

Environmental Protection Agency [USEPA] 1987).   

 
2.1.1 Initial Evaluation 
 

The initial test was performed using TFS from September 2009 firing of DM-1.  

Treatments included 50%, 10%, 2%, and 0.4% TFS by weight in soil and a control plot 

without the addition of TFS.  A sandy loam with a pH of 6.98, electrical conductivity of 

0.90 dS/m, consisting of 1.7% organic matter (Alec Hay, personal communication, 14 

May 2012) was used as the base soil.  Triplicate petri dishes (150 mm x 15 mm) each 

received 100 g of the prepared soil treatment and 20 corn kernels or 40 alfalfa seeds.  

Seeds were pressed gently into the soil using the bottom of a 600-mL glass beaker.  The 

seeds and soil were moistened with 30 mL de-ionized water gently poured in the center 

of the dish, spreading outward.  The wetted soil was covered with 90 g of sand.  The petri 

dish was placed in a gallon Ziploc bag and zipped shut, leaving as much air as possible in 

the bag.  The bagged petri dishes were placed in a darkened growth chamber at 24±2°C.  

The growth chamber remained dark for 48 hours, followed by 16 hours of light and 8 

hours of darkness for the remainder of the test.  The seedlings were then counted and 

percent germination was determined.   
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2.1.2 Follow-Up Germination Study 
 

Additional studies were performed to observe the effects of aluminum and 

chloride on germination, following the same 5-day procedure.  This second study used 

five media:  soil with TFS, soil with aluminum, soil with chloride, soil with the 

combination of aluminum and chloride, and soil without any additives.  Aluminum was 

added to soil in the form of aluminum oxide, and chloride was added in the form of 

hydrochloric acid.  Soil treatments tested a chloride target range of 65-6500 mgkg-1 and 

an aluminum target range of 65-6500 mgkg-1.   

 
2.2 Plant Study 

 
 

A greenhouse study was performed to determine the impact of TFS on the 

biomass production and composition (chloride, aluminum and other metals) of corn and 

alfalfa.  Plants were grown in columns packed with soil as described in Section 2.2.1.  

Two routes of TFS exposure were explored:  through the root zone (2.2.2) or foliage 

(2.2.3).  Plant tissue was collected, weighed, and analyzed periodically for total metals 

and anions (2.2.4).   

 
2.2.1 Soil Columns 
 

Corn and alfalfa were grown in packed columns made from 12.7 cm (5 inch) 

diameter PVC pipe cut in 1.22 m (4 ft) lengths.  The columns were capped at one end, 

and tapped with fittings to aid in leachate collection.  Holes were drilled on the side of the 

columns 7.6 cm (3 inches) below the top of the endcap.  The holes were threaded, and 

0.318 cm (1/8 inch) NPT fittings with 0.635 cm (0.25 inch) tube connectors were inserted 

(Fig. 1).   
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Fig. 1 Construction of column 

 

Columns were packed with a sandy loam soil (pH=7.0, EC=0.90 dS m-1, 1.7% 

organic matter) and fertilizer (Osmocote 15-9-12 NPK, 3-4 month release) prior to 

planting.  Although soil conditions were different in various treatments (as described in 

sections 2.2.2 and 2.2.3), they were all packed with moistened soil as recommended by 

Lebron and Robinson (2003).  Logan, UT tap water (pH 7.3, electrical conductivity 300 

uS/cm, hardness 200 mg/L CaCO3) was added and the soil was turned several times to 

promote a homogenous mixture.  Soil was scooped into the columns, which were 

periodically lifted up and dropped 2.5-5 cm (1-2 inches) off the floor to minimize void 

volumes.  As the column was being filled with soil, approximately 20 g fertilizer was 
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added in 5 g increments one quarter, halfway, and three quarters of the way up from the 

bottom of the column, and 15.2 cm (6 inches) from the top.  One of every three triplicate 

columns was equipped with an ECH2O Soil Moisture Sensor EC-5 (Decagon Devices, 

Pullman, WA) placed halfway down the column and 15.2 cm (6 inches) from the top of 

the soil (Fig. 2).   

 

 

Fig. 2 Packed column, including Osmocote 15-9-12 NPK fertilizer (3-4 mo release) and 
ECH2O EC-5 soil moisture sensors.  Approximately 20 g fertilizer was added at four 

depths.  Water sensors were placed halfway down and 15.2 cm (6 in) from the top of the 
column.   
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Seeds were planted following column packing.  Three corn kernels (Zea mays, cv. 

‘Dekalb 5259’) were planted per column, spaced equally apart and approximately 3.8 cm 

(1.5 inches) deep.  Three alfalfa seeds (Medicago sativa, cv. ‘Rugged’) were planted in 

each column 1.9-2.5 cm (0.75-1 inches) deep.  The seeds were lightly covered and misted 

with tap water from a spray bottle and covered tightly with aluminum foil to prevent the 

columns from drying out.  The foil was left in place except to lightly mist until 

germination of at least one seed, whereupon the foil was discarded.  Corn plants were 

thinned to one per column, 27 days after sowing.   

The columns were watered using tap water dispensed from an automated 

irrigation system.  Pressure compensating drippers were attached to 0.635 cm (0.25-inch) 

tubes that supplied water from a 2.5 cm (1-inch) waterline that was pressurized at 0.414 

MPa (60 psi).  Irrigation was automated using a CR1000 datalogger and multiplexer 

(Campbell Scientific, Logan, UT), and solenoids.  The fraction of water in the soil, also 

called the volumetric water content (VWC), was measured by the EC-5 probes, recorded 

by the datalogger, and used to automate irrigation.  Watering occurred when the VWC of 

the soil near the lower sensor dropped below a threshold value of 0.1-0.15.  Each 

triplicate set of columns depended on the water sensor readings from a single column 

within the set of triplicates.  The drippers released water for four minutes at a flow rate of 

33 mL/minute to allow water to penetrate the column and encourage development of a 

deep root system.  A 3 cm x 4 cm piece of a Scotch-Brite™ pad was placed under the 

drippers to spread the water over the soil.  The scotch pad and drippers were held in place 

on top of the soil by wire poked 7.6-10.2 cm (3-4 inches) into the soil.   
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The irrigation scheme was designed to prevent leachate, although some was 

generated on occasions when the schedule was adjusted.  In these cases, all the columns 

produced similar volumes of leachate, regardless of treatment, suggesting that the 

automated irrigation was consistent between treatments.  The sensors were affected by 

addition of TFS in or on the soil, producing unreliable measurements, so plants treated 

with TFS on the soil were watered on the same schedule as control plants.   

 
2.2.2 TFS Exposure in Root Zone 
 

The effect of TFS on growth of plants was investigated by treating the soil with 

TFS.  Three soil conditions were evaluated:  soil with 2.5 cm (1 inch) of DM-1 TFS on 

the soil surface (application to plants 54 days after sowing), 10% DM-1 TFS mixed 

throughout the soil column (exposure to seeds), and soil without the addition of any TFS.  

The sandy loam soil used in Section 2.1 as a base soil for germination studies was used in 

columns where alfalfa was to be planted.  The soil used in the columns containing corn 

was a Collett silty clay loam taken from a corn field located in Thatcher, UT 

(41°41’48.94”N, 112°17’15.81”W) belonging to Lynn Summers.  TFS was provided by 

ATK from the September 2009 firing of DM-1.   

Eighteen columns were prepared for this experiment:  nine for corn, and nine for 

alfalfa (Fig. 3).  Six columns were packed with soil and half were planted with corn and 

the other half with alfalfa, receiving the application of 2.5 cm (1 inch) of TFS to the top 

of the soil 54 days after planting.  This treatment, called “TFS on soil surface,” 

represented the deposition of TFS on the ground surface where plants were already 

established (approximately halfway to maturity of corn or after the first cutting of 

alfalfa).  Six more columns were packed with a mixture consisting of 1 part TFS and 9  
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Fig. 3 TFS exposure in root zone treatments included a) soil, b) TFS on the soil surface, 
and c) 10% TFS, for both corn and alfalfa.  Triplicate corn and alfalfa plants were grown 

for each treatment.   
 
 
parts soil.  This treatment, called “10% TFS,” represented the deposition of 2.5 cm (1 

inch) of TFS on the soil, plowed into the soil prior to planting.  Corn or alfalfa seeds were 

sown directly into the 10% TFS mixture.  Finally, six columns were packed with soil and 

remained free of TFS exposure to act as controls.  Comparisons were made to field corn 

grown in Thatcher, UT from the farm of Lynn Summers (as described above).   

 
2.2.3 TFS Exposure to Foliage 
 

The effect of deposition on plant foliage was explored using four configurations:  

DM-1 TFS applied to the foliage (TFS deposition), DM-1 TFS applied to the foliage and 

rinsed off at a later date (TFS wash), soil applied to the foliage (soil deposition), and soil 

applied to the foliage and rinsed off at a later date (soil wash).  Twelve columns were 

packed with soil according to the procedure described in Section 2.2.1 and planted with 

corn or alfalfa.  Corn was grown in soil from Thatcher, UT and alfalfa was grown in 

greenhouse soil.  No TFS was added to the soil in the columns.   
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The exposure of plant foliage to DM-1 TFS occurred after the plants were well 

established.  Treatment of corn occurred after 54 days of summer sunlight, whereas 

treatment of alfalfa occurred after 130 days of growth in winter sunlight.  The plants were 

lightly misted with de-ionized water before application of soil (50 g) or TFS (40 g—an 

equivalent volume) directly to foliage.  Paper bags were cut and folded into cones around 

the plants to catch falling soil and TFS, minimizing contamination of the root zone.  Soil 

and TFS were sprinkled over the plant tissue by hand.  One week after foliage treatment, 

three of the plants exposed to soil and three exposed to TFS were rinsed with tap water, 

using a light shower setting on a watering wand.  Plant foliage was rinsed under a flow of 

3.55 L/min for 2 minutes.  The soil in the columns was covered with plastic to prevent 

TFS or soil from washing into the root zone of the plants.   

 
2.2.4 Collection and Analysis of Plant Samples 
 

Samples were collected and analyzed periodically throughout the study.  The first 

corn sampling occurred approximately 60 days from sowing, one week after treatment to 

soil surface or foliage.  Leaves (V-stage 7 and 8) were collected from all treatments 

except 10% TFS, which was not sampled at all because there was insufficient mass.  The 

second sampling of corn leaves occurred about 90 days from sowing.  Leaves (V-stage 12 

and 13) were collected from control plants and those whose foliage had been treated with 

soil or TFS, whereas V-stage 9 and 10 leaves were collected from plants treated with TFS 

on top of the soil because no other leaves had been produced.  No tissue was collected 

from plants grown in 10% TFS because there was insufficient mass.  The remaining corn 

leaf tissue was collected approximately 130 days after planting.  Mature ears of corn were 

also harvested at this time.  The first alfalfa sampling occurred before addition of TFS on 
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the soil surface, at 52 days.  Two more cuttings were collected 87 and 119 days from 

planting.   

