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A Study of the Saline Lakes of the Esperance Hinterland, Western Australia, with 

Special Reference to the Roles of Acidity and Episodicity 
 

Brian V. Timms
1
 

1School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW Australia, 2308; E-mail: brian.timms@newcastle.edu.au 

 
ABSTRACT 

 

Most saline lakes are alkaline, but acid groundwaters in 
some southern areas in Western Australia cause some to 
have pHs as low as 3. Their fauna is severely restricted to 
an endemic brine shrimp (Parartemia sp.), a copepod 
Calamoecia trilobata, and two species of ostracods, 
including Australocypris bennetti. Nearby alkaline salt 
lakes show an attenuating fauna with increasing salinity 
with dominance by various crustaceans particularly 
Parartemia spp., various ostracods, copepods, Daphnia 

(Daphniopsis) truncata, Haloniscus searlei and snails 
including Coxiella glauerti, as is typical in salinas in 
southern Australia. When both types of lakes fill with 
episodic rain, their salinity is vastly reduced and pH 
approaches neutrality. Such lakes are colonized by insects 
and by large branchiopods. Many of the latter are new to 
science and occur only in these brief hyposaline stages. 
Such a unique assemblage is in danger of extinction due to 
hypersaline mining waste waters being dumped in saline 
lakes and to secondary salinization. 
 
INTRODUCTION 

 
The essential characteristics of Australia’s numerous saline 
lakes are now relatively well-known (e.g. Williams 1984, 
1998), including those in southwestern Australia (Pinder et 
al. 2002, 2004, 2005). This has been achieved by many 
broad scale studies (e.g. Geddes et al. 1981 on southwestern 
Australia) and by some more detailed studies of salt lake 
districts (e.g. Halse 1981 on the Marchagee lakes in 
Western Australia (WA)). While these studies have 
concentrated on the predictably seasonal lakes in southern 
Australia, some information is also available on typically 
episodic lakes of the inland (e.g. Timms et al. 2006 on the 
Carey system in the northern goldfields of WA). However 
there are few data showing the effect of unusual episodic 
events in the south, or on those saline lakes subject to rising 
acid groundwater due to anthropogenic influences. 
 
There are thousands of small saline lakes inland of the town 
of Esperance in south-western Australia. Knowledge on 
them is restricted to one lake included in the Geddes et al. 
(1981) study, plus three in the Brock & Shiel (1983) study 
and three in the Pinder et al. (2004) study. These reveal 
typical alkaline lakes, seasonally filled and of low biotic 
diversity with dominance by crustaceans, including 

Parartemia spp., and ostracods. However, within the 
Esperance hinterland there are numerous natural acid 
salinas (T. Massenbauer, pers. comm.) and long-term 
rainfall records reveal there are episodic summer periods of 
filling in addition to fillings during the normal winter-
spring rainfall (A. Longbottom, pers. comm). In view of 
salinization in wheatbelt lakes which often involve 
acidification of saline lakes (Halse et al. 2003) and the 
unpredictable nature of episodic fills (Timms 2005), this 
study aims to elucidate the characteristics of naturally acid 
saline lakes and the effect of an episodic summer fill. This 
was done in a background of normal seasonal filling and the 
dominant alkaline lakes of the area. 
 

 
 
Figure 1–Map of the Esperance area showing towns and major 
roads and the position of the 41 lakes studied. 

 

The Lakes 

 
Thousands of small lakes lie on the Esperance sandplain 
within ca 100 km north and northeast of Esperance (Figure 
1; Morgan & Peers 1973). Most are roundish to elongated, 
very shallow and saline and all lie in swales of old dunes 
most of which are aligned in a general east-west direction. 
They tend to fill in winter-spring and dry in summer-
autumn, less reliably in the north where rainfall is less, and 
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also tending to be of higher salinity in the north. The greater 
majority lie in carbonate rich sands, but mainly in the north 
these deposits are very thin or absent so that granitic rocks 
or sandstones/siltstones lie near the surface (Morgan & 
Peers 1973). This fundamental difference in geology means 
that the latter group of lakes tends to be acidic from 
emerging acidic groundwaters while those on calcareous 
substrates are alkaline. Fifteen of the 41 lakes chosen were 
acidic, a much greater proportion than in nature. Even more 
were targeted, but they were so saline and/or so acidic that 
no macroscopic life was present; they are represented by 
Lake No. 1 in this study. The majority of lakes chosen were 
1 to 10 ha in size and were < 30 cm deep (Appendix 1); this 
group likely over-represents the smaller lakes in the region. 
Many lakes are moving slowly westwards so that westward 
shores are steeper and eastern shores have spits and lunettes 
and may even be segmented (Timms 1992). The latter may 
mean the two parts can be different hydrologically and in 
salinity and hence have a somewhat different fauna. This 
was explored only in one basin (Lakes 34 & 35).  

 
METHODS  

 
The 41 chosen lakes were visited four times: August and 
September 2005 and January and March 2007. In addition 
some data are available on a few of the lakes (Nos. 5, 9, 18, 
20, 22, 27, 28) from August 2006 to January 2008. The 
study was interrupted by drought during the normal wet 
season in 2006 and recommenced when episodic summer 
rain fell in early January 2007. Some sites were not 
sampled in September 2005 and March 2007 because they 
had already dried. Of the 41 sites studied (Table 1, 
Appendix 1), 8 were sampled twice, 24 three times and 9 
four times. Surprisingly, cumulative species richness was 
not affected by sample number (r = -0.0462, not significant 
at 0.05%). 
 
