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Predicting the Impact of Climate Change on Cheat Grass 
(Bromus tectorum) Invasibility for Northern Utah: A GIS and 

Remote Sensing Approach 
  
Samuel Rivera, Neil E. West, Alexander J. Hernandez, and R. Doug Ramsey Remote Sensing 
and GIS Laboratories Department of Wildland Resources, Utah State University, Logan, Utah 
 

ABSTRACT 
 
Cheat grass (Bromus tectorum) invasibility represents a serious threat to natural ecosystems 
dominated by sagebrush (Artemisia tridentata). Ecosystem susceptibility to annual grass invasion 
seems to be driven by specific biophysical conditions. The study was conducted in Rich County, Utah, 
where cheat grass invasion is not yet an apparent problem, but an imminent invasion might be just a 
matter of time (temporal scale) to meet spatial variations in environmental conditions (spatial scale). 
Literature review and expert knowledge were used to define biophysical variables and their respective 
suitability ranges of where cheat grass takeover might occur. GIS, remote sensing and logistic 
regression-statistical analyses were employed to estimate probability of cheat grass invasion along 
environmental gradients. GIS procedures were used to spatially predict areas prone to be invaded by 
cheat grass under present climatic conditions (model prediction power was 47 percent). Afterwards, 
simulated climatic change projections (for 2099 year) from the Community Climatic System Model 
(CCSM-3) were used to model the invasibility risk of cheat grass. The 2099 cheat grass prediction map 
showed a favorable reduction of around 25 percent in the areas affected by cheat grass invasion, 
assuming that climate changes occurred as predicted by the CCSM model. The location of highly 
predisposed areas can be useful to alert managers and define where resources might be allocated to 
reduce a potential invasion and preserve native rangeland ecosystems. 
____________________________________ 
In Monaco, T.A. et al. comps. 2011. Proceedings – Threats to Shrubland Ecosystem Integrity; 2010 May 18-20; Logan, UT. 
Natural Resources and Environmental Issues, Volume XVII. S.J. and Jessie E. Quinney Natural Resources Research Library, 
Logan Utah, USA. 
 
RESUMEN 
 
El riesgo de invasión de Bromus tectorum representa una grave amenaza para los ecosistemas 
naturales dominadas por Artemisia (Artemisia tridentata). La susceptibilidad del ecosistema a la 
invasión anual de este pasto parece ser impulsada por condiciones biofísicas espaciales. El estudio se 
realizó en el Condado Rich, estado de Utah, donde la invasión de esta especie no es aún un problema 
aparente, pero una invasión inminente podría ser sólo una cuestión de tiempo (escala temporal) para 
satisfacer las variaciones espaciales en las condiciones ambientales (escala espacial). Revisión de 
literatura y el conocimiento de expertos se utilizaron para definir las variables biofísicas la adaptabilidad 
del pasto. Análisis SIG y teledetección y un análisis de regresión logística se emplearon para estimar la 
probabilidad de invasión a lo largo de gradientes ambientales. Procedimientos SIG fueron utilizados 
para predecir espacialmente las zonas propensas a ser invadidas por dicho pasto, bajo las condiciones 
climáticas actuales (2009) (la precisión del modelo fue de 47 percent). Posteriormente, proyecciones 
simuladas del cambio climático (para el año 2099) del Modelo del Sistema de la Comunidad Climática 
(CCSM-3) se utilizaron para modelar el riesgo invasibilidad del pasto. El mapa del 2099 mostró una 
reducción de alredor del 25 percent de las áreas afectadas por Bromus tectorum, asumiendo que los 
cambios climáticos ocurren como predice el modelo CCSM. La ubicación de las zonas predispuestas a 
la invasión pueden ser útiles para alertar a los administradores y definir los recursos para reducir una 
posible invasión y preservar los ecosistemas nativos. 