A razor blade was used to cut corn leaves from the plant above the collar of the 

leaf to prevent damage to the stalk.  At the end of the experiment, ears of corn were 

collected and shelled to compare treatment effects on yield (production of kernels).  Corn 

dried on the plant for 2 weeks before transfer to an oven at 60°C for 5 days.  The kernels 

were shelled off the cob and weighed to 0.1 g.  Alfalfa was cut to a height of 10.2 cm (4 

inches).   

Plant tissue was rinsed with de-ionized water and placed into a paper bag that had 

been labeled and weighed.  The bag and rinsed plant material was placed in a 1390FM 

Forced-Air Oven (VWR Scientific, Radnor, PA) to dry at 80°C for 48 hours.  The bag 

and dried plant tissue were weighed to determine the dry weight of the plant tissue.  Plant 

material was ground using a Thomas Wiley® Mini Mill (Arthur H Thomas Co., 

Philadelphia, USA) prior to performing analyses.  Analyses were performed to determine 

elemental and anion concentrations in plant tissue.   

An aliquot of each sample was taken to the Utah State University Analytical 

Laboratories (Logan, UT), where Plant Fertility Package tests were performed for Total 

N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na, S, and other elements.  Plant tissue was digested 

with nitric acid and hydrogen peroxide on a heated block following EPA Method 3050b 

(USEPA 1996) and analyzed for metals using an Iris Intrepid II Inductively-Coupled 

Plasma Atomic Emission Spectrometer (ICP-AES) (Thermo Electron, Madison, WI).  

Total Nitrogen was analyzed by combustion using LECO TruSpec C/N Analyzer (LECO 

Corporation, St. Joseph, MI).  Detection limits for the ICP-AES are shown in Table 2.   
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Table 2 Detection limits for Thermo IRIS Intrepid II ICP-AES 

Element Detection Limit Unit 
Al 6 mg/kg 
As 0.5 mg/kg 
B 1 mg/kg 
Ba 0.05 mg/kg 
Ca 0.0004 % 
Cd 0.05 mg/kg 
Co 0.25 mg/kg 
Cr 0.3 mg/kg 
Cu 0.4 mg/kg 
Fe 0.15 mg/kg 
K 0.0023 % 

Mg 0.000035 % 
Mn 0.05 mg/kg 
Mo 7.5 mg/kg 
Na 4 mg/kg 
Ni 0.15 mg/kg 
P 0.0004 % 
Pb 1.5 mg/kg 
S 0.00035 % 
Se 2 mg/kg 
Si 4.5 mg/kg 
Sr 1.5 mg/kg 
Zn 0.25 mg/kg 

 
 

Another aliquot of each sample was extracted and analyzed at the Utah Water 

Research Laboratory (UWRL, Logan, UT) for common inorganic anions.  Extraction 

included addition of 10 mL de-ionized water to 1 g of ground plant tissue (or equivalent 

weight/volume ratio) in a 50 mL Fisherbrand centrifuge tube and shaking it for 30 

minutes on an automated shaker (Eberbach Corporation, Michigan, USA), followed by 

20 minutes of centrifuging at 4000 rpm (Beckman Model J2-21), and filtering through a 

0.2-um nylon syringe filter (Environmental Express, South Carolina, USA).  Analysis of 

the extract was performed by ion chromatography, modified from EPA Method 300.1-
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Determination of Inorganic Anions in Drinking Water (USEPA 1997), using a Dionex 

ICS-3000 Ion Chromatography system (Sunnyvale, CA).    

The analysis of soils for metals was conducted at the UWRL.  A microwave 

digestion procedure was used to prepare soil for analysis.  The digestion procedure 

followed EPA Method 3050b (USEPA 1996).  Approximately 0.5 g soil was placed in an 

APCU-40 75 mL TFM vessel (Milestone, Italy).  Sides of the vessel were rinsed with 5 

mL de-ionized water, to which 9 mL concentrated nitric acid (trace metal grade, Fisher 

Scientific) and 2 mL hydrogen peroxide 30% by weight were added.  These were capped 

in an APCU-TR40 Safety Shield (Milestone, Italy), and placed in an Ethos EZ 

Microwave Digestion System (Milestone, Italy).  The samples experienced a 15 minute 

ramp time to reach 200°C, after which they were held at constant temperature for 30 

minutes, and then allowed a cool-down period of 20 minutes.  Samples were diluted to 

100 mL in a volumetric flask and filtered using Whatman No. 42 filters before analysis 

for total metals by inductively coupled plasma-mass spectrometry (ICP-MS) following 

EPA Method 6020 (USEPA 2007).   

 
2.3 Leachate Study 

 
 

Leachate studies were performed to evaluate the mobility of chloride and 

aluminum through soil columns.  The methods closely followed the Leaching Studies 

procedure described by the Fate, Transport and Transformation Test Guidelines (USEPA 

2008).  Columns were created by cutting clear plastic pipe (6-cm diameter) into lengths 

of 30 cm.  These were prepared for packing by securing a Whatman 42 filter tightly on 

the bottom of the column using #64 (8.9 cm x 0.635 cm) and #84 (8.9 cm x 1.3 cm) 

rubber bands.  The three soil treatments described in Section 2.2.2 were added in 10-20 g 
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increments and compacted using a Fisher Vortex Genie 2 (Scientific Industries, Bohemia 

NY) to remove voids.  Each soil treatment was analyzed using four replicate columns that 

held 28 cm of consolidated soil treatment.  A Whatman 42 paper filter 6 cm in diameter 

was placed on top of the soil to spread water over the surface area of the top of the 

column.  Artificial rainwater (0.01 M CaCl2) was applied at a rate of 0.2 mL/min using a 

Cole Parmer Masterflex L/S peristaltic pump (Barnant Co, Barrington, IL) for 48 hours, 

simulating a 200 mm rain event over 2 days.  Leachate was collected in 60-mL plastic 

snap cap vials placed below columns 40, 44, and 48 h after the experiment began.  

Leachate was analyzed for total metals by ICP-MS and anions were analyzed by ion 

chromatography, as described in Section 2.2.4.   

The top 3 cm of leached soil was collected after conclusion of the leachate study 

and used in a germination study following procedures similar to those described in 

Section 2.1.  Twenty corn kernels or 40 alfalfa seeds were planted in triplicate petri 

dishes with leached soil, leached TFS, or leached 10% TFS in soil, covered with 30 mL 

de-ionized water and 90 g white sand, bagged and placed in a constant temperature 

growth chamber.  After 48 hours of darkness, a 16 h photoperiod followed by 8 hours of 

darkness commenced for 10 days.  Germinated seedlings were counted at 5, 7, and 10 

days.   

 
2.4 Statistical Analysis 

 
 

Statistical analyses were performed using R statistical software.  Significant 

differences were determined by ANOVA (p<0.05) and Tukey Honest Significant 

Difference tests.   
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CHAPTER 3 

RESULTS 
 
 

3.1 Germination 
 
 

3.1.1 Initial Evaluation 
 

The results of a 5-day test for corn and alfalfa are summarized in Table 3, with 

TFS concentrations ranging from 0-50% TFS.  Corn germination was not affected by 

0.4% or 2.0% TFS treatments.  No germination was observed in 10% or 50% TFS within 

the 5 day period of the test; however corn was observed to germinate in the 10% TFS 

after 8 days (about 15% germination; data not shown).  No germination occurred in 50% 

TFS.  Alfalfa was impacted by 0.4% TFS, with germination reduction of 30%, 

statistically lower than controls.  Alfalfa did not germinate in TFS concentrations higher 

than 0.4% TFS.   

 Although corn germination percentage was not statistically different from 0-2% 

TFS, the corn in 2% TFS was smaller than in 0 or 0.4% TFS (Fig. 4).   

 
Table 3 Germination study results for corn and alfalfa in concentrations ranging from 0-

50% TFS. 
Average Percent Germination 

Percent TFS in soil Corn Alfalfa 
0 95 ± 1.0 92 ± 1.0 

0.4 100 ± 0 62 ± 2.9 
2 97 ± 0.6 0 ± 0.0 
10 0 ± 0.0 0 ± 0.0 
50 0 ± 0.0 0 ± 0.0 
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Fig. 4 Photo of initial germination study.  From right to left, control (soil), 0.4% TFS, 2% 
TFS, 10% TFS, and 50% TFS.  Germination in 0-2% TFS not statistically different, but 

2% corn appears smaller than controls or those germinated in 0.4% TFS 
 

Germination percentage reduction in 10% and 50% could be explained by the 

high salt content of the TFS.  This assumption was tried in a follow-up germination study 

that examined germination in various concentrations of TFS or soil treatments where 

aluminum or chloride was added to soil.   

 
3.1.2 Follow-Up Germination Study 
 

The follow-up germination study observed the effect of chloride and aluminum on 

germination percentage.  Results are tabulated in Tables A1 and A2.   

While aluminum had no significant effect, chloride at concentrations of 2000-

3000 mgkg-1 soil reduced alfalfa germination to approximately 40-50% and completely 

prevented germination above 6000 mgkg-1 (approximately 10% DM-1 TFS) (Fig. 5).  In 
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contrast, corn germination decreases at chloride concentrations above 2500 mgkg-1, and 

drops to 3-13% germination at concentrations above 2800 mgkg-1 (approximately 5% 

DM-1 TFS) (Fig. 6).   
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Fig. 5 Effect of chloride on germination of alfalfa.  Error bars represent one standard 
deviation. 
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Fig. 6 Effect of chloride on germination of corn.  Error bars represent one standard 
deviation. 
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Addition of TFS, chloride, or the combination of chloride and aluminum to soil 

affected the germination percentage of corn or alfalfa, but these treatments were not 

significantly different from each other at the same chloride concentration.  On the other 

hand, soil treated only with aluminum had the same germination percentage as the 

controls, suggesting the ill effects of TFS appear to be caused by chloride.  Elevated 

chloride levels decrease germination, regardless of chloride source (TFS or HCl).   

No effect on germination was noted at chloride concentrations below 700 mgkg-1, 

likely because the chloride concentration is below reported inhibitory levels.  Li et al. 

(2010) found that germination percentage of alfalfa was not affected by 30 mmolL-1 salt, 

but germination was reduced to approximately 75% by 60 mmolL-1.  In another study 

performed by Torabi et al. (2011), germination percentage was impacted above 150 

mmolL-1 NaCl.  No effect was noted in treatments with less than 2000 mgkg-1 chloride.  

In 10 mL de-ionized water, such soil creates an extract containing 200 mgL-1 or 5.6 

mmolL-1 chloride.  The chloride is below the reported ranges of impact, explaining the 

absence of treatment effect at concentrations below 2000 mgkg-1 chloride.   

