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GETTING “RESULTS”: THE PATTERN-ORIENTED APPROACH TO
ANALYZING COMPLEX SYSTEMS WITH AGENT-BASED MODELS

STEVEN F. RAILSBACK

Lang, Railsback & Associates, 250 California Avenue, Arcata, California 95521, Email:
LRA@ Northcoast.com

INTRODUCTION

Many Swarm users have had the experience of
demonstrating an agent-based model (ABM) to
colleagues and immediately being asked “but how
do you get ‘results’? — it’s just a stochastic
simulator.” This response to ABMs is surprisingly
common, especially from modelers that use
conventional differential equation-based
approaches. This question may at first seem
presumptuous, but it deserves our attention for two
reasons. First, of course, we need to respond to
the question intelligently each time we hear it
again. Second, we do indeed need ways to
develop general results and conclusions from
ABMs. This paper presents a general approach to
using ABMs and similar simulators in a
hypothesis-testing framework to draw general
conclusions about the agents in our models.

Whereas the rest of this paper addresses ABMs,
it is worth reminding Swarm users that this “how
do you get results” question is just as easily
applied to differential equations models.

Ecology, economics, and other sciences are rife
with differential equation models that include
numerous restrictive and unrealistic assumptions
so the equations can be solved. Some users of
such models appear to assume that because their
models represent aggregations of individuals, the
model results are applicable to individuals in
general. The opposite is often true— a hard look at
all the assumptions in such models and the
conditions under which these assumptions really
apply to may indicate that the differential equation
model’s results are rarely if ever really applicable.
My colleagues and I (Railsback et al. 1999)
illustrated an example in ecology, the “result” of a
mathematical derivation showing the fitness of
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animals to be maximized when they select habitat
that minimizes the ratio of mortality risk over
energy intake. Upon examination, this “result”
(which, ironically, has been used in a number of
agent-based models) was found to be based on a
number of assumptions that are rarely if ever met
in nature. (The most remarkable of these
assumptions is that no habitat fails to provide
positive growth rates; in reality, animals are
continuously faced with the challenge of finding
adequate food.)

Complex systems analysis and ABMs are
intended to overcome the limitations of
conventional modeling approaches, especially
their dependence on restrictive and unrealistic
assumptions. To do so, we need ways to test
hypotheses and reach general conclusions.

THE PATTERN-ORIENTED APPROACH
Microanalysis Of Complex Systems

Getting “results” from ABMs is essentially the
fundamental issue in analysis of all complex
systems: determining the relations between the
characteristics of individuals and system-level
responses. The only thorough, explicit discussion
of this issue I am familiar with is by Auyang
(1998). Auyang rejects both the reductionist and
holist approaches to science— examining only the
parts or only a whole system is inadequate.
Instead, Auyang recommends an approach called
synthetic microanalysis because it integrates
synthesis at the system level with analysis of the
individuals that compose the system.

Synthetic microanalysis begins with synthesis
of a broad conceptual framework of the system.
The boundaries of the system to be studied are
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delineated along with the external driving
variables by which the rest of the world affects the
otherwise-isolated study system. System-level
measures of state are defined; these can be
aggregate measures of the state of the system’s
individuals (e.g., total number or biomass of
animals) or statistical distributions of individual
states (e.g., distributions of species, age, or size).
Synthesis also includes defining the individuals
and their characteristics, using information
gathered from smaller-scale analyses like
laboratory studies of individual animals. For
agent-based modelers, this synthesis phase
constitutes designing the ABM,; it is highly
system-specific and I do not address it further in
this paper.

In the microanalysis phase, system-level
concepts are posed and the individual behaviors
and mechanisms (“traits”) that explain the system-
level concepts are determined. In our research,
this phase includes determining how, in ABMs, to
model individual agents and their environment so
that realistic population-level response patterns
emerge from individual traits. This phase
provides the mechanistic understanding of the
links between individual traits and system
responses that allows prediction of how system
dynamics respond to factors acting at the
individual level.

Pattern-Oriented Microanalysis

My colleagues and I (Railsback and Harvey, in
review) developed an approach to microanalysis
that allows us to test and possibly reject models of
agent traits, and therefore infer what
characteristics of agents can produce realistic
emergent responses at the system level. The idea
for this approach came from the “pattern-oriented”
approach to ecological modeling recommended by
Grimm et al. (1996). A similar approach was
proposed by Clark and Mangel (2000) for testing
models of decision making by individual animals.

Grimm et al. (1996) suggest that ecological
models should be designed to address specific
patterns observed in nature. Modelers should
identify important observed patterns and attempt
to understand and model the mechanisms that
cause the patterns. This is a way to focus a
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modeling study, providing guidance on such
issues as how aggregated the model should be and
what scales are relevant. To us, the key benefit to
pattern-oriented modeling is that it assures that the
model produces predictions suitable for testing:
models can be tested by whether they reproduce
the patterns the model was designed to address.