 
INTRODUCTION 
 
Cheat grass (Bromus tectorum) arrived from Europe 
more than a hundred years ago and now it has 

spread out all over the western US in more than 11 
states (Lloyd 1955, West 1999). It can be found in 
more than 60 millions acres of public and private 
lands (Wisdom et al. 2005). In the Great Basin desert, 
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it is estimated that cheat grass already covers around 
3.3 million acres (Wisdom et al. 2005). The land 
management implications of invading cheat grass 
include the loss of prime wildlife habitat, impact to the 
regrowth of native vegetation following wildland fire 
events, soil erosion, loss of rangeland health, and the 
distribution and expansion of other noxious weeds 
(Harris 1967, Holechek et al. 1989, Lloyd 1955). 
 
Cheat grass invasibility seems to be driven by genetic 
conditions, intrinsic to the species, and specific 
biophysical conditions (Mack and Pyke 1983). Cheat 
grass has a prolific capacity to produce seeds (Suring 
et al. 2005). It is able to germinate in the fall or spring, 
is highly tolerant to recurrent fires and to current 
grazing practices (Chambers et al. 2007, Pellant 
1990). Cheat grass also prepares the site conditions 
to favor its growth and spread rate. After initial fires, 
for instance, it increases further risk of subsequent, 
more frequent fires. This brings serious 
consequences in terms of loss of wildlife and fish 
habitat, soil erosion and sedimentation and 
biodiversity (Bradley and Mustard, 2006). Regarding 
the biophysical conditions, cheat grass tolerates a 
wide range of climatic and edaphic conditions (Novak 
and Mack 2001). Land managers are currently 
seeking to understand its genetic patterns and 
preferred biophysical conditions (Bradley et al. 2003).  
 
Invasive species may increase as the climate 
changes through time (Kriticos et al. 2003). Most the 
world has already experienced substantial increases 
in temperature and precipitation as a part of the global 
climate change scenario (Community Climate System 
Model project 2010, Morris et al. 2002). Subsequent 
changes in species distribution, either exotic or native, 
are expected (Higgins et al. 2003). Managers from 
federal and state agencies recognize the need of 
using preventive management to forecast species 
adaptability and new distributions (Bradley and 
Mustard 2006). 
 
According to Reichler (2009), Utah will experience a 
substantial increase in temperature and a decrease in 
precipitation as a part of the global climate change 
scenario. Northern Utah is expected to have an 
approximately 10 percent increase in winter 
precipitation and a 10 percent decrease in summer 
precipitation. In general it is expected that this area 
will receive a uniform warming of ~3°F in winter and 
~4°F in summer. According to the same source, other 
climatic changes will include: less snow pack in 

winter, earlier snow melt in spring and in summer, 
warming will increase water demand and therefore 
there will be less water flowing from watersheds. 
Changes in current climate regimes will allow some 
species to expand their range, while others may be 
restricted to a narrow range, showing so far many 
sources of uncertainty (Higgings et al. 2003). To our 
knowledge, no other efforts have been made to 
assess ecological changes in cheat grass distribution 
given a hypothetical scenario of global climate change 
in Northern Utah using a GIS/remote sensing 
approach. 
 
The proposed research questions for this study were:  
 

Does cheat grass represent a threat in Rich 
County, Utah? 
 
If it does, where are the areas prone to be 
invaded spatially located? 
 
What are the environmental variables that favor 
cheat grass establishment? 
 
Will there be any change in its spread as a result 
of an expected climate change? 

 
METHODS 
 
Study Area 
 
The study area was located in Rich County, Utah 
(figure 1). The area presents an elevation gradient 
from 1,500 to 2,100 meters above sea level, from 
East to West. Precipitation places the area in a semi-
arid zone, receiving from 200 to 300 mm per year and 
temperature will usually range between -40 degrees C 
to 40 degrees C. 
 
The rangelands of Rich County in Northern Utah are 
largely characterized by having vegetation dominated 
by sagebrush (Artemisia spp.) with associated native 
and introduced grasses (Shultz 2009), salt desert 
scrub and pinyon-juniper ecosystems, and other 
major vegetation types (Washington-Allen et al. 
2004). Rich County is best characterized as a higher 
elevation big sagebrush-steppe / shrubland 
environment ranging from the pinyon-juniper 
ecosystems to sub-alpine forests and meadows. 
These areas have been under commercial agriculture, 
and grazing for years.  
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Figure 1. Sampled sites for Cheatgrass (dark color) 
and Non-cheatgrass sites (white) in Rich Co., UT. 
 