 
3.2 Corn Plant Study 

 
 
3.2.1 Biomass Production 

 
Control corn plants grown in soil produced 13-14 mature leaves, whereas corn 

treated with TFS on the soil surface only produced 9-10 mature leaves.  New leaves 

started to form, but they were discolored and only one fully mature leaf was produced 

after application of TFS to the soil surface.  Plants grown in 10% TFS reached a final 

height of 46-53 cm (18-21 inches), produced tassels, silks, and undeveloped ears 3.8 cm 
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(1.5 inches) long, with growth patterns that were delayed 25-30 days.  The effects of 

treatments TFS on soil and 10% TFS was visually apparent (Fig. 7).   

The biomass produced by plants treated with soil on the leaves (washed or 

unwashed) was not affected.  However, the TFS appeared to “burn” the leaves at the 

point of contact (Fig. 8), and did have some effect on metal content of corn leaves.  

Leaves damaged by TFS did not recover (washed and unwashed), but new leaves 

developed normally.   

Soil oxygen levels were not measured to determine if any of the TFS treatments in 

the root zone decreased oxygen transfer to roots.  However, the ability of corn to produce 

aerenchyma suggests that it would be able to adapt and survive even in oxygen deficient 

soil conditions.   

The total dry mass produced by the controls was the same as corn treated with soil 

or TFS foliar deposition (washed or unwashed), as well as the field corn.  The total mass 

production of corn treated with TFS on the soil surface was significantly lower than the 

controls grown in soil and plants whose foliage was treated.  Corn grown in 10% TFS 

produced the least amount of biomass compared with all other conditions.  The end-of-

summer harvest for corn plant tissue is summarized in Table 4 (see Table B1 for more 

results).  This final mass includes leaves and stalks, but not ears of corn.   

Mature ears of corn were produced by control plants and plants whose foliage was 

treated with soil or TFS.  Each of these plants produced one ear of corn whose masses 

were not significantly different, with average yield (kernel production) ranging from 

115.5 to 130.2 g, shown in Table 5.  Ears of field corn were collected and found to have 

similar mass to the controls.   
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Fig. 7 Growth comparisons of corn grown in soil, treated with TFS on soil, or grown in 
10% TFS 

Control 

10% TFS 

TFS on soil 
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Fig. 8 Corn leaves treated with TFS 
 
 

Table 4 Biomass by treatment:  average dry weight of triplicate corn plants 

Treatment Type Average Mass (g) St. Dev (g) 

Control (soil) 99.4a 11.2 
10% TFS 4.8b 4.3 

TFS on soil 43.9c 16.9 
Soil Deposition 113.0a 11.8 

Soil Wash 92.2a 1.8 
TFS Deposition 105.2a 7.5 

TFS Wash 118.9a 4.3 
Field Corn 92.1a 22.2 

 
Note:  Average values followed by the same lower case letter are not significantly 

different (p<0.05) according to ANOVA and Tukey’s test. 
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Table 5 Yield production by treatment:  average dry weight of triplicate corn ears 

Treatment Type Average Mass (g) St. Dev (g) 
Control (soil) 117.6a 15.5 

10% TFS 0.5b 1.1 
TFS on soil 0b 0 

Soil Deposition 122.8a 10.6 
Soil Wash 115.5a 9.8 

TFS Deposition 130.2a 17.1 
TFS Wash 119a 9.1 
Field Corn 138.4a 69.6 

Note:  Average masses followed by the same lower case letter are not significantly 
different (p<0.05) according to ANOVA and Tukey’s test. 

 

The plants treated with TFS in or on the soil produced no significant yield.  One 

plant grown in 10% TFS produced an ear containing 1.6 g of kernels.  The other plants 

grown in 10% TFS did not produce any kernels, nor did corn treated with TFS on top of 

the soil.  Reduction in yield is one result of highly saline soil.  In the concentrations used 

for this study, the TFS produces a highly saline soil environment.  The results for the corn 

grown in 10% TFS or treated with TFS on the soil are consistent with the effect of 

salinity on yield production.  More results are shown Table B2.   

 
3.2.2 Metals 
 

Corn leaf tissue was analyzed for total metals and nutrients (results in Table B3).  

Several elements appear in higher concentrations in plants grown in 10% TFS or treated 

with TFS on the soil compared to the other treatment conditions.  Statistical difference 

from controls is shown in Table 6.  Results no different than the controls are indicated by 

NS (not significant), whereas arrows denote if a treatment contained higher or lower 

levels compared to controls.   
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Statistical differences were also compared between treatments.  Corn grown in 

10% TFS and with TFS on the soil contained concentrations of potassium and 

magnesium not statistically different from each other, but higher than foliar treated plants 

and controls.  Moreover, corn with TFS on soil was higher than all other treatments, 

including 10% TFS, for total nitrogen, barium, calcium, cadmium, phosphorus, sulfur, 

and strontium.  Although increased metals uptake was noted for plants exposed to TFS in 

the root zone, the metals concentration in DM-1 TFS was not higher than in the soil, 

except for aluminum.   

Plants treated with TFS foliar deposition (unwashed) contained more aluminum 

than controls and other treatments, including TFS that was washed off after one week.  

Iron was also elevated in plants treated with TFS deposition (unwashed), but similarly 

increased iron content was also observed in plants with foliar soil deposition.  Increased 

iron may result from foliar contact with soil, as well as TFS.   

The National Resource Council (NRC) (2005) identifies the limits of several 

elements that can be fed to livestock without impairing animal health.  These limits are 

called maximum tolerable levels (MTL).  The MTL for calcium and potassium were 

exceeded for corn tissue grown in 10% TFS or treated with TFS on soil.  Other 

treatments did not elevate metal concentrations above the recommended MTL.   

Corn kernels were analyzed for metals and nutrients (results shown in Table B4).  

Table 7 shows significant differences in metals of kernels from treated corn compared to 

controls.  Plants treated with foliar TFS deposition (washed and unwashed) produced 

kernels containing significantly higher zinc than controls.  They also produced more 

potassium than controls or field corn.  Plants treated with foliar soil or TFS deposition 
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Table 6 Significant metal differences between control and soil treatments (10% TFS and TFS on soil), foliar treatments (soil 
deposition washed and unwashed and TFS deposition washed and unwashed), and field corn. 

Element Control 10% TFS TFS on soil Soil (unwashed) Soil (washed) TFS (unwashed) TFS (washed) Field Corn 
Total Nitrogen NS ↑ ↑ NS NS NS NS NS 
Aluminum NS NS NS NS NS ↑ NS NS 
Arsenic < < < < < < < < 
Boron NS NS NS NS NS NS NS ↓ 
Barium NS NS ↑ NS NS NS NS NS 
Calcium NS ↑ ↑ NS NS NS NS NS 
Cadmium NS NS ↑ NS NS NS NS NS 
Cobalt < < < < < < < < 
Chromium NS NS NS NS NS NS NS NS 
Copper NS NS NS NS NS NS NS NS 
Iron NS NS NS ↑ NS ↑ NS NS 
Potassium NS ↑ ↑ NS NS NS NS NS 
Magnesium NS ↑ ↑ NS NS NS NS NS 
Manganese NS ↓ NS NS NS NS NS NS 
Molybdenum < < < < < < < < 
Sodium NS NS NS NS NS ↑ NS NS 
Nickel NS NS NS NS NS NS NS NS 
Phosphorous NS ↑ ↑ NS NS NS NS NS 
Lead < < < < < < < < 
Sulfur NS NS ↑ NS NS NS NS NS 
Selenium < < < < < < < < 
Silicon NS NS NS NS NS NS NS NS 
Strontium NS ↑ ↑ NS NS NS NS NS 
Zinc NS NS ↑ NS NS NS NS NS 

Note:  NS is not statistically different from control, ↑ is above control, ↓ is below control, and < is below detection limit.
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(unwashed) contained higher phosphorous and calcium than control plants.  This suggests 

that foliar exposure to TFS may change kernel composition (as in the case of zinc), but 

foliar exposure to soil may also contribute to elevated concentrations (like phosphorus 

and calcium).  Although concentrations of calcium, potassium, phosphorous, and zinc 

were elevated by treatment, the concentrations are well below the MTL for consumption 

by cattle recommended by the NRC (2005).   

 
3.2.3 Anions 
 

Plant tissue was analyzed for chloride, sulfate, nitrate, and phosphate.  The results 

of the corn plant tissue are summarized in Table 8 (results in Table B5).  There were no 

significant differences between corn tissue from controls, plants treated with foliar soil 

deposition (washed and unwashed) or foliar TFS deposition (washed and unwashed), and 

field corn for phosphate or nitrate.  Field corn contained less sulfate than the controls.   

Corn plant tissue grown in 10% TFS or treated with TFS on the soil contained 

significantly higher levels of chloride than all other treatments and more phosphate than 

controls.  Corn treated with TFS on the soil also contained more nitrate than all other 

treatments.   

Plants often contain chlorine contents ranging from 2-200 mg/g (2000-200,000 

mg/kg) dry weight, and corn may be chlorine-deficient at levels below 106 ug Cl/g (106 

mg/kg) dry plant matter (Marschner 1995).  Taiz and Zeiger (2006) suggest that 100 

mg/kg may be a reasonable chlorine concentration in plant tissue.  Although the corn 

with TFS on the soil had at least an order of magnitude more chloride than all other 

plants, the observed chloride concentrations were well within the previously reported 

ranges.  The plants were certainly not chlorine deficient.   
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Table 7 Significant metal differences between control kernels and foliar treatments (soil 
deposition washed and unwashed and TFS deposition washed and unwashed), and field 

corn. 

Element Control 
Soil 

deposition 
Soil 
wash 

TFS 
deposition 

TFS 
wash 

Field 
Corn 

Total Nitrogen NS NS ↓ NS NS NS 
Aluminum NS NS NS NS NS NS 
Arsenic < < < < < < 
Boron NS NS NS NS NS NS 
Barium NS NS NS NS NS NS 
Calcium NS ↑ NS ↑ NS NS 
Cadmium NS NS NS NS NS NS 
Cobalt < < < < < < 
Chromium NS NS NS NS NS NS 
Copper NS NS NS NS NS NS 
Iron NS NS NS NS NS NS 
Potassium NS NS ↑ ↑ ↑ NS 
Magnesium NS NS NS NS NS NS 
Manganese NS NS NS NS NS NS 
Molybdenum < < < < < < 
Sodium NS NS NS NS NS NS 
Nickel NS NS NS NS NS NS 
Phosphorous NS ↑ NS ↑ NS NS 
Lead < < < < < < 
Sulfur NS NS NS NS NS NS 
Selenium < < < < < < 
Silicon NS NS NS NS NS ↓ 
Strontium NS NS NS NS NS NS 
Zinc NS NS NS ↑ ↑ NS 

Note:  No kernels developed on corn grown in 10% TFS or with TFS on the soil.  NS is 
not statistically different from control, ↑ is above control, ↓ is below control, and < is 

below detection limit. 
 

