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ABSTRACT 

Production of Biodiesel from Oleaginous Organisms  

Using Underutilized Wastewaters 

by 

Valerie Godfrey, Master of Science 

Utah State University, 2012 

Major Professor: Lance C. Seefeldt 
Department: Chemistry and Biochemistry 

 Driven by the rising costs, decreasing convenience, and increased demand of 

fossil fuels, the need for alternative, sustainable energy sources has caused a spark in 

interest in biomass-based fuels.  Oleaginous organisms such as yeast, algae, and bacteria 

have been considered as microscopic biofactories for oils that can be converted into 

biodiesel.  The process of growing such organisms using current technology requires an 

alarming amount of freshwater, which is another resource of growing concern.  The 

research detailed within explains how several sources of underutilized wastewater can 

serve as growth medium in the biodiesel production process.  Using only nitrogen and in 

one case phosphorus as external supplements, algae were shown to grow on produced 

water from oil and gas industry waste, local municipal wastewater, environmental 

brackish water from the Great Salt Lake, and wastewater from the potato processing 

industry.  In each case, growth and biodiesel production in wastewaters was as good as or 

better than laboratory media.  The bacterial organism Rhodococcus opacus PD630 and 
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the yeast organism Cryptococcus curvatus were also used to grow on the dairy 

manufacturing wastewater whey permeate, a large source of underutilized fixed carbon, 

with successful lipid production.  C. curvatus was also used to successfully grow and 

form large amounts of biodiesel from ice cream factory wastewater and from wheat straw 

hydrolysate.  In each case, the need for freshwater and outside nutrients was nearly 

entirely replaced, with the exception of some nitrogen supplementation, with a 

wastewater nutrient source, thus adding to the sustainability of biomass-based fuels.  

(152 pages) 
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PUBLIC ABSTRACT 

 As part of the BioEnergy Team at Utah State Univeristy, my research objectives 

have been centered around the common theme of innovating new methods and 

technology for producing biological compounds and, by means of chemical conversion 

and/or extraction, isolating new forms of biodiesel available for transportation fuel.  

Within the broad scope of this project, I focused on the replacement of freshwater in 

cultivating such biological systems with wastewaters.  If accomplished and correctly 

applied, such research would reduce the environmental impact of biodiesel production by 

reducing the demand for freshwater.  It also would reduce production costs by reducing 

the amount of supplemented nutrients to growth media.  In some cases of investigated 

wastewater types, the biological growth of such organisms hold the potential to clean up, 

or remediate, pollutants in the water, making it environmentally cleaner, safer, and less 

expensive than current technologies for disposal. 

 The research of produced water as a wastewater resource in algal biodiesel 

production was a 12-18 month proposed project costing $80,000.  Other wastewaters 

were considered as part of a larger biofuels project funded through one earmark of a 

multimillion dollar grant, the portion of which was devoted to my resources is difficult to 

quantify but could be approximated at $30,000 over another approximately 12-16 month 

period. 

 

Valerie Godfrey 

Lance Seefeldt Laboratory, Utah State University  
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CHAPTER 1 

INTRODUCTION 

At the 1900 World’s Fair in Paris, Rudolph Diesel, the mechanical engineer who 

created the diesel engine, displayed an engine running on peanut oil so well that, 

according to his own words, “worked so smoothly that very few people were aware of it 

[the peanut fuel source].”  Diesel was a large proponent of agricultural products as fuels 

in his engines.  He stated, 

It has been proved that Diesel engines can be worked on earth-nut oil 
without any difficulty... similar successful experiments have also been 
made in St. Petersburg with castor oil; and animal oils, such as train-oil, 
have been used with excellent results.  The fact that fat oils from vegetable 
sources can be used may seem insignificant today, but such oils may 
perhaps become in course of time of the same importance as some natural 
mineral oils and the tar products are now… In any case, they make it 
certain that motor-power can still be produced from the heat of the sun, 
which is always available for agricultural purposes, even when all our 
natural stores of solid and liquid fuels are exhausted (Nitske & Wilson, 
1965). 

Although a grand idea at that time, the subject of agricultural-based biodiesel lay 

dormant for decades due to the prosperity of petroleum during most of the twentieth 

century.  Some mention of using palm oil as a diesel fuel occurred in the 1920s (Shay 

1993), but interest faded during World War II when vegetable oil fuels were pronounced 

12.5 times the cost of diesel fuels (Baker and Sweigert, 1947). During the late 1970s and 

early 1980s, the United States became more concerned about energy and reinvestigated 

the properties of vegetable oil (Bruwer et al., 1980; Goering et al., 1987).  The recent cost 

rises in fossil fuels and the increasing rise in energy demands have led to a renewed 

interest in alternative sources of energy.  Harvesting energy from agricultural products 

not only provides energy, but does so in a theoretically carbon-neutral cycle as the carbon 
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dioxide released from biofuel combustion is consumed by the crops, thus appeasing 

environmental concerns about the global accumulation of greenhouse gases. 

With the increase in production of bio-ethanol from corn feedstock in the United 

States, one of the growing concerns about biofuels is the competition of agricultural land 

space between fuel and food.  Microalgae have been considered as a feedstock for biofuel 

production because of its ability to grow on non-aerable land and produce higher 

densities of extractable oil at faster rates than a field of corn (Hu et al., 2008).  

Microalgae, however, require much more water than corn (up to 14 times) for growth 

medium (Clarens et al., 2010).  The Energy Independence and Security Act of 2007 

requires that 57 billion liters of ethanol be produced per year by the year 2015, which 

implicates that, if 44% of national corn produced is used for ethanol production and 

irrigiation demands remain unchanged from 2003 estimates, then the policy mandates 6 

billion m3 year-1, or 3% of the total national irrigation water.  This water demand exceeds 

the entire water usage of the state of Iowa (Dominguez-Faus et al., 2009).   

Water scarcity across the globe is becoming as much a growing topic of concern 

as climate changes (Johnson et al., 2001).  The World Resources Institute claimed that by 

2025, 3.5 billion people, or approximately half the world population, will live in water-

stressed basins where annual per capita water availability falls below 1700 m3 (Revenga, 

2000).  If biofuels are to replace even a fraction of the petroleum energy demand and 

sustain itself for generations to come, it must do so relying on waste water streams 

instead of freshwater. 

This thesis contains many insights into the process of taking a waste water stream 

and using it for the production of biofuel, specifically biodiesel.   While much of the 
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content refers directly to microalgae as a feedstock for fuel, later experiments show that 

other oleaginous organisms such as yeast and bacteria also hold great potential for large 

scale fuel production, especially when a sufficient carbon waste stream is used.  With the 

research contained herein and the countless other discoveries on the subject of sun-grown 

biodiesel, the ideas so eloquently anticipated by Rudolph Diesel over a century ago are 

finally being realized. 

References 
 
Baker, A.W., Sweigert, R.L., 1947. A comparison of the various vegetable oils as fuels 

for compression-ignition engines.  Proceedings of the 19th Oil and Gas Power 
Conference.  American Society of Mechanical Engineers, Cleveland, OH. pp. 40-
48. 

Bruwer, J.J., Van D. Boshoff, B., Hugo, F.J.C., du Plessis, L.M., Fuls, J., Hawkins, C., 
van der Walt, A.N., Engelbrecht, A., 1980. Sunflower seed oil as an extender for 
diesel fuel in agricultural tractors.  Symposium of the South African Institute of 
Agricultural Engineers, June 11, 1980. 

Clarens, A.F., Resurreccion, E.P., White, M.A., Colosi, L.M., 2010. Environmental life 
cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 
44, 1813–1819. 

Dominguez-Faus, R., Powers, S.E., Burken, J.G., Alvarez, P.J., 2009. The water footprint 
of biofuels: a drink or drive issue? Environ. Sci. Technol. 43, 3005–3010. 

Goering, C.E., Schrock, M.D., Kaufman, K.R., Hanna, M.A., Harris, F.D., Marley, S.J., 
1987. Evaluation of vegetable oil fuels in engines.  ASAE Paper No. 87-1586.  
ASAE, St. Joseph, MI. 

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., 
2008. Microalgal triacylglycerols as feedstocks for biofuel production: 
perspectives and advances. Plant J. 54, 621–639. 

Johnson, N., Revenga, C., Echeverria, J., 2001. Managing water for people and nature. 
Science 292, 1071 –1072. 

Nitske, W.R., Wilson, C.M., 1965. Rudolph Diesel, pioneer of the age of power. 
University of Oklahoma Press, Norman, Oklahoma. 

Revenga, C., 2000. Pilot analysis of global ecosystems: freshwater systems.  World 
Resources Institute, Washington, D.C. 



 4
Shay, E.G., 1993. Diesel fuel from vegetable oils: status and opportunities. Biomass and 

Bioenergy 4, 227–242. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5
CHAPTER 2 

INITIAL EXPERIMENTATION WITH PRODUCED WATER 

Abstract 

Produced water is currently considered a waste product of great expense from the 

oil and natural gas industry.  Shown here is a demonstration of the ability of microalgae 

to grow for the purpose of lipid production for biofuel conversion on produced water with 

optimization of nutrient supplementation of only 150-300 mg L-1 sodium nitrate.  

Hydrocarbon removal is necessary for higher lipid yield, and can be done by settling over 

months of time, centrifugation, or use of activated carbon filtration.  Nutrient spiking at 

the end of growth does not increase lipid productivity.  The process has successfully been 

scaled up to a 200-L raceway with 1.2 g L-1 dry weight and 9% total lipid content over a 

period of three weeks.  The effects of remediation are also shown, with successful 

reductions in most elements to make it suitable for traditional disposal with the exception 

of salinity.  The inability of microalgae to reduce the salinity of produced water makes 

remediation efforts futile.  Overall, the process of growing algae on produced water for 

the production of biofuels is a great substitute to freshwater and purchased chemicals. 

1. Introduction 

1.1. Produced Water 

Produced water is the largest byproduct of the oil and natural gas extraction 

process.  Any given extraction site goes down miles into the earth’s crust to bring up oil 

and natural gas, and inevitably water will come up with the desired product.  This water 



 6
is collected in large tanks on the site and must be trucked off daily.  This water is 

contaminated, and of greatest worry is its salt content, hydrocarbons and other organic 

compounds, other heavy metals, and in some cases radioactive materials (DOE, 2009).   

The water is disposed of using various techniques.  It can be reinjected into the 

ground, generally into saline aquifers about 2000 feet underground.  Evaporation sites 

also exist to drive off the water, leaving behind contaminants to be concentrated and dealt 

with at a future date.  A personal visit to an evaporation pond near Vernal, Utah, showed 

produced water being added to ponds lined with heavy plastic, filled repeatedly, with the 

salted residue concentrating more and more with time.  The liner is eventually pulled 

away to the barren land adjacent the pond and left there, indefinitely.  Efforts have been 

made to chemically treat the water as well, although this generally a much more 

expensive option.  In the state of Utah, 98% of produced water is reinjected into Class II 

wells (aquifers), close to 2% is evaporated in ponds, and negligible amounts are treated 

chemically (Utah DEQ, 2010, personal communication).  According to Clark and Veil 

(2009), approximately 21 billion barrels of produced water are generated each year in the 

United States alone.  That is equivalent to roughly 2.4 billion gallons per day.  This is 

outside the 50 billion barrels generated each year from wells outside the United States.  

The cost of treating one barrel of produced water ranges, depending on the area, 

anywhere from $0.40 to $1.50, or in some areas and cases upwards of $10.00, this 

becomes a huge expense to the oil and natural gas industry (and eventually out of the 

pockets of the consumer) (Boysen et al., 2001). 

A newly established oil well will produce one barrel of water for every barrel of 

oil.  The amount of water increases with the lifespan of the well, sometimes producing 50 
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barrels of water per barrel of oil.  The well is shut down when the cost of disposing the 

water exceeds the value of the oil. 

1.2. Produced Water and Algae 

Microalgae have been used previously for wastewater treatment and show a high 

tolerance to heavy metals and other contaminants (Yu et al., 1999).  They also hold great 

potential as a source of renewable energy through the production of lipids convertible 

into fatty acid methyl esters, which can be used as biodiesel.  If microalgae could be 

shown to grow and produce a reasonable amount of lipids to be converted into biodiesel 

on produced water, production costs could be mitigated to both oil/gas companies and 

algae biofuels projects. 

2.  Materials and Methods 

2.1. Collection and Storage of Wastewaters 

Produced Water.  The produced water used in this study was obtained from the 

Anadarko injection site located in the Uintah Basin, near Vernal, Utah.  This site collects 

produced water from hundreds of wells throughout the Basin and pre-treats it by running 

it through a carbon filter (to remove hydrocarbons) prior to re-injection.  Our two barrel 

sample was collected prior to carbon filter treatment.  The barrel was centrifuged in 400-

mL aliquots as needed during the first two months for hydrocarbon removal.  After about 

two months, however, the gray color of the water began to dissipate as the hydrocarbons 

settled with time in a black mass on the bottom of the barrel.  At this point, without 

greatly disturbing the barrel, produced water was removed from the top of the barrel. 
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Later experimentation involved testing the use of activated carbon as a carbon 

filter to substitute centrifugation.  Activated Filter Carbon by Aquarium 

Pharmaceuticals® was purchased from a local pet store, and is designed for removal of 

organic wastes, colors, and odors using small pebbles to act as a filter.  An equivalent of 

one-half cup of pebbles was used to treat less than 40 liters of produced water.  Bench-

scale experiments ran produced water through an activated carbon-packed column, 

secured with cheesecloth.  Outdoor raceway experiments utilized a specially-made device 

to pass water through the activated carbon pebbles while being pumped into the raceway.  

This filter apparatus had been built to hold enough activated carbon for 80 L of produced 

water to pass through, and was therefore changed out twice for filling of the raceway.  It 

was observed that water exiting the filter had a black grainy substance that was washing 

off of the activated carbon pebbles, and that rinsing the pebbles in water prior to loading 

in the filter reduced this effect. 

Municipal Wastewater.  The municipal wastewater used in the final remediation 

study was collected from the lagoon-style Logan City wastewater treatment facility on 

January 5, 2011, at a point just prior to chlorination and release from the facility.  Water 

was collected in plastic containers, centrifuged for debris removal, and autoclaved for 

sterility until inoculation.  Elemental analysis was performed by Utah Veterinary 

Diagnostics Laboratory (UVDL), which included nitrate analysis (Biospec-1601, 

Shimadzu, Columbia, MD) and ICP analysis (ELAN 6000, Perkin Elmer, Waltham, MA) 

of the following elements: Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, K, Mg, Mn, 

Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, and Zn.   Sodium chloride was supplemented 

at 180 mg L-1 for algal growth. 
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Great Salt Lake Water.  The environmental, brackish water used in the final 

remediation study was collected from the Great Salt Lake at a point two miles from a 

freshwater inlet on January 19, 2011.  Upon collection in plastic containers, the water 

was centrifuged for debris removal and autoclaved until inoculation.  The compositional 

analysis was performed identically to that of municipal wastewater.  Because nitrate and 

phosphorus were found to be so low, sodium nitrate and potassium phosphate were 

supplemented to equal that of produced water N:P content.  

2.2. Strain Selection and Stock Cultures 

Amphora coffeaformis UTEX 2039, Chaetoceros gracilis UTEX LB 2658, 

Phaeodactylum tricornutum UTEX 640, BA116 (isolated from Great Salt Lake, or GSL), 

BA117 (isolated from GSL), BA118 (isolated from GSL), BA050 (isolated from GSL), 

and USU080 (formerly known as GA080, isolated from GSL) were maintained within the 

laboratory in agar plates and 250 mL stock cultures in 500-mL baffled flasks.  Liquid 

cultures were rotated at 140 rpm with lighting at 180 µmol m-2- s-1 on a light:dark 

photoperiod of 14:10.  Broad Seawater (BS) medium was used for culture maintenance 

and inoculum, and consists of the following ingredients per liter: NaCl (18 g), NaHCO3 

(1 g) (none for Chaetoceros gracilis cultures), KCl (0.6), MgSO4•7H2O (1.3 g), 

CaCl2•2H2O (100 mg), K2HPO4 (250 mg), Na2SiO3•9H2O (70 mg) (none used for 

USU080 cultures), ferric ammonium citrate (5 mg).  Trace metals were also added at 1 

mL per L of media: H3BO3 (600 mg L-1), MnCl•4H2O (250 mg L-1), ZnCl2 (20 mg L-1), 

CuCl2•2H2O (15 mg L-1), Na2MoO4•2H2O (15 mg L-1), CoCl2•6H2O (15 mg L-1), 

NiCl2•6H2O (10 mg L-1), V2O5 (2 mg L-1), KBr (10 mg L-1). 
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2.3. Compositional Analysis of Produced Water 

Samples of produced water were delivered to Utah State University Analytical 

Labs (USUAL) for ICP analysis (Thermo Electron, Marietta, OH) of the following 

elements: Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, 

Sr, and Zn.  In addition, USUAL was also utilized to determine pH, electrical 

conductivity (for calculation of total dissolved solids, or TDS), and nitrate, chloride, 

carbonate, and bicarbonate concentrations.  A total of eleven samples of produced water 

were submitted to USUAL, which included one sample from the barrel upon receipt 

(prior to hydrocarbon settling), two samples following settling (to observe the range of 

variability from sample to sample), one sample of produced water without inoculation but 

still treated with tube illumination and gas bubbling, 2 samples including before and after 

growth of A. coffeaformis, 3 samples from 2 different batch growths of C. gracilis 

including 1 before and 2 after samples from each batch, and 1 following growth of 

USU080. 

Testing of the nutrients nitrogen, phosphorus, and silicate concentrations during 

the activated carbon experiments was performed by QuikChem 8500, Series 2 (Lachat, 

Loveland, CO). 

2.4. Growth Conditions and Measurements 

 Tube Reactors.  Growths were carried out in two different tube reaction vessels, 

unless otherwise noted in the section about scale-up.  The first to be used consisted of a 

rack of ten 450-mL autoclaved tubes illuminated by fluorescent light bulbs at 

approximately 300 µmol m-2 s-1, and was used only in initial experiments with strain 
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selection on produced water and nitrate and phosphate studies in A. coffeaformis.  The 

second tube reaction system consisted of a rack of 14 1.3-L autoclaved tubes similarly 

illuminated and was used for the remainder of tube reaction systems.  During 

experiments, ten percent inoculum was added to either Broad Seawater or produced 

water, with the nutrient supplements (i.e. sodium nitrate, potassium phosphate) as 

specified in each experiment.  Cultures were sparged with air with 1% CO2. 

 Growth Measurements.  Daily optical density readings (300-900 nm) were taken 

(UV-2401PC, Shimadzu, Colombia, MD) and charted based on the 600 nm reading.  

Cultures were harvested once OD600 showed signs of peaking.  Cultures were centrifuged 

at 8000 rpm for 15 minutes, with collected cells frozen and subsequently lyophilized 

(Free Zone 4.5, Lanconco, Kansas City, MO).  Any supernatants were kept frozen until 

submitted for analysis.  Dry weight was determined from lyophilized cell mass and cells 

were kept frozen until lipid analysis. 

 USU080 “Wild” Strain Experiments.  In 2 500-mL tubes, 400 mL Broad 

Seawater Bicarb. media was added with 70 mL of USU080 wild strain culture from the 

greenhouse raceway.  Daily monitoring of optical density was the critical information 

which dictated when to dilute the cultures.  During the first week, growth was allowed to 

level off to observe the maximum density capacity for the strain.  On day 6, fifty percent 

of the cultures were harvested and to one tube was added an equivalent volume of fresh 

Broad Seawater media, and to the other tube was added the supernatant media from the 

harvested volume (i.e. the “spent” media).  The cells had a tendency to clump, which 

meant that, without more efficient mixing prior to harvesting, the optical density would 

not necessarily fall by half, which was the case every time cells were harvested.  On day 
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16, 50% of cell cultures were again harvested and replaced with either fresh media or 

spent media, as before.  Two days later, upon returning from a tour of facilities in Vernal, 

the gas capillary tube in the vessel receiving fresh media was found completely blocked 

and the culture dead.  Though the cells in the second vessel receiving spent media had 

been treated differently, on day 20, 100 mL cells were taken from it to act as inoculum to 

restart the vessel to receive fresh media at each harvest.  This tube receiving fresh media 

grew quickly, and was harvested and filled with fresh media on days 23, 25, 27, 28, and 

30.  Meanwhile, the tube receiving spent media did not grow sufficiently, appearing to be 

nutrient limited.  On day 32, both 500-mL tubes were dumped into larger 1.3-L tubes.  

Both were filled to 1.2 L using fresh Broad Seawater media.  In the larger vessels, the 

tube receiving spent media grew fastest and was harvested on day 36 and refilled with the 

spent media.  This tube on spent media did not grow very well for the remainder of the 53 

day experiment.  The tube receiving fresh media was harvested and refilled with fresh 

media on day 37 and again on day 42. 

