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ABSTRACT: This paper considers, by example, the use of a Surface-Atmosphere-Vegetation-Transfer (SVAT), Atmospheric
Boundary Layer (ABL) model designed as a pedagogical tool. The goal of the computer software and the approach is to
improve the efficiency and effectiveness of communicating often complex and mathematical based disciplines (e.g., microme-
teorology, land surface processes) to the non-specialist interested in studying problems involving interactions between vegeta-
tion and the atmosphere and, in the nature of interactions rather than a description of the components. Topics are addressed
within a Socratic framework using a scenario system based approach: As an example of this, the interactions between a
vegetation canopy and a carbon dioxide rich (2 times ambient CO

2
) atmosphere, are presented. This will illustrate such non-

linear interactions between the physical components and in system behavior that would not be intuitively obvious to the
student or, would be to complicated to be insightful. This type of approach is another careful, critical way of thinking fostered
by interactions with a computer model. The student instead of taking things apart, is looking at them as wholes and is
encouraged to make new and important distinctions.

INTRODUCTION

The power of computer software tools to engage learners in
intrinsically motivating, experimental learning may be their
greatest potential. However, computer programs cannot an-
ticipate every need that a user might have and so, some form
of collaborative support is essential. Pedagogical models em-
body such ideas as two or more learners working together to
provide cognitive and affective support or, have a learner work
with written scenarios that coach the learner to a level of un-
derstanding. Embedded within such a process in the idea of
higher order learning to encourage the student to

Frame and resolve problems
Exhibit intellectual curiosity
Strive for life-long learning

In the scenario context, we further pose partnerships (between
individuals and computers) for problem-solving, teams for
project-based learning, structured controversy, peer teaching
and review. This has far reaching implications as it eschews
individual differences (e.g., prior knowledge, tolerance for
ambiguity, culture, gender, age, etc.) that might prevent effec-
tive learning. Moreover, instructors’ roles are radically shifted
from the traditional norms – the instructors become mentors,
coaches, and co-learners. Faculty are challenged to shift from
being a “sages on the stage” to “guides on the side.” They

facilitate learning, not deliver information, they support col-
laboration, not foster false competition and they assess devel-
opment rather than test.

What follows is an example of what we term the scenario ap-
proach. The example scenario is a final one in a series which
comprises a course in Land Surface Processes. In the course
we use a SVAT (Soil-Vegetation-Atmosphere-Transfer) com-
puter model as a cognitive tool to help build a systematic un-
derstanding of what are complex interactions in a system –
the land / atmosphere. We are interested in the nature of inter-
actions rather than a description of its components. To gain
an initial understanding of the resultant behavior of a system
we avoid confusing details and concentrate on the resultant
effects. The course is designed to prove useful to the non-
specialist and, more precisely, to those who are interested in
studying problems involving interactions between the vegeta-
tion and the atmosphere.

Teaching and learning are difficult, but the scenario approach,
coupled to a cognitive tool such as a SVAT, can help us over-
come the problems of learning complicated systems that are
intrinsically inter-disciplinary. It uses the computer as a me-
dium of intellectual curiosity rather than as some might ar-
gue, a wasteland for mindless entertainment.
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AN EXAMPLE SVAT SIMULATION—CARBON
DIOXIDE FLUXES

Preamble

Plants live by taking in carbon dioxide (CO
2
) and converting

the carbon to its own substance (assimilation). The net carbon
gain manifests itself (virtually by definition) as an increase in
the biomass, which consists of roots, stem, leaves, flowers,
etc. Carbon dioxide enters the plants through the stomates
and so, the rate of biomass increase is closely dependent on
the stomatal resistance. Not surprisingly therefore, the eco-
nomic value of a crop is closely tied to the level of transpira-
tion, which also depends on the stomatal resistance. Since
transpiration is not beneficial to the plant except to reduce the
leaf temperature4, we might expect plants to favor a maximi-
zation of carbon dioxide intake in relation to transpiration.
Thus, plants benefit most by keeping the stomates open, re-
gardless of the transpiration, as long as sufficient water re-
serves are available to the roots. By now you must realize from
previous simulations that decreasing soil water content does
not necessarily reduce transpiration until the plant perceives
itself to be in danger of water stress, although the stress signal
does not depend uniquely on soil water content.