Field corn and plants whose foliage was treated with TFS (washed and unwashed) 

produced kernels containing significantly more chloride than plants whose foliage was 

treated with soil (washed and unwashed), shown in Table 9, but only plants whose leaves 

were treated with TFS and washed off produced kernels with significantly more chloride 

than controls.  Other differences between treatments were not significant, and the range 
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in chloride levels for kernels is much smaller than the range in chloride for plant tissue.  

No results are shown for corn grown in 10% TFS or TFS on soil because no kernels were 

produced.  Results are shown in Table B6.   

There were no significant differences in sulfate between treatments except that 

field corn kernels contained less sulfate than kernels whose foliage was treated with TFS 

deposition (unwashed) or soil deposition (washed).  None of the treatments resulted in 

significantly different nitrate and phosphate levels, seen in Table 9.  Plant composition is 

affected by the application of TFS.  Chloride was two orders of magnitude higher in 

plants grown in 10% TFS or treated with TFS on the soil.  Chloride is also present in 

concentrations orders of magnitude higher in TFS than in soil.  Increased metals uptake 

was noted, although the metals content of DM-1 TFS is not significantly different than 

soil, with the exception of elevated aluminum.  The increased metals uptake did not result 

from exposure to higher concentrations of metals, except for plants that accumulated 

aluminum after foliar treatment with TFS.  Increased uptake of metals may instead result 

from accumulation of chloride in plant tissue.  Excessive chloride levels results in ionic 

imbalance, countered by uptake of cations, such as barium, calcium, cadmium, 

potassium, strontium, and zinc.   

 
3.3 Alfalfa Plant Study 

 
 

Plant growth was mildly to severely affected by TFS.  Biomass production 

decreased after plants were treated with TFS on the soil surface, but increased slightly by 

the third cutting.  One column appeared to be especially affected by the addition of TFS, 

but the other two triplicates did not appear visually to be affected (Fig. 9) other than some 
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Table 8 Average concentrations of anions in corn plant tissue 

Treatment 
Chloride 
(mg/kg) 

Sulfate 
(mg/kg) 

Nitrate 
(mg/kg) 

Phosphate 
(mg/kg) 

Control 481b 926b 68a 256a 
10% TFS 69644e 229ab 98a 900c 

TFS on soil 70127e 1633b 2109b 2432bc 
Soil Deposition 138a 924b 67a 275a 

Soil wash 201ab 702ab 150a 428ab 
TFS Deposition 4795d 724ab 42a 531ab 

TFS wash 1564c 609ab 43a 481ab 
Field Corn 1857cd 214a 85a 425ab 

Note:  Within columns, values followed by the same lower case letter are not 
significantly different (p<0.05) according to ANOVA and Tukey’s test.   

 
 

Table 9 Average concentrations of anions in corn kernels 

Treatment 
Chloride 
(mg/kg) 

Sulfate 
(mg/kg) 

Nitrate 
(mg/kg) 

Phosphate 
(mg/kg) 

Control 511ab 93ab 58a 1046a 
Soil Deposition 379a 86ab 94a 989a 

Soil wash 431a 157b 42a 1633a 
TFS Deposition 656bc 132b 75a 1792a 

TFS wash 772c 66ab 66a 1809a 
Field Corn 606bc 23a 75a 1819a 
Note:  No kernels were produced in 10% TFS or TFS on soil treatments.  Within 

columns, values followed by the same lower case letter are not significantly different 
(p<0.05) according to ANOVA and Tukey’s test. 

 
 

spotting (Fig. 10).  Although soil oxygen levels were not measured, the recovery of plants 

in two columns treated with TFS on the soil suggest that oxygen deficiency may not have 

resulted from the layer of TFS.  Alfalfa grown in 10% TFS produced significantly lower 

biomass than control alfalfa.  Field alfalfa was not collected in a comparable manner, 

therefore no field results are shown.   
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Fig. 9 Alfalfa treated with TFS on soil.  One column (far right) appeared especially 
affected after application of TFS and nearly ceased production of biomass 

 

 

Fig. 10 Spotting of alfalfa treated with TFS on the soil surface 
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3.3.1 Biomass  
 

Alfalfa production was notably affected by TFS exposure in the root zone, as 

shown in Table 10.  Alfalfa did not sprout in 10% TFS.  One-week-old alfalfa plants 

germinated on paper at the time of planting survived transplanting into 10% TFS, but did 

not produce plant material in excess of 10.2 cm (4 inches) by the first cutting, so none 

was sampled then, as seen in Table 10, 52 days after planting.  TFS was not applied to the 

soil surface until 54 days, so the first cutting includes only untreated alfalfa.  The mass 

produced pre-treatment is not significantly different from the control plants.   

Production of alfalfa decreased significantly after TFS was applied to the soil 

surface (54 days after planting).  By the second sampling event (87 days after planting), 

control alfalfa grown in soil produced roughly four times the mass of alfalfa treated with 

TFS on soil.  Alfalfa grown in 10% TFS produced still significantly less plant matter.   

In the third cutting (119 days after planting), the mass of the untreated alfalfa was 

still significantly higher than that of the alfalfa grown in 10% TFS.  However, the 

difference in mass between the control plants grown in soil and those treated with TFS on 

the soil surface was not significant at the third cutting.  The difference between alfalfa 

treated with TFS on the soil and 10% TFS treatment was not significant either (p>0.05).  

See Table C1 for complete results.   

As with corn, a reduction in yield occurred in alfalfa treated with TFS in the root 

zone.  TFS contributes to highly saline soil conditions, reducing the alfalfa yield.  At the 

second sampling, alfalfa treated with TFS on the soil produced 25.3% the mass of the 
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Table 10 Average alfalfa dry weights by treatment  

Treatment Type First Cutting 
(g) 

Second Cutting 
(g) 

Third Cutting 
(g) 

Control (soil) 6.0a 17.8a 23.2a 
10% TFS 0.0b 2.5b 2.1b 

TFS on soil 6.2a 4.5b 11.7ab 
Note:  Within columns, values followed by the same lower case letter are not 

significantly different (p<0.05) according to ANOVA and Tukey’s test. 
 

controls while plants grown in 10% TFS produced 14.0% the mass of controls.  By the 

third cutting, plants treated with TFS on soil produced half the mass of the controls, 

whereas the production in plants grown in TFS dropped to 9%.  The results for the alfalfa 

treated with TFS are consistent with the effect of salinity on biomass production. 

Application of foliar soil and TFS treatments occurred in a second alfalfa study.  

The alfalfa was grown in the winter and produced little biomass for analysis.  Biomass 

production was not significantly different between treatments for any of the sampling 

events (more results in Table C2).  The first sampling (late November) provided 

sufficient mass for metals and anions analysis; however the second and third samplings 

of foliar treated alfalfa did not produce enough mass for all the samples to be analyzed.  

Treatment had not been applied at the first sampling time (following the sampling and 

treatment procedure of the previous alfalfa study), so metals and anions results of the first 

sampling of foliar treated alfalfa will not be presented.   

 
3.3.2 Metals 
 

The first cutting of control alfalfa from the root exposure experiment found no 

statistical difference in metals between controls and the plants which were to receive TFS 

on the soil.  By the second and third cuttings of alfalfa (after TFS was added to soil), 
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changes were evident.  Table 11 shows the differences in treatments compared against 

controls for the third cutting (see Table C3).   

Alfalfa grown in 10% TFS or treated with TFS on soil contained significantly 

higher concentrations of calcium and zinc than control plants by the third cutting.  Alfalfa 

grown in 10% TFS also contained higher levels of barium, copper, manganese, nickel, 

 
Table 11 Significant differences in metal concentrations between control alfalfa and 

treatments 10% TFS and TFS on soil for the third cutting   
Element Control 10% TFS TFS on soil 
Total Nitrogen NS NS NS 
Aluminum NS NS NS 
Arsenic < < < 
Boron NS NS ↑ 
Barium NS ↑ NS 
Calcium NS ↑ ↑ 
Cadmium NS NS NS 
Cobalt < < < 
Chromium NS NS NS 
Copper NS ↑ NS 
Iron NS NS NS 
Potassium NS NS NS 
Magnesium NS NS NS 
Manganese NS ↑ NS 
Molybdenum < < < 
Sodium NS NS NS 
Nickel NS ↑ NS 
Phosphorous NS NS NS 
Lead < < < 
Sulfur NS NS NS 
Selenium < < < 
Silicon NS NS NS 
Strontium NS ↑ NS 
Zinc NS ↑ ↑ 

Note:  NS is not statistically different from control, ↑ is above control, ↓ is below control, 
and < is below detection limit. 
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and strontium compared to controls.  Boron was significantly higher in alfalfa treated 

with TFS on the soil surface compared to controls.  Although levels of boron, copper, 

manganese, and zinc concentrations were elevated, they were still within adequate plant 

nutrition ranges tabulated by Marschner (2012) and below the MTL for livestock 

consumption (NRC 2005).  Calcium levels in alfalfa grown in 10% TFS or treated with 

TFS on the soil exceeded the MTL for consumption by cattle and sheep, but so did the 

controls.  However, the calcium levels are not high enough to reduce plant growth 

considerably (Marschner 1995).   

 
3.3.3 Anions 
 
 Alfalfa was analyzed for chloride, sulfate, nitrate, and phosphate at each of three 

cuttings.  Results for the third cutting are shown in Table 12.  More results are shown in 

Table C4.   

Alfalfa grown in 10% TFS or treated with TFS on the soil surface contained 

significantly more chloride than controls.  There was no significant difference between 

treatments for sulfate, nitrate, or phosphate.   

Metals were not significantly higher in TFS than in soil, except for aluminum, so 

the increased uptake of metals such as barium, calcium, copper, manganese, strontium, 

and zinc does not result from more exposure to these metals.  Instead, the accumulation 

of these metals may be explained by the increase in chloride content of the plant tissue.  

The metals would provide the necessary positive charge to counter the excessive chloride 

and maintain ionic balance.   
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Table 12 Average concentrations of anions in alfalfa tissue at the third cutting 

Treatment 
Chloride 
(mg/kg) 

Sulfate 
(mg/kg) 

Nitrate 
(mg/kg) 

Phosphate 
(mg/kg) 

Control 627a 3402a 140a 329a 
10% TFS 15044b 2820a 40a 720a 

TFS on soil 11743b 1913a 63a 384a 
Note:  Within columns, values followed by the same lower case letter are not 

significantly different (p<0.05) according to ANOVA and Tukey’s test. 
 
 

3.4 Leachate 
 
 

The leachate contained high levels of calcium and had to be diluted 1:100 for 

analysis, and few metals were measured about the detection limit.  Manganese, copper, 

arsenic, and barium were detected, but aluminum was not, except for in one soil 

treatment collected after 48 hours and in one column packed with TFS on soil, detected 

after 44 hours but not after 48 hours.  The aluminum appears to be immobile, as expected 

for alkaline soil.  Metal results of the leachate analysis are shown in Tables D1-D3.   