Pattern-oriented analysis can be applied to
complex systems by using it as a way of
identifying and testing hypotheses about how
individual agents behave. The following steps can
be used; these constitute the microanalysis phase
defined by Auyang (1998).

(1) Define a set of “testing patterns”, observed
patterns of system-level (or individual) responses
to known stimuli that the ABM is designed to
explain and reproduce. These patterns may be
identified before the model is designed as a way to
guide model development; or, if the model has
already been designed, the patterns are identified
before model testing begins so the modeler cannot
be accused of picking only those testing patterns
that confirm the model’s formulation.

Useful patterns are often easily extracted from
existing literature on the system being studied.
Picking test patterns driven by a wide range of
stimuli allows microanalysis to be more
comprehensive and conclusive, but the model
must include the mechanisms driving the patterns.

(2) Build a model that includes the mechanisms
and agent traits believed to drive the testing
patterns. The ABM must be designed to
reproduce the test patterns as an emergent result of
simpler agent behaviors. Modelers must be sure
that the test patterns are emergent responses of
the model and are not hardwired in!

(3) Pose alternative rules for agent behavior as
hypotheses that will be tested. It can be most
interesting to pose as alternative agent behaviors
(a) maximizing the kind of simple, direct measures
of fitness that are possible in ABMs vs. (b) the
kinds of derived surrogates for fitness often found
in conventional models.

(4) With the ABM, simulate the conditions
under which each test pattern has been observed to
occur. Repeat the simulations with each
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alternative agent behavior rule. Reject rules that
do not cause the test patterns to emerge from the
model, and accept rules that do.

Completion of these steps allows the modeler
to at least reject model rules that fail to produce
emergence of the test patterns, and, perhaps,
identify rules that succeed in producing realistic
emergent system-level behavior. These results are
likely to allow very meaningful and general
inferences to be drawn.

An Unattractive Alternative: Testing Against
Response Magnitudes

A key advantage of the pattern-oriented
approach is that it allows testing of a model
against patterns of observed system responses
instead of against the magnitude of observed
responses. In other words, it allows us to test a
model without having to go through the expensive,
tedious, and often impossible steps necessary to
attempt simulation of the exact conditions under
which the test behavior was observed, and allows
us to avoid the statistical pitfalls of comparing
model results to observations. The following are
reasons why the alternative to pattern-oriented
analysis of testing ABMs by direct comparison to
the magnitude of observed system responses is -
unattractive.

The first reason is the well-known “butterfly
effect”. Even models that accurately capture the
mechanisms driving a complex agent-based
system may fail to reproduce observed responses
if the system is highly sensitive to initial
conditions.

Secondly, it is often very difficult to simulate a
system precisely enough to expect response
magnitudes to be testable. It can be relatively
simple and easy to modify an ABM to simulate
the conditions under which a well-understood
response pattern should emerge. For example, if it
widely observed in business that people spend
more money on video games in winter than
summer, then a model to explain this pattern need
only include the mechanisms driving spending on
video games and be run simulating winter vs.
summer conditions. On the other hand, testing a
model against response magnitudes requires (1)
reproducing in the model the magnitude of all the
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forces driving the response and (2) correct
estimation of all the parameters linking the driving
forces to the agent response. Such quantitative
information is rarely available with sufficient
completeness and accuracy. As opposed to testing
the magnitude of responses, the pattern-oriented
approach allows us to test an ABM even when
input data and parameter values are relatively
uncertain. The focus remains on getting the
mechanisms right instead of on unnecessary detail
and calibration.

Third, attempting to reproduce observed
response magnitudes generally requires calibration
of the model, and often the only data available for
calibration are the same data used to test the
model. Rarely are all of a model’s parameters
known well enough to test the model without
calibration; usually, calibration is used to estimate
values for important but uncertain parameters by
comparing model results to observed data. Data
used for calibration are no longer useful for testing
the model, so typically the data available for
comparison to model predictions are split between
those used for calibration and those used for
testing. Splitting the data in this way reduces the
power of both calibration and testing. Because
they do not depend on accurately predicting the
magnitude of observed responses, pattern-oriented
tests can be useful with little or no calibration,
preserving more of the data for model testing.

Fourth, identifying a comprehensive range of
independent tests is much more likely with the
pattern-oriented approach. A wide range of
system or individual response patterns are often
readily obtained from the literature, along with
sufficient understanding of the stimuli causing the
pattern to allow the pattern to be reproduced in an
ABM. Given the difficulty and expense of testing
an ABM’s ability to reproduce the magnitude of
system responses, it is often unlikely that a diverse
and comprehensive set of such tests could be
performed.

