Natural Resources and Environmental Issues

Volume 8 SwarmFest 2000 Article 3

2001

Writing fast models in Swarm

Marcus Daniels
Swarm Development Group, Santa Fe Institute, NM

Follow this and additional works at: https://digitalcommons.usu.edu/nrei

Recommended Citation

Daniels, Marcus (2001) "Writing fast models in Swarm," Natural Resources and Environmental Issues: Vol.
8, Article 3.

Available at: https://digitalcommons.usu.edu/nrei/vol8/iss1/3

This Article is brought to you for free and open access by

the Journals at DigitalCommons@USU. It has been

accepted for inclusion in Natural Resources and /[x\

Environmental Issues by an authorized administrator of /\

DigitalCommons@USU. For more information, please IQ’ .()Al UtahStateUniversity

contact digitalcommons@usu.edu. (\MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/nrei
https://digitalcommons.usu.edu/nrei/vol8
https://digitalcommons.usu.edu/nrei/vol8/iss1/3
https://digitalcommons.usu.edu/nrei?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/nrei/vol8/iss1/3?utm_source=digitalcommons.usu.edu%2Fnrei%2Fvol8%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Daniels: Writing fast models in Swarm
2000 Swarm User Group Meeting . 11

WRITING FAST MODELS IN SWARM

MARCUS DANIELS

Swarm Development Group, 624 Agua Fria, Suite 2, Santa Fe, New Mexico 87501, Email:
mgd@swarm.org

Abstract. Execution performance is an important
practical issue for agent based modeling. This
document traces the path of a Java Swarm model
from performance profiling and evaluation
through to redesign and reimplementation of a
much faster sibling model. This document is
available on the World Wide Web

(http://www .santafe.edu/~mgd/swarmfest2000/per
formance.html). Additional example code is
available here
(ftp://ftp.swarm.org/pub/swarm/src/users-
contrib/anarchy/java_performance-0.0.tar.gz).

GOAL

After a variety of internal optimizations to the
Java layer of Swarm 2.1 and with identical
parameters in batch mode, the Java
implementation of Heatbugs runs four to five
times slower than the Objective C version
depending on the Java virtual machine used. Why
is this and what can be done about it?

BACKGROUND
Typing: Theory vs. Practice
Objective C and dynamically-typed languages

In Objective C, and other dynamically-typed
languages, the idea is that information about
objects live in the objects themselves and that
some appropriate level of typing emerges from
experience in using those objects, evolving the
taxonomy of objects.

Dynamically-typed languages can be useful for
finding types during exploratory bottom-up
programming because as components grow in
complexity one component can be combined with
another so long as the modeler is prepared to

Published by DigitalCommons@USU, 2001

handle all the exception cases evident from
looking at the types found at the objects at the
interfaces (e.g. using conditionals). Since there is a
natural drive to reduce the number of exception
cases (in order to manage complexity), one seeks
to evolve interfaces until everything fits together
in a natural way.

One practical problem with Objective C is that
the exception cases are typically handled in a
violent way: by core dumps. Other languages, like
Common Lisp have object-oriented condition
systems that can be used to build taxonomies of
the exception cases themselves in an interactive
environment.

Java and statically typed languages

Java aims to put more typing information in the
hands of the compiler, by encouraging the use of
many types.

* The compiler can see more errors ahead of
time.

* The compiler doesn't have to do things in a
general way. When it knows lots of specific
constraints of a situation, it can (in principle at
least), write faster code.

It is one thing to say that A'is like A and AB is
a superset of A, and to insist that B is not A, but it
is quite another to do a better job with AB than
with A. Unfortunately, what often happens is that
compilers don't even end up seeing the conceptual
level at all, with basic data structures being kicked
out to libraries which don't benefit at all from
obvious global optimizations.

To a considerable extent Java suffers from this.
Very common data structures (e.g., java.util) that
are used as standard equipment everywhere live it
external libraries and the compiler has no special

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 3
12 Natural Resources and Environmental Issues

knowledge about them. Of course, C punts
completely on this, but at least the C programmers
know nobody is looking out for them.

Functional programming languages

Languages like ML, Haskell, and Mercury have
advanced type systems that really do use type
information to improve the quality and correctness
of code. Unfortunately these languages do not
have the kind of mindshare that Java and C do.

Multilanguage Layer
Java Native Interface

The Java API of Swarm is provided via a
standard Java interface called Java Native
Interface (JNI). NI is a way to take native-code
libraries like Swarm and make them available in
Java.