At each site a surface water sample was taken about 10 m 
from the shore and conductivity determined with a Hanna 
HI 8663 m. Conductivities were converted to TDS in g l-1 
using the formula of Williams (1966). The word salinity is 
used in the general sense; it is roughly equivalent to TDS, 
but the later includes dissolved organic matter as well as 
salts. Water clarity was measured with a Secchi tube 
calibrated in NTUs. The pH was determined with a Hanna 
HI 8924 m.  
 
All biological sampling was done by wading, as most sites 
were shallow enough. Zooplankton was collected with a 
plankton net of mesh size 159 �m mounted on a pole and 
with an aperture 30 x 15 cm. It was trawled for 1 minute 
(sometimes longer when zooplankton was sparse) and the 
sample preserved in formalin. Species present were 
identified in the laboratory and their relative abundance was 

determined by counting the first 200 organisms seen in a 
representative subsample and then by scanning the whole 
collection looking for rare species. Phytoplankton samples 
were collected in September 2005 and January 2007, using 
a 35 �m mesh net, also on a handle. Samples were 
preserved immediately in Lugol iodine. 
 
Table 1–Summary of the physicochemical data in the study lakes. 
 

 

no. 

 

Site name* 

 

mean 

pH 

mean 

TDS 

g l
-1

 

mean 

turbidity 

(NTU) 

1 McRea 2.7 171 110 
2 Salmon Gums NE 5.2 146 217 
3 Highway Circle Valley 8.3 99 117 

4 Guest (West) 4.5 54 74 
5 Guest (Southeast) 4.8 42 44 
6 Logans 9.3 41 12 
7 Styles & Logan 5.0 98 26 
8 Styles & Kent 7.2 112 90 
9 Big Ridley 5.8 122 8 

10 Ridley W Little 5.2 131 42 
11 Ridley Near E 3.4 194 60 

12 Ridley Mid E 4.3 110 77 
13 Ridley Far E 5.8 70 160 
14 Styles & Lignite 8.1 116 127 
15 Lignite East 8.0 86 170 
16 Demspter Nth 3.2 122 41 
17 West Truslove 5.0 60 20 
18 Truslove Nat. Res. 4.5 136 173 
19 Coxs Rd 4.5 110 135 

20 Highway Scaddan 8.9 51 7 
21 Dempster Mid 9.2 31 7 
22 Styles South 7.8 79 325 
23 Norwood Rd 7.8 54 42 
24 unnamed Rd Scaddan 8.8 74 6 
25 unnamed Rd Scaddan 8.7 66 40 
26 Griffith  8.2 63 12 
27 Speddingup Nth 7.4 170 42 

28 Speddingup Sth 9.0 66 10 
29 Burdett  7.1 103 22 
30 Eld Rd 7.7 145 4 
31 Coolingup  8.9 53 8 
32 Kau Rock 8.5 70 46 
33 Kau Nat Reserve 8.2 60 10 
34 Kau Nat Res main 7.4 123 37 
35 Kau Nat Res cutoff 7.2 68 32 

36 Mt Nev  3.9 60 70 
37 Avondale 8.3 37 15 
38 Kau Rd 8.8 76 15 
39 Howick  7.7 58 40 
40 Heywood  8.9 59 7 

41 Berg  8.2 106 30 
* not one of the sites has an official name, these names refer to a 
nearby road or Nature Reserve.  
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Table 2–Crustaceans found in the inland Esperance lakes. 

 

Species 
Salinity 

Range g l
-1

 

pH 

Range 

Number of 

Records 

Lakes From Which Recorded 

 

Anostraca  

 Artemia parthenogenetica Bowen & Stirling 97-102 7.4-7.6 2 39 

 Parartemia cylindrifera Linder 12-140 7.6-8.2 16 6,20,21-23,31-33,37,40 

 Parartemia longicaudata Linder 87-240 7.3-8.0 10 14,27,34 

 Parartemia serventyi Linder 119-258 7.5-8.2 4 3 

 Parartemia sp. A 20-235 7.4-9.2 41 15,22,24,25,26,28-32,34,38,41 

 Parartemia sp. F 35-210 3.4-7.4 42 2,4,5,7-13,16-19,36 

 Branchinella affinis Linder 2.8-9 7.8-8.2 2 5,23 

Notostraca 

 Triops sp. near australiensis (Spencer & Hall) 27-31 9.3-9.9 2 6 

Spinicaudata 

 Limnadia sp. near cygnorum (Dakin) 2.8-15 5.8-9.8 4 4,5,26 

 Caenestheriella packardi (Brady) 2.8-9 7.8-8.2 2 5,23 

Cladocera 

 Alona spp 31-37 5.4-5.8 2 4,5 

 Daphnia carinata s.l.King  2.8 7.8 1 5 

 Daphnia (Daphniopsis) truncata (Hebert & Wilson) 15-84 6.9-9.5 14 20,23,24,26,31,33,40 

 Moina ?australiensis Sars 2.8-11 5.8-8.2 4 4,5,21,23  

Copepoda 

 Boeckella triarticulata Thomson 2.8 7.8 1 5 

 Calamoecia ampulla (Searle) 2.8 7.8 1 5 

 Calamoecia clitellata Bayly 45-102 8.2-9.4 9 20,31,33,39,40 

 Calamoecia salina (Nicholls) 46-110 7.4-9.2 15 15,22,24-26,28,38 

 Calamoecia trilobata Halse & McRae 54-63 3.8-3.9 1 36 

 Apocyclops dengizicus (Lepeschkin) 15-56 5.1-9.8 4 6,26,27,29 

 Metacyclops laurentiisae Karanovic 3-123 3.8-9.2 22 4,5,13,18,20,22,23,32,33,36,37,38 