The pattern-oriented approach also avoids the
temptation to compare model results to observed
responses statistically. Conventional hypothesis
testing statistics are often unhelpful for testing
ABMs. First, statistical comparisons are
inappropriate between data sets where uncertainty
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results from different sources. Results from
replicate ABM simulations have variability due
only to the model’s stochastic components, which
1s not comparable to the variability typically
observed in biological or human systems, which
also results from external driving forces and initial
conditions. Statistical comparisons (e.g., t-tests)
are useful for comparisons among ABM results,
but rarely valid for comparing ABM results to
observed data. Secondly, ABMs can produce
output with arbitrary and high sample sizes that
exaggerate statistical significance. We can easily
observe each of a model’s thousands of agents, so
sample sizes are very large. Virtually any
difference becomes statistically significant with
such sample sizes, even differences that are clearly
not otherwise meaningful. The pattern-oriented
approach avoids these problems.

EXAMPLE: HABITAT SELECTION
BY STREAM TROUT

We applied the pattern-oriented approach to
test model rules for how fish select habitat among
patches varying in probability of surviving
mortality (predation, etc.) and food intake
(Railsback and Harvey, in review). This
experiment is summarized here as an example
pattern-oriented model analysis.

The primary individual behavior simulated in
our trout model is movement to select new habitat,
in reaction to changes in river flow, temperature,
and trout density. These factors affect the
spatially explicit food availability (which is
affected by hydraulics and competition for food
with other trout) and mortality risks. Habitat
selection is simulated at a daily time step and
spatial scale of a stream reach (~200 m length) and
patch size of several m”. Habitat selection is
simulated by letting each fish move to the habitat
patch providing the highest fitness, where fitness
is defined as the expected probability of surviving
and growing to reproductive size over a future
time horizon. The probability of surviving over
the time horizon is a function of food intake as
well as predation risks— if a fish does not obtain
sufficient food, it risks starving to death within the
time horizon. (We found this approach to
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modeling habitat selection to have numerous
advantages over methods used in previous IBMs;
Railsback et al. 1999.)

The trout model’s ability to simulate realistic
emergent habitat selection was analyzed by testing
six patterns of habitat shifts observed in real trout.
From the fisheries literature, we identified these
patterns:

e  Where food availability is highly variable
over space, fish exhibit “hierarchical” feeding
behavior. The dominant (largest) fish gets the best
feeding site, and if the dominant fish is removed
the next-dominant fish moves into the best site and
other fish move up in the hierarchy.

e  Adult trout respond to flood flows simply
by moving to the stream margins where velocities
are low.

e Juvenile trout use higher velocities on
average when in competition with another, larger,
trout species.

e Juvenile trout use faster and shallower
habitat on average in the presence of predatory
fish.

e Trout user higher velocities on average
when temperatures are higher (metabolic rates
increase with temperature, so more food is needed
to avoid starvation).

e  When food availability is decreased, trout
shift to habitat with higher food intake and higher
mortality risks.

We simulated the conditions under which these
response patterns have been observed. We posed
three alternative rules as hypotheses for how trout
select habitat. In addition to our approach
(maximizing predicted survival and growth to
reproductive size over an upcoming time horizon),
we tested (1) maximizing the current growth rate
and (2) maximizing the current survival
probability (which is not a function of food intake
because fish do not starve to death in one day).

Simulations with movement to maximize
current growth reproduced three of the six habitat
selection patterns, maximizing survival
reproduced two patterns, and our “maximize
predicted survival and growth” approach
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reproduced all six patterns. Two patterns (shifts in
habitat with temperature and food availability)
were not reproduced by models that consider only
current growth and risk, but were explained by our
objective that simulates prediction of how future
starvation risk depends on current energy reserves
and food intake. Ecological models of habitat
selection have almost all been based on current
growth or risk, and our experiment provides strong
evidence that these conventional models cannot
explain important observed behaviors. Our
experiment provides some of the first evidence
that realistic models of animal behavior need to
consider how animals make predictive decisions.
(This result is no surprise to those familiar with
complex systems research— predictive ability is
key to the emergence of complex, lifelike behavior
from adaptive agents; e.g., Holland 1995.)

This experiment illustrates that we can use
ABMs and pattern-oriented analysis to identify
individual traits that produce realistic emergent
population-level responses. (Animations of some
of the experimental simulations are at:
http://math.humboldt.edu/~simsys/EcolArch/.)

CONCLUSIONS

Meaningful results can be obtained from agent-
based simulations when the simulations are
designed to test model assumptions against
observed patterns of system-level response.
Comparing alternative models of agent traits by
their ability to cause emergence of realistic
system-level behavior patterns can be a powerful
way to infer the mechanisms by which agents
respond to each other and their environment.
Testing models against patterns of response
instead of against the magnitude of observed
responses allows model mechanisms to be tested
comprehensively with a reasonable level of effort
and expense.
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