As expected, TFS produces leachate with elevated chloride concentrations.  

Control leachate contained 1300 mg/L chloride at 40 hours and dropped to 1020 mg/L 

chloride by the end of the experiment at 48 hours (see Tables D4-D6), and chloride levels 

were consistently lower than leachate from 10% TFS and TFS on soil treatments.  The 

leachate collected from the 10% TFS treatment initially contained 55300 mg/L chloride, 

but dropped an order of magnitude to 5730 mg/L by the end of the experiment.  Leachate 

from columns containing TFS on soil had initial chloride concentrations of 23300 mg/L 

chloride (less than the first 10% TFS concentrations) that did not appear to decrease by 

the end of the experiment.   

Germination of corn and alfalfa was improved by leaching of the TFS from the 

soil.  After 5 days, 80-90% of the corn and alfalfa in leached soil or leached 10% TFS 
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had sprouted.  Germination was near 40-50% in leached TFS.  By 7 days, there was no 

statistical difference between leached soil profiles for corn germination, although alfalfa 

germination was statistically lower in leached TFS than in soil or 10% TFS.  Results are 

shown in Table D7.   

Although the germination percentage of corn in leached TFS was no different 

than in leached soil or 10% TFS after seven days, the seedlings were much smaller (Fig. 

11; photo taken after 10 days).  Growth in leached TFS may still be impacted.   

 

 

Fig. 11 Leached germination study.  From left to right, control (leached soil), leached 
TFS, and leached 10% TFS.  After 10 days, corn germination was not significantly 
different between treatments, but seedlings in leached TFS were smaller and less 

developed than controls or those in leached 10% TFS. 
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CHAPTER 4 
 

SUMMARY AND CONCLUSIONS 
 
 

 Exposure to TFS affects the germination, growth, and contaminant concentration 

of corn and alfalfa, but the degree of impact depends on the type and concentration of 

exposure.  

 Germination is inhibited by high concentrations of TFS.  Germination was 

completely inhibited in 50% TFS, and greatly reduced by 10% TFS for both corn and 

alfalfa.  TFS concentrations below 2% had no effect on corn germination.  Alfalfa 

germination may be more sensitive to TFS, with reduced germination observed as low as 

0.4% TFS.   

Germination in high concentrations of TFS can be at least partially restored if the 

TFS is leached.  Percent germination of corn in leached TFS was not statistically 

different than germination in leached soil after 7 days.  Although alfalfa germination in 

leached soil was only slightly lower (about 10% less than controls), its difference was 

significant.   

 Growth of plants may be affected by TFS, depending on the type of exposure.  

Corn grown in 10% TFS or treated with TFS on the soil surface did not develop 

normally, producing less biomass than controls and no kernels.  Alfalfa grown in 10% 

TFS produced significantly less biomass than control plants grown in soil.  Biomass 

production of alfalfa dropped to roughly 25% of control production after treatment with 

TFS on the soil surface.  In contrast, foliar treatments of TFS did not significantly reduce 

biomass production in corn or alfalfa.   
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Uptake of metals was affected by exposure to TFS.  Plants treated with TFS on 

soil had significantly higher levels of total nitrogen, barium, calcium, cadmium, 

potassium, magnesium, phosphorous, sulfur, strontium, and zinc than control plants 

grown in soil or plants receiving foliar treatment.  Plants grown in 10% TFS also 

contained significantly higher total nitrogen, calcium, potassium, manganese, 

phosphorus, and strontium than controls.  Foliar applications of TFS and soil were 

significantly different for aluminum, sodium, and iron.  Plants whose foliage was 

exposed to TFS (but not washed off) contained more aluminum and sodium than controls, 

and levels of iron were elevated in plants with foliar application of soil or TFS that was 

not washed off.  Foliar application may increase uptake of metals.   

TFS contains high levels of chloride and produces saline leachate, leading to 

reduced germination and plant growth.  Furthermore, high levels of chloride in TFS may 

contribute to elevated levels of metals in plant tissue, as a result of increased osmotic 

potential.  Some of the defense mechanisms that exclude uptake of certain metals may be 

bypassed to increase the amount of water uptake, resulting in accumulation of metals in 

plant tissue.  The metals may also be required to counter the excessive chloride content of 

the leaves that accumulate chloride ions.   

As expected, aluminum did not have an effect on germination and was not found 

in leachate.  Foliar treatment of TFS to corn affected aluminum levels, but that did not 

change biomass production.  Aluminum is not bioavailable in alkaline soil conditions and 

should not impact plant growth.  If aluminum toxicity was causing damage, lower 

biomass and metal concentrations would be expected, because aluminum toxicity 

interferes with root development and uptake of nutrients and water.   
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CHAPTER 5 
 

ENGINEERING SIGNIFICANCE 
 
 

This study helps to assess the impact of TFS from ATK’s static test fires on crop 

production in the area of southwest Box Elder County, Utah.  Results can be used to 

develop Best Management Practices and test fire protocols that will reduce impacts of 

static test fires on crop growth.   

Results of the study indicate that germination is hindered above 1% TFS.  

However, germination is not permanently hindered, as leaching of TFS alleviates 

germination inhibition.  Nevertheless, this suggests that care should be taken to avoid 

TFS deposition in planting season, and ATK may consider scheduling static test fires so 

they do not occur during planting season.  If deposition does occur during the planting 

season, irrigation may mitigate the impact of TFS on germination.   

Results of the growth study indicate that TFS does have yield implications for the 

corn and alfalfa, depending on the time and type of application.  Growth in TFS –

amended soil reduced biomass production for both corn and alfalfa and prevented 

development of corn.  Plants did not grow well in high concentrations of TFS or when 

TFS was applied to the soil of established plants.  Although exposure to TFS damaged 

foliage, new leaves were not marred, and foliar treatment did not affect total biomass.  

This suggests that test-fires should not be conducted during times of young plant growth.     

Analysis of plant composition shows increased uptake of several metals and a few 

nutrients in plants exposed to TFS.  Calcium and potassium exceeded the maximum 

tolerable level for consumption by cattle and sheep reported by the National Research 

Council (2005) in corn tissue exposed to TFS in the root zone, but kernels were well 
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below the recommended levels.  Alfalfa treated with TFS in the root zone also had 

calcium levels in excess of the MTL.  Because TFS exposure appears to increase 

accumulation of some metals, ATK may further reduce the risk of damaged crops by 

conducting test fires post-harvest.   
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CHAPTER 6 
 

SUGGESTIONS FOR FUTURE RESEARCH 
 
 

In germination studies, the detrimental effects of TFS were alleviated if the TFS 

was leached using a low-ionic strength solution of CaCl2; however seedling size was 

impacted in TFS (Section 3.4).  The next step is to consider growth of plants in leached 

TFS.  This experiment would be similar to the plant growth study described in Chapter 2, 

but soil treatments 10% TFS and TFS on soil should be leached with artificial rainwater 

before planting.  Plant tissue would be sampled and analyzed for metals, anions, and 

nutrients to determine if leaching the TFS eliminates the impact to corn and alfalfa crops.   

Leachate analysis shows mobile chloride.  This may result in chloride intrusion of 

groundwater.  Aluminum is not expected to be found in the groundwater because of 

alkaline pH, but the hydrochloric acid from the exhaust cloud may mobilize aluminum 

temporarily (Nowak and Friend 2006).  Groundwater should be tested to monitor for 

saline or brackish water and abnormal levels of aluminum.   

Leachate columns attempted to simulate movement of aluminum and chloride 

through a soil column, but actual soil column data are limited.  Collection of soil cores 

and analysis of aluminum and chloride contents are recommended to confirm the results 

of the leaching study.   
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Table A1 Percent germination of alfalfa in chloride based on the type of chloride exposure:  TFS in soil, 
hydrochloric acid in soil, hydrochloric acid and aluminum oxide in soil, and aluminum oxide in soil 

Treatment <100 
mg/kg 

100-1000 
mg/kg 

1000-3500 
mg/kg 

>6000 
mg/kg 

DM-1 TFS 85 82.5 52.5 0.0 
DM-1 TFS 90 82.5 50.0 0.0 
DM-1 TFS 77.5 85.0 70.0 0.0 
Average 84.2 83.3 57.5 0.0 

Hydrochloric Acid 82.5 82.5 47.5 -- 
Hydrochloric Acid 87.5 95.0 50.0 -- 
Hydrochloric Acid 90 85.0 62.5 -- 

Average 86.7 87.5 53.3 -- 
Aluminum and 

Chloride 82.5 82.5 42.5 -- 

Aluminum and 
Chloride 85 82.5 40.0 -- 

Aluminum and 
Chloride 85 95.0 50.0 -- 

Average 84.2 86.7 44.2 -- 
Aluminum Oxide 82.5 -- -- -- 
Aluminum Oxide 85 -- -- -- 
Aluminum Oxide 82.5 -- -- -- 

Average 83.3 -- -- -- 
Soil 80 -- -- -- 
Soil 82.5 -- -- -- 
Soil 80 -- -- -- 

Average 80.8 -- -- -- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2 Percent germination of corn in chloride based on the type of chloride exposure:  TFS in soil, 
hydrochloric acid in soil, hydrochloric acid and aluminum oxide in soil, and aluminum oxide in soil 

Treatment <100 
mg/kg 

100-1000 
mg/kg 

1000-3500 
mg/kg 

>6000 
mg/kg 

DM-1 TFS 100.0 19.0 85.0 5.0 
DM-1 TFS 95.0 20.0 75.0 0.0 
DM-1 TFS 100.0 20.0 80.0 5.0 
Average 98.3  80.0 3.3 

Hydrochloric Acid 100.0 20.0 5.0 -- 
Hydrochloric Acid 95.0 20.0 0.0 -- 
Hydrochloric Acid 100.0 20.0 15.0 -- 

Average 98.3 100.0 6.7 -- 
Aluminum and 

Chloride 95.0 20.0 35.0 -- 

Aluminum and 
Chloride 100.0 19.0 0.0 -- 

Aluminum and 
Chloride 100.0 20.0 5.0 -- 

Average 98.3 98.3 13.3 -- 
Aluminum Oxide 100.0 -- -- -- 
Aluminum Oxide 100.0 -- -- -- 
Aluminum Oxide 100.0 -- -- -- 

Average 100.0 -- -- -- 
Soil 100.0 -- -- -- 
Soil 100.0 -- -- -- 
Soil 100.0 -- -- -- 

Average 100.0 -- -- -- 
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Table B1 Dry weight of corn plant tissue collected from three sampling events.  The total 
mass is a summation of mass from the three sampling events.   