JNI provides the features below. Together they
provide the low-level substrate for the Swarm Java
layer. Each item has performance implications.

* A Cinterface for Java. This lets C
programs interrogate and modify Java objects.

* Compared with compiled C or Java code,
these requests are done through calls (not inline
code) which can introduce costs from conservative
argument checking that wouldn't be needed if the
context was known.

* Type lookups are done by name or by
encoding strings. These are extra conversions. (In
practice, these costs are not hard to avoid.)

* A memory management model for giving
C code control over what the Java garbage
collector is allowed to move or destroy.

This is not a direct cost, however, with JNI is it
very easy to get resource leaks on the object
handles that JNI provides. Luckily, Swarm hides
these details from modelers. This issue is related
to multiplicity of objects, which will be mentioned
in a moment.

* A Cnaming convention (or “mangling’)
that makes C functions appear as methods in Java
classes.

This is a cost in the sense that there is an extra
function, an otherwise unnecessary level of

https://digitalcommons.usu.edu/nrei/vol8/iss1/3

indirection, that only exists to make Swarm
“appear’ in Java land.

Java Virtual Machine

One of the main advantages of Java is its
portability. There is a specification of what a “Java
machine' looks like and different kinds of
compilers can target that machine. Likewise, there
are different ways to implement this virtual
machine (VM):

* Interpreters

* To interpret Java virtual machine
instructions (bytecode), a program is needed that
reads instructions one by one and then maps them
to fixed implementations of those instructions.
Interpreters, although easy to implement and trace,
are often less than half as fast as native code
because so much time is spent just processing and
calling instruction implementations.

* Just In Time Compilation (JIT). The basic
idea with Just in Time compilation is to convert
frequently used code patterns into native code that
can be cached and glued together as needed.

* -Optimization benefits need to amortize
costs

* + Potential for global optimizations from
observed program dynamics

* - Complex and system dependent
implementation

* 4+ Speed without comprimising on
portability

* Hybrid Ahead-of-time/Just-in-time

Static compilation with either of the above.
There is now technology available (Kaffe/gcj) to
compile Java classes to native code and load them
as shared libraries as if those libraries were Java
bytecode files. This can be convenient because
when “turbocharging' a model is beneficial for big
runs but not essential for development.

* + Benefits of traditional compilation
technology (e.g. chess vs speed chess)

» - Statically compiled code becomes
“opaque' to Java-level profiling and debugger

Daniels: Writing fast models in Swarm

2000 Swarm User Group Meeting 13

» - Statically compiled portions must be
compiled on any target that the Java code is to run

Finally, there is the option of pure static
compilation of Java code in cases where
portability is not a concern.

Multiplicity of object types

Under the hood of a Java Swarm model is the
Objective C Swarm kernel, and thus two
coexisting language “runtimes'. A runtime includes
the data structures and built-in functions that the
language requires above and beyond the compiler.

In some cases a runtime will be fairly
simple (e.g. Objective C), in other cases it can
have many datatypes and features (e.g. Common
Lisp).

Except in cases where there is a way to unify
object representations (e.g. g++ and gcj do this), it
is necessary to have a directory to associate one
kind of object with another (to the extent there is a
common denominator).

Consider the case of a Java Swarm model. An
agent is implemented in Java and it has a step
method that runs every time step. However, the
Swarm activity library deals with Objective C
classes like “ActionTo' that only know about
Objective C objects and methods. In this situation
it is necessary to introduce a proxy that looks like
an Objective C object but can talk to the Java
world when the time comes.

But here's the rub: when that time comes (quite
frequently, actually), it's necessary to figure out
what Java object a proxy actually represents and
then make the method invocation. Even though
this lookup and invocation can be implemented in
a fairly efficient way, it can become a more and
more expensive cost as a model becomes more
fine-grained. (Swarm provides native-language
callouts that can be used to avoid this cost -- it's
the general case that must be used sparingly.)

PROFILING, ANALYSIS, AND RE-ENGINEERING

The first task in making a program go faster is
to find out where it is slow. Both Java and
[Objective] C provide a feature called profiling
which accumulates a dataset on the time spent in

Published by DigitalCommons@USU, 2001

each method or function as a given program runs.
In the case of Java, the runtime simply has
instrumentation in the virtual machine that tracks
every call the machine makes. C tracks where time
is spent by sampling the program counter and
building a histogram.