 Metacyclops sp. 24-118 7.4-9.5 13 3,15,21,27,28,31,34,35,39,40 

Ostracoda 

 Australocypris beaumontii Halse & McRae 45-81 8.2-9.4 12 20,24,26,31,32,38 

 Australocypris bennetti Halse & McRae acid form 63-164 3.4-6.1 24 4,5,7,9-13,16-19,36 

 Australocypris bennetti Halse & McRae alkaline form 62-124 7.4-9.2 14 8,14,15,22,23,25,28,32,34,35,41 

 Australocypris insularis (Chapman) 52-102 7.6-8.3 5 3,21,33,37,39 

 Mytilocypris splendida (Chapman) 15-85 6.9-9.8 5 26,37,39 

 Cyprinotus edwardi McKenzie 15-35 7.8-8.4 3 23,33,40 

 Diacypris spp.1 15-164 3.4-9.8 77 all except 1,21,27,29 and 39 

 Platycypris baueri Herbst 24-128 3.8-9.5 48 3,4,7,10-15,18-26,28,32-35,37,40,41 

 Reticypris spp. 23-120 7.4-9.5 15 23,24,28,31,34,40 

Isopoda 

 Haloniscus searlei Chilton 15-102 6.4-9.8 26 15,20-22,24-26,31,33,35,37,38,40 

1at least five species present: D. dictyota De Deckker, D. spinosa De Deckker, D. compacta (Herbst), D. whitei (Herbst) and Diacypris sp.
 

 
Littoral  invertebrates  were  collected  with a 30 x 20 cm 
D-shaped net with 1 mm mesh. At each site, 15 minutes 
was spent collecting invertebrates on each trip, ample time 
for the species accumulation curve to plateau. Littoral 
samples contained animals from a variety of microhabitats, 
including nektonic, epiphytic, and epibenthic, but some 
eubenthic species such as polychaetes, chironomids and 
ceratopogonids were probably incompletely sampled. All 
collections were sorted on site and preliminary 

identifications made. For each species an estimate was 
made of abundance using a coarse logarithmic scale (0.1, 
0.5, 1, 1.5, 2, 2.5, 3, 4 for 1, 3, 10, 30, 100, 300, 1000, 
10000 individuals per 15 min collection). 
 
Some taxa could not be identified to the species level, either 
because of inadequate taxonomic knowledge (e.g. Coxiella 
spp., many dipteran larvae) or because unknown variability 
meant  it  was  too  time  consuming  a  task  (e.g. Diacypris 
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–De Deckker 1981). Fortunately, work by Halse & McRae 
(2004) allowed acid-alkaline forms of Australocypris 

bennetti to be separated and hence distinctions made 
between the fauna of acid and alkaline lakes. Possible 
similar distinctions in Diacypris have been missed, 
probably dulling the difference between lakes. 
 
Relationships between the 40 sites (site 1 had no animals) 
were investigated using PRIMER (v5) software (Clarke and 
Gorley 2001). Littoral and planktonic invertebrates were 
analysed together. The abundance data of the invertebrates 
was log (N+1) transformed prior to multivariate analysis. 
To elucidate the influence of the episodic filling, data for 
the most affected sites (numbers 4, 5, 23, 26 and 39) were 
separated into seasonal filling collections and episodic 
collections and a few acid (numbers 7, 9, 13, 18, 36) and 
alkaline sites (numbers 22, 31, 37, 38) of similar salinity 
added for comparisons. Non-metric multidimensional 
scaling, based on the Bray-Curtis similarity matrix, was 
used to represent assemblage composition or physical-
chemical conditions in two-dimensional space. Relative 
distances apart in ordinations represent relative 
dissimilarity. In the ordination on physicochemical features, 
only pH, salinity and turbidity were used, as there was no 
relationship with size or depth. 
 

RESULTS 

 
The 41 lakes ranged in conductivity from 5–250 mS/cm, i.e. 
from 3.5–198 g l-1 salinity, and from pH 2.1 to 9.8 (Table 1, 
Appendix 1). Even higher salinities and lower pHs were 
encountered in exploration of lakes, mainly to the northeast 
of Grass Patch and Salmon Gums (author’s unpublished 
data and K. Benison, pers. comm.). The highest pH values 
were recorded on warm summer afternoons, suggesting 
photosynthesis had increased apparent alkalinities. 
Turbidities ranged from 2–450 NTU (Appendix 1) and in 
alkaline lakes were haphazardly influenced by resuspension 
of the fine calcareous deposits if wind had occurred shortly 
before or during the sampling.  
 
Only two species of aquatic plants were found in the lakes 
and then only in alkaline waters: Lepilaena preissii (Lehm.) 
F. Muell in lower salinities (to 54 g l-1) and Ruppia 

tuberosa   Davis  &   Tomlinson  at  higher  salinities  (to 
95 g l-1). Both are species typical of seasonal ephemeral 
systems (Brock & Lane 1983). 
 