Treatment Type First Event 
(g) 

Second Event 
(g) 

Third Event 
(g) 

Total Mass 
(g) 

Control (soil) 2.69 2.43 107 112.12 
Control 4.53 3.48 87 95.01 
Control 3.23 3.84 84 91.07 
Average 3.48 3.25 92.67 99.40 
10% TFS 0.00 0.00 8.3 8.30 
10% TFS 0.00 0.00 0.00 0.00 
10% TFS 0.00 0.00 6.00 6.00 
Average 0.00 0.00 4.77 4.77 

TFS on soil 3.30 6.39 51.8 61.49 
TFS on soil 4.42 2.62 35.5 42.54 
TFS on soil 3.09 6.72 18 27.81 

Average 3.60 5.24 35.10 43.95 
Soil Deposition 4.64 3.77 115 123.41 
Soil Deposition 3.89 3.60 108 115.49 
Soil Deposition 2.29 2.94 95 100.23 

Average 3.61 3.44 106.00 113.04 
Soil Wash 3.84 3.01 84 90.85 
Soil Wash 3.54 2.71 88 94.25 
Soil Wash 3.66 2.88 85 91.54 
Average 3.68 2.87 85.67 92.21 

TFS Deposition 4.16 2.89 104 111.05 
TFS Deposition 3.68 4.25 100 107.93 
TFS Deposition 5.10 2.64 89 96.74 

Average 4.31 3.26 97.67 105.24 
TFS Wash 3.44 4.62 107 115.06 
TFS Wash 2.98 4.19 111 118.17 
TFS Wash 4.50 4.02 115 123.52 
Average 3.64 4.28 111.00 118.92 

Field Corn    84.6 
Field Corn    74.6 
Field Corn    117.1 
Average    92.1 
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Table B2 Dry weight of corn kernels produced from plant study 

Treatment Type Kernel Mass 
(g) 

Control (soil) 133 
Control 117.8 
Control 102 
Average 117.6 
10% TFS 1.6 
10% TFS 0 
10% TFS 0 
Average 0.5 

TFS on soil 0 
TFS on soil 0 
TFS on soil 0 

Average 0 
Soil Deposition 124.2 
Soil Deposition 132.7 
Soil Deposition 111.6 

Average 122.8 
Soil Wash 123.3 
Soil Wash 118.7 
Soil Wash 104.4 
Average 115.5 

TFS Deposition 110.5 
TFS Deposition 138.7 
TFS Deposition 141.3 

Average 130.2 
TFS Wash 119.6 
TFS Wash 109.6 
TFS Wash 127.8 
Average 119 

Field Corn 147.5 
Field Corn 208.9 
Field Corn 42.4 
Field Corn 154.8 
Average 138.4 
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Table B3 Metals analysis for corn tissue collected at time of harvest 
Treatment Total N Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn Mo Na Ni P Pb S Se Si Sr Zn 

Control 0.69 255 < 42.3 9.35 0.8 0.18 < 0.35 24.5 93.4 1.29 0.24 119 < 35.6 2.64 0.03 < 0.09 < 2731 28.7 35.7 
Control 0.7 147 < 43.5 9.06 0.759 0.17 < 0.51 27.2 78.3 1.3 0.29 137 < 20.8 1.77 0.04 < 0.11 < 2526 28.7 43.6 
Control 0.3 49.5 < 42.2 8.53 0.66 0.16 < < 25.3 50 1.12 0.24 105 < 49.1 3.22 0.02 < 0.08 < 2380 25 42.5 
Average 0.6 150.5 < 42.7 9.0 0.7 0.2 < 0.4 25.7 73.9 1.2 0.3 120.3 < 35.2 2.5 0.0 < 0.1 < 2545.7 27.5 40.6 
10% TFS 0.9 61.5 < 17.5 13.2 1.49 0.21 < 0.37 17.4 76.4 2.03 0.35 43.8 < 33.9 1.5 0.12 < 0.07 < 1992 43.8 50.9 
10% TFS 1.41 48.4 < 15.9 22.1 2.32 0.29 < 0.48 9.59 68.9 2.44 0.38 55.7 < 40.5 1.51 0.16 2.59 0.1 < 1779 69.5 47.6 
Average 1.2 55.0 < 16.7 17.7 1.9 0.3 < 0.4 13.5 72.7 2.2 0.4 49.8 < 37.2 1.5 0.1 2.6 0.1 < 1885.5 56.7 49.3 

TFS on Soil 1.78 32.8 < 56.2 45 2.774 0.38 < < 13.9 58.2 1.76 0.35 161 < 35.6 0.69 0.36 < 0.18 < 2721 87.9 79.6 
TFS on Soil 1.99 28.2 < 43 58 3.468 0.47 < < 12 54.5 2 0.38 146 < 30.6 0.89 0.38 < 0.18 < 2808 105 65.9 
TFS on Soil 2.3 19.1 < 14.3 58.6 4.042 0.46 < < 10.5 47.6 2.6 0.34 90.4 < 41.4 0.81 0.29 < 0.14 < 1736 116 55.4 

Average 2.0 26.7 < 37.8 53.9 3.4 0.4 < < 12.1 53.4 2.1 0.4 132.5 < 35.9 0.8 0.3 < 0.2 < 2421.7 103.0 67.0 
Soil Deposition 0.47 148 < 37.2 7.53 0.63 0.22 < 0.35 35.4 157 1.05 0.19 82 < 22.8 2.81 0.03 < 0.07 < 2439 22.1 33.3 
Soil Deposition 0.53 382 < 44 9.83 0.7 0.22 < 0.82 54.5 375 1.14 0.22 113 < 39.5 6.38 0.03 < 0.08 < 2259 25.1 50.5 
Soil Deposition 0.56 460 < 52.7 11.4 0.79 0.2 < 1.01 24.3 419 1.18 0.27 119 < 38.7 3.12 0.05 < 0.09 < 2337 27.5 35.7 

Average 0.5 330.0 < 44.6 9.6 0.7 0.2 < 0.7 38.1 317.0 1.1 0.2 104.7 < 33.7 4.1 0.0 < 0.1 < 2345.0 24.9 39.8 
Soil Wash 0.52 174 0.51 40.3 9.54 0.71 0.14 < 0.35 30.9 168 1.16 0.24 85.4 < 18.1 2.49 0.05 < 0.08 < 2610 25.1 37.2 
Soil Wash 0.54 169 < 32.7 9.65 0.63 0.16 < 0.5 34 168 1.36 0.22 92.6 < 66.9 3.06 0.05 2.51 0.08 < 2710 24.1 40.7 
Soil Wash 0.62 227 < 47.3 10.2 0.74 0.14 < 0.43 34.5 185 1.18 0.25 99.6 < 30.9 2.45 0.05 < 0.08 < 2594 26.8 45.5 
Average 0.6 190.0 0.5 40.1 9.8 0.7 0.1 < 0.4 33.1 173.7 1.2 0.2 92.5 < 38.6 2.7 0.1 2.5 0.1 < 2638.0 25.3 41.1 

TFS Deposition 0.55 933 < 32.1 10.9 1.183 0.12 < 0.59 29.9 198 1.17 0.25 84.6 < 74.9 1.18 0.06 < 0.07 < 2756 34.6 36 
TFS Deposition 0.77 1778 < 35.1 10.9 1.39 0.11 < 0.82 26.6 326 1.17 0.24 88.85 < 94.6 2.75 0.09 < 0.09 < 2681 36.4 38.3 
TFS Deposition 0.55 1298 < 38.9 12.2 1.44 0.12 < 0.93 29.8 237 1.17 0.25 93.3 < 95.7 2.87 0.05 < 0.08 < 2989 40.5 37.5 

Average 0.6 1336.3 < 35.4 11.3 1.3 0.1 < 0.8 28.8 253.7 1.2 0.2 88.9 < 88.4 2.3 0.1 < 0.1 < 2808.7 37.2 37.3 
TFS Wash 0.89 178 < 45.8 9.34 0.894 0.2 < 0.34 27.6 97.1 1.46 0.22 113 < 60.7 1.16 0.06 < 0.1 < 2954 29.8 39.8 
TFS Wash 1 199 0.51 41.6 7.29 0.94 0.15 < 0.31 25.3 127 1.36 0.23 119 < 49.8 2.8 0.05 < 0.11 < 2698 28.7 40 
TFS Wash 0.85 278 < 38.4 9.48 0.833 0.2 < < 26.9 104 1.33 0.26 125 < 45.9 1.2 0.05 < 0.1 < 2714 29.1 42 
Average 0.9 218.3 0.5 41.9 8.7 0.9 0.2 < 0.3 26.6 109.4 1.4 0.2 119.0 < 52.1 1.7 0.1 < 0.1 < 2788.7 29.2 40.6 

Field Corn 0.89 225 < 16.6 13.3 0.63 0.26 < 0.59 28.8 243 1.01 0.23 165 < 63.3 2.49 0.06 < 0.09 < 3002 29.6 34.1 
Field Corn 0.95 225 < 15.2 12.2 0.58 0.28 < 0.54 49.1 244 0.84 0.21 146 < 45.3 2.71 0.07 < 0.09 < 3089 27.4 65.7 
Field Corn 0.83 229 < 15.2 11.2 0.51 0.16 < 0.45 42.1 220 0.85 0.18 113 < 48.9 2.77 0.07 1.51 0.07 < 3124 23.4 49 
Average 0.9 226.3 < 15.7 12.2 0.6 0.2 < 0.5 40.0 235.7 0.9 0.2 141.3 < 52.5 2.7 0.1 1.5 0.1 < 3071.7 26.8 49.6 

Note:  Below detection limit denoted by “<”.  See Table 2 in Section 2 for detection limits.   
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Table B4 Metals analysis for corn kernels.  No kernels were produced by corn grown in 10% TFS or treated with TFS on soil. 
Treatment Total N Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn Mo Na Ni P Pb S Se Si Sr Zn 

Control 1.26 < < 2.27 0.13 0.006 < < < 1.71 14.8 0.29 0.09 3.64 < < 0.91 0.18 < 0.1 < 40 < 15.8 
Control 1.52 < < 2.14 0.1 0.006 < < < 1.49 13.2 0.31 0.1 3.85 < < 0.66 0.2 < 0.11 < 39.6 < 14.9 
Control 1.52 < < 1.76 0.1 0.006 < < < 2.44 15 0.27 0.1 4.59 < < 0.66 0.2 < 0.11 < 40.3 < 15 
Average 1.4 < < 2.1 0.1 0.0 < < < 1.9 14.3 0.3 0.1 4.0 < < 0.7 0.2 < 0.1 < 40.0 < 15.2 

Soil Deposition 1.32 < < 2.09 0.21 0.01 < < < 1.54 14.8 0.36 0.11 4.03 < < 0.84 0.27 < 0.09 < 39.7 < 16.6 
Soil Deposition 1.18 < < 2.17 0.12 0.007 < < < 1.75 12.7 0.33 0.1 3.81 < < 0.68 0.22 < 0.09 < 35.2 < 16 
Soil Deposition 1.32 < < 2.52 0.14 0.01 < < < 2.72 18.6 0.39 0.12 4.41 < < 1.22 0.29 2.66 0.11 < 39.2 < 19.5 