Unmodified Java Heatbugs

Below we use a Swarm built for Kaffe with the
"-prof" option, and then run some text processing
on the output to see the most expensive methods:

e cost of individual methods in milliseconds

e cumulative cost of those methods in
milliseconds

» full class name and argument types

(Java methods are polymorphic, so the
argument types are necessary information for
identification.)

$ time javaswarm -prof StartHeatbugs

You typed “heatbugs -b' or “heatbugs --batch'’
so we're running without graphics.

Heatbugs is running for 300 timesteps quitting
at 300

real Om37.410s
Om35.100s

Sys Om0.110s

user

$ awk *{ print $3, $2, $6 }’ prof.out | sort -g |
egrep -v ’e\+|clockTick:’ | tail -8

1294.42 1294.42
swarm/space/Diffuse2dImpl.putValueatX Y (III)
Ljava/lang/Object;

1424.4 1424.4 A
swarm/random/UniformDoubleDistImpl.getDoubl
eWithMin$withMax(DD)D

1519.86 1519.86
swarm/random/UniformIntegerDistImpl.getIntege
rWithMin$withMax(IDI

1575.28 1575.28
swarm/space/Grid2dImpl.getObject AtX$ Y (IDLja
va/lang/Object;

: Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 3
14 Natural Resources and Environmental Issues

1676.89 19943.2
HeatSpace.findExtremeTypeXY (ILHeatCell;)I

3839.54 3839.54
swarm/space/Grid2dImpl.putObjectatXY (Ljava
/lang/Object;IT)Ljava/lang/Object;

17163.3 17163.3
swarm/space/Diffuse2dImpl.getValue AtX$ Y (IDI

34223.8 34223.8
swarm/activity/SwarmActivitylmpl.run()Lswarm/
defobj/Symbol;

The last line can be ignored; the discrete event
simulator is native code that appears opaque to
Java. However, there are two useful facts here:

» get and put operations are taking a lot of
time. These are very simple methods that just read
and write a fixed matrix. Their expense implies
object directory lookup costs. Eliminating these
costs would result in 50% speed up! (And is surely
skewing the profile.)

» Significant time is being spent in
findExtremeTypeXY, which is expected since
each heatbugs is motivated by the desire to find a
more comfortable temperature.

Eliminating the object directory lookup costs

The get and put operations that are
accumulating runtime are for checking diffusion
heat space values and for updates to grid that
holds the heatbugs themselves. These data
structures are Objective C data structures accessed
through the Java layer, so there is a lot of time
being spent by the layer converting back and forth
between Java wrapper objects for Objective C
classes and the Objective C instances themselves.
The direct way to get rid of this cost is to make a
homogeneous implementation for these hot spots.

Since this is a Java implementation of
Heatbugs, we want more Java not less Java;
replacements for the diffusion space and for the
grid that the heatbugs live on. Although these
classes are not complicated, there's no need to
implement them again since the RePast
(http://repast.sourceforge.net) project already has

https://digitalcommons.usu.edu/nrei/vol8/iss1/3

implementations that very nearly mirror Swarm's
in Java.

First cut: dropped in the RePast code
Changes.—
* HeatSpace from RePast's heatbugs
* Heatbug from RePast's heatbugs

* Modified Swarm's HeatbugModelSwarm
to use them

* Modified Swarm's
HeatbugObserverSwarm to use RePast's
Object2DDisplay, Value2DDisplay, ColorMap,
and DisplaySurface classes. (Not relevant to this
profiling example, but as a simple way to confirm
that the heatbugs are doing their thing.)

A step sideways.—

$ CLASSPATH-=.:colt.jar:repast.jar
javaswarm -prof StartHeatbugs -b

You typed ‘heatbugs -b’or ‘heatbugs --batch’
so we're running without graphics.

Heatbugs is running for 300 timesteps

quitting at 300
real 0m36.263s
user 0Om34.130s

sys 0OmO0.110s

$ awk '{ print $3, $2, $6 }' prof.out | sort -g |
egrep -v 'e\+|clockTick:' | tail -4

519.98 519.98 java/lang/Math.floor(D)D

666.07 666.07

java/lang/Throwable.filllInStackTrace()Ljava/lang/
Throwable;

838.183 920.211 java/util/Vector.<init>ID)V

1040.54 1040.54
swarm/SwarmEnvironment.initSwarm(Ljava/lang/
String;Ljava/lang/String;Ljava/lang/String;[Ljava/
lang/String;)V

2735.61 2735.61
uchicago/src/collection/DoubleMatrix.getDouble A
t(IDD

Daniels: Writing fast models in Swarm
2000 Swarm User Group Meeting 15

3782.95 4631.77
java/util/AbstractList.add(Iljava/lang/Object;)V

16101.524772.3
uchicago/src/sim/space/Diffuse2D.diffuse()V

33308.6 33308.6
swarm/activity/SwarmActivityImpl.run()Lswarm/
defobj/Symbol;

However, the enemy has shown itself: notice
the cumulative cost of the ‘diffuse’ method is more
than half of total runtime!