From limited collections, approximately 33 taxa of 
phytoplankton were identified in the lakes over the two 
sampling periods, 27 taxa in 2005 and 31 taxa in 2007 (Joan 
Powling, Melbourne University, pers. comm.). The list 
comprises 15 diatoms, the most common of which were 
halophile species of Nitzschia and Chaetoceros, two 
unidentified dinoflagellates, 10 green algae including the 

halophile flagellate Dunaliella salina, and six filamentous 
cyanobacteria including Nodularia spumigena. Diatoms 
were more diverse in the winter collection of 2005 but were 
rare in the low pH sites in both years. Dunaliella was very 
common in three sites in 2007 with high conductivity and 
very low pH. A filamentous green alga, cf. Oedogonium sp. 
was common in three sites in 2005 and two sites in 2007, 
which had a low pH and moderately low conductivity. 
Nodularia was found only in the summer sampling of 2007 
in sites of moderate conductivity.  
 
Seventy taxa of invertebrates, representing about 75 
species, were encountered in the 41 lakes (Tables 2 and 3). 
Widespread dominant species included crustaceans 
Parartemia sp. a and sp. f (see Timms 2004 for explanation 
of notation), Australocypris bennettii, Diacypris spp., 
Platycypris  baueri and the snail Coxiella glauerti. A 
further  nine  crustacean   taxa   (Parartemia   cylindrifera,  
P. longicaudata, Daphnia (Daphniopsis) truncata, 
Calamoecia clitellata, C. salina, Metacyclops laurentiisae, 
Australocypris beaumonti, Reticypris spp., and Haloniscus 

searlei) were common, together with just three beetles 
(Antiporus gilberti, Berosus spp. and Necterosoma 

penicillatum) and a rotifer (Hexarthra nr fennica) (Table 2 
& 3). Although similar numbers of insects and crustacean 
taxa were recorded, insects were far less common and 
moreover, restricted to much lower salinities (Tables 2 & 
3). The dominant crustaceans together with the two 
common Parartemia species were by far the most salt 
tolerant (Table 2).  
 
A seasonal study of seven of the lakes from August 2006 to 
December 2007 added an average of 1.4 species to each 
lake’s list, resulting mainly from the unusual summer filling 
(Timms et al. 2008).  
 
Tadpoles of the frog Littoria cyclorhynchus (Boulenger) 
grew in Lake 4 during January to March, 2007, after it had 
been markedly reduced in salinity and increased in pH by 
the  episodic  rainfall.  It  occurred over a salinity range of 
3-11 g l-1 and a pH range of 4.1-7.8. No fish were found in 
any of the lakes.  
 
Cumulative species richness per lake ranged from 2 to 32. 
This parameter was influenced positively by increasing pH 
(r = 0.3676, significant at P < 0.05) and negatively by 
salinity (r = -0.7869, significant at P < 0.001). When the 
lakes (Nos. 4, 5, 23, 26, 39) which changed greatly by 
episodic in-fills were removed from the series, the 
correlation  with  pH  increased  (r = 0.6022,  significant at 
p < 0.001)   while   that   with   salinity   decreased  a  little  
(r = -0.6895, significant at p < 0.001). Within both alkaline 
and acid lakes series, correlations with species richness 
were not significant (p > 0.05; r = 0.2581 and r = 0.4611 
respectively). 

 

218

NREI Volume XV 2009

4

Natural Resources and Environmental Issues, Vol. 15 [2009], Art. 44

https://digitalcommons.usu.edu/nrei/vol15/iss1/44



Table 3–Insects and miscellaneous animals of the inland Esperance lakes.  
 