Average 1.3 < < 2.3 0.2 0.0 < < < 2.0 15.4 0.4 0.1 4.1 < < 0.9 0.3 2.7 0.1 < 38.0 < 17.4 
Soil Wash 1.02 < < 2.14 0.14 0.008 < < < 1.79 12.3 0.35 0.1 3.57 < < 1.14 0.25 2.83 0.09 < 36.5 < 16.5 
Soil Wash 1.07 < < 2.22 0.11 0.007 < < < 1.52 11.9 0.38 0.1 3.5 < < 1.68 0.24 < 0.09 < 35.4 < 15.1 
Soil Wash 1.08 < < 2.15 0.1 0.007 < < < 1.56 13.2 0.36 0.11 3.68 < < 0.74 0.25 2.46 0.09 < 29.4 < 16.4 
Average 1.1 < < 2.2 0.1 0.0 < < < 1.6 12.5 0.4 0.1 3.6 < < 1.2 0.2 2.6 0.1 < 33.8 < 16.0 

TFS Deposition 1.07 < < 2.57 0.16 0.01 < < 0.51 2.89 20.7 0.45 0.12 4.32 < < 0.69 0.31 < 0.09 < 33.7 < 19.3 
TFS Deposition 1.31 < < 2.19 0.15 0.009 < < < 1.96 15.2 0.41 0.12 4.45 < < 1.27 0.3 < 0.1 < 26.2 < 19.7 
TFS Deposition 1.17 < < 2.29 0.16 0.009 < < < 2.49 16.9 0.38 0.1 3.79 < < 1.19 0.28 < 0.09 < 36.9 < 17.9 

Average 1.2 < < 2.4 0.2 0.0 < < 0.5 2.4 17.6 0.4 0.1 4.2 < < 1.1 0.3 < 0.1 < 32.3 < 19.0 
TFS Wash 1.56 < < 2.25 0.11 0.007 < < < 2.61 21.1 0.37 0.1 4.84 < < 1.36 0.25 5.62 0.1 < 30.6 < 19.2 
TFS Wash 1.48 < < 1.86 0.12 0.008 < < < 2.21 14.2 0.37 0.1 4.5 < < 1.06 0.22 4.28 0.11 < 33 < 18.4 
TFS Wash 1.66 < < 2.01 0.14 0.008 < < < 2.74 18 0.4 0.11 5.41 < < 0.98 0.26 3.46 0.12 < 36.5 < 20.3 
Average 1.6 < < 2.0 0.1 0.0 < < < 2.5 17.8 0.4 0.1 4.9 < < 1.1 0.2 4.5 0.1 < 33.4 < 19.3 

Field Corn 1.2 < < 1.65 0.15 0.006 0.38 < < 1.62 13 0.28 0.09 3.92 < < 0.62 0.19 < 0.08 < 24.2 < 14.4 
Field Corn 1.22 < < 1.8 0.11 0.005 < < < 1.47 21.5 0.35 0.1 3.41 < < 0.9 0.25 < 0.09 < 28.3 < 16.4 
Field Corn 1.39 < < 1.62 0.14 0.006 < < < 1.61 19.8 0.29 0.1 4.32 < 5.05 1.12 0.22 < 0.1 < 29 < 15.7 
Field Corn 1.09 < < 1.8 0.13 0.006 < < 0.34 6.18 14.4 0.31 0.1 3.28 < < 0.66 0.23 1.86 0.08 < 33.9 < 18.7 
Average 1.2 < < 1.7 0.1 0.0 0.4 < 0.3 2.7 17.2 0.3 0.1 3.7 < 5.1 0.8 0.2 1.9 0.1 < 28.9 < 16.3 

Note:  Below detection limit denoted by “<”.  See Table 2 in Section 2 for detection limits.   
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Table B5Anions results for corn tissue collected at final sampling/harvest 

Treatment 
Chloride  
(mg/kg) 

Sulfate  
(mg/kg) 

Nitrate  
(mg/kg) 

Phosphate  
(mg/kg) 

Control 691.7 471.4 45.6 210.8 
Control 486.7 1457.9 134.5 409.7 
Control 264.5 848.7 24 148.3 
Average 481 926 68 256 
10% TFS 49212.7 290.3 73.6 805.2 
10% TFS 90076.1 167.3 121.7 993.9 
Average 69644 229 98 900 

TFS on soil 45319.1 1844 836.9 2340.4 
TFS on soil 73768.9 2473 1954.6 3002.2 
TFS on soil 91293.2 581.4 3534.1 1954.6 

Average 70127 1633 2109 2432 
Soil Deposition 72.8 880.5 43 191.4 
Soil Deposition 86.5 988.2 31.5 238.9 
Soil Deposition 254.5 903.1 127.1 393.8 

Average 138 924 67 275 
Soil wash 171.9 804.7 230.9 434.4 
Soil wash 215 682.2 157.9 389.7 
Soil wash 216.8 620.1 59.8 461 
Average 201 702 150 428 

TFS Deposition 5447.8 892 59.1 544.8 
TFS Deposition 4805.4 590.5 36 680.9 
TFS Deposition 4132.2 688 30 367.8 

Average 4795 724 42 531 
TFS wash 1699.4 537.3 34 483.3 
TFS wash 1916.4 537.2 0 420 
TFS wash 1076.5 752.6 93.5 539.2 
Average 1564 609 43 481 

Field Corn 2543.4 37.8 95 178.8 
Field Corn 1437.8 469.4 145.6 516.7 
Field Corn 1590.7 133.6 14.8 579 
Average 1857 214 85 425 
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Table B6 Anions results for corn kernels  

Treatment 
Chloride 
(mg/kg) 

Sulfate 
(mg/kg) 

Nitrate 
(mg/kg) 

Phosphate 
(mg/kg) 

Control 520.3 74.3 na 888 
Control 554.3 161 25.2 1478.9 
Control 457.3 42.7 90.3 771.8 
Average 511 93 58 1046 

Soil Deposition 366.1 87.9 110.7 1447.8 
Soil Deposition 399.4 53.3 64.1 87.8 
Soil Deposition 370 118 108 1430 

Average 379 86 94 989 
Soil wash 372.8 180.9 41.7 2037.8 
Soil wash 452.5 146.8 15.5 1672.8 
Soil wash 466.3 144 69.5 1188.3 
Average 431 157 42 1633 

TFS Deposition 721.8 185.1 46.5 1633.9 
TFS Deposition 621 118.8 56.7 1349 
TFS Deposition 626.4 92.9 122.8 2394.2 

Average 656 132 75 1792 
TFS wash 753.8 54.2 15.2 2319.4 
TFS wash 792.2 72 109.1 1635.8 
TFS wash 770.2 71.2 74.1 1472 
Average 772 66 66 1809 

Field Corn 642.9 40.6 86.5 1700.2 
Field Corn 594.5 7.5 116.7 2096.9 
Field Corn 744.9 11.4 18.6 1291.8 
Field Corn 477.3 50.1 90 2067.9 
Average 606 23 75 1819 
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APPENDIX C 

ALFALFA PLANT STUDY 
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Table C1 Dry weight of alfalfa treated with TFS in or on soil 

Treatment 
Type 

First 
Cutting 

(g) 

Second 
Cutting 

(g) 

Third 
Cutting 

(g) 
Control (soil) 5.6 17.9 20.0 

Control 4.6 18.5 29.1 
Control 7.7 17.0 20.4 
Average 6.0 17.8 23.2 
10% TFS 0.0 2.5 1.7 
10% TFS 0.0 2.3 2.0 
10% TFS 0.0 2.6 2.5 
Average 0.0 2.5 2.1 

TFS on soil 7.9 3.9 4.6 
TFS on soil 6.0 4.3 15.1 
TFS on soil 4.6 5.4 15.4 

Average 6.2 4.5 11.7 
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Alfalfa for a foliar treatment study was grown in the winter.  Little biomass was 

produced, especially for the second and third sampling times.  Application of treatments 

to foliage did not occur until after the first sampling.   

 
Table C2 Biomass of alfalfa grown in winter and exposed to foliar treatments 

Treatment 
Type 

First Sampling 
(g) 

Second 
Sampling 

(g) 

Third 
Sampling 

(g) 
Control (soil) 4.7 0.7 0 

Control 3.7 0.4 0.3 
Control 3.7 0.1 0 
Average 4.0 0.4 0.1 

Soil Deposition 3.3 1.4 0.1 
Soil Deposition 3.1 2.1 0.6 
Soil Deposition 3 0.5 0.2 

Average 3.1 1.3 0.3 
Soil Wash 3.8 0.2 0.9 
Soil Wash 4 0.9 0 
Soil Wash 6.3 1.7 0 
Average 4.7 0.9 0.3 

TFS Deposition 3.7 0.5 0.6 
TFS Deposition 5 1.3 0.1 
TFS Deposition 4.1 3.3 0 

Average 4.3 1.7 0.2 
TFS Wash 4.4 2.4 0 
TFS Wash 4.7 2.6 1.1 
TFS Wash 5.7 2.6 0.9 
Average 4.9 2.5 0.7 
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Table C3 Metals analysis of alfalfa exposed to TFS in the root zone, collected at third sampling 
Treatment Total N Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn Mo Na Ni P Pb S Se Si Sr Zn 

Control 3.73 23.3 < 37.6 6.27 1.19 < < 0.43 5.27 75.9 2.34 0.18 33.5 < 66.3 0.97 0.27 < 0.22 < 199 17.3 16.3 
Control 3.58 13.5 < 40.4 6.24 1.33 0.06 < < 4.51 63.4 2.35 0.17 34 < 23.5 0.57 0.25 < 0.23 < 148 19.3 16.5 
Control 3.88 10 < 42.8 7.53 1.2 0.06 < 0.31 4.59 85.3 2.29 0.16 50.1 < 37.2 0.6 0.34 < 0.29 < 123 19 17.7 
Average 3.7 15.6 < 40.3 6.7 1.2 0.1 < 0.4 4.8 74.9 2.3 0.2 39.2 < 42.3 0.7 0.3 < 0.2 < 156.7 18.5 16.8 
10% TFS 4.38 17 < 39.7 11.3 2.31 < < 0.23 9.18 75.8 2.37 0.16 78.6 < 16.2 4.06 0.18 < 0.32 < 164 36.4 26.6 
10% TFS 3.95 21.2 < 41.1 10.2 2.08 0.08 < 0.64 8.93 82 2.12 0.23 80.6 < 23.2 2.85 0.2 3.31 0.27 < 161 31.9 31.5 
10% TFS 4.73 17.6 < 43.5 9.42 1.87 < < 0.53 6.75 75.6 2.15 0.22 64.4 < 32 1.96 0.18 < 0.35 < 148 27.5 25.3 
Average 4.4 18.6 < 41.4 10.3 2.1 0.1 < 0.5 8.3 77.8 2.2 0.2 74.5 < 23.8 3.0 0.2 3.3 0.3 < 157.7 31.9 27.8 