In these days of the runaway greenhouse effect scare, some
researchers take heart that an increase in carbon dioxide con-
centration in the atmosphere will lead to an enhanced carbon
dioxide uptake by the plants and so, to an increased biomass
production. Experiments done in the greenhouse and in the
field suggest that an increase in carbon dioxide concentration
also causes the stomatal resistance to increase, with the net
effect being a gain in biomass and a decrease in transpiration,
thus doubly benefiting the plant. We can use our simulation
model to explore this finding.

Our main purpose, however, is simply to examine the flux of
carbon dioxide in a canopy (specifically the carbon dioxide
assimilation rate A). If time permits we can test the idea that
an increase in stomatal resistance associated with an increase
in ambient carbon dioxide concentration leads to both an in-
crease in the carbon dioxide assimilation rate and to a de-
crease in transpiration.

Calculating the carbon dioxide assimilation rate
from the outside

Let us return to the idea that a flux of a substance moves down
a gradient of potential across a resistance, the Ohm’s law ana-
log for diffusive fluxes. The source of carbon dioxide is in the
atmosphere, let us say above the plant canopy, where the con-
centration of carbon dioxide gas (C) has a mean value of about
330 parts per million (of CO

2
) by volume of air (ppmv), which

is numerically equivalent to 330 microbars (ìb) or to 330 mol
(CO

2
) mol-1 (air) times 10-6 . We will refer to this ambient

carbon dioxide concentration as (C
a
). If the drop in carbon

dioxide potential is    C and the resistance across that poten-
tial drop is r, the flux of carbon dioxide (FCO

2
) is given by

Equation.1a.

                                                                                    [1a]

If the plant is to ingest carbon molecules there must be a flux
of CO

2
 downward through the surface layer along decreasing

concentration to the leaf surface (see Figure 8.1 from scenario
8 – Microclimate of the Plant Canopy). The appropriate resis-
tances are approximately the same as that for water vapor, but

with some adjustments for the differences in diffusivity of car-
bon dioxide in air. The turbulent resistance in the surface layer
will be called . Once inside the canopy the molecules move
through the interleaf air-spaces and across the surface bound-
ary layer of the leaf, where the resistance is r

ahc
. Ignoring the

flux of carbon dioxide across the leaf surface (the cuticle), the
carbon dioxide molecules then penetrate into the leaf via the
stomates where they encounter an internal (or intercellular)
carbon dioxide concentration C

i
 . The stomatal resistance to

carbon dioxide flux is r
sc
. Accordingly, we can write a some-

what more elaborate version of Equation 1a in the form of
Equation1b:

[1b]

note that the density ( pCO
2
) of carbon dioxide gas (kg m-3 of

CO
2
) is necessary to make the units agree with the left hand

side of the equation which has the units of kg (CO
2
) m-2 s-1.

Resistances for carbon dioxide flux are generally somewhat
larger than those of water vapor because the molecular
diffusivity of carbon dioxide in air is less than that of water
vapor in air (possibly because the former is somewhat heavier
(molecular weight 46) than water vapor (molecular weight
18)). However, the differences in resistances between carbon
dioxide and water vapor in air are generally less than a factor
of two (depending on what resistance one is talking about).
Accordingly, let us agree for the sake of argument (since it
alters no fundamental result) that the two sets of resistances,
that for water vapor and that for carbon dioxide, are equal.