Species 
Salinity Range     

g l
-1

 
pH Range Number of Records 

Lakes from which 

Recorded 

Odonata 

  Hemianax papuensis (Burmeister) 10 4.1 1 5 

  Hemicordulia tau (Selys) 9-49 3.7-8.2 5 4,5,23,26,39 

  Austrolestes annulosus (Selys) 9-49 3.7-8.5 7 4,5,23,26,37,39 

  Xanthoagrion erythroneurum Selys 24 7.6 1 39 

Hemiptera 

  Agraptocorixa spp. 3-36 3.7-8.2 6 4,5,23,26,29,39 

  Micronecta sp. 3-67 3.7-8.5 7 4,5,27,39 

  Anisops spp. 3-56 4.1-8.2 8 5,23,26,29,37,39 

Coleoptera 

  Allodesses bistrigatus (Clark) 3-10 5.1-7.8 4 4,5,29 

  Antiporus gilberti Clark 7-94 3.7-9.8 11 4,5,7,26-28,32,39 

  Berosus spp.1 3-94 3.7-9.8 13 4,5,7,15,20,21,23,29,37,38 

  Cybister tripunctatus Olivier 9 8.2 1 23 

  Enochrus elongatus (W. MacLeay) 10-25 4.1-8.2 2 5,39 

  Eretes australis (Erichson) 2.5-70 4.1-9.9 7 4-6, 24,26,32, 

  Limnoxenus zealandicus (Broun) 9-24 4.1-8.2 4 4,5,23,39 

  Megaporus howitti Clark 10 4.1 1 5 

  Necterosoma penicillatum (Clark) 9-85 4.1-9.8 11 5,6,21,23,26,29,31,32,37,38 

  Rhantus suturalis MacLeay 9-10 8.2 2 23,29 

  unidentified Curculionidae 9-6 3.7-4.1 2 3,4 

Diptera 

  Chironomus cloacalis Atchley & Martin 22-54 8-9.8 3 20,28,29 

  Cryptochironomus sp. 10-49 4.1-9.8 4 5,26,31,37 

  Polypedilum nubifer (Skuse) 10-32 4.1-9.8 4 5,26,39 

  Procladius paludicola Skuse 9-40 6.7-9.8 3 23,26,29 

  Tanytarsus barbitarsus Freeman 24-96 5.1-9.1 5 3,29,35,39 

  Tanytarsus semibarbitarsus Glover 9-50 3.7-9.8 7 4,5,17,23,29,32,38 

  Aedes camptorhynchus (Thomson) 10-54  8.2-9.2 2 20,39 

  unidentified ceratopogonid larva 24 7.4 1 39 

  unidentified dolichopodid larva 24 7.4 1 39 

  unidentified stratiomyid larva 10-75 3.9-5.7 3 5,9 

  unidentified tabanid larva 25-126 5.2-9.5 4 13,14,32,39 

Lepidoptera 

  unidentified pyralid larva 15-31 9.5-9.8 2 6, 21, 26 

Platyhelminthes 

  unidentified rhabdocoel 63 8.4 1 35 

Rotifera 

  Brachionus plicatilis s.l. (Müller) 9-50 6.7-9.9 9 6,7,21,23,26,29,32,37 

  Brachionus rotundiformis Tschugunoff 40 6.7 1 29 

  Hexarthra cf brandorffii Koste 36 3.7 1 4 

  Hexarthra cf fennica (Levander) 9-68 3.7-9.9 14 4-6,13,23-26,32,38 

  Hexarthra sp. 54-62 3.8-3.9 1 36 

Mollusca 

  Coxiella glauerti Macpherson 15-118 7.4-9.8 32 3,15,20-24,26-28,32-34,37 

  Coxiella spp. 9-92 7.7-9.5 5 23,32,40 
1 B. nutans (W. MacLeay), B. reardoni Watts 
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In many lakes spits have grown across the original dune 

hollow to segment it into two or more sub-basins (Timms 

1992). Despite being less than 2 m apart at their closest 

point and in the same greater basin, such twin lakes can be 

very different. In the only example studied, the two sub-

basins had different physicochemical features, with the 

main circular central basin (Lake 33) more saline and of 

higher pH than the cut-off bay (Lake 34) (Appendix 1). The 

central basin had a lower species richness (6 species) 

compared to that of the cut off bay (9 species). Of the 

differences in species composition, the most obvious were 

the presence of Parartemia n.sp. and Reticypris sp. in Lake 

33 and the presence of P. cylindrifera, Daphnia truncata 

and Haloniscus searlei in Lake 34. Of the shared species, 

some were much more common in one or the other lake 

(e.g. Diacypris spp. in Lake 33, Coxiella glauerti in Lake 

34). Reconnaissance of other lakes with subbasins 

suggested differences between such divided lakes were 

common. 
 

Multivariate analysis using just the physiochemical features 

of the lakes showed a clear distinction between acid and 

alkaline lakes, with many alkaline lakes variously turbid 

(haphazardly due to wind — see earlier) and both sets of 

lakes traversing a wide salinity range. In the ordination plot 

(Figure 2), the most acid lakes (1, 11, and 16) are on the far 

left and the least acid lakes (9, 13) nearest the least alkaline 

lakes (8, 29). This acid-alkaline division is reflected in the 

ordination plot of invertebrate communities in the lakes 

(Figure 3), in which the acid lakes cluster together, with the 

alkaline lakes scattered in an gentle arc away from the acid 

lakes. Among the acid lakes, 4 and 5 are somewhat separate 

from the main group which is explained by their episodic 

filling (see later). One alkaline lake, No. 8, grouped with 

the acid lakes, which is not surprising given its fluctuation 

between pH 6.5 to 7.7. Among the alkaline lakes, numbers 

29, 30, 6, 21, 35 39 and 27 are separated from the main 

group on different axes (Figure 3) for different apparent 

reasons. Lake 27 is highly saline and more persistent than 

most (T. Massenbauer of WA Department of Environment 

and Conservation, pers. comm.), lakes 6 and 21 are of 

persistent relatively low salinity and lakes 35 and 39 are of 

seasonally low salinity. 

 
Acid lakes have low diversity and are dominated by 
Parartemia sp. f and have the acid form of Australocypris 

bennetti (Table 4). On the other hand, alkaline lakes are less 
dominated by one species and have Diacypris spp. and 
Parartemia sp. a common and an array of other species, all 
crustaceans, differentiating them (Table 4). 

 
Figure 2–Ordination of the lakes based on their physicochemical 
features. Acid lakes are circled and alkaline lakes are in squares. 
Numbers in symbols refer to lakes described in Table 4. A stress 
factor of 0.05 was used in the analysis. 

 
 

Figure 3–Ordination of the lakes based on their invertebrates. 
Acid lakes are circled and alkaline lakes are in squares. Numbers 
in symbols refer to lakes described in Table 4. Stress 0.17. 
 