Some big sagebrush ecosystems have converted to 
exotic annual grasslands or to pinyon-juniper 
dominance, while an equal area has maintained its 
natural condition (West 1999). Within shrub-steppe, 
dominant shrub species included Wyoming big 
sagebrush (A. t. wyomingensis), mountain big 
sagebrush (A. t. vaseyana), basin big sage (A. t. 
tridentata), black sage (A. nova), antelope bitterbrush 
(Purshia tridentata), snowberry (Symphoricarpos 
spp.), Utah serviceberry (Amelanchier utahensis), 
rubber rabbitbrush (Ericameria nauseosus) and 
yellow rabbitbrush (Chrysothamnus viscidiflorus) 
(Stringham 2010). Perennial forbs and annual 
grasess are established following mechanical land 
treatments to alter woody species abundance and 
continued heavy livestock grazing. With continued 
impacts from heavy livestock grazing and mechanical 
removal of native shrubs, the native grass component 
is markedly decreased. This plant community is 
characterized by some grazing tolerant herbaceous 
species, including cheat grass. 
 
Methodology 
 
Current Scenario 2009 
Field data were acquired in summer of 2007. Field 
forms were developed in a Microsoft Access 
database to record GPS coordinates and photos of 

field sampling locations. A total of 286 field samples 
were collected from different sources: 50 percent 
cheat grass, 50 percent no-cheat grass samples. The 
143 samples of non-cheat grass sites were taken 
mostly from the Southwest GAP Analysis project 
(Lowry et al. 2005). The cheat grass samples were 
collected by the main author of this paper (S. Rivera), 
by the T. Edwards  Lab at USU (Edwards and Howe 
2009) and by USU RS/GIS Laboratories (Peterson et 
al. 2008). These data were used as field-input data in 
these analyzes. Data layers were produced by 
clipping raw data layers to a 1 km buffered Rich 
County boundary, and then scaling by standard 
deviation. The standard deviations were multiplied by 
100 and rounded to the nearest whole number. 
Spatial data was manipulated using ArcGIS ver 9.2, 
and environmental data was extracted (drilling) from 
each layer and the R software was used to study 
potential relationships, linearity, normality and 
redundancy among variables.  
 
Table 1 shows all explanatory variables used in this 
study. Most remote sensing derived data were 
obtained from a Landsat TM scenes taken in 2006. 
Data manipulation and analyzes were done mostly 
using the software Erdas Imagine version 8.5. All 
layers and data points were arranged in ArcGIS ver 
9.2 GIS software. Data overlapping and sampling 
(“drilling”); the xy points into the layers were used in 
Arc GIS using the sampling function in the spatial 
analysis toolbox. The Raster calculator was used to 
draw the spatial distribution based on the resulting 
logistic model.  
 
Scenario 2099 (A2) 
The climate change A2 scenario is considered the 
worst case scenario if the current world s policies 
continue and no special actions are taking to combat 
global warming or environmental change issues 
(Morris et al. 2002). Climate change projections have 
been developed by the Community Climate System 
Model (CCSM-3) on a Gaussian grid, which is 
commonly used in scientific modeling (Community 
Climate System Model project 2010). We selected 
these GIS layers for northern Utah for total annual 
precipitation (ppt) and average temperature (ta) for 
2099 (Thornton and Wilhelmi 2010). Currently, the 
datasets can be downloaded in a GIS shapefile 
format, where each point represents a centroid of a 
corresponding CCSM grid cell (IPCC 2007).  
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Table 1. List of potential explanatory variables used in this study. 
Variable Explanation 
Aspect Aspect, as computed by ArcMap [ -1 = flat ] 
Elevation Elevation from the USGS National Elevation Data Set (m).  
Normalized Difference 
Vegetation Index 
(NDVI) 

Reflectance at peak, sampling points selected form non-anthropogenic influence 
sites, Mean annual NDVI changes over the years for a particular site, a composite 
of maximum. 