Imagine a flux of water vapor from the stomates into the sur-
rounding interleaf air-spaces, as in Equation 7c from scenario
7 – Stomatal Resistance, and thence into the surface layer above
the canopy through resistance r

v
. Ignoring the parallel water

vapor flux from the ground below the canopy, the flux of wa-
ter vapor between the leaf and the atmospheric surface layer
(in kg m-2 s-1) is given by Eqn. 1c.

[1c]

Note that e
a
here refers to the vapor pressure above the canopy,

i.e., at some elevation where the carbon dioxide concentration
is not immediately affected by transient perturbations in the
canopy fluxes5.

Now, if we equate the resistances and take a ratio of the two
fluxes (dividing Equation 1b by Equation 1c to yield Equation
1d) we obtain a measure of the water use efficiency (WUE),
which is the essentially the ratio of the carbon dioxide con-
centration gradient between the atmosphere above the plant
canopy and that in the sub-stomatal cavities to the gradient in
vapor pressure between the inside of the leaf and that in the
surface layer above the canopy.

[1d]
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Note, however, that because of the 30-fold smaller concentra-
tion of carbon dioxide than water vapor in the atmosphere,
the magnitude of the water fluxes will be much larger than
those for CO

2
. A typical value for FCO

2
 at noon on a sunny

summer day is 1 x10-6 kg m-2 s-1 or 20 micromoles per square
meter per second. The sub-stomatal concentration C

i
 is known

to be approximately constant under normal atmospheric and
plant conditions. It is about 220 ppvm for C

3
 plants, such as

wheat, rice and potatoes, and 120 ppmv for C
4

plants, such as
corn and sorghum. We will have more to say about this in-
triguing parameter later in these notes. Equation 1d show us
that the primary control of water use efficiency is exerted by
the vapor pressure deficit between that at the leaf surface and
the that above the canopy.

Assuming that the latter is largely controlled by the atmosphere,
the single most important variable in the WUE relationship is the
vapor pressure in the leaf, which is to say that control rests with
the leaf temperature. We might imagine that the plant is trying to
maximize the WUE but, at the same time maximize its rate of
carbon intake. Blum (1989) cites a formula relating plant yield
(YE) to WUE, more specifically the product of WUE times the
evapotrananspiration. He also cites another formula relating bio-
mass creation to the ratio of transpiration to potential evapotrans-
piration, which is a little bit like the moisture availability you saw
defined  in an earlier scenario.

Calculating the carbon dioxide assimilation rate
from the inside

Well beyond the scope of this course is the frightening terrain
of pure plant physiology. Nevertheless, plant physiologists are
also struggling with the modeling aspects of assimilation rates.
One of the most well known of the current assimilation mod-
els is one constructed by Farquhar (1989); of feed-forward
fame. The Farquhar model, which deals primarily with C

3
plants, attempts to describe the curve shown in Figure 1, which
emerges from numerous experiments in which C

i
 is varied as

a function of assimilation rate.

We see that A increases first rapidly and almost linearly with
increasing C

i
 and then much more slowly beyond a bend in

the curve which is actually not far from the characteristic value
of C

i
 for the plant. Typically, C

3
plants tend to have a more

gradual transition from rapidly increasing assimilation rate
to slowly increasing assimilation rate than C

4
 plants, as shown

in Figure 1. The bend in the two curves occurs close to the
present-day normal values for internal carbon dioxide con-
centrations.

The bend also represents a transition between two physiologi-
cal states of the plant, one in which the photosynthesis is lim-
ited by the availability of an organic compound called Rubisco,
which is involved in the reduction and oxidation in the C

3
pathway (low C

i
), and the other in which photosynthesis is

limited by the availability of photon flux (high C
i
). Clearly,

an increase in internal carbon dioxide concentration causes
the assimilation rate to increase, although at a rapidly decreas-
ing rate with increasing concentration. We will later touch on
the importance of this decrease in assimilation rate with in-
creasing carbon dioxide concentration.