The unusual ±200 mm of rain that fell on January 4, 2007 
put water in most lakes, but generally at depths not much 
different from a normal winter-spring filling. Some lakes, 
however, received much water from overland flow and 
filled to far greater depths than normal. Two of these were 
from the acid series (Nos. 4 and 5) and three from the 
alkaline series (Nos. 23, 26 and 39). All five became almost 
fresh and near neutral in pH. Species normally found in 
them were replaced by many insects, a few species of 
branchiopods and a few others. These episodic changes in 
biota are plotted in an ordination diagram (Figure 4) in 
which data for each were divided into normal winter-spring 
features (‘a’ notation) and episodic conditions (‘b’ notation) 
and then compared with a few other lakes from each group 
of similar salinity. Clearly this approach recognized three 
types of lakes (see Figure 4): acid to the lower left, alkaline 
to upper middle and a new group of low salinity lakes to the 
lower right. Four lakes (Nos. 4, 5, 23, 39) changed 
markedly as a result of their episodic fill and one changed 
position in the alkaline group (No. 26). 
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Characteristic species in the acid and alkaline groups were 

similar between the ‘a’ sites and their respective groups, but 

a new low salinity episodic group (‘b’ sites) had a new 

array of characteristic species, dominated by an array of 

insects (Table 4).  

 

 
Figure 4–Ordination of episodic lakes based on their 
invertebrates. Lakes remaining acid are circled and lakes always 
alkaline are in squares. Numbers in symbols refer to lakes 
described in Table 4. The episodic lakes in normal condition are 
labelled ‘a’ and after the episodic rain are labelled ‘b.’ Stress 0.13.  

 

DISCUSSION 

 

Differing characteristics among these lakes are due largely 

to their position with reference to surface rocks and their 

derived soils. Although some lakes are subject to occasional 

large overland flows, most are groundwater “windows”. As 

such, acidity/alkalinity of groundwater influences their pH. 

Throughout much of the southwest on the Yilgarn Block 

groundwaters tend to be acid, often very much so (pH < 

2.8) (Mann 1983; McArthur et al. 1991). The reason for this 

is contentious, but David Gray of CSIRO, Perth (pers. 

comm.) thinks the acidity is generated through soil 

pedological processes, resulting in the accumulation of 

carbonates in the soil profile and recharge of iron-rich, 

sometimes acidic waters, to shallow aquifers. On the other 

hand, Kathy Benison of Central Michigan University (pers. 

comm.) hypothesises that sulfide oxidation in host rocks 

results in acid groundwaters, which may be further acidified 

by ferrolysis, microbial action and/or evaporative 

concentration in lakes without carbonates to buffer the 

acidity. Where carbonates are scarce or isolated from lakes, 

as in most lakes north of Ridley Rd (east of Grass Patch) 

and a few others mainly in the Truslove Nature Reserve 

area (Morgan & Peers 1973), lakes are acid. Elsewhere in 

deep carbonates (particularly Lakes 14, 15, 20-35, 37-41), 

lakes are alkaline. At least for one lake in shallow 

carbonates (No. 3), groundwaters are acid (pH 3.5) though 

lake waters are alkaline (pH 8-8.5) (K. Benison, pers. 

comm.). This may be at least a partial explanation for 

differing pHs in main and cut-off parts of a basin (as in 

Lakes 33 & 34), the later being more active hydrologically. 

The cut-off part may also be more influenced by overland 

flows which would not be as acid as the groundwater and 

certainly would be less saline. The lakes subject to large 

overland flows (Nos 4, 5, 23, 26, 39) all had low salinities 

and neutral pHs following episodic rainfall events. 
 
Table 4–Characteristic species of each group of lakes. 

 
Higher category Genus and species %* 

Acid lakes 

Anostraca Parartemia n.sp. f 51.6 

Ostracoda Australocypris bennetti acid 28.0 

Ostracoda Diacypris spp. 13.6 

Alkaline lakes 

Ostracoda Diacypris spp. 37.7 

Anostraca Parartemia n.sp. a 24.8 

Ostracoda Platycypris baueri 6.8 

Ostracoda Australocypris bennetti alkaline 6.0 

Anostraca Parartemia cylindrifera 4.7 

Isopoda Haloniscus searlei 4.3 

Ostracoda Australocypris beaumonti 4.0 

Episodic change –standard acid lakes 

Anostraca Parartemia n.sp. f 54.9 

Ostracoda Australocypris bennetti acid 31.5 

Ostracoda Diacypris spp. 9.8 

Episodic change – standard alkaline lakes 

Ostracoda Diacypris spp. 37.1 

Ostracoda Australocypris bennetti alkaline 10.5 

Isopoda Haloniscus searlei 9.2 

Anostraca Parartemia n.sp. a 8.8 

Ostracoda Platycypris baueri 8.2 

Copepoda Metacyclops laurentiisae 5.8 

Ostracoda Mytilocypris splendida 4.8 

Episodic change – new low salinity lakes 

Insecta Anisops spp. 13.8 

Insecta Agraptocorixa spp. 13.7 

Anostraca Branchinella affinis 10.2 

Copopoda Metacyclops laurentiisae 9.5 

Rotifera Hexarthra nr fennica 9.1 

Insecta Austrolestes annulosus 8.3 

Insecta Micronecta sp. 8.2 

Insecta Hemicordulia tau 7.0 

Insecta Limnoxenus zealandicus 6.9 

Spinicaudata Caenestheriella packardi 6.6 

* The percentages in the table refer to the % of the total 
difference between the groups that is contributed by the 
different species. 
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Groundwater-controlled lake pHs are known for lakes north 

of the study area (Lakes Swann, Gilmore, Lefroy) 

(McArthur et al. 1991; Clarke 1994) but with unknown 

implications for lake invertebrates. However, in the Lake 

Hope area, 150 km to the northwest of Grass Parch, saline 

lakes adjacent to laterite are acid and have a different fauna 

from that of alkaline lakes on the sand plain (Timms 2006). 