TFS on soil 4.94 9.34 < 45.7 10.2 1.68 0.2 < < 4.87 62.4 3.37 0.18 49.7 < 44.6 1.2 0.41 < 0.29 < 213 27.1 25.8 
TFS on soil 3.98 14.9 < 56 7.25 1.58 0.14 < < 4.59 70.6 2.47 0.18 32.4 < 66.3 0.68 0.3 < 0.31 < 195 23.1 20.7 
TFS on soil 4.25 14.3 < 60.1 8.67 1.72 0.27 < < 5.63 66.1 2.77 0.2 42.8 < 56.6 0.83 0.33 < 0.33 < 173 27.5 26.5 

Average 4.4 12.8 < 53.9 8.7 1.7 0.2 < < 5.0 66.4 2.9 0.2 41.6 < 55.8 0.9 0.3 < 0.3 < 193.7 25.9 24.3 
Note:  Below detection limit denoted by “<”.  See Table 2 in Section 2 for detection limits.   
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Table C4 Anions analysis of alfalfa tissue exposed to TFS in the root zone, harvested at 
the third sampling 

Treatment 
Chloride 
(mg/kg) 

Sulfate 
(mg/kg) 

Nitrate 
(mg/kg) 

Phosphate 
(mg/kg) 

Control 629.9 3224 5.2 200.3 
Control 593.9 4527.9 404.1 55.1 
Control 655.7 2453.5 9.3 732.1 
Average 627 3402 140 329 
10% TFS 23697.8 2844.5 37.3 0 
10% TFS 10912.9 2313.4 56 1399.3 
10% TFS 10519.8 3303.2 27.2 759.9 
Average 15044 2820 40 720 

TFS on soil 11454.6 194 2 714.8 
TFS on soil 12032 3631.8 123.6 53.4 

Average 11743 1913 63 384 
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APPENDIX D 

LEACHATE RESULTS 
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 Results for four leached columns are shown on the following pages, with Tables 

D1-3 and D4-6 corresponding to collection at times 40, 44, and 48 hours after starting the 

study.  Columns 1 and 2 were run at the same time (for all three treatments) and columns 

3 and 4 were run at the same time (again for all three treatments), but 1 and 2 were run on 

different days than columns 3 and 4.  Leachate was not produced at 48 hours for one soil 

treatment and both TFS on soil treatments in the first run.  Anions analysis was not 

performed for leachate sampled from the first column after 44 hours because the entire 

sample was acidified before an aliquot was removed for the analysis.   
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Table D1 Metals analysis of leachate collected after 40 hours 

Treatment 
Be Al V Cr Mn Fe Co Ni Cu Zn As Se Cd Sb Ba Tl Pb 

Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L Ug/L Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 
Control 1 < < < < 388.2 < < 45.4 65.0 < 25.6 < < < 1361 < < 
Control 2 < < < < 387.3 < < 40.9 58.9 < 23.9 < < < 1311 < < 
Control 3 < < < < 933 < < < 42 < 25 < < < 1772 < < 
Control 4 < < < < 793 < < < 35 < 23 < < < 1651 < < 
Average < < < < 625 < < 43.2 50.2 < 24.4 < < < 1524 < < 

10% TFS 1 < < < < 223.2 < < < 136.5 < 39.7 < 23.5 < 14047 < < 
10% TFS 2 < < < < 183.6 < < < 132.1 < 41.0 < 22.2 < 13417 < < 
10% TFS 3 < < < < 589 < < < 239 < 54 37 58 < 23980 < < 
10%TFS 4 < < < < 509 141 < < 218 < 46 37 62 < 26640 < < 
Average < < < < 376 141 < < 181.4 < 45.2 37 41.4 < 19521 < < 

TFS on Soil 1 < < < < 2307 < < 137.7 57.6 < 21.7 < 38.1 < 10323 < < 
TFS on Soil 2 < < < < 2964 505 < 40.6 55.6 < 21.4 < 30.8 < 8657 < < 
TFS on Soil 3 < < < < 7151 < < < 62 < 24 < 72 < 13210 < < 
TFS on Soil 4 < < < < 7778 < < < 67 < 24 < 74 < 13990 < < 

Average < < < < 5050 505 < 89.2 60.6 < 22.8 < 53.7 < 11545 < < 
Note:  Below detection limit denoted by “<”. 
 
 
Table D2 Metals analysis of leachate collected after 44 hours  

Treatment 
Be Al V Cr Mn Fe Co Ni Cu Zn As Se Cd Sb Ba Tl Pb 

ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L Ug/L Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 
Control 1 < < < < 95.6 < < 44.7 67.2 < 22.2 < < < 350.2 < < 
Control 2 < < < < 170 < < < 57 < 24.6 < < < 646.4 < < 
Control 3 < < < < 396 < < < < < 26 < < < 485 < < 
Control 4 < < < < 574 < < < 51 < 32 < < < 798 < < 
Average < < < < 309 < < 44.7 58 < 26 < < < 570 < < 

10% TFS 1 < < < < 113.6 < < < 130.4 < 25.2 < < < 4949 < < 
10% TFS 2 < < < < 126.1 < < < 127.3 < 25.2 < < < 7410 < < 
10% TFS 3 < < < < 135 < < < 135 < 22 < < < 1785 < < 
10% TFS 4 < < < < 199 < < < 195 < 27 20 < < 3461 < < 

Average < < < < 143 < < < 146.9 < 24.9 20 < < 4401 < < 
TFS on Soil 1 < < < < 1968 < < 51.4 35 < 18.1 < 39 < 9747 < < 
TFS on Soil 2 < < < < 2830 < < < 53.9 < 18.6 < 32.9 < 8686 < < 
TFS on Soil 3 < < < < 10440 < < < 59 < 26 < 107 < 18370 < < 
TFS on Soil 4 < 333 < < 6620 < < < 36 < 21 < 76 < 12300 < < 

Average < < < < 5465 < < 51.4 46.0 < 20.9 < 64 < 12276 < < 
Note:  Below detection limit denoted by “<”. 
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Table D3 Metals analysis of leachate collected after 48 hours 

Treatment 
Be Al V Cr Mn Fe Co Ni Cu Zn As Se Cd Sb Ba Tl Pb 

ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L Ug/L Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 
Control 1 < < < < 161.3 < < 57.8 61.7 < 22.5 < < < 394.7 < < 
Control 3 < < < < 165 < < < < < 27 < < < 435 < < 
Control 4 < 651 < < 194 < < < 25 < 26 < < < 647 < < 
Average < 651 < < 173 < < 57.8 43 < 25.2 < < < 492 < < 

10% TFS 1 < < < < 32.3 < < < 92.4 < 18.6 < < < 535.7 < < 
10% TFS 2 < < < < 28.4 < < < 82.1 < 17 < < < 534.3 < < 
10% TFS 3 < < < < < < < < 70 < 18 < < < 886 < < 
10% TFS 4 < < < < < < < < 91 < 30 < < < 1683 < < 

Average < < < < 30 < < < 84 < 21 < < < 910 < < 
TFS on Soil 3 < < < < 6828 < < < < < 20 < 79 < 12830 < < 
TFS on Soil 4 < < < < 3684 < < < < < < < 43 < 7276 < < 

Average < < < < 5256 < < < < < 20 < 61 < 10053 < < 
Note:  Below detection limit denoted by “<”. 
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Table D4 Anions analysis of leachate collected after 40 hours 

Treatment 
Chloride Sulfate Nitrate Phosphate 

mg/L mg/L mg/L mg/L 
Control 1 1151.4 359.0 1000.6 < 
Control 2 852.75 55.2 38.6 < 
Control 3 1464.1 503.6 1445.2 < 
Control 4 1958 498 1247 < 
Average 1357 354 933 < 

10% TFS 1 51848 466 700 < 
10% TFS 2 49648 440 678 < 
10% TFS 3 53200 475 795 < 
10% TFS 4 66645 560 990 < 

Average 55335 485 791 < 
TFS on Soil 1 16150 199 434 < 
TFS on Soil 2 23603 329 676 < 
TFS on Soil 3 26898 421 958 < 
TFS on Soil 4 26546 316 658 < 

Average 23299 316 682 < 
Note:  Below detection limit denoted by “<”. 

 
Table D5 Anions analysis of leachate collected after 44 hours 

Treatment 
Chloride Sulfate Nitrate Phosphate 

mg/L mg/L mg/L mg/L 
Control 1 -- -- -- -- 
Control 2 982.7 134.75 336.55 < 
Control 3 995.6 150.8 226.2 < 
Control 4 1120.6 158 241 < 
Average 1033 148 268 < 

10% TFS 1 25443 365 435 < 
10% TFS 2 27992 316 458 < 
10% TFS 3 5567.8 228.4 78.6 < 
10% TFS 4 9163.8 319.8 173.4 < 

Average 17042 307 286 < 
TFS on Soil 1 15975 70 106 < 
TFS on Soil 2 21758 188 329 < 
TFS on Soil 3 32631 164 267 < 
TFS on Soil 4 22978 91 99 < 

Average 23336 128 200 < 
Note:  Below detection limit denoted by “<”. 
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Table D6 Anions analysis of leachate collected after 48 hours 

Treatment 
Chloride Sulfate Nitrate Phosphate 

mg/L mg/L mg/L mg/L 
Control 1 958.7 34.4 91.1 < 
Control 3 1027.3 126.1 158.3 < 
Control 4 1084.3 125.5 182.3 < 
Average 1023 95 144 < 

10% TFS 1 11545 694 194 < 
10% TFS 2 2338.2 132.1 32.8 < 
10% TFS 3 3747 206 38.2 < 
10% TFS 4 5295.4 266 50.4 < 

Average 5731 325 79 < 
TFS on Soil 3 37180 160 254 < 
TFS on Soil 4 22121 83 85 < 

Average 29651 122 170 < 
Note:  Below detection limit denoted by “<”. 

 
Table D7 Percent germination of corn and alfalfa in leached TFS   

Treatment 
Corn Alfalfa 

5 days 7 days 10 days 5 days 7 days 10 days 
Control 80 90 90 85 85 87.5 
Control 80 95 95 80 77.5 77.5 
Control 75 85 90 82.5 87.5 85 
Average 78.3 90.0 91.7 82.5 83.3 83.3 
10% TFS 70 80 100 77.5 85 82.5 
10% TFS 90 100 100 75 82.5 77.5 
10% TFS 100 100 90 80 77.5 87.5 
Average 86.7 93.3 96.7 77.5 81.7 82.5 

TFS on soil 50 95 95 52.5 67.5 72.5 
TFS on soil 50 90 95 35 50 60 
TFS on soil 30 95 100 55 72.5 77.5 

Average 43.3 93.3 96.7 47.5 63.3 70.0 
Note:  The top 3 cm of soil treatment from the leached columns were collected and used 
for the leached germination experiment.   
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