The Farquhar model can be used to calculate C
i
. When com-

bined with another type of formulation, called The Ball-Berry
model, which determines stomatal resistance as a function of
the rate of photosynthesis, the photosynthesis can be calcu-
lated directly without having to specify either C

i
 or stomatal

resistance because the latter can be calculated as a solution to

the combined Ball-Berry / Farquhar equations. Of course, this
combined formulation requires additional, and perhaps more
exotic, parameters to obtain real numbers. Although further
discussion of this approach lies beyond the scope of these notes,
the model does offer an option for calculating photosynthesis
and carbon dioxide fluxes directly by specifying the Ball-Berry
model. We suggest that only the most serious plant scientists
among you venture to call upon this option!

Figure 1 Schematic illustration of variation of assimilation rate
versus internal CO

2
 concentration for C

3
and C

4
 plants.  Arrows

denote present day internal CO
2
 concentrations.

Changes in assimilation rate and transpiration with
increasing carbon dioxide concentration

Worst-case scenarios (not one of ours) suggests a doubling of
ambient carbon dioxide concentration by the middle of the
next century, from the present 330 ppmv to about 660 ppmv
as the result of continue fossil fuel burning. This increase al-
ready comes on top of an increase from 280 ppmv from the
middle of the last century. A first guess based on Equation 1b
is that the doubling in C

a
 would cause the assimilation rate A

to increase by a factor of about 4 for C
3
 plants and about 2.5

for C
4
 plants (assuming no change in the values for C

i
). In

fact, Cure and Acock (1986) examined all the published mea-
surements they could find that were related to the response of
plants to an increase of carbon dioxide. Their results show
that the increase in assimilation rate is likely to be only about
40% for C

3
plants and about 25% for C

4
 plants. Moreover,

they show that plants grown under ambient concentrations of
660 ppmv or allowed to come into equilibrium with their new
enriched CO

2
environment show an even lower increase in as-

similation rate, about 30% for C
3
 plants and less than 10% for

C
4
 plants. These increases in assimilation rate translate into

approximately equivalent percent increases in biomass pro-
duction.

Laboratory measurements show that an increase in carbon
dioxide concentration at the surface of the leaf induces an in-
crease in stomatal resistance. A glance at Figure 1 shows that
assimilation rate does not increase rapidly with an increase in
internal carbon dioxide concentration beyond present-day con-
centrations. Experiments further show that while fluctuations
in stomatal resistance and other local factors do not signifi-
cantly affect internal carbon dioxide concentration, an increase
in ambient carbon dioxide concentration moves the entire
curves for both C

3
 and C

4
 plants, shown in Figure 1, toward

the right. Despite this shift, the net effect is one of an increase

3
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in assimilation rate even for C
4
 plants (although the sharper

transition at the bend in the curves followed by a nearly con-
stant value of assimilation rate of the C

4
curve above the bend

translates to a smaller gain in A for C
4
 plants than for C

3
plants with an increase in C

a
).

A further intriguing implication of Cure and Acock’s (1986)
data is that transpiration should decrease by about 20% as the
result of carbon dioxide doubling! What Figure 1 shows clearly
is that an increase of 20% in stomatal resistance is not suffi-
ciently large to hold the assimilation rate to only a 40% in-
crease; rather, both C

i
and stomatal resistance must increase

as ambient carbon dioxide concentration is increased. This
increase, in stomatal resistance, seems to be associated with
the leaf ‘s ability to sense an increase in carbon dioxide con-
centration at its surface.

Stated alternately, if one doubles the amount of food on the
table (ambient carbon dioxide concentration), people will stuff
their mouths more (internal carbon dioxide concentration),
but they will not ingest twice as much food. Moreover, given
some time to equilibrate, people may get sufficiently fed up
(literally) that they will become more resistant to temptation
and not ingest much more food than before, although it is
certainly true that the more food available the more one eats
(up to a point). Thus stomatal resistance increases in response
to the plant’s inability to assimilate all that is put on its plate,
given the amount of available sunshine and nutrients for car-
rying out all its chemical reactions. (Speaking of resistance,
anyone who has ever tried to feed an infant would know what
happens when you try to increase the food intake rate by in-
creasing the mass of goop on the end of a spoon! You do get
more inside the infant, but a lot of resistance is put forth and a
lot of goop ends up on the walls).