Slope curvature Curvature from r_ned_dem calculated by ArcMap (positive values=convex slope, 
negative values=concave slope) 

Northness Northing coordinate, NAD83, Zone 12Y UTM coordinates (meters) 
Eastness Easting coordinate, NAD83, Zone 12X UTM coordinates (meters) 
Slope Slope from elevation data set (degrees) 
Solar flux index  Annual average solar flux calculated using Zimmerman solar radiation model on 

r_ned_dem and using Dayment monthly temperature grids (kJ/sq.m/day). 
Slope contributing 
area 

log of upslope contributing area calculated using Tarboton "Tau DEM" ArcMap 
plug-in (ln(m)) 

Relative humidity Average annual relative humidity grids calculated from Daymet grids (ranging from 
0-100%). 

Land form The 10 landform classes were from 1 to 10: 1) Valley flats, 2) Gently sloping toe 
slopes, 3) Gently sloping ridges, fans and hills, 4) Nearly level terraces and 
plateaus, 5) Very moist steep slopes, 6) Moderately moist steep slopes, 7) 
Moderately dry steep slopes, 8) Very dry steep slopes, 9) Cool aspect scarps, cliffs 
and canyons, and 10) Hot aspect scarps, cliffs and canyons (Manis et al. 2001). 

Temperature Average annual temperature calculated from Dayment grids ( 1/100 C). 
Precipitation Sum of annual precipitation grids calculated from Daymet grids ( 1/100 cm) 

 
Both temperature and precipitation files were 
downloaded from the CCSM data site (Hoar and 
Nychka 2008) and then data were clipped using the 
Rich county shapefile and re-projected. We ran a 
Kriging interpolation analysis to calculate the 
temperature layers, the average annual temperatures 
based on the monthly average temperature. For the 
precipitation file, a new field was created to calculate 
the sum of the monthly precipitations to obtain the 
total annual precipitation. The Kriging method utilized 
was the Universal method with a linear with linear drift 
semivariogram model (Gebhardt 2003).  
 
It is important to mention that climate models like 
these are not like weather forecast models. They do 
not project specific events at the exact time these 
events occur (like the 1997 El Niño). The CCSM 
control runs are designed to show internal model 
variability, by having fixed external forcing. They are 
more random and statistical representation of such 
events rather than actual (Community Climate System 
Model project 2010).  
 
Sampling 
 
All cheat grass and non-cheat grass events or point 
data sampling was conducted in all 13 layers 
variables described in Table 1. The Sample spatial 

analysis function of Arc GIS ver. 9.2 was used to 
conduct the “drilling” of all layers. The re-sampling 
algorithm used when re-sampling these raster layers 
was the nearest neighbor assignment. 
 
Logistic Regression Model 
Logistic regression has been used to predict the 
absence or presence of a particular species (Austin 
1985, Dixit and Geevan 2002). A logistic regression 
model was developed, extracting the information from 
the “drilling” process in ArcGIS ver. 9.2 using the 
raster calculator function. The logistic regression 
model is as follow (equation 1):  
 

P =  a + b X 
1 +  a + b X 

 
                   OR 

 

P = 1 
1 +  ( 0 + 1*X1 + 2*X2 + ... + k*Xk) 

 
Equation 1. Logistic regression model.  
 
Where 0 is a constant and i are coefficients of the 
predictor variables. The computed value, P, is a 
probability between 0 to 1. This logistic model LM 
(generalized linear model GLM) was used to simulate 
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the present/absence of studied species (Fielding and 
Bell 1997). The presence of cheat grass was 
considered a success or 1, and the absence a failure 
or 0. 
 
Model Accuracy 
In thematic mapping from geo-referenced data, the 
term accuracy is used typically to express the degree 
of correctness  of the predicting model (Foody 2002, 
Gilbert et al. 2005). Model accuracy assessment was 
performed in this study to compute the probability of 
error for the cheat grass prediction map (2009). 
Samples were “drilled” into the final prediction map to 
determine which samples fell correctly into the 
modeled classes (Lowry et al. 2008). In the 2009 
prediction map: 50 percent was taken as the cut off 
number. Below 50 percent was considered as an 
absence and values higher than 50 percent were 
considered as presence values. A total of 69 samples 
(20 percent of all samples) were previously withheld 
randomly for the accuracy assessment. Procedure 
involved the use of Arc GIS ver 9.2 and the spatial 
analysis tool: sampling. 
  