Second cut: re-implemented HeatSpace,
Diffuse2D, and Discrete2D.

Changes.—

* Changed Diffuse2D to use a Java array
rather than functionally accessing a RePast
DoubleMatrix.

* Eliminated use of “double' and “long' in
diffusion arithmetic, instead doing prescaling and
normalization. Unlike C (on a 32 bit box), “long’
in Java is a eight byte integer for which arithmetic
1s slower, switch to using “int’ which is like “long’
in Objective C.

* Avoided redundant modulus computations
on coordinates by explictly handling the boundary
~ conditions outside of loops

* By re-sorting the profiling information it
becomes evident findExtremeType is responsible
for the AbstractList.add, thus:

» replaced use of Vector for tracking equal
heatcells with preallocated x and y coordinate
arrays

» changed HeatSpace to inherit the matrix
for the cell search

* Do matrix loops in row major order in the
hopes of getting better cache behavior.

Published by DigitalCommons@USU, 2001

YEAH, BABY!

The new model beats batch Objective C
heatbugs. If the Objective C model is compiled
with -pg (for profiling information provided by
GCC) the Objective C model loses another .2
seconds. Java profiling is more costly still.

$ CLASSPATH-=.:colt.jar javaswarm -prof
StartHeatbugsBatch -b

You typed “heatbugs -b' or “heatbugs --batch'
so we're running without graphics.

Heatbugs is running for 300 timesteps

quitting at 300
real Om7.839s
user 0m5.760s

sys 0mO0.060s

$ awk *{ print $3, $2, $6 }’ prof.out | sort -g |
egrep -v ’e\+|clockTick:’ | tail -10
131.358 138.769

java/lang/Character.getCharProp(C)Ljava/lang/Ch
aracter$CharacterProperties;

133.173 133:173
java/lang/Runtime.loadFilelnternal(Ljava/lang/Stri
ng;)Ljava/lang/String;

168.771 6531.21
StartHeatbugsBatch.main([Ljava/lang/String;)V

232.407 1957.56
space/Diffuse2D.computeRow()V

599.957 893.807
HeatSpace.findExtreme(Ill)Ljava/awt/Point;

1038.95 1038.95
swarm/SwarmEnvironment.initSwarm(Ljava/lang/
String;Ljava/lang/String;Ljava/lang/String;[Ljava/
lang/String;)V

1294.78 1294.78
space/Diffuse2D.computeVal()V

4906.42 4906.42
swarm/activity/SwarmActivitylmpl.run()Lswarm/
defobj/Symbol;

Natural Resources and Environmental Issues, Vol. 8 [2001], Art. 3
16 Natural Resources and Environmental Issues

$ time ./heatbugs -b

You typed ‘heatbugs -b’ or ‘heatbugs --batch’,

so we're running without graphics.
Heatbugs is running for 300 timesteps.
real Om8.876s
user 0m7.840s
sys 0m0.020s

GIMME MORE OF THAT!

The results above are using a Kaffe snapshot
from 2000-03-07 using the new JIT3 compiler on
an 1686 Debian 2.2 box. The same Kaffe build

includes a feature to load in shared libraries

compiled by the GNU Java Compiler (gcj) as if

https://digitalcommons.usu.edu/nrei/vol8/iss1/3

they were Java bytecode libraries. When we do
this, we improve performance by another 36%, a
factor of 9.6 speed-up from the original Java
Heatbugs.

$ time CLASSPATH=.:jheatbugs.so:classes
Jjavaswarm -prof StartHeatbugsBatch -b

You typed ‘heatbugs -b’or ‘heatbugs --batch’
so we’re running without graphics.

Heatbugs is running for 300 timesteps
quitting at 300

real Om5.788s

user Om3.660s

sys OmO0.110s

	Writing fast models in Swarm
	Recommended Citation

	untitled