Two additional 500mL tubes containing 400 mL produced water and 70 mL 

USU080 “wild” inoculum from the greenhouse raceway were also monitored for rapid 

growth.  Cultures were diluted with fresh produced water when OD levels peaked, and 

diluted again when cultures reached that same OD. 

 Scale-up Methods.  Scale-up cultures included three additional forms of 

bioreactors.  A 5-L bottle was equipped with magnetic stir-plate mixing rotating at 50 

rpm and air and CO2 sparging and lighting from two sides opposite each other on a 14:10 

light:dark cycle.  A 50-L bag was hung outdoors with air and CO2 sparging.  Although 

plastic bags are routinely used for growth using lab media, initial experiments were 
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required to prove that a plastic bag could hold produced water alone without causing 

corrosion or deformation of the bag.  Using a smaller scale, approximately 8-L bag, 

produced water was shown to successfully hold for several weeks with no sign of 

deformation or leakage.  Sparging in 5-L and bag reactors was similar to that in tube 

reactors described above.  A 220-L raceway was the largest bioreactor tested, equipped 

with a paddlewheel and pH control via a CO2 injection system.  The raceway was filled 

with 150 L produced water using the activated carbon filter apparatus and pump, and was 

inoculated with 50 L of either C. gracilis or USU080 from a bag.  Daily measurements 

including optical density, pH, dissolved oxygen, and fluorescence (a measure of cell 

fitness) were taken on the raceway scale. 

The scale-up process requires starting from a healthy shaker flask at 200 mL, 

followed by a 1.3-L tube, then a 5-L reactor, to a 50-L bag, and if the culture appears 

healthy enough it can then be used to inoculate the raceway.  Produced water 

supplemented with nitrate was used as the medium during all stages of C. gracilis growth 

but the 200-mL shaker flask, and for the 50-L bag, the newly acquired, unsettled 

produced water was used before testing on the activated carbon filter had been 

completed.  USU080 inoculum was grown on nitrate-supplemented produced water for 

all stages except the 200-mL flask and 50-L bag, where Broad Seawater Bicarb. Edition 

was substituted. 

2.5. Neutral Lipid Analysis 

200 mg dry, homogenized biomass was weighed into a clean 16 x 125-mm test 

tube and mixed with 5 mL solvent mixture of tetrahydrofuran, chloroform, and hexane 
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(1:1:1).  Test tube contents were sonicated 3 times in 10 second intervals to release 

TAG from cells.  Upon centrifugation, lipid and solvent mix is extractable from pelleted 

cell debris and removed by syringe into a 40-mL I-Chem bottle, pre-marked to 15 mL 

using 15 g distilled water.  Solvent addition, sonication, centrifugation, and extraction of 

lipid-solvent mix was repeated twice more.  The final extracted volume is brought to 15 

mL with solvent mixture, and 1 mL is removed into a GC vial with Teflon septum.  

Standards were prepared using tripalmitin at concentrations of 0.065, 0.13, 0.26, 0.39, 

0.52, and 0.65 mg mL-1.  10 µL octacosane (10 mg mL-1) and 50 µL MSTFA were added 

to each sample prior to GC analysis.   

2.6. FAME analysis 

Where indicated, FAME analysis was also performed, as described in Wahlen et 

al. (2011).  This included mixing 100 mg dry biomass with 2 mL acidified chloroform 

(with 1.8% v/v H2SO4) in a commercial scientific microwave (Discover S, CEM USA, 

Matthews, NC) at 90°C for 20 minutes to complete transesterification.  Chloroform was 

added to reaction vessel and rinsed with water twice to remove residual methanol, acid, 

and glycerol.  The chloroform-FAME layer was removed by syringe into a 10-mL 

volumetric flask and rinsed with chloroform twice more to remove maximal lipids from 

the biomass.  The final volume was brought to 10 mL with chloroform, and 1 mL was 

removed into a GC vial, capped with a Teflon septum.  FAME standards were prepared 

using a mixture of methyl myristate, methyl palmitoleate, and methyl oleate at final 

concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg mL-1.  10 µL octacosane (10 mg    

mL-1) was added to each sample and standards prior to GC analysis. 
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2.7. Gas Chromatography 

Lipid content, both TAG and FAME, were determined by gas chromatography 

(Model 2010, Shimadzu Scientific, Columbia, MD) coupled with programmable 

temperature vaporizer (PTV) and flame ionization detector (FID).  The carrier gas used 

was helium, set at a constant flow rate of 50 cm s-1.  A 1-µL sample was injected into the 

PTV in direct mode, with programmed temperature set to match the column.  The column 

used to separate analytes was an RTX-Biodiesel column, 15 m long, 0.32 mm ID, and 0.1 

µm film thickness (Restek, Bellefont, PA).  The oven temperature was set to 60°C for 1 

minute, followed by an increase of 10°C min-1 to 370°C for 6 minutes.  The FID was set 

to 370 °C.  GCsolution postrun 2.3 (Shimadzu) was used for lipid peak integration. 

3.  Results and Discussion 

3.1. Growth of Algae on Produced Water 

Original efforts on this project were aimed to prove that microalgae could grow 

on produced water.  After centrifuging the produced water to remove visible black 

 

  
Figure 2.1.  Photographs of algal strains at beginning (left) and end (right) of growth on 
produced water. 
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Table 2.1.  Dry weight and TAG results of initial strains on produced water. 
Strain Dry Weight (g L-1) % TAG Content 
A. coffeaformis 1.80 10% 
P. tricornutum 1.40 1% 
C. gracilis 1.32 3% 
BA116 2.22 1% 
BA117 1.84 1% 
BA050 2.42 2% 
BA118 0.48 12% 
 

hydrocarbons, ten strains were selected as inoculum to 450-mL tubes.  Sodium nitrate 

was added shortly after inoculation, followed by potassium phosphate addition. 

As seen above in Figure 2.1, growth was achieved on produced water for all strains 

tested.  Neutral lipids (TAG) were analysed and reported as a percent of the dry weight 

for seven of the strains and are presented in the table below. 

Table 2.1 shows that several strains grew successfully on produced water, with 

few strains producing significant amounts of TAG.  With the premise that several strains 

of algae are capable of growing and producing lipid on produced water, efforts to 

optimize growth and lipid production parameters became the new focus. 

3.2. Elemental Analysis of Produced Water 

In order to hypothesize supplementation of produced water to optimize it for algal 

growth, an elemental analysis was performed.  The elemental composition is presented 

below in Table 2.2. 

Aside from carbon and water, the next most important elements to a phototrophic 

organism are nitrogen and phosphorus (Shuler and Kargi, 2002).   The above nutrient 

analysis shows that produced water already contains acceptable concentrations of many  



 17
Table 2.2. Compositional analysis of produced water. 

Element mg L-1 

Nitrate-N 29.4 
Chloride 83500 
Aluminum <0.12 
Arsenic 0.06 
Boron 3.23 
Calcium 590 
Cadmium <0.001 
Cobalt <0.005 
Chromium 0.01 
Copper <0.008 
Iron 0.118 
Potassium 98.8 
Magnesium 66.3 
Manganese 0.59 
Molybdenum <0.15 
Sodium 7235 
Nickel <0.003 
Phosphorus 6.24 
Lead <0.03 
Sulfur 321 
Selenium <0.04 
Silica 34.7 
Strontium 27.7 
Zinc <0.005 
Carbonate/Bicarbonate 19.9 
pH 8.12 

 

elements, but nitrate and phosphorus were both found to be much lower than expected for 

growth.  This is why nitrate and phosphate were added to the initial experiment.  

Knowing that several strains had the capacity to grow on produced water with additional 

nitrate and phosphate addition, the next attempts focused on optimizing the precise 

amount of these 2 nutrients for maximal growth and lipid production. 
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3.3. Determination of N and P Supplementation  
for Lipid Production in A. coffeaformis 

Phosphate.  Because A. coffeaformis yielded high TAG content and acceptable 

dry weight, original studies focused on the performance of this strain for experimentation.  

Phosphate concentration was first optimized using various concentrations of added 

potassium phosphate, ranging from no addition to addition 230 mg L-1 (approaching the 

BS recipe which contains 250 mg L-1 potassium phosphate).  Sodium nitrate (150 mg L-1) 

was added to match that of the BS recipe.  The results from the experiment are shown 

below in Figure 2.2.  As shown in Figure 2.2b, the highest lipid production occurred 

when phosphate concentration was lowest, with no addition of phosphate.  Algal growth 

(Figure 2.2a) was greatest at the highest phosphate concentration, and no significant 

difference was found in biomass production at all other concentrations. It was concluded 

that algae could produce sufficient lipid and biomass without the addition of phosphate. 

Nitrate.  Using the above finding that addition of phosphate stimulates no 

advantage in the biofuels objective, trials proceeded to optimize the concentration of 

 
Figure 2.2. Results of growing A. coffeaformis on produced water with supplementation 
of various concentrations of phosphate. (a) Dry weight of cells increased when addition 
of phosphate exceeded 105 mg L-1. (b) Percent of the dry mass extracted as TAG was 
found to decrease as phosphate concentration increased. 

a b 



 19

 
Figure 2.3.  Results of growing A. coffeaformis on produced water with supplementation 
of various concentrations of nitrate. (a) Dry weight of cells vs. concentration of 
supplemented sodium nitrate. (b) TAG content as a percent of the dry weight of the cell 
vs. concentration of supplemented sodium nitrate. 

 

nitrate addition for A. coffeaformis growing on produced water.  Sodium nitrate was 

supplemented at 0, 25, 75, 150, and 300 mg L-1. 

As shown above, neutral lipid formation (Figure 2.3b) was highest when 75 mg  

L-1 sodium nitrate was supplemented, yet still high when 150 mg L-1 and 300 mg L-1 

nitrate was added.  It appeared that adding less than 75 mg L-1 nitrate was insufficient to 

trigger lipid formation, as they did not contain as high amounts of neutral lipids nor did 

they grow much biomass (Figure 2.3a).  The highest dry weight was achieved when 150 

mg L-1 nitrate was added to the produced water.  Because biomass production was 

highest at this concentration and a reasonable concentration of neutral lipids was formed, 

150 mg L-1 (1.8 mM) sodium nitrate was selected as the amount to add to produced water 

as an algal medium. 

3.4. Additional Strain Selection 

Having more autonomy in the laboratory and with an apparatus to design and perform 

personal experiments, it was possible to once again look at the results from the first 

a b 
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experiment of ten strains grown on produced water and reevaluate strain selection.  A. 

coffeaformis did perform well, but working with this strain presented difficulties—for 

example, its tendency to clump on the surfaces of the growth vessel (exhibiting benthic 

growth) during early stages of growth can impact the gas bubbling consistently from tube 

to tube.  Thus, it becomes difficult to draw definite conclusions from experiments 

knowing that some conditions tested had unmeasured variables.  One more attempt was 

made to identify a strain easy to observe experimentally that could produce high yield of 

lipids and biomass, and whether that strain required addition of phosphate to do so.  The 

three strains A. coffeaformis, BA118, and C. gracilis were used and were tested with and 

without phosphate addition. 

As seen in Figure 2.4a, all organisms tested exhibited growth on produced water, 

although some of the A. coffeaformis and BA118 tubes did grow benthically during initial 

growth stages which obstructed air flow until corrected.  C. gracilis reported the darkest 

average optical density throughout the experiment (data not shown), both with and 

 

 

Figure 2.4. Bar graph representing the growth and lipid production of three algal strains 
on produced water with and without phosphate addition.  Amp = A. coffeaformis, Chaeto 
= C. gracilis, and centr = centrifuged.  The effect of additional centrifugation on the 
growth of BA118 is also shown. (a) Dry weight and (b) percent of the dry weight 
extracted as TAG of each sample is shown. 

a b 
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without phosphate addition.  C. gracilis also reported the highest average dry weight of 

1.45 g L-1 when phosphate was added.  The sample of BA118 grown on centrifuged 

produced water without phosphate addition had the highest reported percent TAG content 

(Figure 2.4b), with 12.9% TAG.  C. gracilis with phosphate addition was close with 

12.7% TAG. 

Addition of phosphate did not have a uniform effect on the different organisms 

tested.  Both dry weight and TAG content in A. coffeaformis actually were higher when 

no phosphate was added.  However, the opposite was seen in BA118, with a slight 

increase in dry weight and TAG content with phosphate addition.  Although samples in 

C. gracilis were not duplicated, it did appear that phosphate addition increased both 

growth and lipid production. 

Figure 2.5 shows data of the total TAG concentration in g L-1, a combination of 

the percent TAG content and the dry weight.  As shown, C. gracilis was the organism 

that produced the most TAG, and produced even more when phosphate is supplemented 

to the medium.  Also shown is the resulting increase in TAG in BA118 when produced 

  

 
Figure 2.5. Total neutral lipid production of three algal strains on produced water with or 
without phosphate addition. Calculated from dry weight and % TAG of each sample.  
Amp = A. coffeaformis, Chaeto = C. gracilis, and centr = centrifuged. 
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water is additionally centrifuged.  Extra care to remove hydrocarbons increases the 

TAG accumulation in the biomass. 

3.5. Optimization of N and P supplementation 
 in C. gracilis 

 Phosphate.  With proof that C. gracilis can grow well and produce lipids in 

produced water medium, efforts to optimize the nutrients necessary for maximal biomass 

and lipid productivities within this organism began with understanding the effect of 

supplementing essential nutrients (i.e. phosphate and nitrate) and comparing that with a 

baseline media recipe.  Although some previous experiments determined that phosphate 

addition was not necessary in A. coffeaformis, only two samples of C. gracilis were used 

to detect the effect of phosphate addition and no experiment compared the performance 

of produced water against standard lab media at similar phosphate concentrations.  In 

order to determine the effect of using produced water at any phosphate concentration, and 

which would produce maximal growth and lipid production, this experiment was 

necessary.  Dibasic potassium phosphate was supplemented at 0, 90, and 175 mg L-1, 

with additional supplementation of 150 mg L-1 sodium nitrate.  

As shown in Figure 2.6a, C. gracilis observed higher optical densities on 

produced water than BS media.  Dry weight (Figure 2.6b) from any given phosphate 

concentration was also always higher in produced water than BS, and increased in both 

media as phosphate concentration increased.  Neutral lipid content (Figure 2.6c) in BS 

increased as phosphate concentration increased, whereas in produced water it was highest 

with 90 mg L -1 phosphate, though not much lower with no phosphate addition.  Lipid 
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Figure 2.6. Results of growing C. gracilis at various potassium phosphate concentrations 
within produced water (□) and BS media (○). (a) Average optical density measurements 
of all produced water and BS cultures taken at 600 nm throughout the batch growth. (b) 
Harvested dry weight of cells at each phosphate concentration. (c) Neutral lipid content, 
as percent of the cell dry weight, vs. phosphate concentration. (d) TAG productivity vs. 
phosphate concentration. 

 
productivity, which takes into account both biomass production and lipid content (Figure 

2.6d), was seen highest when grown on produced water with 90 mg L-1 phosphate, at an 

average of 14.2 mg TAG L-1 day-1.  For BS, lipid productivity increased as phosphate 

concentration increased; in produced water it seemed optimized at 105 mg L-1 potassium 

phosphate.  These results show that produced water is a sufficient growth medium for C. 

gracilis and can outperform BS in growth and lipid production.  It also shows that 

phosphate addition can increase both lipid and growth productivities.  However, 

sufficient growth can be achieved without phosphate addition if production costs are 

desired to be kept minimal. 

b a 

c d 
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Nitrate.  Having understood the effect of phosphate addition to C. gracilis in 

two different nutrient media environments, it became necessary to also optimize the 

nitrate concentration in solution.  Similar to the above mentioned experiment, produced 

water supplemented with three different concentrations of sodium nitrate (75, 150, and 

300 mg L-1, each run as duplicates) were compared to BS at the same sodium nitrate 

concentrations as growth media.  This would show both how produced water compares as 

a growth medium for C. gracilis and how much nitrate is necessary for optimal growth 

and lipid production. 

As shown in the Figure 2.7, growth of C. gracilis in produced water medium 

exceeded that of BS, as measures both by optical density (Figure 2.7a) throughout the  

 

 
Figure 2.7. Results of growing C. gracilis at various sodium nitrate concentrations within 
produced water (□) and BS media (○). (a) Average optical density measurements of all 
produced water and BS cultures taken at 600 nm throughout the batch growth. (b) 
Harvested dry weight of cells at each nitrate concentration. (c) Neutral lipid content, as 
percent of the cell dry weight, vs. nitrate concentration. (d) TAG productivity vs. nitrate 
concentration. 

a b 

c d 
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growth and final dry weight (Figure 2.7b).  It is also seen from these graphs that adding 

only 75 mg L-1 nitrate did not produce as much growth as the other two higher nitrate 

concentrations.  In produced water, the dry weight was equal for 150 mg L-1 and 300 mg 

L-1 nitrate, whereas in BS dry weight actually decreased slightly in the higher 300 mg L-1 

nitrate media.  Lipid content (Figure 2.7c) of cells grown in produced water was also 

higher than in BS.  BS seemed to optimize lipid production at 150 mg L-1 nitrate.   

Although produced water seemed to show the opposite trend, with higher average 

lipid content at 75 mg L-1 and 300 mg L-1 nitrate than at 150 mg L-1 nitrate, the margin of 

error within these readings leads one to believe that lipid production can occur at all 

concentrations of sodium nitrate added.  The above graph showing TAG productivity 

similarly shows that growth and lipid production of C. gracilis in produced water exceed 

that in Broad Seawater, and that nitrate addition was optimized in BS at 150 mg L-1 and 

inconclusive for produced water given the margin of error. 

3.6. Effect of Nutrient Spiking 

 First attempt.  From the previous two experiments, it was determined that C. 

gracilis was capable of producing lipid from growth on produced water better than BS 

with only addition of 150 mg L-1 sodium nitrate.  Research has shown that lipid 

production is triggered within the algal cell in low nitrogen solutions, but that some 

minimal level of nitrogen is necessary for proper growth (Guschina and Harwood, 2006) 

and that a proper C:N:P ratio will yield greatest lipid productivity in algae (Redfield, 

1934).  It was hypothesized that growing algae on the optimized nitrate concentration 
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until growth reached a peak and then spiking the medium with extra nutrients could 

induce even greater cell growth and lipid production. 

Originally, twelve cultures were inoculated to be supplemented with additional 

nutrients at the end of the growth.  Soon into the growth, however, it became apparent 

that nine cultures were different from the remaining three, and that the cause was 

differing ages of inoculum cells.  The experiment continued, with the intent to treat the 

nine cultures, which were spiked with various micronutrients including iron, silicate, 

trace metals, and phosphate, separately from the three, spiked with nitrate only. 

Although it can be difficult to extrapolate definite conclusions from the data in 

Table 2.3 given the errors in experimental design, some assumptions can be made which 

can be useful in designing further experiments.  Tubes 10-12 show that spiking with 

nitrate at the end of a growth can increase both growth (as seen in the increase in optical 

density versus the control) and lipid production, doubled from 15% to 31% when 50 mg 

L-1 sodium nitrate was spiked.   Adding iron and silicate of all other nutrients also seemed  

Table 2.3. Results from first spike experiment.  Includes how much the optical density 
increased from the day following the nutrient spike, the total number of days grown, the 
amount of cellular TAG as percent of the dry weight, and the dry weight of the cell. 

Tube 
# Spiked with 

% Increase OD 
after spike 

Days 
grown 

% 
TAG 

Dry weight 
(g L-1) 

1 0.6 mM PO4
3- 68% 21 8.2% 1.11 

2 0.6 mM PO4
3- 75% 21 9.3% 1.12 

3 1.2 mL trace metals 40% 20 9.0% 1.05 
4 1.2 mL trace metals 48% 21 9.6% 0.96 
5 17.3 M SiO3

2- 68% 21 17.8% 1.26 
6 17.3 M SiO3

2- 57% 21 20.3% 1.12 
7 1.4 M Fe 72% 21 24.8% 1.34 
8 1.4 M Fe 94% 21 23.8% 1.42 
9 all of above 47% 20 18.8% 1.09 

10 1.8 mM NO3
- 47% 16 26.1% 1.32 

11 None 0% 12 15.3% 1.04 
12 0.6 mM NO3

- 30% 16 31.5% 1.51 
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to encourage growth and lipid accumulation, though there is no control to compare 

with.  All that is shown is that once the tube was spiked with the nutrient, the final optical 

density was, in the case of tube 8 spiked with iron, 94% greater than just before the spike.  

The neutral lipid content also reached nearly 24%, which is much higher than about 9% 

in tubes spiked with phosphate or trace metals.  Clearly, further explanation is necessary 

to confirm any further conclusions. 