 
Figure 2. Distribution of 2009-cheat grass and non 
cheat grass sampling points along the Precipitation 
2009 (1/100cm) gradient, Rich County, Utah. 

RESULTS AND DISCUSSION 
 
Decrease of Cheat Grass Invaded Areas 
Final results showed that there is a decrease of 
around 20 percent in the 2099 cheat grass invasibility 
map (figure 2) when compared to the 2009 cheat 
grass invasibility map. In this case, we observed that 
the speed of propagation of this invasive species is 
being restricted by the climatic conditions that are 
predicted for the 2099-A2 scenario and other studies 
(Sardinero 2000). In other words, less precipitation, 
higher temperatures can produce a stress in plant 
species and reduce the presence of certain species.  
 

 
Figure 3. Distribution of 2009-cheat grass and non 
cheat grass along the NDVI in Rich County, Utah. 
 
Significant Environmental Variables 
Final results showed that current (2009) cheat grass 
distribution in the rangelands in Rich County, may be 
driven by elevation (  =0.001), solar flux index (  
=0.001), relative humidity (  =0.001) and temperature 
(  =0.001). Slope contributing area also showed 
some statistical significance (  =0.1) (table 2).  
 
Results of logistic regression analyzes of climate 
change scenario for cheat grass prediction model in 
2099 are shown in Table 3. The highly significant 
variables were: elevation (  =0.001), solar flux index 
(  =0.001), temperature 2099 (  =0.001) and 
precipitation 2099 (  =0.001). The land form category 
also showed some statistical significance (  =0.1). 
 
In the logistic regression (figure 3), the final model 
was statistically significant for the following 
environmental variables: precipitation, temperature, 
slope contributing area, NDVI and solar radiation. All 
studied variables and their relationships with the 
shrub species are described below:  
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Precipitation: The main driver of presence was 
humidity at each site. Figure 4 shows that the 
cheat grass sites receive smaller amounts of 
precipitation: These sites are generally located at 
lower elevations.  
 
NDVI: The Normalized Difference Vegetation 
Index is an indicator of the amount of greenness 
reflected by the vegetation. Figure 5 shows that 
the cheat grass sites had lower greenness values 
when compared with the other plant species.  
 
Relative humidity: Is a measure of atmospheric 
moisture availability at each site. Figure 3 shows 
that cheat grass sampling sites showed a lower 
relative humidity compared with the other types of 
vegetation. 
 
Elevation: Cheat grass samples were found at 
lower altitudes between 2,000 and 2,100 meters 
above sea level, whereas other species were 
generally found at higher elevations (figure 6). 

 
Table 2.  Results of logistic regression analyzes of 
climate change scenario for the 2009-cheat grass 
prediction model.  

Variable Statistical significance 
Aspect  
Elevation ***     (  =0.001) 
Slope curvature  
Northness  
Eastness  
Slope  
Solar flux index  ***    (  = 0.001) 
Slope contributing 
area 

.    (  = 0.1) 

Land form  
Relative humidity ***    (  = 0.001) 
Temperature 2009 ***    (  = 0.001) 
Precipitation 2009  

 
These results are very consistent with the literature 
findings that cheat grass invasibility varies across 
elevation gradients and appears to be closely related 
to temperature at higher elevations and soil water 
availability at lower elevations (Chambers et al. 2007). 
In addition, the environmental variables identified as 
significant were consistent with qualitative 
requirements of the cheat grass s habitat 

characteristics. This agreement makes this study 
comparable to other studies of predicting the invasion 
of exotic weeds (Collingham 2000). By knowing this, a 
high agreement between environmental variables, 
values and species requirements may increase the 
power of forecasting potential invasions as described 
by Gilbert (2005). 
 