Conte & Geddes (1988) first noted the restrictive role of pH 

in Western Australian salt lakes, noting the presence of just 

Parartemia contracta in acid lakes. These Esperance acid 

lakes provide a more intensive example of the role of low 

pH in restricting fauna. Secondarily salinized waters are 

often acidic as well and Halse et al. (2003) have noted the 

absence of most halophilic/halobiont species in them. 

 

In addition to the influence of pH, salinity, not surprisingly 

exerts a strong control over species composition and species 

richness as it does in most inland saline waters, including 

those in Western Australia (Pinder et al. 2002). On the other 

hand, the apparent effects of seasonality on community 

composition were more easily explained by differences in 

pH and/or salinity (Timms et al. 2008). Two exceptions 

were many insects which were more abundant in summer 

and Daphnia (Daphniopsis) truncata which was most 

abundant in winter-spring.  

 

The alkaline saline lakes of the Esperance inland support a 

fauna that is broadly similar throughout southern Australia 

(Geddes 1976; De Deckker & Geddes 1980; Pinder et al. 

2002, 2004, 2005; Timms 2009), though species differ 

regionally (Williams 1984). The Esperance hinterland lakes 

have a species of Parartemia, many species of ostracods, 

including a mytilicyprinid species, Diacypris, Platycypris 

and Reticypris, and perhaps a species or two of rotifers and 

copepods, a halophilic Daphnia (Daphniopsis), the isopod 

Haloniscus searlei, and a Coxiella snail. Of these, 

Parartemia n.sp. a and Australocypris beaumonti are 

apparently endemic to the Esperance area, and Parartemia 

cylindrifera, P. longicaudata, P. serventyi, Australocypris 

bennetti and Coxiella glauerti are shared with a few others. 

Previous studies have found fewer species in the area 

(Geddes et al. 1981; Brock & Shiel 1983) or a few more, 

mainly a polychaete and some chironomids (Pinder et al. 

2002).  

 

The fauna of the acid salinas is more restricted with just 

Parartemia n.sp. f, Australocypris bennetti (acid form), 

Diacypris spp. and the copepod Calamoecia trilobata, with 

the first two apparently restricted to the area. This restricted 

fauna is less diverse than that in acid lakes in the wheatbelt 

further west in Western Australia which have these species, 

except Parartemia sp. f., and also perhaps a variety of 

dipterans, a few beetles, more ostracods and Parartemia 

contracta (Adrian Pinder, pers. comm.). This fauna is more 

restricted than occurs in alkaline lakes in the wheatbelt 

(Pinder et al. 2004, 2005). At least for Parartemia spp this 

is probably due to the necessity for a different method of 

osmoregulation in acid conditions where there are no 

bicarbonate/carbonate ions (Conte & Geddes 1988).  

 

Many saline lakes of the Australian inland are dominated 

by episodic events so that they fill and dry over years, vary 

widely in salinity and have a corresponding array of 

characteristic species as salinity changes widely (Timms 

2008). Most lakes in the south fill and dry regularly each 

year and, though varying widely in salinity, lack a 

fresh/hyposaline stage and so have a more limited fauna 

that changes little during the wet phase (e.g. Geddes 1976; 

De Deckker & Geddes 1980). This is explained by a rapid 

change in a richer array of species as salinity slowly 

increases in the hypsosaline range but wide tolerances of 

the limited array of species in the much wider mesosaline-

hypersaline range, or in other words a ‘question of scale’ 

(Williams et al. 1990). The Esperance hinterland lakes are 

of the second type based on their latitude and some seasonal 

evidence. However, they are subject to occasional episodic 

filling, and in some lakes where the hydrology is 

favourable, there can be vast changes in their characteristics 

(Figure 4). Their fauna, when fresh or hyposaline, is 

uncharacteristic of their normal composition and more akin 

to widespread faunal elements in hyposaline filling stages 

of lakes further inland. Particularly noticeable in both these 

unusual Esperance lakes and the episodic inland lakes is the 

abundance of insects tolerant to lower salinities and the 

absence of brine shrimp and ostracods tolerant to high 

salinities. 

 

Of even more interest is the presence in these episodic 

fillings of animals not seen in typical saline lakes. These are 

large branchiopods either of tolerant freshwater forms or of 

specialist hyposaline forms. The Esperance hinterland lakes 

subject to the episodic filling of January 2007 had the 

slightly tolerant Branchinella affinis and Caenestheria 

packardi (Timms in press) and two nearby lakes had a new 

species of Branchinella, and the clam shrimps Limnadia 

near cygnorum and Eocyzicus parooensis (Timms 2009). 

Their presence in appreciable numbers shows these lakes 

have sufficiently frequent episodic fillings to have an egg 

bank capable of responding to the unusual conditions of 

being fresh or hyposaline and around neutral pH. Should 

222

NREI Volume XV 2009

8

Natural Resources and Environmental Issues, Vol. 15 [2009], Art. 44

https://digitalcommons.usu.edu/nrei/vol15/iss1/44



episodic fills be too spaced temporally or averted due to 

increased salt loads in a basin due to mining inputs or 

salinization, then this specialized fauna will be lost (Timms 

2005). It is not known how much of this fauna is 

catalogued, but in Western Australia it includes the fairy 

shrimps Branchinella compacta, B. nichollsi, B. nana, and 

Branchinella papillata, the clam shrimps, Caenestheria 

dictyon, Caenestheriella packardi, Eocyzicus parooensis 

and Limnadia near cygnorum and a form of the shield 

shrimp Triops near australiensis (Timms 2009).  
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Appendix 1–Geomorphic and physicochemical data on the lakes. 
 