Second attempt.  From the first spike experiment, it was shown that spiking with 

50 mg L-1 and 150 mg L-1 nitrate worked well to increase dry weight and TAG content.  

The effect of spiking with phosphate remained undetermined due to a lack of controls, 

but the importance of the C:N:P ratio drove the need to understand the effect of spiking 

primarily with phosphate and nitrate.  Using these preliminary results, it was decided to 

use 75 mg L-1 sodium nitrate and 90 mg L-1 potassium phosphate as a final spike 

concentration for the next experiment.  The effect of spiking cultures with either nitrate 

or phosphate, or both, was compared against the controls of unspiked produced water and 

BS.  As shown in Table 2.4, adding phosphate alone did not improve optical density or 

Table 2.4. Results from second spike experiment.  Includes the averages (and standard 
deviations) of total number of days grown, the dry weight of each sample, how much the 
optical density increased from the day following the nutrient spike expressed as a percent, 
the amount of cellular TAG as a percent of the dry weight, the FAME content as a 
percent of the cell dry weight, and the productivity of FAME. 

Media + 
spiked 

nutrient 
Days 

grown 
Dry weight 

(g L-1) 

% Increase  
in OD after  

spike % TAG % FAME 

FAME 
Productivity 
(mg L-1 day-1) 

BS 13 0.88 1.7 18.0 24.9 15.7 
PW 18 1.35 5.3 23.9 30.6 21.7 

PW+N 
19.5 

(±2.1) 1.50 (±0.19) 16.4 (±6.5) 23.0 (±0.1) 27.7 (±1.4) 21.2 (±0.6)  

PW+P 
17 

(±1.4) 1.49 (±0.37) 1.79 (±1.7) 19.1 (±2.7) 22.1 (±3.3) 19.2 (±3.4) 
PW+N+P 18 (±0) 1.45 (±0.11) 0.6% 23.1 (±1.3) 25.9 (±0.7) 20.9 (±1.0) 
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lipid content as compared to both controls, although one tube was harvested much 

earlier than most, at day 15, had the highest reported lipid productivity.  Spiking with 

nitrate did not increase the lipid productivity although it improved the optical density.  It 

is likely that the excess nitrogen was used to synthesize chlorophyll within the cell, which 

would cause an increase in optical density without affecting the dry weight or lipid 

accumulation much (Li et al., 2008).   Unless the biodiesel is purified, such chlorophyll 

could cause damage to a diesel engine.  Spiking with both nitrate and phosphate did not 

present any advantages either, to either growth or lipid productivity.  Thus it was 

concluded that nutrient spiking is unnecessary for optimal lipid production. 

3.7. Growth of USU080 

 A new green alga organism was identified within the laboratory, isolated from the 

Great Salt Lake, and seen to accumulate high amounts of lipid and grow to greater 

densities than Chaetoceros species.  USU080 was tested for its ability to grow and 

produce lipids on produced water supplemented with sodium nitrate.   

According to Table 2.5, it was shown that not only can USU080 grow to high 

densities (2.5 g L-1 compared to 1.35 g L-1 C. gracilis), it also has superior lipid 

productivities.  Containing 40% FAME and a lipid productivity rate of 40 mg L-1 day-1, 

this organism outperformed any past sample of any organism yet tested on produced 

water.  Table 2.5 contains the data from duplicate cultures. 

Table 2.5.  Values of average (and standard deviation) growth and lipid production of 
USU080 on produced water. 

Days grown Dry Weight (g L-1) % TAG % Biodiesel 
Productivity 
(mg L-1 day-1) 

20.5 (±0.7) 2.51 (±0.04) 13.85% (±0.04) 40.0 (±2.3) 48.9 (±2.0) 
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3.8. Natural Selection of USU080 “Wild” Strain 

 Other researchers in the biofuels team were conducting experiments in the 

greenhouses of the new Solar Innovations (Outdoor) Facility growing both USU080 and 

Chaetoceros gracilis in open raceways to see which could outperform the other from 

rapid growth and lipid productivity perspectives.  The open nature of the raceway steps 

away from sterility and other precautions to maintain strain purity.   At the end of the 

experiment, the lime green color of USU080 appeared morphed into a dark olive green 

and questions were raised as to its true identity.  Termed the “USU080 wild strain,” our 

team was interested in the performance of this organism, hypothesizing that if it was not 

truly USU080, then whatever strain did take over would grow even better.  If one could 

find an organism that grew to the same or higher density in half the batch time, the 

productivity would be at least doubled.   

“USU080 wild strain” was brought into the laboratory for testing in a closed 

environment in the tube vessels.  The objective was to decrease batch growth time by 

eliminating cells from the tube once it reached a certain optical density, then refill the 

tube with fresh media, attempting to naturally select for fast growing cells within the 

population, eventually forming a culture of cells with accelerated growth time.  The 

experiment was also designed to learn the advantage of using fresh media versus the 

spent media from which cells were just harvested, eventually understanding what the 

minimal nutrient requirement would be for a semicontinuous culture. 

The USU080 wild strain was also tested for growth on produced water, which was 

done successfully in two different cultures.  However, growth was much slower, taking 3 

weeks to grow to the density that was achieved on BS in just 1 week.  These 
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Figure 2.8. Optical density readings of USU080 “wild” strain receiving fresh (♦) and 
spent (◊) BS-Bicarb. media upon dilution.  The culture receiving fresh media grew much 
faster than that receiving spent media.  Optical density shown at 600 nm. 

cultures were not selected for fast growth, just a proof-of-concept that this “wild” strain 

can also grow on produced water.  

The USU080 wild strain was found to grow rapidly in tubes (Figure 2.8), being 

able to grow back thirty percent of its cell mass in just one day.  The “wild strain” did not 

seem to behave any differently in tubes than the original USU080 strain, and the 

assumption that this strain was indeed different than USU080 was highly questioned.   

The “wild” strain was captured in an agar plate for long-term storage for future 

experiments, but interest was lost in the natural selection process of a fast-growing 

culture. 

3.9. Effect of Pretreatment Using Activated Carbon  

A visit to oil production facilities near Vernal, Utah, and the new Solar Innovations 

(outdoor) Facility equipped with various sizes of raceways sparked great interest in being 
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able to grow algae on produced water at a much larger scale than small tubes on a light 

bank.  In order to make the idea of growing algae on produced water commercially 

viable, demonstrations were necessary for a proof of concept.   One 220-L raceway was 

purchased for the exclusive use of produced water experiments.  A new stock of 

produced water in three 55-gallon barrels was acquired to provide enough water to 

perform larger scaled experiments, but these barrels did not have 6 months to settle out 

hydrocarbons, and in 3 to 4 months the sunny, summer weather would turn too cold for 

an outdoor experiment.  Early experiments showed that, at least in BA050, lipid 

production greatly increased when extra care was taken to remove hydrocarbons by 

centrifugation; however, centrifugation in a large, commercial process is too costly.  For 

this raceway alone, the only means to centrifuge 200 L of produced water was a 

continuous centrifuge used for harvesting algae that would have been contaminated by 

the potent, black sludge left behind by the crude produced water.  For these reasons, the 

need to find a more commercially viable means to remove hydrocarbons from large 

volumes of produced water without altering other nutrients such as phosphorus essential 

for microbial growth was essential before scaling up growth reactors. 

Activated carbon was identified as a possible agent for hydrocarbon removal, 

however, its effect in removing important nutrients required for algal growth, specifically 

nitrogen, phosphorus, and silica, was uncertain.  Experimentation needed to demonstrate 

Table 2.6. Produced water nutrient concentrations before and after activated carbon 
filtration. 

 Phosphorus 
(mg L-1) 

Silica 
(mg L-1) 

Nitrogen 
(mg L-1) 

Before 4.97 44.2 21.1 
After 1.90 31.7 14.0 
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the effectiveness of activated carbon as a hydrocarbon filter for produced water. 

 As shown in Table 2.6, each major nutrient was reduced by the activated carbon 

filter, with phosphorus being reduced the most.  Without supplementing with phosphorus, 

this could become a problem.  Experimentation was designed to see how growing 

USU080 on nitrogen-supplemented produced water passed through an activated carbon 

filter compared to produced water centrifuged for hydrocarbon removal. 

As seen in Figure 2.9, the optical densities are nearly indistinguishable.  The final dry 

weight of cells in centrifuged media was 1.48 g L-1 versus 1.39 g L-1 for the activated 

carbon filter.  The centrifuged media yielded 29.0% FAME versus 36.2% FAME from 

activated carbon.  Both methods of hydrocarbon removal proved effective in growing 

algae for lipid production, although activated carbon yielded more lipid than 

centrifugation.  Activated carbon is an acceptable method of hydrocarbon removal for 

large scale algal biodiesel production. 

 

Figure 2.9. Optical density readings of USU080 on produced water with centrifuged (♦) 
and activated carbon filtration (■) pretreatment.  Optical density shown at 600 nm. 
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3.10. Scale-up 

 Successful growth of algae in a raceway using produced water media was 

attempted twice.  Because it takes over a month to produce sufficient inoculum for a 220-

L raceway, C. gracilis was attempted first as USU080 had not yet been grown on 

produced water.  This bag grew outside for one month which included one night of frost.  

Although the cells were not of ideal health, they still showed signs of life and were 

therefore used as inoculum into the raceway.  The raceway appeared a murky gray color 

and had the typical petroleum smell of produced water, and after the inoculum was 

poured in gave off a light orange color.  Over several days, growth did not improve and 

was determined dead.  

USU080 was used in the second attempt at produced water raceway growth.  

Within the first couple of days following raceway inoculation, the measurements 

indicated cell death, as seen in a disappearance of the chlorophyll peak in the optical 

density, drop in dissolved oxygen, and undetectable fluorescence.  The raceway was left 

unattended for several days until reports from a fellow worker came that the raceway was 

darkening in color.  After three weeks, the raceway had shown successful growth and 1 L 

was harvested and analyzed for dry weight and FAME content. 

Table 2.7.  Results of USU080 grown in a 220-L raceway of produced water. 
Total Volume (L) 202 

Days grown 21 
Dry Weight (g L-1) 1.21 
Total dry weight (g) 243.4 

 % Biodiesel 9.13 
Biodiesel (g L-1) 0.110 

Productivity (mg L-1 day-1) 5.24 
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Aside from achieving growth in a 220-L raceway (see Table 2.7), USU080 was 

found to contain 9.13% FAME and had a dry weight of 1.2 g L-1 (biodiesel productivity 

rate of 5.24 mg FAME L-1 day-1).  These values are lower than seen in closed tube 

systems, but are quite acceptable for an open raceway without any of the same controls 

and sterility as found inside the laboratory.  It was concluded that algal growth could 

indeed be achieved in larger scale systems using produced water supplemented only with 

nitrate. 

3.11. Pre-publication Quality Experiments 

Attempts to refine the data from previous experiments have each led to the need 

to include more controls and reoptimize parameters, along with the discovery of more 

detailed behavior of algae with produced water.  This experiment was designed to 

confirm the following hypotheses: 

1. Algae are capable of growing on produced water as well as or better than on 

laboratory media. 

2. 150 mg L-1 is the only necessary supplement to produced water for optimal algal 

growth and lipid production. 

3. Produced water can be remediated by the growth of microalgae. 

Unexpectedly, the graphs in Figure 2.10a show that algal growth for both strains is 

optimized at 300 mg L-1 nitrate, not 150 mg L-1 as hypothesized.  FAME content (Figure 

2.10b) did seem optimized when 150 mg L-1 nitrate was added, but because of the better 

growth performance of C. gracilis, both medias showed highest lipid productivity rates 

(Figure 2.10c) when 300 mg L-1 nitrate was added.  For both organisms, growth was 
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better on produced water than Broad Seawater at all nitrate concentrations.  Although 

lipid content was slightly higher in USU080 grown on Broad Seawater verses produced 

water when nitrate was added, the outperformance of USU080 growth on produced water 

caused the lipid productivity rate to be much higher than that from Broad Seawater.  For 

C. gracilis, produced water with 300 mg L-1 nitrate added generated the most growth, 

lipid content, and lipid productivity rate. 

3.12. Remediation Studies 

 One of the original interests in produced water was bioremediation.  Because it is 

such a large resource, with an estimated 21 billion barrels generated each year in the U.S. 

alone, produced water holds value as a replacement for fresh water and nutrient source in 

the algae-to-biofuels project.  However, its heavy contamination prevents easy disposal, 

sometimes costing as much as $4 per barrel (Clark and Veil, 2009).  Algae have been 

used in wastewater treatment facilities for the very purpose of remediating water streams; 

their ability to absorb various heavy metals (Wilde and Benemann, 1993; Yu et al., 1999;  

 

Figure 2.10. Results of pre-publication experiment, including growth and lipid production 
of C. gracilis (open symbols) and USU080 (filled symbols) in produced water (squares) 
and media (circles). (a) Final dry weight, (b) percent FAME content of the biomass, and 
(c) FAME productivity of cultures represented across three different nitrate 
concentrations.  C. gracilis grown on BS and USU080 grown on BS Bicarb. 
 

a b c 
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Davis et al., 2003) is well known.  If it could be shown that algae have the capacity to 

reduce concentrations of harmful heavy metals and other substances to make it 

environmentally stable for municipal or irrigation disposal, the algae-to-biofuel project as  

 

Table 2.8. Results from two samples of produced water sent for elemental analysis by 
USUAL. Includes actual concentrations within each sample, average, and standard 
deviation 

Produced Water Analysis 

Element Symbol PW before 1 PW before 2 Average 
Standard 
deviation 

Nitrogen NO3
- <0.1 <0.1 <0.1   mg L-1 

Chloride Cl- 14900 15100 15000 141 mg L-1 

Carbonate CO3
2- 0.0 0.0 0 0.00 mg L-1 

Bicarbonate HCO3
- 15.1 18.0 16.55 2.05 mg L-1 

Aluminum Al < < <   mg L-1 

Arsenic As 0.02 0.02 0.02 0.00 mg L-1 

Boron B 3.14 3.14 3.14 0.00 mg L-1 

Barium Ba 2.21 2.23 2.22 0.01 mg L-1 

Calcium Ca 499 505 502 4.24 mg L-1 

Cadmium Cd < < <   mg L-1 

Cobalt Co < < <   mg L-1 

Chromium Cr < 0.008 0.007   mg L-1 

Copper Cu < < <   mg L-1 

Iron Fe 1.04 1.07 1.055 0.02 mg L-1 

Potassium K 136 131 133.5 3.54 mg L-1 

Magnesium Mg 70.9 71.3 71.1 0.28 mg L-1 

Manganese Mn 0.62 0.63 0.625 0.01 mg L-1 

Molybdenum Mo < < <   mg L-1 

Sodium Na 10890 9001 9945.5 1336 mg L-1 

Nickel Ni < 0.003 0.003   mg L-1 

Phosphorus P 6.26 6.31 6.285 0.04 mg L-1 

Lead Pb < < <   mg L-1 

Sulfur S 349 351 350 1.41 mg L-1 

Selenium Se < < <   mg L-1 

Silicon Si 36.6 36.3 36.45 0.21 mg L-1 

Strontium Sr 30.1 30.2 30.15 0.07 mg L-1 

Zinc Zn < < <   mg L-1 
Total 

Dissolved 
Solids  

TDS 2.58*104  2.60*104 2.59*104 141 ppm 
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well as the company owning the oil well would both be beneficiaries. 

 Variability of USUAL Readings.  The following table shows the results from two 

identical untreated (other than settling of hydrocarbons with time) produced water 

samples submitted to USUAL, thus demonstrating the margin of error found within 

Table 2.9. Best remediation values reported for A. coffeaformis, C. gracilis, and USU080.  
Reported as a percent of the original concentrations. ND=not detected, i.e. values prior to 
algal growth were already below detection. 
  % Reduction 

  A. coffeaformis C. gracilis USU080 

Nitrate-N 57% 61% 84% 

Chloride 90% 15% 0% 

Aluminum ND ND ND 

Arsenic 33% 33% 0% 

Boron 6% 64% 9% 

Barium 51% 34% 33% 

Calcium 58% 60% 26% 

Cadmium ND ND ND 

Cobalt ND ND ND 

Chromium < 40% ND ND 

Copper ND ND ND 

Iron 93% 33% 74% 

Potassium 34% 67% -11% 

Magnesium 18% 60% 2% 

Manganese 93% 65% 74% 

Molybdenum ND ND ND 

Sodium 13% 27% 8% 

Nickel ND ND 25% 

Phosphorus 66% 72% 54% 

Lead ND ND ND 

Sulfur 18% 54% 6% 

Selenium ND ND ND 

Silica 99% 94% 12% 

Strontium 33% 62% 16% 

Zinc ND ND ND 

Bicarbonate (mmolc L-1) 69% 1% 51% 

Carbonate (mmolc L-1)     15% 
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USUAL readings. 

For most readings, the margin of error is quite small.  Sodium reports the greatest 

deviation, although the salinity, represented by TDS, does not vary much between 

samples.  It was concluded that USUAL contained some margin of error from sample to 

sample, but that variability was small. 

Remediation Comparison of Three Algal Strains.  Table 2.9 above presents the 

data reported of produced water before and after growth of three algal strains: A. 

coffeaformis, C. gracilis, and USU080.  In cases when multiple samples of growth from 

the same organism were submitted, the highest remediation values are shown.  Actual 

concentration values, as well as the detection limit of the method, are shown in addition 

to the percent of reduction from the original solution.  

All organisms were fairly successful in decreasing the concentration of many 

heavy metals, such as iron, silica (in the case of diatoms), manganese, calcium, barium, 

and also many elements that are more potently harmful to the environment such as 

arsenic, phosphorus, and strontium.  The diatoms A. coffeaformis and C. gracilis 

generally absorbed more from produced water than did USU080, although USU080 

reduced the nitrate lower than the other two algal strains.  

Water Quality Standards.  To best judge the potential of any of these organisms to 

be used industrially to remediate produced water, one must understand the water quality 

standards to be reached for traditional wastewater streams.  Under the Clean Water Act of 

1972, the National Pollutant Discharge Elimination System (NPDES), which is managed 

by the Environmental Protection Agency (EPA), distributes permits for the discharge of 

all wastewaters.  The standards are dictated for each specific industry, area/region, and in 
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the case of produced water, each individual well can be taken into consideration for the 

quality required for discharge.  Individual states have the right to set regulations for their 

own regions, but the EPA maintains the right to oversee all state regulations and alter 

them as necessary.  It can be difficult, therefore, to find one quality standard to reach 

when aiming to remediate produced water for more traditional forms of wastewater 

disposal.  In the state of Utah, each estuary/reservoir is held to different standards, 

determined by the technology that is currently in place at each location.  Across this state, 

major concerns arise only from TDS, total P, Se, dissolved oxygen, and algae biomass 

which cause eutrophication.  Aside from state criteria, Ayers and Westcot (1985) have 

published certain standards for irrigation waters, some as regulatory values and other 

recommended for proper balance of agricultural practices.  Below is a table of the various 

listed water quality standards with source, the concentrations of produced water before 

algal growth and the most favorable value of the medium after growth of USU080 and C. 

gracilis.  Also listed is an indication of whether or not the water after algal growth met 

the listed water quality standard. 

According to Table 2.10, produced water would meet water quality standards for 

most pollutants without algal remediation.  Components that are above regulatory values 

include TDS, sodium, magnesium, calcium, phosphate, boron, and manganese.  Algal 

growth decreased the concentrations of three pollutants that thereby met water quality 

standards:  phosphate, calcium, and manganese, and in one case with C. gracilis, 

magnesium.  However, TDS, sodium, and chloride are hopelessly well above the target 

concentrations, each of them being orders of magnitude away from meeting state and 

textbook irrigation regulations.  Algae can absorb heavy metals well, but are incapable of 
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removing that much salt from a solution, making produced water too salty to meet 

these water quality standards. 

From the above findings, it was concluded that produced water can be a useful 

means of substituting fresh water and most chemical nutrients to grow algae for lipid 

production; however, efforts to remediate the water for easier, less costly disposal is not 

advised due to the high salt content of produced water. 

Influence of Tube Reactors on Remediation.  The ICP results from the pre- 

Table 2.10. Water quality standard concentrations and their respective concentrations in 
produced water before and after algal growth of USU080 and C. gracilis.  A statement on 
whether or not the algal growth caused an unacceptable element to reach water quality 
standards is listed along with the source of the water standard.  Irrigation water (IW) 
regulations and recommendations are listed according to Ayers and Westcot (1985). 