Simulations

The SVAT model calculates carbon dioxide flux and outputs it
in units of kg m-2 s-1. As with water vapor fluxes, the calcula-
tions refer to flux per unit sunlit leaf area, but the output is in
terms of flux per unit horizontal surface area. The problem
therefore, is to scale from a leaf to a canopy. One way of deal-
ing with this is to calculate fluxes for each leaf or leaf strata.
Another approach is to divide the leaf resistances by the leaf
area index multiplied by a scaling factor called a ‘shelter fac-
tor.’ The reason why we divide by the leaf area index is that
we must sum up all the individual leaf fluxes for one-sided
transpiration. Were we to simply divide by LAI (equivalent to
multiplying the transpiration fluxes by LAI) the resultant fluxes
would generally be too large because the transpiring area would
be overestimated, since many leaves are shaded by other leaves
and thus have a larger stomatal resistance. Accordingly, we
use an equation that reduces the leaf resistances by an amount
that varies between about 1.0 for a fairly low leaf area index to
about 2.0 for very large leaf area indices. Both the carbon
dioxide and water vapor fluxes have been scaled in this way.

Simulation # 1.

Re-run the base case simulation, but this time examine the
carbon dioxide fluxes and the water vapor fluxes together.
Don’t forget to use a large LAI in order to effectively suppress
the evaporation component of the evapotranspiration. (We will
output the transpiration in the same units to make it easier for
you to compute a WUE ratio). Then run a simulation in which
water stress manifests itself as a plateau in the evapotranspi-
ration and note the changes in WUE, carbon dioxide fluxes

and transpiration during the day and from the unstressed run.
Use the field results of Figures 2 and 3 as a comparative plat-
form from which to discuss the SVAT’s results for transpira-
tion and photosynthesis.

Simulation # 2.

Run the case with double root / stem hydraulic resistance again
and examine the carbon dioxide fluxes, WUE and transpira-
tion. Changes in the root / stem hydraulic resistance occur
during the life of the plant. It probably decreases in the early
stages of the plant’s life and increases again with time as the
plant matures and then senesces.

Simulation # 3.

Finally, and only if you have oodles of time to burn, check out
the carbon dioxide doubling issue referred to by Cure and
Acock (1986). First, increase the ambient carbon dioxide con-
centration to 660 ppmv. Note the increase in the fluxes of
carbon dioxide from the base case and see if it is similar to the
30% increase indicated by the results of Cure and Acock. It
isn’t ! So then increase the minimum stomatal resistance by
30% and see if you reduce the carbon dioxide fluxes by 30%.
You can’t unless you also increase C

i
 which you can also do.

So finally increase the internal CO
2
 concentration until the

assimilation rate is 30% above your reference case. To increase
the stomatal resistance increase r

smin
 by the appropriate factor.

Thus, if you wish to increase the stomatal resistance by factor
of 2 simple double the minimum stomatal resistance. At this
point, look at the decrease in transpiration from the base case.
Does that value agree with the 20% decrease anticipated by
the results of Cure and Acock ? If not, is the model full of
baloney? Are Cure and Acock out to lunch ? Or is something
up here that is a little more profound than scientific silliness ?

SUPPLEMENTARY FIGURES

Figure 2 Diurnal evolution of sap flow measurements on selected
days.  The selected days are (by decreasing magnitude of sap
flow): Julian days 246, 248, 251, & 255 near Avignon, France.

4
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Figure 3 Diurnal evolution of photosynthesis in umoles-m-1-s-1.
The selected days are identical to those in Figure 2.
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