 

Lake depths (cm) 

 

No
 

Name 

 

Latitude 

 

Longitude 

Area 

when 

full (ha) 
mean Max. 

 

Number 

of visits 

 

pH 

range 

Salinity 

Range 

g l
-1

 

Turbidity 

(NTU) 

range 

1 McRea 32o 53' 121o 45' 4.0 6 10 3 2.1-3.0 148-195 60-160 

2 Salmon Gums NE 32o 53' 121o 53' 33.5 7 15 3 4.9-5.5 88-187 200-250 

3 Highway Circle Valley 33o 05' 121o 42' 8.2 13 30 3 7.5-9.1 92-109 45-240 

4 Guest (West) 33o 06' 121o 44' 3.2 22 ca 50 4 3.7-5.8 11-95 10-250 

5 Guest (Southeast) 33o 08' 121o 49' 2.6 49 ca 150 4 3.7-7.8 4-182 10-130 

6 Logans 33o 09' 121o 51' 1.4 30 35 2 8.8-9.9 31-51 10-15 

7 Styles & Logan 33o 09' 121o 55' 2.8 16 40 4 3.7-7.7 27-144 5-50 

8 Styles & Kent 33o 11' 121o 55' 13.4 5 10 3 6.5-7.7 87-133 10-200 

9 Big Ridley 33o 14' 121o 51' 365 7 12 3 5.1-6.3 117-132 5-10 

10 Ridley W Little 33o 14' 121o 54' 4.1 40 ca 70 3 4.5-6.3 129-131 10-70 

11 Ridley Near E 33o 15' 121o 57' 3.7 23 25 3 2.5-4.4 111-148 5-150 

12 Ridley Mid E 33o 15' 121o 59' 23.7 12 15 3 4.1-4.7 101-124 10-160 

13 Ridley Far E 33o 16' 122o 03' 27.5 7 10 3 5.2-6.2 46-88 60-330 

14 Styles & Lignite 33o 19' 121o 55' 38.4 5 10 3 7.9-8.5 99-126 40-250 

15 Lignite East 33o 19' 121o 59' 6.6 4 5 3 7.4-8.7 44-116 30-300 

16 Demspter Nth 33o 20' 122o 05' 5.5 13 20 3 2.7-3.6 
 

110-149 
18-60 

17 West Truslove 33o 22' 121o 42' 5.4 7 10 3 4.3-5.5 40-84 10-40 

18 Truslove Nat. Reserve 33o 20' 121o 46' 7.3 11 12 3 4.3-4.7 123-159 50-320 

19 Coxs 33o 23' 121o 51' 7.6 7 7 3 4.4-4.6 104-128 35-320 

20 Highway Scaddan 33o 24' 121o 42' 6.0 26 30 3 8.4-9.2 45-55 5-10 

21 Dempster Mid 33o 24' 122o 03' 1.5 33 45 2 8.9-9.5 24-38 5-10 

22 Styles South 33o 25' 121o 55' 1.8 4 10 2 7.7-7.9 56-101 200-450 

23 Norwood  33o 25' 122o 02' 13.2 18 ca 50 4 7.4-8.2 9-92 5-180 

24 unnamed Rd Scaddan 33o 28' 121o 49' 3.7 15 25 3 8.5-9.2 66-88 2-10 

25 unnamed Rd Scaddan 33o 28' 121o 49' 3.1 15 20 3 8.3-9.0 61-70 5-80 

26 Griffiths  33o 29' 121o 42' 2.2 27 40 4 6.9-9.8 15-84 5-25 

27 Speddingup Nth 33o 31' 121o 52' 1.8 37 ca 50 4 7.0-8.0 118-195 15-95 

28 Speddingup Sth 33o 32' 121o 53' 2.0 22 30 3 8.4-9.3 62-67 5-20 

29 Burdett  33o 30' 122o 16' 2.2 55 ca 100 4 6.1-7.8 40-56 20-30 

30 Eld  33o 33' 122o 21' 2.4 28 30 2 7.6-7.9 121-169 2-5 

31 Coolingup  33o 39' 122o 23' 5.3 28 35 3 8.5-9.4 44-68 5-10 

32 Kau Rock 33o 25' 122o 20' 10.9 9 12 3 7.8-9.5 28-105 8-120 

33 Kau Nat Reserve 33o 28' 122o 21' 6.1 12 15 3 8.0-8.4 52-68 8-12 

34 Kau Nat Res main 33o 28' 122o 22' 4.2 20 25 2 7.3-7.5 120-128 20-55 

35 Kau Nat Re cutoff 33o 28' 122o 22' 0.5 8 12 2 6.4-8.0 63-74 20-45 

36 Mt Nev  33o 26' 122o 23' 6.1 15 20 3 3.8-3.9 56-62 50-80 

37 Kau Rd south 33o 29' 122o 23' 0.6 8 12 2 8.1-8.5 24-49 10-20 

38 Kau Rd north 33o 32' 122o 26' 3.3 35 40 4 7.8-9.2 46-147 5-30 

39 Howick  33o 29' 122o 31' 6.0 63 ca 100 4 7.4-8.2 10-102 10-60 

40 Heywood  33o 29' 122o 37' 6.9 11 15 3 8.5-9.2 52-66 5-10 

41 Berg  33o 30' 122o 39' 1.1 32 40 2 8.0-8.4 95-116 20-40 
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