Pollutant of 
concern 

Reg. 
Target 

Produced 
Water 

After 
USU080 

After 
C.gracilis 

Algae met 
target? Source 

TDS (mg L-1 ) 1200 25900 25900 27400 no state of Utah criterion 

Na (meq L-1) 40 432 379 432 no IW regulations 

Cl (meq L-1) 30 423 451 460 no IW regulations 

Mg (meq L-1) 5 6.1 6.0 2.29 yes for C.g. IW regulations 

As (mg L-1) 0.1 0.02 0.02 0.02 already low IW recommendations 

Ca (meq L-1) 20 25 9 12 yes IW regulations 

CO3 (meq L-1) 0.1 0 0 0   IW regulations 

HCO3 (meq L-1) 10 0.27 0.01 0.01 already low IW regulations 

NO3-N (meq L-1) 10 0 0 0.06   IW regulations 
PO4 (mg L-1) 0.025 0.04 0 0  yes Deer Creek reservoir 

TDML (UT) 

B (mg L-1) 2 3.15 2.64 3.05 no IW regulations 

Al (mg L-1) 5 0       IW recommendations 

Cd (mg L-1) 0.01 0       IW recommendations 

Co (mg L-1) 0.05 0       IW recommendations 

Cr (mg L-1) 0.1 0.008       IW recommendations 

Cu (mg L-1) 0.2 0       IW recommendations 

Fe (mg L-1) 5 1.05 0.07 0.2 already low IW recommendations 

Mn (mg L-1) 0.2 0.62 0.05 0.05 yes IW recommendations 

Mo (mg L-1) 0.01 0       IW recommendations 

Ni (mg L-1) 0.2 0.003       IW recommendations 

Pb (mg L-1) 5 0       IW recommendations 
Se (µg L-1) 5 0       Ashley Valley TDML 

(UT) 

Zn (mg L-1) 2 0       IW recommendations 
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publication experiment included two samples of produced water before growth (see 

above on variability of USUAL) and two after growth of C. gracilis and USU080.  Also 

included in this batch was a sample of produced water that was treated the same as algal 

growths but without inoculation.  This last of the five total samples revealed the effect of 

processing produced water in tube reactors on remediation.  Results from ICP and other 

nutrient analysis of produced water before and after treatment were very insightful. 

Table 2.11 below shows by what percentage each element or ion changed from 

the original produced water solution ((i.e. (before-after)/before).  It shows the 

remediation of many components, from bicarbonate to iron, seems to come from the 

treatment process of bubbling in tubes and harvesting, not from the growth of algae. 

Table 2.11. Results from pre-publication produced water experiment.  Reported is the 
percent reduction (reduction in each component as a percent of the original 
concentration) seen in elemental concentrations of produced water as a result from algal 
growth (C. gracilis or USU080) or the tube treatment (“No algal treatment”). 

  Percent Reduction from Before 

Symbol C. gracilis USU080 
No algal 

treatment 
Cl- -10.0% -6.7% -31.3% 

HCO3
- 95.9% 95.9% 92.3% 

As 0% 0% 0.0% 
B 2.8% 15.9% 5.3% 

Ba 43.2% 68.1% 23.4% 
Ca 52.9% 63.0% 27.4% 
Fe 79.1% 93.6% 87.3% 
K 34.4% 12.7% 11.5% 

Mg -8.5% -9.2% -6.9% 
Mn 92.3% 91.6% 50.0% 
Na 0.0% 12.2% 3.6% 
P 62.8% 72.8% 50.4% 
S 10.9% 15.5% 7.6% 
Si 93.3% 14.5% -0.6% 
Sr 31.5% 41.7% 22.0% 
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While an explanation as to where the elements are escaping in a closed system 

reactor is difficult to provide, it can be useful to understand that at least to some degree 

the “bioremediation” seen in tubes following algal growth could be owed to the process 

of growth. 

The Influence of Inoculum Ingredients on Remediation.  During preparation for 

publication-quality results, efforts were still being directed toward showing the nutrient- 

Table 2.12.  Percent reduction in elements from produced water, municipal wastewater, 
and Great Salt Lake water resulting from growth of C. gracilis and USU080. 
 % Reduction 
 C. gracilis USU080 

 
Produced 

water 
Municipal 
wastewater 

Great Salt 
Lake 

Produced 
water 

Municipal 
wastewater 

Great Salt 
Lake 

PO4
3- 97.4%    100.0%    

NO3
-           

HCO3
- 95.9%    95.9%    

Al   97.1% 96.6%   84.3% 92.1% 
As 3.0% 50.0% 33.3% 6.0%  66.7% 
B 2.8% -1.9% 13.0% 15.9% -7.5% 52.9% 
Ba 43.2% 57.6% 52.7% 68.1% 60.6% 92.7% 
Ca 52.9% -0.3% 8.2% 63.0% 2.1% 87.0% 
Cl -10.0%    -6.7%    
Cr   33.3% -900.0%   16.7% -900.0% 
Cu   -228.6% -375.0%   -257.1% -316.7% 
Fe 79.1% -61.2% 10.0% 93.6% 7.1% 82.3% 
K 34.4% -661.1% -516.6% 12.7% -738.3% -390.1% 
Li   21.1% 27.3%   26.3% 29.5% 
Mg -8.5% -77.7% -77.2% -9.2% -70.0% -32.2% 
Mn 92.3% 91.7% 96.3% 91.6% 50.0% 92.6% 
Mo   0.0% -25.0%   -50.0% -50.0% 
Na 0.0% -1802.4% -503.7% 12.2% -2062.9% -484.8% 
Ni   -33.3% -33.3%   0.0% 33.3% 
P 62.8% -120.4% -5541.8% 72.8% 90.6% 53.3% 
Pb   0.0%        
S 10.9%    15.5%    
Se         50.0% 
Si 93.3% 97.4% 96.8% 14.5% 28.3% 70.1% 
Sn           
Sr 31.5% 30.7% 30.8% 41.7% 42.2% 92.0% 
V   -1100.0% -300.0%   -1700.0% -225.0% 
Zn   72.7% 60.0%   90.9% 80.0% 
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absorptive capacity of microalgae to remediate wastewaters.  In a similar fashion as 

shown in experiments above, supernatant from the growth of C. gracilis and USU080 on 

three different wastewaters, namely produced water, municipal wastewater, and Great 

Salt Lake water, were tested for compositional analysis and compared to composition 

before algal growth.  Table 2.12 shows the percent reduction of each given nutrient. 

Table 2.12 shows that many nutrients actually increased in concentration from the 

growth of algae.  A mass balance of individual nutrients would dictate that this is 

impossible, and so an explanation of the results must validate the results seen.  After 

careful consideration, it was determined that, especially for municipal wastewater and 

Great Salt Lake water, where nutrients prior to inoculation were already so low compared 

to the inoculation medium (BS), the addition of even 10% of the volume as not just algal 

cells but the nutrient-rich medium can vastly change the nutrient profile of the 

wastewater prior to absorption by algae.  Thus, the true concentration of nutrients before 

the growth is undetermined.  The negative percent reduction values in Table 2.12 reflect 

the introduction of these nutrients by BS from the inoculum.  In future remediation 

studies, the method of inoculation should be altered so that the cells grown in lab media 

are spun to a pellet and resuspended in the wastewater, removing the introduction of lab 

media nutrients to the wastewater. 

4. Conclusions 

 Produced water is an underutilized, abundant resource that has the potential of 

replacing the need of micronutrients and fresh water in algal growth.  Eight strains of 

microalgae were shown to successfully grow and produce some amount of neutral lipids.  
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Growth and lipid production through nitrate and phosphate addition were initially 

optimized in the diatom organism A. coffeaformis.  This organism showed greatest lipid 

productivity with no phosphate addition and 150 mg L-1 sodium nitrate addition.  Because 

of difficulties with benthic properties during batch growth, other strains were 

reconsidered.  Most consistently, the diatom strain C. gracilis and the green alga 

Chlorella sp. USU080 have been shown to have high lipid and growth productivities with 

only addition of 300 mg L-1 sodium nitrate.  While potassium phosphate was considered 

as an additional nutrient supplement in C. gracilis, it was shown to be beneficial for C. 

gracilis but not necessary for growth and lipid production if production costs are desired 

to be kept minimal.  Efforts to pretreat the produced water for hydrocarbon removal also 

increase growth and lipid productivities, whether by centrifugation, activated carbon 

filtration, or settling over months’ time. 

 USU080 was shown to scale up to grow on a 220-L produced water raceway, and 

although efforts to scale up growth of C. gracilis on produced water were fruitless, care 

to avoid overnight outdoor frost could increase chances of success. 

 Finally, growth of microalgae did cause a reduction in several compositional 

elements of produced water, as expected because of the absorptive qualities exhibited by 

microalgae in other wastewater environments.  Upon further analysis, however, the 

decrease of many elements seems to be at least partially due to the handling and growth 

procedures rather than the microalgae.  When comparing the final concentration of 

elements against water quality standards, microalgae were only successful in reducing 

calcium, phosphate, manganese, and, for C. gracilis growth, magnesium to below 

acceptable concentration ranges.  Most other elements were in an acceptable range prior 



 45
to microalgal growth.  Total dissolved solids (TDS), sodium, and chlorine 

concentrations were found way above water quality standards and were hardly affected 

by microalgal growth.  For this reason, bioremediation of produced water using 

microalgae should not be considered realistic until improvements in salinity removal are 

made.  It should be noted that media recipes for microalgal growth contain similar 

salinity concentrations and therefore would share this problem of disposal as produced 

water.  Efforts to commercialize this process must address the downstream processing of 

saline water disposal during scale up. 

 The effect of inoculum media contents on the wastewater elemental analysis was 

exploited in wastewaters with relatively low nutrient concentrations, such as municipal 

wastewater and Great Salt Lake water.  Remediation in these low-nutrient wastewaters is 

unknown, as many elements were seen up to 55 times greater after algal growth than 

before.  This theoretically impossible outcome is explained by the introduction of high 

concentration elements from the media accompanying inoculum, and could be avoided in 

the future with centrifugation of inoculum cells and resuspension in the intended nutrient 

medium for the batch growth. 
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CHAPTER 3 

THE STUDY OF USING PRODUCED WATER, MUNICIPAL WASTEWATER, AND 

ENVIRONMENTAL BRACKISH WATER IN THE PRODUCTION OF ALGAL 

BIODIESL USING TWO ALGAL SPECIESa 

Abstract 

Because of increased interest in renewable, carbon-neutral energy sources, 

processing biodiesel from microalgae has become the objective for many researchers and 

companies.  To create the process on a large scale without drawing on already-taxed 

freshwater ecosystems, and to help mitigate production costs, natural waters including 

municipal, industrial, and agricultural wastewaters have been identified as alternate 

growth mediums.  Presented here is a study of algal growth on three sources of 

underutilized wastewater, namely produced water from the petroleum and natural gas 

industry, municipal wastewater from a lagoon-style wastewater treatment facility (Logan 

City, UT), and water from Great Salt Lake.  The algal growth on these and their relative 

performance as algal nutrient sources against two known media sources was evaluated.  

Batch growth in 1.2-L reactors using a diatom, Chaetoceros gracilis, and a Chlorella sp. 

USU080, on all wastewaters with addition of phosphorus and/or nitrogen was comparable 

to the two media.  Biodiesel productivity was also comparable or remarkably higher in 

strains grown on wastewater versus media recipes, reaching up to 63% lipid content and 

63.8 mg biodiesel L-1 day-1.  Relative costs for supplying nutrients for each nutrient 

source is also presented, showing that use of wastewaters is more cost effective than 
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media recipes and removes the need for a freshwater supply, especially when growth 

and biodiesel production are comparable. 

1. Introduction 

Due to an increase in energetic demands in past years and projected for years to 

come, and with a growing concern of the effect of fossil fuels on global greenhouse 

gases, the need for alternative, sustainable fuel sources has never been greater.  To 

encourage the development of renewable fuels, the U.S. Federal Government passed the 

Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007, 

which mandate that by 2012, all motor vehicle fuel sold in the U.S. must contain 15.2 

billion gallons of renewable fuels, 1 billion of which must come from biomass-based 

diesel, or from feedstock other than corn starch.  To help meet this demand for biomass-

based diesel production, microalgae have been identified as a potential feedstock due to 

their capacity to produce high concentrations of lipids (transesterified into fatty acid 

methyl esters [FAME], or biodiesel) in land areas relatively small compared to food crops 

such as soybeans and corn, grow at high rates, tolerate land not suitable for agricultural 

crops, produce value-added products and byproducts, and produce energy in a proposed 

carbon-neutral scheme (Chisti, 2007, 2008; Hu et al., 2008). 

Because microalgae require an aquatic medium for growth, concerns for the 

availability of sufficient freshwater must be addressed before scaling this process 

commercially.  Algae-based biofuel has been found to require 14 times as much water as 

corn for the production of the same amount of energy (Clarens et al., 2010).  It has also 

been stated that water availability will be one of the greatest challenges in the twenty-first 
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century and that lack of water will be one of the key factors in limiting development  

(WMO, 1997).  By the year 2025, it is projected that 3.5 billion, or nearly half, of the 

human population will live in water-stressed river basin areas (Revenga, 2000).  As 

freshwater supplies are already under strain to sustain human life, it is essential that 

biofuel production not rely on this limited resource.  For these reasons, wastewaters are 

being considered not only as substitutes for freshwater in microalgal cultivation but also 

as a source of nutrients, eliminating the need for additional micronutrients. 

There is an abundance of wastewater streams globally that could be tapped as a 

large scale growth medium resource if the microorganism can tolerate the wasteproducts 

contained therein.  Produced water, for example, is a byproduct of the oil and natural gas 

drilling process contaminated with hydrocarbons, heavy metals, and other salts.  An oil 

well will surface anywhere from 1 to 50 times the volume of produced water than the 

volume of oil.  It is estimated that the United States alone generates 21 billion barrels 

(882 U.S. gallons) of produced water every year, which is currently disposed of at the 

high expense of well operators, and consequently, consumers (Clark and Veil, 2009).  In 

addition to wastewater from industrial processes, each city also must handle millions of 

gallons of municipal waste each day, making it another source of wastewater available.  

These and countless other wastewater streams carry nutrients and contaminants alike that 

are currently considered undesirable and therefore underutilized (see Pittman et al., 

2011). 

It has long been known that algae can remove heavy metals and also remediate N- 

and P-rich wastewaters, thus preventing downstream eutrophication (Pittman et al., 

2011).  Many wastewater treatment facilities are utilizing algae for this purpose.   Many 
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experiments have shown that wild algal cultures can grow on municipal (Oswald, 

2003; Woertz et al., 2009; Wahlen et al., 2011), and agricultural (Mulbry et al., 2008; 

Woertz et al., 2009) wastewaters for the purpose of biodiesel production (see also 

Pittman et al., 2011).  The properties of ocean (brackish environmental) water have also 

been used and investigated as a nutrient source (Takagi et al., 2006; Araujo et al., 2011).  

However, optimizing high lipid-yielding algal strains on wastewaters to mitigate 

biodiesel production costs and environmental concerns, and comparing algal performance 

in growth and biodiesel production against known media recipes has not previously been 

investigated.  In addition, microalgae have never been shown to grow on any produced 

water source. 

Presented here is a comparison of three different wastewaters (industrial, 

municipal, and brackish environmental water) against two media recipes as water and 

nutrient sources, and their effects on algal growth and lipid production in two marine 

strains, Chaetoceros gracilis, a diatom, and Chlorella sp. USU080, a green alga isolated 

from the Great Salt Lake. 

2. Materials and Methods 

2.1 Strains and Culture Conditions 

 A diatom, C. gracilis, and a green alga, USU080 were selected for these studies.  

C. gracilis was obtained from The Culture Collection of Algae at the University of Texas 

at Austin (UTEX, Austin, TX).  USU080 was isolated from a tributary to Great Salt 

Lake.  BLAST analysis of the 18s rRNA gene sequence, obtained by PCR (forward 

primer GTGCCAAGCAGCCGCGGTAA, reverse primer GGGCATCACAGACCTG), 
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matched closely with Chlorella strains. Stock cultures of each strain were maintained 

in 250 mL of media in 500 mL baffled flasks, rotating at 140 rpm, and illuminated from 

overhead by fluorescent lighting (180 µmol photons m-2 s-1) on a 14:10 (light:dark) 

photoperiod.  Both strains were maintained on Broad Seawater (BS) media that contained 

the following components per liter: NaCl (18 g), NaHCO3 (1 g) (none for C. gracilis 

cultures), KCl (0.6), MgSO4•7H2O (1.3 g), CaCl2•2H2O (100 mg), K2HPO4 (250 mg), 

Na2SiO3•9H2O (70 mg) (none used for USU080 cultures), ferric ammonium citrate (5 

mg).  1 mL trace metals were also added per L of media: H3BO3 (600 mg L-1), 

MnCl•4H2O (250 mg L-1), ZnCl2 (20 mg L-1), CuCl2•2H2O (15 mg L-1), Na2MoO4•2H2O 

(15 mg L-1), CoCl2•6H2O (15 mg L-1), NiCl2•6H2O (10 mg L-1), V2O5 (2 mg L-1), KBr 

(10 mg L-1). 

BS media was prepared according to the composition listed above and in Table 3, 

and is a modified version of L1 medium (Guillard and Hargraves, 1993).  For C. gracilis, 

70 mg L-1 sodium silicate was used and no bicarbonate was added.  For USU080, BS was 

adjusted to 25 mg L-1 sodium silicate and 1 g L-1 bicarbonate was added.  Table 1 also 

lists the elemental composition of BS, as prepared for USU080 growth. 

Composition of Enriched Seawater Artificial Water (ESAW) is also listed in 

Table 1, according to the published recipe (Berges et al., 2001).  Exceptions to this recipe 

are exclusion of Na2SeO3 and substitution for CoSO4 and MnSO4 for CoCl2•6H2O and 

MnCl2•4H2O, respectively.  Sodium nitrate was also adjusted to be equal to BS (300 mg 

L-1 NaNO3). 
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2.2 Environmental Water Collection and Preparation 

Environmental water samples representing municipal wastewater, brackish water, 

and produced water from the oil and gas industry were collected on site.  The municipal 

wastewater sample was obtained on January 5, 2011, from a lagoon style wastewater 

treatment facility operated by Logan City (Utah).  Brackish water was obtained from a 

point in the Great Salt Lake where one of its freshwater tributaries mixed with the saline 

water of the lake on January 19, 2011.  Water from each of these two samples was 

centrifuged to remove suspended solids and was subsequently sterilized by autoclave.  

Produced water was obtained at a water reinjection site operated by Anadarko Petroleum 

Corporation near Vernal, Utah.  The water reinjected at this site is collected from several 

wells and thus is a good representative sample of produced water from the Uintah Basin.  

Produced water was collected in 55-gallon barrels and was stored at room temperature.  

As needed, water was removed from the barrel, centrifuged to remove residual 

hydrocarbons, and sterilized by autoclave. 

Each environmental water source was supplemented with sodium nitrate as a 

nitrogen source.  For both Great Salt Lake water and produced water 300 mg L-1 NaNO3 

was added.  Great Salt Lake water required additional supplementation with dibasic 

potassium phosphate to match the N:P ratio of supplemented produced water.  Because 

the phosphate was found to be lower than other waters, only 180 mg L-1 sodium nitrate 

was supplemented so as not to create such a high N:P ratio for algal growth. 
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2.3 Elemental Analysis of Water 

 The elemental composition of each environmental water source was determined 

by ICP analysis prior to each growth (refer to Table 3.1).  Elemental analysis of produced 

water was determined by Utah State University Analytical Laboratories (USUAL) using 

ICP analysis (Thermo Electron, Marietta, OH) for the following elements: Al, As, B, Ba, 

Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, and Zn.  The nitrate, 

phosphate, and chloride ion concentrations of produced water were also determined by 

USUAL (Quikchem 8000, Lachat, Loveland, CO).  Utah Veterinary Diagnostics 

Laboratory (UVDL) determined the concentration of the following elements within both 

the municipal wastewater and brackish water samples by ICP analysis (ELAN 6000, 

Perkin Elmer, Waltham, MA): Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, K, Mg, 

Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, and Zn.   UVDL also determined the 

nitrate concentration within these two using the Biospec-1601 (Shimadzu, Columbia, 

MD). 

2.4. Experimental Setup 

 Experiments were conducted in 1.3-L glass tubes (800 mm x 50 mm diameter) 

illuminated from the side by fluorescent lighting (approximately 300 µmol photons m-2   

s-1).  Each light bank can accommodate fourteen culture tubes; the inner twelve were used 

during experiments.  Culture vessels were inoculated with a 10% inoculum in logarithmic 

growth.  Each culture vessel was sparged from a single manifold with air supplemented 

with 1% CO2 .  All growth conditions were performed in triplicate.  Growth rates were 
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followed by measuring the optical density at 600 nm using the Cary 50 Bio UV 

spectrophotometer (Varian, Walnut Creek, CA). 