 
Figure 4. Distribution of 2009-cheat grass and non 
cheat grass along the Relative Humidity in Rich 
County, Utah. 
 
Model Validation 
The overall accuracy for the 2009 cheat grass 
distribution model was 31 percent; 46.9 percent for 
the cheat grass (BRTE) sites and 16.7 percent for the 
non cheat grass (NO-BRTE) sites (table 4: the 
confusion matrix and the overall classification 
accuracy). This indicates that from all withheld sites 
47 percent of the cheat grass sites fell correctly into 
that class in the predicted model. The second 
analyzed class; non cheat grass species had only 17 
percent accuracy. In general, the model performed 
better at predicting the cheat grass sites. The model 
also identified a clear and logical distribution pattern 
along the environmental gradients of elevation, 
temperature and precipitation. A visual validation was 
also performed using expert knowledge and field 
observations. Final distribution was corroborated by 
experts (Shultz 2010, personal communication) that 
agreed that final distribution satisfies observed natural 
distribution tendencies. 
 
The 2099 prediction model could not be validated, 
since there is no current tool to conduct a validation 
into a future land cover model. 
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Figure 5. Distribution of 2009-cheat grass and non 
cheat grass along the elevation (meters) gradient in 
Rich County, Utah. 
 
Table 3.  Results of logistic regression analyzes of 
climate change scenario for the 2099-cheat grass 
prediction model. 
 
Variable Statistical 

significance 
Aspect  
Elevation ***     (  =0.001) 
Normalized Difference 
   Vegetation Index (NDVI) 

n/a 

Slope curvature  
Northness  
Eastness  
Slope  
Solar flux index  ***    (  = 0.001) 
Slope contributing area  
Land form .    (  = 0.1) 
Relative humidity n/a 
Temperature 2099 ***    (  = 0.001) 
Precipitation 2099 ***    (  = 0.001) 
 
CONCLUSIONS 
 
Our data indicate that the main driving factors on 
cheat grass invasion under present conditions are: 
elevation, temperature, precipitation, NDVI, and 
relative humidity (figure 7). We can also conclude that 
under the expected changes in climatic conditions 
cheat grass establishment will be favored, agreeing 
literature on analyzing cheat grass propagation and 
expansion in the Intermountain West, over the past 
several decades (Bradley et al. 2003, Chambers et al. 
2007). 
 

Our data also indicate that the main driving factors on 
cheat grass invasion under the climate change 
conditions of scenario A-2, 2099 are: elevation, 
temperature, precipitation, and relative humidity. In 
general, again wetter and warmer climatic conditions 
favor cheat grass establishment, confirming the 
finding of previous studies (Young and Clements 
2007) and personal observations (Shultz 2009) which 
characterized cheat grass as an opportunistic 
species.  
 
Table 4. Error matrix of the 2009- cheat grass 
prediction model and reference data. 
 
Predicted Data  Reference data 

 BRTE NO-BRTE 

BRTE 46.9% 83.3% 

NO-BRTE 63.1% 16.7% 

% per specie 46.9% 16.7 

Overall classification = 31% 
 
It is important to mention that this modeling only 
predicts cheat grass invasibility based on future 
climatic condition and does not take into account the 
probable increase of fires or any changes in 
management strategies, especially grazing, whose 
combined effect could potentially trigger a cheat grass 
spread. The combined effect of fire and grazing, 
which implies the reduction in of native species, has 
been identified as significant factors for the growth 
and reproduction of cheat grass (Chambers et al. 
2007).  
 
This study demonstrates the effective use of GIS and 
remote sensing tools to describe and predict 
potentially spatial changes in vegetation at the 
landscape level. Older modeling prediction techniques 
provided little spatial information of where plant 
species distribution could be expected to be located in 
heterogeneous landscapes. GIS and Remote Sensing 
techniques combined with statistical analyzes, offer a 
promising tool to place plant distributions along 
environmental gradients, and thus providing important 
knowledge of where management efforts might be 
efficiently directed to mitigate the negative aspects of 
such possible vegetation change.  
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Figure 6. Map of the 2099-cheat grass invasibility 
model in Rich County, Utah. 
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