2.5. Harvesting and Dry Weight Determination 

Cultures were harvested by centrifugation when the culture entered stationary 

phase, either when optical density reached a plateau over time or disappearance of the 

chlorophyll peak in the culture spectrum.  The elemental composition of the resulting 

supernatant from each culture was determined by ICP analysis.  The harvested cell pellets 

were frozen at -80°C then lyophilized (Labconco FreeZone 4.5, Kansas City, MO) to 

obtain dry algal biomass.   

Dry weights were determined by gravimetric analysis.  A culture volume of 25 

mL was passed through a pre-weighed 47-mm glass fiber filter (Whatman 1822-090) and 

rinsed with 0.5 mM ammonium formate.  The filters were then dried in a 100°C oven, 

weighed, then heated in a 500°C oven to combust all the filtered organic content (i.e. 

algae) and leaving only the inorganic ash. To calculate the ash-free dry weight, the ash 

weight (after 500°C treatment) is subtracted from the total dry weight (after 100°C 

treatment). The final weight is then multiplied by a conversion factor to give the dry 

weight in terms of g L-1.  

2.6. Lipid Quantification 

Lipid content of each sample was determined using the method described 

previously (Wahlen et al., 2011).  Briefly, lipids contained in algal biomass were 

converted to fatty acid methyl esters (FAMEs) by direct transesterification which is 

performed by heating dry algal biomass (100 mg) with acidified methanol (1.8% H2SO4, 
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v/v, 2 mL) in a commercial scientific microwave (Discover S, CEM USA, Matthews, 

NC) at 90°C for 20 minutes.  The FAME was extracted from methanol by the addition of 

chloroform followed by water to force a phase separation.  The chloroform-lipid phase 

was removed into a 10-mL volumetric flask, and the remaining biomass was washed 

twice with 3 mL of chloroform to maximize the recovery of FAME.  The final volume of 

the solution was brought up to 10 mL with chloroform and inverted for mixing.  Samples 

of 1 mL were further diluted 1:2 or 1:4 depending on previous lipid content estimation, 

with addition of 10 µL octacosane as an internal standard.  FAME content of each sample 

was then determined using a gas chromatograph (Model 2010, Shimadzu Scientific, 

Columbia, MD) equipped with a programmable temperature vaporizer (PTV) injector and 

a flame ionization detector (FID).  Helium was used as the carrier gas and the flow was 

controlled in constant velocity mode set to a velocity of 50.0 cm sec-1.  Sample volumes 

of 1 µL were injected onto the PTV injector in direct mode.  The temperature program for 

the PTV injector was identical to that used for the column.  Analytes were separated 

using an RTX-Biodiesel column (15m, 0.32 mm ID, and 0.1 µm film thickness) (Restek, 

Bellefont, PA). The oven temperature was set to 60°C for 1 min and then increased at a 

rate of 10°C min-1 to 370°C for 6 min.  FID detector was set to 370°C.  The FID detector 

response was calibrated to FAME using methyl myristate (C14:0), methyl palmitoleate 

(C16:1), and methyl oleate (C18:1). Methyl ester standards were obtained as pure 

compounds (Nu-Chek Prep, Inc., Elysian MN) and were diluted with chloroform to 

obtain concentrations ranging from 0.1 mg mL-1 to 1 mg mL-1.  Sample and standard 

peaks were integrated using GCsolution postrun 2.3 (Shimadzu) for total FAME 

(biodiesel) concentration determination. 
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3. Results and Discussion 

3.1. Elemental Composition of Natural Waters 

As shown in Table 1, the three wastewater sources contain some phosphate, a 

necessary nutrient, salts, and various heavy metals—some essentially found as trace 

elements in media recipes, such as calcium and iron, and others that could be toxic to 

growth, such as arsenic.   

Much has been said about the N:P molar ratio in marine microalgae media, which, 

according to the Redfield ratio should approximate 16:1, the same ratio as nutrients found 

in the deep ocean (Redfield, 1934).  It should be noted, however, that many N:P ratios 

have been published, and that nitrogen limitation can trigger lipid accumulation in algae 

(Shifrin and Chisholm, 1981; Guschina and Harwood, 2006).  Nitrate levels in all 

wastewaters were found to be below the level of detection prior to their supplementation 

with sodium nitrate (300 mg L-1 in produced water and Great Salt Lake water, 180 mg L-1 

in municipal wastewater).  Produced water contained 6.3 mg L-1 total phosphorus, and 

after nitrate addition had a 17.4:1 N:P ratio, close to the Redfield ratio of 16:1.  

Phosphate was found in lower concentrations in municipal wastewater (1.79 mg L-1), 

giving a N:P ratio of 37:1 after nitrate addition.  Phosphorus was also found to be very 

low (0.12 mg L-1) in Great Salt Lake water prior to addition of 6.16 mg L-1 potassium 

phosphate, to equal that of Produced Water.  Great Salt Lake water was further 

supplemented with 300 mg L-1 sodium nitrate, also creating a N:P ratio of 17.4:1. 

 Because marine species have adapted to function in high salt medium, salinity is 

an important parameter to consider when growing algae.  In some diatoms, sodium has 
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Table 3.1.  Nutrient content of three wastewaters and two lab medias. 

Element/Ion 

Produced 
Watera  

(mg L-1) 

Municipal 
Wastewatera  

(mg L-1) 

Great Salt 
Lakea  

(mg L-1) 

Broad  
Seawatera 
(mg L-1) 

Enriched 
Seawater 
Artificial 
Watera,b  
(mg L-1) 

PO4
3- 1.15   136.3 2.00 

NO3
- <0.1 <5 <5 218.8 34.1 

HCO3
- 16.55   726.1c 126.3 

Ag  <0.001 <0.001   
Al  <0.12 0.07 0.089   
As 0.02 0.002 0.003   
B 3.14 0.213 0.563 0.105 4.017 
Ba 2.22 0.055 0.055   
Be  <0.001 <0.001   
Ca 502 34.596 41.656 27.26 365.5 
Cd <0.001 <0.001 <0.001   
Cl 15000   11251 16720 
Co <0.005 <0.001 <0.001 0.004 0.0004 
Cr 0.008 0.006 0.001   
Cu <0.008 0.014 0.012 0.006  
Fe 1.055 0.183 0.22 0.875 0.366 
K 133.5 11.83 19.929 426.9 342.5 
Li   0.019 0.139   
Mg 71.1 27.02 33.499 128.2 1001.6 
Mn 0.625 0.012 0.027 0.069 0.133 
Mo <0.15 0.002 0.004 0.006 0.0006 
Na 9946 90.871 335.697 7438 8526 
Ni 0.003 0.006 0.003 0.0025 0.0004 
P 6.285 1.79 0.122 44.49 0.625 
Pb <0.03 0.001 <0.001   
S 350   169.1 80.15 
Sb  <0.001 <0.001   
Se <0.04 0.001 0.002   
Si 36.45 5.422 9.257 2.473c 2.226 
Sn  0.001 <0.001   
Sr 30.15 0.166 0.201  7.198 
Tl  <0.001 <0.001   
V  0.001 0.044 0.0006  
Zn <0.0058 0.011 0.005 0.0096 0.017 
TDSd 25900     
aValues for Media Recipes are calculated.  Wastewater values were determined experimentally. 
bBerges et al., 2001 
cAmount listed for USU080.  In C. gracilis, [HCO3

-] is 0 mg L-1 and [Si] is 6.294 mg L-1. 
dTotal Dissolved Solids, a measurement of ionic strength, or salinity, of the water. 
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even been found as a symport molecule with silica for cell proliferation (Bhattacharyya 

and Volcani, 1980).  The sodium concentrations found in the wastewaters examined as 

part of this study varied.  Sodium concentrations in produced water (9946 mg L-1) were 

comparable to BS (7438 mg L-1) and ESAW (8526 mg L-1).  Sodium in Great Salt Lake 

water was significantly lower (336 mg L-1) as this water sample was collected from the 

shore where a freshwater inlet mixed with the lake water.  The municipal wastewater was 

found to have the lowest sodium concentration of the three waters (91 mg L-1). 

Silicon is an essential element for the growth of diatoms, as hydrated amorphous 

silica forms the frustrule, or diatom cell wall (Martin-Jezequel et al., 2000).  Silicic acid 

is a common component of seawater with concentrations ranging from 2-180 µM (0.05-5 

mg L-1), averaging 70 µM (2 mg L-1) globally.  To reflect the importance of silicon to 

diatoms, Brzezinski determined the ratio of nitrogen and silicon present in the biomass of 

a Chaetoceros species to be in the range of 1.5-4:1 N:Si (Brzezinski, 1985).  Produced 

water contained the most silicon (36.45 mg L-1) which had a concentration 14 times 

greater than that of BS, and a N:Si ratio of 2.7:1, within the Brzezinski ratio.  Although 

municipal wastewater had the least amount of silicon (5.42 mg L-1), it still amounted to 

more than twice that of BS and provides a N:Si ratio of 10.9:1, 

Produced water had a higher concentration of many elements such as arsenic, 

boron (although this was still lower than ESAW), calcium, iron, manganese, sulfur, and 

strontium.  Some of these elements at high enough concentrations have been known to be 

toxic.  One study has shown that arsenate, a species of arsenic, is absorbed into the algal 

plasmid membrane and causes membrane fluidization at concentrations at 7.5 mg L-1 or 
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higher (Tuan et al., 2008).  Though produced water contains only 0.02 mg L-1, it is still 

ten times as much as was found in either municipal wastewater or Great Salt Lake water.   

Municipal wastewater and Great Salt Lake water both had slightly lower 

concentrations than either media recipe of iron, potassium, and magnesium.  All three 

wastewaters had elevated concentrations of boron, relative to media recipe 

concentrations.  Other elements in wastewaters were within the range of media recipe 

concentrations.  Several of these trace elements have been found to play roles in algal 

metabolism; for example, iron and zinc have been found to aid in silica transport in 

diatoms (Martin-Jezequel et al., 2000).  Zinc has also been found as a cofactor for 

utilization of phosphate in phosphate-poor environments in phytoplankton (Arrigo, 

2005).  Neither elevated nor depressed levels of trace elements in natural waters appeared 

to affect either growth or biodiesel production. 

3.2. Algal Growth Achieved on Wastewaters vs. Media 

The goal of these studies is to determine if the bulk of water required for 

microalgal cultivation could be provided by either underutilized water present naturally 

in the environment (Great Salt Lake) or wastewater resulting from human activity 

(produced water and municipal wastewater).  As part of this assessment, the growth of 

two different strains, a diatom (C. gracilis) and a green alga (USU080), in the three 

wastewaters were compared to two laboratory medias.  Growth was followed by 

measuring the optical density (OD) at 600 nm each day. Figure 1 shows the growth of C. 

gracilis in each wastewater as compared with the two media recipes. 
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Figure 3.1.  Growth of C. gracilis on (a) produced water, (b) municipal wastewater, and 
(c) Great Salt Lake water versus both media waters, measured as OD at 600 nm at 
various times in the batch process.  Water types are signified by ■, Broad Seawater (BS); 
▲, Enriched Seawater Artificial Water (ESAW); ∆, Produced Water (PW); ○, municipal 
wastewater (MW); and □, Great Salt Lake water (GSL). 

 
Growth of C. gracilis on produced water (Figure 3.1a) followed closely to that on 

BS, although on most days growth on produced water measured slightly higher than BS 

media.  ESAW was not an effective media for C. gracilis growth as growth on both BS 

and produced water supported substantially better growth.  Growths on municipal water 

(Figure 3.1b) and Great Salt Lake water (Figure 3.1c) were slow and steady, similar to 

growth in ESAW media. Due to measurements in the full 300-900 nm daily spectra (data 

not shown), algal growth in these cultures was determined to have stopped, and were 

subsequently harvested sooner than ESAW and BS cultures.  The slow growth observed 

in both municipal wastewater and Great Salt Lake water could be due to stress caused by 

their low salinity. 

To further characterize the potential of various underutilized water sources to 

support microalgal growth, the growth of a green alga, Chlorella sp. USU080, was 

monitored in each wastewater and both lab medias.  USU080 was chosen because of the 

different nutrient requirements that a green alga would have relative to a diatom; most 

notably their lack of a silicon requirement.  The growth of USU080 in each wastewater 

a b c 
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Figure 3.2.  Growth of USU080 on (a) produced water, (b) municipal wastewater, and (c) 
Great Salt Lake water versus both media waters, measured as OD at 600 nm at various 
times in the batch process.  Water types are signified by ■, Broad Seawater (BS); ▲, 
Enriched Seawater Artificial Water (ESAW); ∆, Produced Water (PW); ○, municipal 
wastewater (MW); and □, Great Salt Lake water (GSL). 
 

and laboratory media (Figure 3.2) was followed in a similar manner to what was done for 

C. gracilis.  Greater variability is generally observed in all growths of USU080 because 

of the organism’s tendency to clump, which at times hinders the aeration in the growth 

vessel.  This is reflected in larger standard deviations than what was obtained for C. 

gracilis OD measurements.  Growth curves of USU080 on produced water lie between 

BS (higher) and ESAW (lower) (Figure 3.2a).  A significant difference was observed 

between the growth curves obtained on BS and produced water, however produced water 

growth was within error of ESAW growth measurements.  Growth of USU080 on 

municipal water (Figure 3.2b) was comparable to growth on BS with one distinct 

difference.  The growth of USU080 on municipal wastewater began to decline after 6 

days while BS culture continued to increase for more than 10 days.  The growth of 

USU080 on Great Salt Lake water (Figure 3.2c) was found to be very similar to the 

municipal wastewater growths.  Like the municipal wastewater growth, OD 

measurements of USU080 in Great Salt Lake water were nearly identical to BS growths 

and the culture also began to decline early (5 days) relative to BS (10+ days).  Due to 

a b c 
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culture stresses (i.e. salinity) that were reflected in the full 300-900nm daily spectra 

(data not shown), these samples were harvested after 5-6 days.  

When considering the viability of using an environmental water source for both 

the culture medium and the source of nutrients, it is important to verify that the 

productivity of the algae in these conditions remains as good as in laboratory media. The 

final biomass yield and biomass productivity of both C. gracilis and USU080 on the 

various nutrient sources is listed in Table 3.2.  We used the growth of a diatom and a 

green alga on two different laboratory medias as a benchmark of microalgae productivity 

for biofuels.  C. gracilis achieved its highest biomass productivity (126 mg L-1 day-1) 

when grown in BS and its lowest when cultured in ESAW (76 mg L-1 day-1).  The 

productivity achieved on produced water (118 mg L-1 day-1) was similar to that of BS, 

while both the brackish water and the municipal wastewater had intermediate 

productivity values (88 mg L-1 day-1 and 82 mg L-1 day-1, respectively).  In similar 

fashion the biomass productivity of USU080 was highest among lab medias when grown 

on BSW (119 mg L day-1) compared with ESAW (104 mg L-1 day-1). The biomass 

productivity rates of USU080 were actually highest in the wastewater sources, with the 

Great Salt Lake biomass productivity (225 mg L-1 day-1 ) more than twice that of ESAW 

(104 mg L-1 day -1).  Growth of USU080 was also strong on both produced water and 

municipal wastewater (129 mg L-1 day-1 and 159 mg L-1 day-1, respectively).  Thus it is 

evident that growth of both algal strains on these wastewaters is comparable or, in some 

cases, better than laboratory media sources. 
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3.3. Lipid Analysis 

Nutrient environment plays a critical role in lipid formation in microalgae.  In 

order to understand not just the effect of wastewaters on algal growth but also the lipid 

production, total lipids from each batch culture were quantified as FAME (biodiesel) (see 

Table 3.2).  Cultures of C. gracilis showed greatest lipid quantities in municipal 

wastewater, producing 570 mg L-1 FAME.  C. gracilis FAME yields from Great Salt 

Lake growths reached 408 mg L-1, which was similar to that achieved when cultured on 

BS (422 mg L-1).  C. gracilis cultured from produced water yielded 191 mg L-1, which 

although lower than other wastewaters was still greater than the yield of ESAW, at 109 

Table 3.2.  Biomass yield and productivity, biodiesel yield and productivity, and percent 
oil content found in C. gracilis and USU080 according to nutrient source. 
Organism Nutrient 

Source 
Biomass 
Yieldb 
(mg L-1) 

Biomass 
Productivityc 
(mg L-1 day-1) 

FAME 
Yieldd  
(mg L-1) 

FAME 
Productivitye 
(mg L-1 day-1) 

% FAME 
in Biomassf 

C. gracilis Broad 
Seawater 

1265 
(±133) 

126.5 (±2.1) 422 (±94) 37.7 (±10.3) 33.8 (±9.0) 

 ESAWa 687 (±52) 76.3 (±5.8) 109 (±14) 10.5 (±1.4) 15.9 (±2.5) 
 Produced 

Water 
1065 
(±42)  

118.4 (±4.7)  191 (±22)  19.0 (±2.4)  17.9 (±1.4) 

 Great Salt Lake 795 
(±194) 

87.6 (±5.4) 408 
(±141)  

44.3 (±8.1) 50.3 (±6.4)  

 Municipal 
Wastewater 

897 (±39) 81.6 (±3.5) 570 (±32) 52.9 (±2.9) 63.6 (±1.2) 

USU080 Broad 
Seawater 

1388 
(±337) 

119.1 (±5.3) 443 
(±112) 

33.3 (±1.4) 31.9 (±2.8) 

 ESAWa 1096 
(±309) 

103.7 (±23.0) 361 
(±163) 

29.1 (±9.5) 31.8 (±6.3) 

 Produced 
Water 

1286 
(±212)  

128.5 (±21.8)  370 
(±109)  

30.2 (±5.6)  26.3 (±3.8) 

 Great Salt Lake 1123 
(±24) 

224.5 (±4.9) 225 (±22) 45.1 (±4.3) 20.1 (±1.6) 

 Municipal 
Wastewater 

953 
(±133) 

158.9 (±22.2) 383 (±6) 68.8 (±9.3) 40.1 (±1.2) 

aEnriched Seawater Artificial Water (Berges et al., 2001) 
bPresented as Volatile Suspended Nonfilterable Solids in mg L-1 

cPresented as Biomass Yield per number of days grown in the batch cycle in mg L-1 day-1 

dPresented as total mg of all lipids converted to FAME during transesterification  per L of batch culture 
ePresented as FAME Yield per days grown in the batch cycle 
fPercent of the Biomass found as FAME, as expressed as a percent of mg FAME over mg biomass in each 
sample 
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mg L-1.  The lipid productivity rates in C. gracilis followed the above patterns in 

FAME ESAW.  The percent lipid content (as g FAME per g dry weight) was highest in 

municipal wastewater, where 63.6% of the dry weight reported as FAME.  Growth in 

Great Salt Lake water also showed high lipid content at 50.3%, much higher than BS at 

33.7% lipid.  Produced water growths contained only 17.9% lipid, slightly greater than 

ESAW, which contained 15.9% lipid.  Previous growths of C. gracilis on produced water 

under identical conditions have yielded as high as 39% FAME, demonstrating a higher 

capacity of this water to serve as a growth medium for lipid production. 

USU080 cultures yielded greatest lipid content in BS (443 mg L-1), although 

lipids from municipal wastewater (383 mg L-1) and Produced Water (370 mg L-1) were 

similar to ESAW (360 mg L-1).  USU080 growths on Great Salt Lake water produced the 

lowest amount of lipid of all USU080 growths (225 mg L-1).  Lipid productivity for 

USU080 was greatest when grown in municipal wastewater, reaching 68.8 mg L-1 day-1, 

which was greatest for both organisms tested.  The significantly shorter culture times of 

both municipal wastewater and Great Salt Lake (45.1 mg L-1 day-1) grown USU080 

cultures contributed to a higher lipid productivity value.  However, in spite of the much 

shorter growth period, USU080 achieved the highest lipid content when grown on 

municipal wastewater (40.1% g FAME/g biomass).  Lipid contents obtained with the two 

laboratory medias were both lower with ~32% (g FAME/g biomass), while produced 

water (26.3%) and GSL (20.1%) grown biomass had the lowest lipid contents.  Previous 

growths of USU080 on produced water under identical conditions reached up to 39% 

FAME content, showing a greater capacity of this wastewater to foster lipid 

accumulation.  The high lipid productivity achieved on municipal wastewater relative to 
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BS demonstrates the potential that using an underutilized water source has to provide 

both the water for growth as well as many of the needed nutrients. 

Both strains exhibited high lipid productivity when grown on water obtained from 

Great Salt Lake and the local municipal wastewater treatment facility.  The reason for 

this high rate of lipid productivity is unknown.  It could be attributed to abiotic factors 

such as osmotic stress caused by the lower salinity of these two samples. C. gracilis is a 

marine species, while USU080 was isolated from Great Salt Lake, and the salinity of the 

water used for growth was nearly that of freshwater sources.  Decreasing saline levels in 

C. gracilis has shown to increase lipid content (Araujo et al., 2011).  The municipal 

wastewater sample obtained had a sodium content of 90 mg L-1, while the sample taken 

from Great Salt Lake where a freshwater inlet entered the lake had slightly higher sodium 

content (335 mg L-1).  Because of the origin of both of these waters a biological influence 

could not be ruled out.  Although both samples of each water source were autoclaved 

prior to use, organic carbon would most certainly be present.  Some algal species have 

been shown to grow favorably on organic nitrogen sources (Berman and Chava, 1999) 

and vitamins (Provasoli and Pintner, 1953), which could be found in these wastewater 

sources.  Further investigation is needed to explain the exact nature of the nutrient stress 

causing the great accumulation of lipids in these organisms. 

3.4. Cost Analysis of Nutrient Sources 

The macronutrients nitrogen and phosphorus represent are likely to be the 

costliest nutrients for microalgal biofuel production.  The cost of other “micro” nutrients, 

however, is not insignificant.  Table 3.3 presents the total cost of each nutrient in the two 
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Table 3.3.  Nutrient cost analysis by nutrient source. 
Nutrient Source Ingredient Amount (per 1000 L 

raceway) 
Cost ($ per  
1000 L) 

Broad Seawater Sodium Chloride 18 kg 73.8272d 
 Magnesium Sulfate Heptahydrate 1.3 kg 10.1400d 

 Sodium Bicarbonate 1 kga 5.9194a,e 

 Potassium Chloride 600 g 8.1432d 

 Sodium Nitrate 300 g 9.3150f 

 Potassium Phosphate Dibasic 250 g 5.9669e 

 Calcium Chloride Dihydrate 100 g 2.2547d 

 Sodium Silicate Nonahydrate 25 ga 0.7040a,e 
 Ferric Ammonium Citrate 5 g 0.1869e 

 Boric Acid 600 mg 0.0064e 

 Manganese Chloride Tetrahydrate 250 mg 0.0295e 

 Zinc Chloride Anhydrous 20 mg 0.0038d 

 Copper Chloride Dihydrate 15 mg 0.0007d 

 Sodium Molybdate Dihydrate 15 mg 0.0028d 

 Cobalt Chloride Hexahydrate 15 mg 0.0020e 

 Nickelous Chloride Hexahydrate 10 mg 0.0006e 

 Potassium Bromide 10 mg 0.0004e 

 Vanadium Pentoxide Anhydrous 2 mg 0.0003d 

 Total  116.5151b 
ESAWc Sodium Chloride 21.2 kg 86.9520d 

 Magnesium Chloride Hexahydrate 8.4 kg 63.9792e 

 Sodium Sulfate 3.5 kg 35.1429e 

 Calcium Chloride Dihydrate 1.3 kg 29.3111d 

 Potassium Chloride 599 g 8.1297d 

 Sodium Nitrate 300 g 9.3150f 

 Sodium Bicarbonate 174 g 1.0300e 

 Potassium Bromide 86 g 3.6140e 

 Boric Acid 23 g 0.2453e 

 Sodium Silicate Nonahydrate 23 g 3.0130f 

 Strontium Chloride Hexahydrate 22 g 1.7503e 
 Sodium-EDTA Dihydrate 5.5 g 0.2423d 

 Sodium Phosphate monobasic 2.9 g 0.0615e 

 Sodium Fluoride 2.8 g 0.0790e 

 Iron Chloride Hexahydrate 1.8 g 0.0455e 

 Manganese Chloride Tetrahydrate 480 mg 0.0566e 

 Zinc Sulfate Heptahydrate 73 mg 0.0015e 

 Nickelous Chloride Hexahydrate 1.5 mg 0.0001e 

 Sodium Molybdate Dihydrate 1.5 mg 0.0003e 

 Cobalt Chloride Hexahydrate 1.4 mg 0.0002e 

 Thiamine-HCl 100 mg 0.0052f 

 Biotin 1 mg 0.0326e 

 B12 2 mg 0.0049e 

 Total  243.0121 
Produced Water Sodium Nitrate 300 g 9.3150f 

Logan Lagoon Sodium Nitrate 180 g 5.5890f 

Great Salt Lake Sodium Nitrate 300 g 9.3150f 

 Potassium Phosphate Dibasic 19.3 g 0.4606e 

 Total  9.7756 
aAmount listed for USU080 growth.  C. gracilis cultures contained 0 g L-1 sodium bicarbonate ($0 L-1) and 70 g L-1 
sodium silicate ($1.971 per 1000 L) 
bTotal cost of Broad Seawater for USU080 listed.  Total cost for C. gracilis is $111.8629 per 1000 L 

cEnriched Seawater Artificial Water (Berges et al., 2001) 
dPrices quoted from Fisher Scientific, April 12, 2011 
ePrices quoted from VWR, April 12, 2011 
fPrices quoted from Sigma Aldrich, April 12, 2011 
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lab medias and cost of the nutrients added to the three wastewater sources to promote 

microalgal growth.  The cost of preparing BS from laboratory grade chemicals for 

USU080 growth would be $116.52 per 1000 L raceway ($111.86 for C. gracilis).  ESAW 

media is more than twice as expensive to prepare as BS at $243.01 per 1000-L raceway.  

This is contrasted by the low chemical cost of conditioning produced water to promote 

vibrant microalgal growth, requiring only the addition of sodium nitrate, at $9.32 per 

1000-L raceway.  The cost of developing municipal wastewater and Great Salt Lake 

water into microalgal growth medias was also low.  Municipal wastewater required the 

addition of nitrate ($5.59 per 1000 L) while Great Salt Lake water required the addition 

of both nitrate and phosphorus ($9.78 per 1000 L).  From this analysis, it is shown that 

the chemical cost of BS is 12.5 times the cost of using produced water and over 20 times 

more expensive than using municipal wastewater.  Purchasing chemicals for ESAW can 

be 46 times the cost of using a wastewater such as from the municipal wastewater 

treatment facility. 

There are some substitutions which could be made, though the effect on growth 

has not yet been determined.  For example, using urea (Sigma Aldrich, quoted on April 

12, 2011) as a nitrogen source instead of sodium nitrate brings the total cost of BS from 

$116.52 to $107.21 per 1000-L raceway, and similarly reduces the cost of all water 

sources.  Further experimentation would be required to know if such substitutions would 

decrease biomass or lipid production within the organism. 
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4. Conclusions  

Although nutrient composition of each nutrient source differs, algal growth 

achieved in all three wastewaters was within the range of media sources in both C. 

gracilis and USU080.  Also, lipid production and productivity in wastewaters were also 

comparable to media sources, with noticeably high lipid productivity in both organisms 

on municipal wastewater and Great Salt Lake sources.  From analyzing the cost of each 

nutrient source as followed in this experimental procedure, using wastewaters as a 

nutrient source for algal biodiesel production is much more cost effective (as much as 46 

times less the expense) than purchasing chemicals for media, and eliminates the need for 

freshwater.  Replacing media chemicals with wastewaters supplemented only with 

essential N and P nutrients proves economically and environmentally logical since 

similar biomass and lipid productivities can be achieved for a lower cost without the need 

of freshwater. 
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CHAPTER 4 

OTHER ALGAE EXPERIMENTS 

Abstract 

Microalgae have been proposed as a possible feedstock for biofuel production, but 

because of the high monetary and energetic costs of processing algae for biofuel 

production, attempts must be made to decrease production costs in every step of the 

process possible.  This chapter addresses the importance of using the wastewater 

resources from oil/gas industry (produced water), municipal wastewater, dairy 

manufacturing, and potato manufacturing as growth media for microalgae.  It was 

concluded that potato processing water is a suitable medium for certain green algae with 

addition of nitrate; however, whey permeate does not sustain algal growth nor does 

produced water sustain cyanobacterial growth.  Particular importance of the nutrient 

management within municipal wastewater is studied so as to understand how the silicate 

concentrations and salinity of the water can influence the extreme lipid accumulation in 

diatoms such as C. gracilis.  The possibility of growing cyanobacteria on produced water 

for the production of high value products is also discussed.  Two cyanobacteria strains 

were shown to grow on a 1:1 mixture of produced water and laboratory media.  Finally, 

the possibility of growing algae as a possible source of pet food is also discussed. 

1. Introduction 

In order to make the algal biodiesel process economically and environmentally 

viable, wastewater is being considered as a nutrient and water source.  In July 2008, U.S. 

oil prices spiked to an all-time high of $147.30 per barrel.  The need for research in 
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alternative fuels caused the passing of the 2007 Energy Independence and Security 

Act, which mandates a defined increase in the production of biofuels through agricultural 

ethanol, butanol, or other oil sources.  Not just the market price of corn and other 

agricultural products, but concerns as well are on the rise of the inability to compete farm 

land for food and fuel.  For this and other reasons, microalgae have been proposed as a 

possible feedstock for cultivation of a biochemical-based fuel product to serve as 

alternative and sustainable energy (Chisti, 2008).  Microalgae grow on non-aerable land 

receiving lots of sunshine, and as has been previously demonstrated, are capable of using 

wastewater resources in place of freshwater (Pittman et al., 2011).  The whole process of 

producing oil from microalgae, from the cell to the gas tank, is currently too expensive to 

commercialize.  The technology is not available to provide this form of biodiesel at 

competitive market prices, especially in the forms of biomass dewatering and drying. 

Aside from engineering solutions to the mechanical aspects of the algal biodiesel 

process, other solutions exist to help mitigate the high cost of biodiesel production.  The 

production of high value products also extractable from algal biomass can help lower 

overall production costs.  Also, increasing the lipid content by understanding the precise 

role of certain chemical stressors such as salinity and silicate in diatoms, can 

automatically increase the efficiency of the harvesting and extraction process.  Doubling 

the lipid content in the cell equates to processing half the material to reach the final 

product.  Finding uses for various industrial wastewaters can attract private companies 

for better disposal of their waste streams. 

This chapter includes various experiments and ideas proposed to make the sun-

driven process of biodiesel production more cost effective and environmentally sound.  
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Cyanobacterial high-value products, diatom sodium-silicate-lipid relationships, new 

industrial wastewaters, dog food, and pharmaceutical bioremediation are topics that are 

each addressed.  

2.  Materials and Methods 

2.1. Collection and Storage of Wastewaters 

Wastewater was also collected from various sites.  Produced water was acquired 

from Anadarko Injection Site near Vernal, Utah, on May 11, 2010, and stored in 55-

gallon barrels at the USU Solar Innovations (Outdoor) Facility until use.  Aliquots were 

removed in 10-L jugs as needed and, depending on the blackness of the water, 

centrifuged for 10 minutes at 8000 rpm for removal of hydrocarbons prior to autoclaving.  

Samples of produced water were supplemented with sodium nitrate (1-1.5 g L-1) for 

cyanobacterial growth.   

Municipal wastewater was acquired from Logan Lagoon Wastewater Treatment 

Facility on two occasions: January 5, 2011, and April 29, 2011.  Water was centrifuged 

for debris removal and autoclaved to ensure strain purity following inoculation.  Unless 

otherwise specified, sodium nitrate (300 mg L-1) was supplemented prior to inoculation.   

Whey permeate, or Delac, was obtained from Glanbia® Foods in Twin Falls, 

Idaho on June 3, 2011.   Due to the presence of a yellow precipitate (presumably calcium 

phosphate) which could interfere with light penetration during growth, samples were 

centrifuged and the subsequent supernatant was additionally filtered (Whatman, 

Piscataway, NJ).  Samples were diluted with distilled water by either two or four times 
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prior to autoclaving.  Sodium nitrate (280 mg L -1, to reach a total of 300 mg L-1) was 

supplemented after autoclaving. 

Four different wastewaters were submitted to our laboratory in July 2011 for 

research from J.R. Simplot potato processing company in Boise, Idaho: the blancher, 

serving as essentially a hot water bath for potatoes; influent to the anaerobic digester; 

effluent to the digester; and water from the clarifier.  This water was autoclaved followed 

by sodium nitrate (300 mg L-1) supplementation. 

2.2. Compositional Analysis of Delac and Simplot Wastewater 

ICP (ELAN 6000, Perkin Elmer, Waltham, MA) and nitrate (Biospec-1601, 

Shimadzu, Columbia, MD) analysis were performed on a sample of Delac and each of the 

four Simplot wastewaters by Utah Veterinary Diagnostics Lab (UVDL).  ICP analysis 

included concentration determination of the following elements: Ag, Al, As, B, Ba, Be, 

Ca, Cd, Co, Cr, Cu, Fe, Li, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, and 

Zn. 

Lactose concentration was also determined for Delac sample using a lactose 

enzyme kit from r-Biopharm AG (Darmstadt, Germany) with the help of Bill McManus 

of the Nutrition and Food Science Department.  Due to the high concentration of lactose, 

the sample required a dilution of 400:1 dilution. 

2.3. Strain Selection and Maintenance Conditions 

 Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, Chaetoceros 

gracilis UTEX LB 2658, Chaetoceros muelleri UTEX LB FD 74, BA060-2 (isolated 

from Great Salt Lake), BA103 (isolated from Great Salt Lake), GA063 (isolated from 
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Great Salt Lake), Amphora coffeaformis UTEX 2039, Chlorella sp. USU080 (isolated 

from Great Salt Lake), and Neochloris oleoabundans UTEX 1185, were used for 

experiments.  Each was maintained in 250 mL cultures in 500 mL baffled flasks rotating 

at 140 rpm with overhead lighting at 140 µmol m-2 s-1 on a 14:10 light:dark period.  

Cyanobacteria were maintained using a BG-11 media recipe, which included the 

following ingredients (per liter): NaNO3 (1.50 g), MgSO4•7H2O (75 mg), CaCl2•2H2O 

(36 mg), citric acid (6 mg), Na2EDTA (0.104 mg), H3BO3 (2.86 mg),  MnCl2•4H2O (1.81 

mg), ZnSO4•7H2O (0.222 mg), Na2MoO4•2H2O (0.39 mg), CuSO4•5H2O (0.079 mg), 

Co(NO3)2 (0.0494 mg), ammonium iron citrate (6 mg), NaHCO3 (20 mg), and K2HPO4 

(30.5 mg).  Algae strains were grown on Broad Seawater media, which contains the 

following nutrients (per liter): NaCl (18 g), KCl (0.6), MgSO4•7H2O (1.3 g), CaCl2•2H2O 

(100 mg), K2HPO4 (250 mg), Na2SiO3•9H2O (70 mg unless otherwise noted), ferric 

ammonium citrate (5 mg).  Trace metals were also added at 1 mL per L of media: H3BO3 

(600 mg L-1), MnCl•4H2O (250 mg L-1), ZnCl2 (20 mg L-1), CuCl2•2H2O (15 mg L-1), 

Na2MoO4•2H2O (15 mg L-1), CoCl2•6H2O (15 mg L-1), NiCl2•6H2O (10 mg L-1), V2O5 (2 

mg L-1), KBr (10 mg L-1).  The algal strain BA103 was also grown on Broad Seawater 

with the aforementioned recipe but with addition of NaHCO3 (1 g L-1) and set to pH of 

9.0. 

For salt and silicate studies with C. gracilis, bulk Broad Seawater lacking NaCl 

and individual bottles of 90 mg, 1 g, 9 g, 18 g, 25 g, and 35 g of NaCl were prepared.  

Upon autoclaving, 1 L of no-salt media was dissolved into each bottle of salt, creating 

Broad Seawater at various levels of salinity.  Each condition was run in duplicate.  The 
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same method was applied for obtaining municipal wastewater at various salt 

concentrations (by dissolving in 0, 1, 9, 18, 25, and 35 g NaCl in autoclaved bottles). 

2.4. Growth conditions  

 Experimental cultures were grown in 1.3-L tubes (800 mm x 50 mm diameter) 

with 1 L media and 110 mL inoculum, unless otherwise indicated for the experiment.  Air 

supplemented with 1% CO2 was bubbled through tubes for mixing and nutrient delivery.  

Optical density (UV-2401PC, Shimadzu, Colombia, MD) was monitored daily, with 

particular observation at 600 nm.  Batch growth length was generally dependent on when 

optical density indicated the start of the stationary phase.  Cultures were harvested by 

spinning at 8000 rpm for 15 minutes.  Cell pellet was frozen and lyophilized (Labconco, 

Free Zone 4.5, Kansas City, MO) and kept frozen until further analysis was needed. 

2.5. Total Lipid Extraction 

 100 mg dried biomass was weighed in a clean, dry microwave vial and mixed 

with 2 mL acidified methanol (1.8 % v/v H2SO4) and stirbar.  Each sample was 

transesterified in a commercial microwave (Discover S, CEM USA, Matthews, NC) at 

90°C for 20 minutes.  Upon addition of chloroform and mixing with water, a phase 

separation made it possible to remove excess acid, methanol, and glycerol by removing 

the upper phase.   The FAME in the organic phase was removed and collected in a 10 mL 

volumetric flask, and remaining biomass was washed twice more with chloroform for 

maximal lipid recovery.  Volume was brought up to 10 mL using chloroform, and upon 

mixing by inversion into a clean test tube, 1 mL (or appropriate dilution with chloroform) 

was stored in a GC vial for analysis by gas chromatography. 



 77
2.6. Gas Chromatography 

 Using pure methyl myristate (C 14:0), methyl palmitoleate (C16:1), and methyl 

oleate (C18:1) (Nu-Chek Prep, Inc., Elysian MN) as standards, six concentrations of 

FAME mixture were prepared: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 g L-1.  Lipid content, both 

TAG and FAME, were determined by gas chromatography (Model 2010, Shimadzu 

Scientific, Columbia, MD) coupled with programmable temperature vaporizer (PTV) and 

flame ionization detector (FID).  The carrier gas used was helium, set at a constant flow 

rate of 50 cm s-1.  A microliter sample was injected into the PTV in direct mode, with 

programmed temperature set to match the column.  The column used to separate analytes 

was an RTX-Biodiesel column, 15 m long, 0.32 mm ID, and 0.1 µm film thickness 

(Restek, Bellefont, PA).  The oven temperature was set to 60°C for 1 minute, followed by 

an increase of 10°C min-1 to 370°C for 6 minutes.  The FID was set to 370 °C.  

GCsolution postrun 2.3 (Shimadzu) was used for lipid peak integration. 

2.7. Carbohydrate Content Determination 

Using the phenol-sulfuric acid method (Dubois et al., 1956), 100 mg dry biomass 

was weighed into a 16 x 100-mm test tube and 5 mL 3M HCl was added.  The sample 

was placed in a boiling water bath for 3 hours, followed by neutralization with sodium 

carbonate.  The resultant mixture was centrifuged, and 0.1 mL of the supernatant was 

mixed into a fresh test tube and filled to 1 mL with distilled water.  Standards containing 

0.2, 0.4, 0.6, 0.8, and 1.0 mg mL-1 glucose were also filled to 1 mL with distilled water.  

To each sample and standard, 1 mL of a 5% phenol sample was added, followed by rapid 

and direct addition of 5 mL 95% sulfuric acid.  The test tubes were immediately mixed.  
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After 20-30 minutes, absorbance by UV-Vis Spectrophotometer (UV-2401PC, 

Shimadzu, Colombia, MD) was observed at 490 nm.  Total carbohydrate concentration 

was determined from the standard curve using the proper dilutions. 

2.8. Dry Mass Analysis 

Dry biomass was weighed to report the dry weight as g L-1.  Ash content was 

determined by heating a pre-weighed sample at 500°C for 30 minutes.  The weight of the 

sample remnants after heating represents the ash content of the sample, and is taken as a 

percent of the original mass. 

3.  Results and Discussion 

3.1. Pharmaceuticals 

 During a meeting at which Ned Weinshenker, VP for Strategic Ventures for 

Economic Development, was present, Liana Etchberger from USU’s Vernal Campus 

presented research done by undergraduate Nicole Glines and faculty member Charley 

Langley showing the presence of pharmaceutical compounds, particularly estrogens and 

NSAIDs, in municipal wastewater.  These compounds appearing in municipal waste 

streams is a result of the increase in pharmaceutical drugs, and brings with it troubling 

downstream environmental effects.   

As the research presentation was later mentioned to the Logan biofuels team, 

ideas were formed of using algae as a means to bioremediate these pharmaceutical 

compounds.  If algae take up harmful compounds from sources like produced water, they 

may be capable of absorbing harmful drug compounds as well.  A simple experiment was 
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designed to grow on or two strains of algae on the wastewater with drugs, with a 

control tube of water with no algae treatment.  Water analysis done by the Vernal team 

would indicate whether or not the algae decreased the concentration of the compound of 

interest.   Further contact with Charley Langley to arrange for the acquisition of 

wastewater for algae growth informed us that the method for pharmaceutical compounds, 

particularly NSAID, at such low concentrations as found in Vernal municipal wastewater 

is not currently developed enough for the experiment.  No further pursuit of the 

pharmaceutical bioremediation project followed. 

3.2. Cyanobacterial Growth on Produced Water  
for the Production of Phycocyanobilin 

 In late January, 2011, a meeting was held with Dr. Jon Takemoto, a professor in 

the Biology Department, and Dr. Dong Chen, a Biological Engineering professor 

working with the Synthetic Bio-Manufacturing Center, in which the idea was proposed to 

grow cyanobacteria, such as Synechocystis or Synechococcus elongatus, using produced 

water for the purpose of developing the high-value products phycocyanobilin and 

biliverdin.  These products have clinical uses as antioxidants (McCarty, 2007; Benedetti 

et al., 2010) valuable in heart disease (McCarty, 2007) and against immunological 

disorders (McCarty, 2011), and are especially valuable from non-animal sources, since 

animals create a dozen or so isomers of biliverdin compounds, many of which are 

ineffective.  Cyanobacteria and algae make one isomer of phycocyanobilin, and it is the 

correct one for clinical use.  Both products have competitive market prices, and if they 

could be formed using mainly produced water resources, they could dramatically reduce 

the cost of open-heart surgeries and heart transplants. 
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This collaboration was designed with hopes of combining biodiesel and 

phycocyanobilin formation in cyanobacteria.  Growth of the organism on produced water 

would make the process more commercially feasible, given the extreme availability of 

the resource.  Because the biodiesel extraction utilizes organic solvents, and 

phycocyanobilin extraction utilizes water solvents, the two extractions should be able to 

be performed on the same biomass material. 

Growth of the cyanobacteria Synechocystis sp. PCC 6803 on produced water had 

been previously tested, with addition of only 150 mg L-1 nitrate.  As shown below, 

growth was successful during the first five days.  However, by day seven the culture 

turned from a dense, lime green color to brown, similar to the color of Chaetoceros 

gracilis, which was growing in the adjacent tube, and the culture was considered 

contaminated.  TAG analysis showed almost no neutral lipid content.  The final dry 

weight as harvested was 0.98 g L-1, which is much lower than typically observed in 

media growths for this strain.  Given the initial success of this strain on produced water, it 

was decided worth investigating to optimize parameters for larger growths. 

Cyanobacteria grow in the laboratory in the BG-11 media, which has a high 

nitrate concentration (1 g L-1).  First, attempts were made to grow both Synechocystis and 

Synechococcus elongatus on produced water with 1 g L-1 nitrate supplementation.  

Within four days, however, S. elongatus turned completely white, unable to grow on pure 

produced water.  Synechocystis seemed more resilient to growth on produced water, to 

some degree.  The optical density did eventually double the starting density immediately 

following inoculation, but after one week it turned the same light orange color that was 

seen previously. 
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Next, the two cyanobacteria strains were tested for growth on produced water 

at various dilutions—if pure produced water was too toxic for growth, perhaps diluting 

produced water by two or four times with BG-11 media would better match the nutrient 

environment necessary for successful growth.  Over the period of one month, with 

periodic addition of concentrated sodium nitrate, Synechocystis was able to grow on 

produced water diluted by half with media from an optical density of 1.18 to 8.53, 8 

times the starting density.  However, the culture turned a dark, olive green color.  

Attempts were made to use these cells as inoculum for growth on more concentrated 

produced water, hoping natural selection would create a culture more robust and resistant 

to whatever in produced water was inhibiting growth.  These attempts all ended in loss of 

pigment in the culture. 

After nearly three months of trying to grow both Synechocystis and S. elongatus 

on various concentrations of produced water, it was determined beyond my scope of 

research, especially once hearing that our department had not received any funding for 

the project and that another graduate student in biological engineering, Jonathan Wood, 

was pursuing the task.  It was observed that of the two strains, Synechocystis grew more 

easily on diluted produced water if given enough nitrate, but that both could achieve 

some growth if the produced water was diluted enough. 

3.3. Growth of Algae on Whey Permeate 

 In June 2011, the Seefeldt laboratory had an opportunity to discover the 

possibility of growing algae on a new waste water stream from a cheese manufacturing 

company in Twin Falls, Idaho, called Glanbia® Foods.  This company produces millions 
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of gallons of waste water per day which they term “Delac,” coming from a lactose 

removal process, that still contains high amounts of lactose and calcium, which currently 

gets dried down and sold as animal feed.  This company is looking for a more profitable 

use of this waste water resource, possibly for use of algae biodiesel production. The 

elemental content is shown in the table below.   

Table 4.1 shows, for algal growth, low concentrations of nitrate, similar salt 

concentrations to Broad Seawater and produced water, and extremely high concentrations 

of calcium and phosphorus.  In fact, after just minutes of stirring, the solution would 

show a bright yellow precipitate, likely calcium phosphate.  Iron, aluminum, copper, and 

Table 4.1. Compositional analysis of whey permeate. 
Element/Ion Delac (mg L-1) 

NO3
- 14.85 

Al 0.37 
As 0.02 
B 1.41 

Ba 0.04 
Ca 1513.79 
Cr 0.12 
Cu 0.34 
Fe 4.17 
K 11636.83 
Li 0.09 
Mg 524.43 
Mn 0.02 
Mo 0.12 
Na 7188.69 
Ni 0.05 
P 2959.47 
Se 0.05 
Si 56.3 
Sr 0.48 
V 0.02 

Zn 0.15 
Lactose-

monohydrate 172.5 g L-1 

Galactose 3.9 g L-1 
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nickel were also found in higher concentrations than any other investigated wastewater 

for algal growth. 

Upon inoculation with C. gracilis and USU080, C. gracilis cultures immediately 

turned red and lost the chlorophyll peak in the optical spectrum.  Upon harvesting, a 

bubblegum pink-colored biomass was revealed in the yellow-orange media.  USU080 

cultures did not seem to grow very well, either.  Optical density barely increased from 

inoculation, and the resulting culture lost chlorophyll peaks fairly early in the experiment.  

FAME analysis showed a maximum of 3.5% FAME from growth of C. gracilis on Delac 

diluted 1:3 with water.  This is less than the approximated 7-10% lipid content of most 

presumed inoculum cultures, implying that the organisms lost lipid during the 

experiment.  This concludes that Delac is an unsuitable nutrient and water source for 

algal growth, and probably for any photosynthetic organism.  Its high lactose 

concentration could make it useful for heterotrophic growth, however. 

3.4. Salt/Silicate Diatom Studies 

In previous experiments, C. gracilis was found to accumulate over 63% of its dry 

weight as lipid when grown on municipal wastewater from the Logan Lagoon, the highest 

observed lipid content of all conditions tested.  Lipid content was also high in C. gracilis 

when grown on Great Salt Lake water, reaching over 50% FAME content.  These values 

far exceed previously observed lipid content values for this organism.  In pursuit of an 

explanation for the extreme lipid deposition in these diatom cells, it was observed that 

both of these water sources contained low salt concentrations.  Sodium was 

approximately 100 times lower in municipal wastewater (90 mg L-1) than found in 
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produced water (9945 mg L-1) or either media recipe (Broad Seawater 7438 mg L-1, 

Enriched Seawater Artificial Water 8526 mg L-1).  Great Salt Lake water also had 

markedly decreased sodium concentrations (336 mg L-1).  Sodium has been identified as 

an important nutrient in marine diatoms, being used in symport with silicate for uptake 

into the cell (Bhattacharyya & Volcani, 1980); apparently, decreasing the extracellular 

salinity can actually decrease the dimensions of the mesopores of biosilica (Vrieling et 

al., 2007).  Thus, silicate uptake, and therefore, growth and proliferation of the cell 

(Martin-Jezequel et al., 2000), is dependent upon the sodium gradient in the extracellular 

environment. 

Other studies have shown that increasing salinity had detrimental effects on lipid 

accumulation in the marine algae Nannochloropsis (Pal et al., 2011) and Dunaliella 

(Takagi et al., 2006), although significantly lower salinity tends to inhibit growth.  It was 

also found that in C. gracilis, increasing sodium chloride from 25 g L-1 to 35 g L-1 had the 

effect of lowering the percent lipid content from 60% to 15% (Araujo et al., 2011). 

Experiments were designed to discover whether the extreme decrease in salinity 

in the municipal wastewater and Great Salt Lake water caused the high lipid 

accumulation in the diatom C. gracilis, and to what degree one could control the trigger 

for lipid accumulation using salt and/or silicate in media.  If lipid accumulation could be 

found similar in both municipal wastewater and Broad Seawater at various salt 

concentrations, then it would indicate the role of salinity in triggering lipid accumulation 

in diatoms.  Ideally, insights could be gained to the physiological behavior of lipid 

accumulation in response to its environment such that a continuous culture could be 

constructed for biofuel production. 
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 The effect of salt concentrations on cultures of municipal wastewater and 

Broad Seawater.  This experiment included twelve cultures of Broad Seawater at six 

different salt concentrations and twelve cultures of municipal wastewater at the same six 

salt concentrations, including 0.09, 1, 9, 18, 25, and 35 g L-1 salt.  The sodium silicate 

concentration of Broad Seawater was set to equal the silicate concentration found from 

ICP analysis of municipal wastewater.  Figure 4.1 reports the data for both Broad 

Seawater and municipal water experiments.  

As seen in Figure 4.1, low salt concentrations in Broad Seawater increased the 

lipid content, suggesting that salinity can effect lipid production in at least this diatom 

species.  This trend was not observed in the municipal wastewater samples.  Percent lipid 

content (Figure 4.1b) was reported highest at 65% when 18 g L-1 salt was added, 

compared to 48% at 1 g L-1 and 37% at 18 g L-1 salt in Broad Seawater.  Additionally, 

lipid accumulation in C. gracilis was reported higher in municipal water than at the same 

salt concentrations in Broad Seawater.  This means that although decreasing salinity did 

cause an increase in lipid production (up to 48% at 1 g L-1 from 37% at 18 g L-1) in Broad 

Seawater, it does not account for the total effect of extreme lipid accumulation in C. 

 

Figure 4.1. Growth of C. gracilis on municipal wastewater (○) and Broad Seawater (●) at 
various salt concentrations. (a) Dry weight measurements, in g L-1, (b) FAME content, as 
a percent of the dry weight, and (c) FAME Productivity expressed in mg L-1 day-1. 

a b c 
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gracilis.  Something else beyond the salinity inherent to the nature of municipal 

wastewater, or some combination of factors, is responsible for triggering such high lipid 

accumulation within these cells. 

Also, cell growth (Figure 4.1a) was greater in municipal wastewater than in Broad 

Seawater, and seemed optimized in both at reduced salt concentrations, between 1 and 9 

g L-1 salt.  Combining biomass and lipid production, FAME productivity (Figure 4.1c) 

shows that the highest and fastest production of lipids from C. gracilis was found in 

municipal wastewater at 18 g L-1 salt, with 47 m L-1 day-1 FAME being produced. 

The cause of extreme lipid accumulation in C. gracilis on municipal wastewater 

did not appear to be caused by the salinity alone, although there was evidence that 

salinity played a role.  Elemental silica was found to be 5.42 mg L-1 in municipal 

wastewater, whereas it is 6.90 mg L-1 in Broad Seawater.  It was hypothesized that the 

silicate concentration could influence lipid accumulation in diatoms, and that since 

literature states that sodium and silicate are used in symport within the cell, an osmotic 

stress under a specific silicate concentration could trigger excess lipid production in the 

diatom, eventually in continuous culture settings.  This study attempts to find the effect of 

varying the silicate concentration over a broad range of salt concentrations on lipid 

production in C. gracilis. 

Using the previous 2 batches outlined above, two additional batches were set up 

and run, with a total of 12 tubes of Broad Seawater containing 55 mg L-1 sodium silicate 

(an equivalent of 5.42 mg L-1 Si), and twelve tubes of Broad Seawater containing 20 mg 

L-1 sodium silicate (an equivalent of 1.97 mg L-1 Si).  Results are shown in Figure 4.2 

below. 
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Figure 4.2. Growth of C. gracilis on municipal wastewater (○) and Broad Seawater at 
various salt and sodium silicate concentrations.  [Si] = 20 mg L-1 (▲), 55 mg L-1 (●), and 
70 mg L-1 (■). (a) Dry weight versus salinity, (b) FAME content as a percent of the dry 
weight, and (c) FAME productivity expressed as mg FAME L-1 day-1. 

 
Analysis of the dry weight data (Figure 4.2a) brings few obvious conclusions.  

Decreasing the silica concentration below 2 mg L-1 decreased the dry weight of cells.  

However, highest dry weights were optimized not at the highest Si concentration but at 

the middle, around 5.4 mg L-1 Si, in both Broad Seawater and municipal wastewater.   

Lipid accumulation (Figure 4.2b) in municipal wastewater cultures was higher 

than any cultures grown on Broad Seawater.  None of the Broad Seawater samples were 

able to come close to the 65% lipid accumulation seen in municipal water at 18 g L-1 

NaCl.  Cultures grown on Broad Seawater generally accumulated more lipids at lower 

salt concentrations.  However, no general statement could be made as to whether 

increasing or decreasing the salinity or silica in Broad Seawater had an effect on lipid 

productivity.  Figure 4.2c, showing lipid productivity, has such large deviations and no 

general patterns from which to draw definite conclusions about salt and silicate balance 

within this diatom species, except that it is optimized in municipal wastewater with 18 g 

L-1 supplemented salt.  

Attempts to repeat the above experiments at random points also brought 

a b c 
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inconclusive results.  Using municipal wastewater from old stocks and a newly 

acquired supply, C. gracilis was grown with 1 and 18 g L-1 sodium chloride added.  

Results for the lipid content of measured samples are shown below in Figure 4.3 as 

individual points below the original municipal wastewater data.  The repeated experiment 

gave results with half the lipid content as previously observed, although conditions were 

identical.  Ash content was also run on the dry cells and was found to be quite high for 

tube experiments (30% for 18 g L-1 salt, 15% for cultures without salt added).  It remains 

unknown if the high ash content of these cultures affected other aspects of the data or if 

this was a normal phenomenon to be expected with repeated growths.  What is clear is 

that the inability to repeat results makes it impossible to gather definite, general results 

from the data. 

In conclusion, decreasing the salinity does seem to have some effect on lipid 

accumulation in C. gracilis.  Also, as expected, decreasing the silica concentration 

generally decreased cell growth.  However, the sodium-dependent silica transport 

system—if one even exists in C. gracilis—is an unlikely player in the trigger of extreme  

 

 

Figure 4.3. Repeatability of growing C. gracilis on municipal wastewater with and 
without salt addition.  FAME content is shown as a percent of the dry weight.  Old 
municipal water, ◊; new municipal water,   ; previous experiment, ○) 
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lipid accumulation.  The cause of the high lipid accumulation as seen in growths on 

municipal wastewater remains inconclusive. 

Further studies could be directed at the effect of vitamins in cell growth and lipid 

accumulation.  Some have postulated that the municipal wastewater is rich in vitamins, 

which would not directly appear in an ICP analysis, but would improve at least algal 

growth (Provasoli & Pintner, 1953) if not also lipid accumulation. 

3.5. Algae for Pet Food 

 In July 2011, contact was made with representatives from Mars®, Inc. in 

Tennessee, looking for possibilities of a collaborating project to grow algae for use as pet 

food.  Strains which carried high protein content were desirable, and it was essential that 

they not contain toxins, particularly microcystins which are normally produced by 

cyanobacteria.  It was also necessary to find a strain of brown algae so as to better blend 

in with natural canine digestive products.  Strains with less offensive odors would be 

preferred. 

Seven strains were identified as potential candidates to meet the above criteria: 

Chaetoceros gracilis, Chaetoceros muelleri, Amphora coffeaformis, BA060-2, BA063, 

BA103, and GA079.  Some cultures grew fast enough to have samples collected twice in 

the month period.  Ash, lipid, and carbohydrate content were determined for each strain 

and an objective smell rating was assigned for the dried, lyophilized cell mass.  Protein 

content was assumed as the remaining content after the above three were determined, and 

is presented below in parentheses. 
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Table 4.2. Results from the growth of six brown algae strains for potential use as pet 
food.  Includes total dry weight of the harvested culture and percent content found as ash, 
carbohydrates, lipids, and (by subtraction) protein.  Also listed is a smell rating on a scale 
of 1 (weak) to 5 (strong, offensive).  GA079 and C. muelleri were harvested from two 
cultures on different days. 

Organism 
Date 

harvested 

Total 
dry 

weight 
(g L-1) % Ash % Carb. % Lipid 

(% 
Protein) 

Smell rating 
(1-5 

weak-
Strong) 

GA079 24-Aug 0.61 23.0% 7.8% 23.5% (45.6%) 2 
GA079 30-Aug 0.5 21.9% 8.6% 23.1% (46.4%) 1 
C.muelleri 17-Aug 1.32 18.1% 30.2% 38.8% (12.9%) 2 
C.muelleri 30-Aug 1.58 20.4% 18.0% 29.5% (32.1%) 3 
BA063 30-Aug 0.93 30.1% 9.6% 11.9% (48.4%) 4 
BA060-2 24-Aug 0.91 10.6% 13.5% 31.9% (44.0%) 2 
BA103 17-Aug 0.93 16.1% 10.7% 46.1% (27.1%) 4.5 
A.coffeaformis 30-Aug 0.76 15.0% 19.6% 20.8% (44.6%) 2.5 

 

Table 4.2 shows that many strains could be developed for further testing as pet 

food.  Ash content was higher than desired in all strains, with the lowest found in  

BA060-2 at 10.6%.  However, BA060-2 and GA079 were two strains that yielded high 

protein with a low smell rating. 

Work was also done with C. gracilis because it had already been grown on a large 

scale within the laboratory facilities.  Using a stock of over 500 g dry material, ash 

content was tested and found to be over 30%.  To decrease the ash content, resuspension 

in distilled water and centrifugation (after a failed attempt using filter paper) was found to 

decrease ash content to 10.2%.  Lipid content was found to be 29.4%.  The remaining 

sample (approximately 450 g) was sent to Mars®, Inc. for testing at their own facility.  A 

lack of response from Mars®, Inc. has led to an end of interest in this project. 

 

 



 91
3.6. Algal Growth on J.R. Simplot Wastewater 

In September 2011, a meeting was held with Idaho agricultural company J.R. 

Simplot to determine if a wastewater stream from any point in the potato treatment 

process could sustain algal growth for biofuel production.  ICP and nitrate analysis was 

performed on the four water sources upon arrival, given in the table below.  The phenol-  

Table 4.3. Compositional analysis of four wastewaters from Simplot potato processing.  
Underlined values indicate significant differences in previous tested nutrient sources. 

Element/Ion 

Digester 
Effluent 
(mg L-1) 

Clarifier 
(mg L-1) 

Blancher 
(mg L-1) 

Digester 
Influent 
(mg L-1) 

Nitrate <5 <5 <5 <5 
Ag <0.001 <0.001 <0.001 <0.001 
Al 0.063 0.045 0.235 0.217 
As 0.004 0.006 0.006 0.005 
B 0.088 0.089 0.141 0.086 
Ba 0.029 0.022 0.037 0.042 
Be <0.001 <0.001 <0.001 <0.001 
Ca 37.233 32.295 38.305 43.885 
Cd <0.001 <0.001 0.002 0.001 
Co 0.001 <0.001 0.001 0.001 
Cr 0.004 0.005 0.007 0.008 
Cu 0.016 0.033 0.035 0.020 
Fe 0.294 0.426 0.252 0.694 
K 213.225 233.111 690.843 261.492 
Li 0.014 0.013 0.009 0.012 
Mg 13.928 12.294 43.319 15.667 
Mn 0.061 0.055 0.174 0.108 
Mo 0.001 0.003 0.002 0.002 
Na 124.353 59.830 132.907 119.480 
Ni 0.004 0.003 0.005 0.004 
P 30.277 19.056 190.490 34.520 
Pb <0.001 0.001 <0.001 0.001 
Sb <0.001 <0.001 <0.001 <0.001 
Se 0.002 0.002 0.005 0.002 
Si 15.365 15.793 14.699 18.119 
Sn <0.001 <0.001 <0.001 <0.001 
Sr 0.201 0.182 0.172 0.234 
Tl <0.001 <0.001 <0.001 <0.001 
V 0.004 0.005 0.005 0.007 
Zn 0.031 0.131 0.399 0.095 
starch 14.4 59.2 142.1 62.3 
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sulfuric acid method revealed the starch content of each water source, also given in the 

table above. 

The initial purpose of interest for this water was to be a source of carbon-rich 

media for heterotrophic organisms such as yeast or bacteria for lipid production.  

However, the starch content was much lower than expected (data supported by failed 

attempts to grow high density yeast cultures), and ICP analysis showed a profile better 

suited for algal growth than yeast growth.  Two strains, C. gracilis and USU080, were 

originally selected, and later a third, N. oleoabundans, was also tested for growth on the 

four wastewaters with supplemented sodium nitrate (300 mg L-1), searching for the 

potential of each strain and wastewater to produce high density lipids. 

ICP analysis (Table 4.3) shows acceptable ranges of nutrients in the Digester 

effluent and the Clarifier, with the exception of slightly elevated levels of zinc than other 

wastewaters tested.  The Digester Influent was also within range of most elements but 

with slightly elevated levels of aluminum and zinc.  The Blancher water was most 

questionable for algal growth, with higher levels of aluminum, potassium, phosphorus, 

selenium, and zinc. 

C. gracilis failed to grow on any of the Simplot waters (data not shown).  

USU080 grew acceptably.  Because the sodium content was found to be so low, the 

freshwater green alga N. oleoabundans was later tested for growth on the waters and was 

also successful at growing and producing lipids on three of the four Simplot waters.  

Lipid and dry weight analysis is shown below in Table 4.4. 

As shown below in Table 4.4, it is possible to use Simplot water to produce algal 

biodiesel using only sodium nitrate as a supplement.  USU080 was able to produce the  
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Table 4.4. Results from growth of USU080 and N. oleoabundans growth on Simplot 
wastewaters.  Includes dry weight, FAME and ash content (as a percent of dry weight), 
days grown, and the FAME and biomass productivity rates, expressed in mg L-1 day-1. 
 USU080 N. oleoabundans 

 
Digester 
Influent 

Digester 
Effluent Clarifier Blancher 

Digester 
Influent 

Digester 
Effluent Clarifier 

Dry weight (g L-1) 1.54 1.34 1.81 1.16 1.78 1.49 1.00 
FAME % 16.1 11.8 19.3 6.6 18.8 17.7 14.5 
Ash content % 10.1 13.5 12.0 25.5  4.2 3.3 
Days Grown 7 7 7 4 11 6 6 
FAME Productivity      
(mg L -1 day-1) 35.4 22.7 49.8 19.0 30.4 43.9 24.2 

highest biodiesel productivity, at nearly 50 mg L-1 day-1, although ash content was high at 

almost 20%.  N. oleoabundans also saw high biodiesel productivity at 44 mg L-1 day-1, 

with an ash content of only 4%.  The Clarifier water performed best overall in USU080, 

and the Digester Effluent was best in N. oleoabundans, with good performance of the 

Digester Influent as well in both species.  The Blancher water performed the worst, and 

failed to produce any growth in N. oleoabundans.  It was concluded that Simplot water 

was a potential good growth medium for these algal organisms, but not for heterotrophic 

organisms. 

4. Conclusions 

 Many strategies exist to reduce production costs of algal biodiesel.  Additional 

wastewaters such as whey permeate from the dairy industry and Simplot potato 

processing industrial wastewater were tested for phototrophic growth in a small selection 

of microalgal strains.  Whey permeate was found to be unsuitable for algal growth, 

perhaps because of the opacity decreasing light penetration to the culture.  Simplot 

wastewater was found to support growth for two strains of green algae: USU080 and N. 

oleoabundans, with only addition of nitrate.  USU080 FAME productivity was seen to 
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reach nearly 50 mg L-1 day-1 with 12.0 % ash content when grown on Simplot clarifier 

water.  N. oleoabundans reached a FAME productivity rate of 44 mg L-1 day-1 with 4.2 % 

ash content when grown on Simplot digester effluent water. 

 Attempts were made to grow the high value-added product phycocyanobilin using 

phototrophic cyanobacteria grown on produced water.  Initial studies showed successful 

growth during the first five days of growth followed by a sudden bleaching of color.  

Attempts to grow two cyanobacterial strains on a mixture of BG-11 media and produced 

water supplemented with 1 g L-1 sodium nitrate, with increasing concentrations of 

produced water, failed to produce desired growth.  Growth was sustained on a 1:1 

mixture of produced water and BG-11 media. 

 Certain strains of brown algae were investigated for their potential to serve as dog 

food as a possible collaboration with Mars®.  An ideal strain would produce cellular 

content of high protein, high carbohydrate, low fat, and very low ash content, with high 

biomass productivities and a non-offensive smell.  Carbohydrate, lipid, and ash content 

were determined from each of the six strains tested.  Of the six strains tested, BA060-2 

showed the most promise with nearly 50% protein and only 10% ash content, with a mild 

intensity smell rating.  However, this premature collaboration has terminated with a loss 

of contact with Mars® representatives. 

 Diatom studies were performed to identify a trigger for high lipid accumulation in 

the species C. gracilis.  In attempt to find a perfect ratio between sodium and silicate 

concentrations in solution, difficulties reproducing data led to the termination of studies 

before reaching any conclusions.  Decreasing the salinity in Broad Seawater medium did 

result in a general increase in lipid accumulation, whereas in municipal wastewater lipid 
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content was optimized around 18 g L-1.  Lipid production at all salt concentrations was 

higher in municipal wastewater than in Broad Seawater at various tested silicate 

concentrations, and although data points were not reproducible, it was concluded that 

another nutrient in the municipal wastewater medium, such as suspected vitamins, causes 

the high lipid accumulation. 
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CHAPTER 5 

HETEROTROPHIC GROWTH OF OLEAGINOUS ORGANISMS  

FOR THE PRODUCTION OF BIODIESEL 

Abstract 

Oleaginous organisms such as yeast and bacteria have been identified as possible 

feedstocks for biofuel production because of their ability to accumulate large amounts of 

their dry weight as oil and grow with much higher densities than microalgae.  

Rhodococcus opacus is an oleaginous bacterial strain and Cryptococcus curvatus is an 

oleaginous yeast strain that have been considered for biodiesel production.  Experiments 

have tracked the uptake of key nutrients such as sugar and nitrogen and the concurrent 

production of biomass and lipid over the course of several batch processes, including 

batches where nutrients were spiked part-way through the experiment.  Wastewaters, 

particularly of whey permeate and a local ice cream factory, are considered as a carbon 

source for the growth of these organisms and described below.  Finally, the use of xylose 

in conjunction with traditional 6-carbon sugars, and eventually wheat straw hydrolysate, 

were shown to permit the formation of biodiesel. 

1. Introduction 

While using microalgae as a means of creating renewable energy directly from 

sunlight and atmospheric CO2 has many theoretical advantages to other feedstocks for 

biofuels, the current technology available makes it difficult to offer algal biodiesel at a 

low enough cost to be competitive with petroleum.  Major limitations in harvesting and 

de-watering techniques arise and drive the cost up, especially when the best large-scale 
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cell densities reach only 2 g L-1.  The monetary and energy expense to remove that 

much water for biodiesel extraction make it currently impossible to successfully 

commercialize the process.  Until this problem is better addressed, algal biodiesel stands 

short of other biofuel feedstocks in the search for renewable fuels (Azócar et al., 2010; 

Samorì et al., 2010). 

Other organisms are capable of accumulating lipids in large quantities that could 

be converted to methyl esters just as algal lipids, and are capable of growing faster and 

achieve at least ten times the cell density of microalgae.  Termed oleaginous 

microorganisms, or single cell oil, they are capable of accumulating 20% or greater (over 

70%) their cell mass as lipid.  Additionally, heterotrophic growth is not light or land-

limited and can therefore grow in a fermenter of any size any time of the year.  The key is 

finding a cheap, or ideally, waste source of fixed carbon. 

While many species and strains of oleaginous organisms exist, our laboratory has 

accumulated some of these for experimentation.  The published findings of just these few 

select strains includes much about lipid biochemistry; however, to find unique 

discoveries about these organisms, we began to validate their growth and lipid production 

capacities as previously stated in the literature.  This chapter includes preliminary 

research done within the bacterial strain Rhodococcus opacus PD630 and the yeast strain 

Cryptococcus curvatus, with some implications for applicable growth on waste sources of 

fixed carbon. 
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2.  Materials and Methods 

2.1. Collection and Storage of Waste Carbon Sources 

Whey Permeate.  Whey permeate, or Delac, was obtained from Glanbia® Foods 

in Twin Falls, Idaho on June 3, 2011.   Due to the presence of a yellow precipitate 

(presumably calcium phosphate), samples were centrifuged and the subsequent 

supernatant was additionally filtered (Whatman, Piscataway, NJ).  Samples were frozen 

until use for culture growths. 

 Blue Bunny® Waste Waters.  At the end of November 2011, 2 samples of waste 

water were provided from the Blue Bunny® ice cream plant near St. George, Utah.  One 

was termed Waste Mix and the other Influent Process.  Both samples were divided into 

100-mL aliquots and frozen until use for culture growths. 

 Wheat Straw Hydrolysate.  A sample of wheat straw was collected near Pocatello, 

Idaho on February 4, 2012.  Wheat straw was hydrolyzed according to Yu et al. (2011).  

Briefly, the straw was washed and dried and milled into a mixture of short pieces and 

dust using a blender.  100 g milled wheat straw was mixed with 1 L of 2% sulfuric acid 

(20 mL in 1 L) and autoclaved at 121°C for 60 minutes.  The solids were removed by 

subsequent centrifugation and vacuum filtration. 

 For treatment of non-detoxified hydrolysate, pH was brought up to 5.5 using 

sodium hydroxide and micronutrients were added in the following quantity per liter: 

magnesium sulfate heptahydrate (0.4 g), potassium phosphate dibasic (2 g), manganese 

chloride (3.51 mg), copper (II) sulfate (0.1 mg), and yeast extract (1.5 g).  The solution 

was then sterilized using a 0.2-µm filter.  Experiments were run with and without the 

addition of 0.5 g L-1 ammonium sulfate as well. 
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 For treatment of detoxified hydrolysate, the solution was heated to 42°C and 

the pH was raised to 10.0 using sodium hydroxide.  The solution was maintained at 50°C 

for 30 minutes before lowering the pH to 5.5 using sulfuric acid.  Micronutrients were 

added in the same quantity as described above, and the solution was also filter sterilized 

using a 0.2-µm filter.  Experiments were likewise done with and without the addition of 

0.5 g L-1 ammonium sulfate. 

 Carbohydrate content was determined of non-detoxified and detoxified 

hydrolysate solutions using the phenol sulfuric acid method described below. 

2.2. Compositional Analysis of Wastewaters 

ICP (ELAN 6000, Perkin Elmer, Waltham, MA) analysis was performed on a 

sample of Delac and both Blue Bunny® wastewaters upon arrival by Utah Veterinary 

Diagnostics Lab (UVDL).  ICP analysis included concentration determination of the 

following elements: Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, K, Mg, Mn, Mo, 

Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, and Zn.  Delac water was additionally tested for 

nitrate concentration (Biospec-1601, Shimadzu, Columbia, MD). 

Lactose concentration was also determined for Delac and Blue Bunny® samples 

using a lactose enzyme kit from r-Biopharm AG (Darmstadt, Germany).  Total protein 

(see below) was also determined in the Blue Bunny® sample by use of the Lowry assay, 

described below. 

Total carbohydrate content of wastewater samples was determined by the phenol 

sulfuric acid method (Dubois et al., 1956).  A predetermined amount of sample 

(depending on carbohydrate content, dilutions were necessary to fit sample concentration 
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within standard curve) was added to a clean 16 x 100 mm test tube and filled to 1 mL.  

Standards of glucose and/or xylose were made containing 0.2, 0.4, 0.6, 0.8, and 1.0 mg 

mL-1, and filled to 1 mL.  To each sample and standard, 1 mL of a 5% phenol solution 

was added, followed by direct and rapid addition of 5 mL concentrated H2SO4.  After 20-

30 minutes, absorbance at 490 nm was measured, and carbohydrate concentration was 

determined using the standard curve. 

2.3. Strain Selection and Maintenance 

Rhodococcus opacus PD630 (DSM 44193) was obtained from the Deutsche 

Sammlung von Mikroorganismen (Germany), maintained at -80°C as a glycerol stock, 

and streaked onto agar plates as needed.  R. opacus growth medium (MIT-nitrate) is 

given in the following ingredients (per liter), and was combined from media defined in 

(Kurosawa et al., 2010) and (Chartrain et al., 1998): magnesium sulfate heptahydrate (1 

g), calcium chloride dehydrate (15 g), lactose (40 g for inoculum, 120 g for cultures), iron 

sulfate heptahydrate (0.5 mg), zinc sulfate heptahydrate (0.4 mg), manganese sulfate 

monohydrate (2 µg), boric acid (15 µg), nickelous chloride hexahydrate (0.01 mg), 

disodium EDTA (0.25 mg), cobalt chloride hexahydrate (0.05 mg), copper chloride 

dihydrate (5 µg), sodium molybdate dihydrate (2 mg), ferric ammonium citrate (4.5 mg), 

potassium phosphate dibasic (3.67 g), potassium phosphate monobasic (1.53 g), and 

sodium nitrate (1.4 g for inoculum, 9.65 g for cultures).   

Cryptococcus curvatus (ATCC 20509) was obtained from the American Type 

Culture Collection and also maintained at -80°C as glycerol stocks, being streaked onto 

agar plates as needed.  C. curvatus growth medium, as cited by Angerbauer et al. (2008), 
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contained each of the following (per liter): potassium phosphate monobasic (12.5 g), 

sodium phosphate dibasic (1 g), magnesium sulfate heptahydrate (2.5 g), calcium 

chloride dehydrate (0.25 g), yeast extract (1.9 g), lactose (40 g), ammonium sulfate (0.5 

g), and 0.625 mL/L of the trace metals solution.  Trace metals were prepared separately 

and consisted of the following: ferrous sulfate (16 g L-1), manganese sulfate monohydrate 

(4 g L-1), aluminum chloride (2.23 g L-1), cobalt chloride hexahydrate (2.92 g L-1), zinc 

sulfate heptahydrate (0.8 g L-1), sodium molybdate dehydrate (0.8 g L-1), copper chloride 

dehydrate (0.4 g L-1), boric acid (0.2 g L-1), and potassium iodide (1.6 g L-1) dissolved in 

5 N hydrochloric acid. 

2.4. R. opacus Growth Conditions 

From a single colony from a fresh plate, R. opacus was grown in 8 mL MIT-

nitrate media in a small culture test tube and placed in a rotating incubator at 30°C.  After 

2 days, the 8 mL culture was transferred to 50 mL MIT-nitrate media in a 100-mL baffled 

flask and incubated at 30°C for 2 days.  For the batch growth experiment, the inoculum 

had an optical density (OD) reading of 19.152 at 660 nm.  7.22 mL inoculum was added 

to each of 8 250 mL baffled flasks with 100 mL MIT-nitrate culture media to give each 

culture a starting OD660 of 0.76.  One flask was harvested each day for a total of eight 

days.  Harvested cell pellets were frozen, lyophilized, and kept frozen until further 

analysis.  Supernatants were also collected. 

When R. opacus was grown on Delac, four flasks of mixed Delac and water were 

prepared: 25 mL Delac and 75 mL distilled water (25%), 50 mL Delac and 50 mL water 

(50%), 75 mL Delac and 25 mL water (75%), and 100 mL Delac (100%).  Each flask was 
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supplemented with 3.126 mL of 300 g L-1 sodium nitrate, to give a final concentration 

of 9.65 g L-1.  Similar inoculation procedures were followed, with 8 mL inoculum 

(OD660=20.31) from the 50 mL culture being added to each of four flasks containing a 

mixture of Delac and water, giving each culture a starting OD660 of 1.2.  OD was 

measured daily for a period of 120 hours, at which all cultures were harvested.  Cell 

pellets were frozen, lyophilized, and kept frozen until further analysis.  Supernatants were 

also collected for analysis. 

2.5. C. curvatus Growth Conditions 

Similar to the experimental conditions just described for R. opacus, C. curvatus 

was also grown in an 8-mL culture test tube of Angerbauer media from a single colony 

streak plate.  After overnight growth in an incubator at room temperature to 30°C, 1 mL 

was added to inoculate 250-mL baffled flasks of 100 mL Angerbauer media.  During the 

first batch experiment, 6 identical 100-mL flasks of the Angerbauer lactose media were 

inoculated with Cryptococcus curvatus, one to be harvested per day.  Upon analysis of 

the data, a second batch of flasks was prepared to be harvested over the course of 10 

days, during which all flasks remaining after the fourth day harvest would be spiked with 

either 40 g L-1 lactose and 0.5 g L-1 ammonium sulfate, or only 40 g L-1 lactose.  A third 

batch growth of a single flask containing 80 g L-1 lactose was run until optical density 

reached a maximum, after 6 days. 

Additional experiments of growing C. curvatus on Delac as a media source with 

supplemented ammonium were performed by undergraduate researcher Lynsey Talbot, 
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whose methods match those described above, supplementing 0.5 g L-1 ammonium 

sulfate and harvesting cultures after 120 hours of growth. 

For growths of C. curvatus on Blue Bunny® waste mix, 4 100-mL flasks were 

prepared by dilution with distilled water, just as was Delac, to create the following 

concentrations of waste mix in water: 25%, 50%, 75%, and 100%.  Each flask was 

supplemented with 0.5 g L-1 ammonium sulfate and inoculated with C. curvatus.  

Because of the thick nature of the Blue Bunny® waste mix, OD readings did not follow a 

great pattern, but were taken daily nonetheless.  Cultures were harvested after 120 hours 

of growth, with the cell pellet frozen and lyophilized, and the supernatant collected. 

Experiments involving xylose as a carbon source were done in similar fashion as 

the above two batch growths, in that 250-mL baffled flasks with 100 mL Angerbauer 

media containing 40 g L-1 of the specified sugar content were inoculated with C. curvatus 

and harvested after 120 hours.  OD600 was measured daily.  The lactose/xylose 

experiment contained four concentrations of lactose:xylose (1:0, 3:1, 1:1, 0:1).  The 

xylose/glucose experiment contained four different combinations of the glucose:xylose 

ratio (1:0, 2:1, 1:1, 0:1). 

For experiments of C. curvatus on wheat straw hydrolysate, 100 mL hydrolysate 

(detoxified or non-detoxified) was measured into sterile 500-mL baffled flasks.  Solutions 

were tested for growth with and without addition of 0.5 g L-1 ammonium sulfate.  

Cultures were inoculated with fresh C. curvatus cells and harvested after 120 hours.  

OD600 was measured daily. 
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2.6. Dry Mass Analysis 

Dry biomass was weighed to report the dry weight as g L-1.  Ash content was 

determined by heating a pre-weighed sample at 500°C for 30 minutes.  The weight of the 

sample remnants after heating represents the ash content of the sample, and is taken as a 

percent of the original mass. 

2.7. FAME Extraction 

100 mg dried biomass was weighed in a clean, dry microwave vial and mixed 

with 2 mL acidified methanol (1.8 % v/v H2SO4) and stir bar.  Each sample was 

transesterified in a commercial microwave (Discover S, CEM USA, Matthews, NC) at 

90°C for 20 minutes.  Upon addition of chloroform and mixing with water, a phase 

separation made it possible to remove excess acid, methanol, and glycerol by removing 

the upper phase.   The FAME in the organic phase was removed and collected in a 10-mL 

volumetric flask, and remaining biomass was washed twice more with chloroform for 

maximal lipid recovery.  Volume was brought up to 10 mL using chloroform, and upon 

mixing by inversion into a clean test tube, 1 mL (or appropriate dilution with chloroform) 

was stored in a GC vial for analysis by gas chromatography. 

2.8. Gas Chromatography 

Using pure methyl myristate (C 14:0), methyl palmitoleate (C16:1), and methyl 

oleate (C18:1) (Nu-Chek Prep, Inc., Elysian MN) as standards, 6 concentrations of 

FAME mixture were prepared: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 g L-1.  Lipid content, both 

TAG and FAME, were determined by gas chromatography (Model 2010, Shimadzu 

Scientific, Columbia, MD) coupled with programmable temperature vaporizer (PTV) and 
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flame ionization detector (FID).  The carrier gas used was helium, set at a constant 

flow rate of 50 cm s-1.  A 1-µL sample was injected into the PTV in direct mode, with 

programmed temperature set to match the column.  The column used to separate analytes 

was an RTX-Biodiesel column, 15 m long, 0.32 mm ID, and 0.1 µm film thickness 

(Restek, Bellefont, PA).  The oven temperature was set to 60°C for 1 minute, followed by 

an increase of 10°C min-1 to 370°C for six minutes.  The FID was set to 370 °C.  

GCsolution postrun 2.3 (Shimadzu) was used for lipid peak integration. 

2.9. Lowry Protein Assay 

Total protein content of dry biomass and raw Blue Bunny® waste waters using 

the Lowry assay, as described in (Peterson, 1977).  Briefly, 50 mg dry biomass was 

mixed in 100 mL distilled water.  Samples were sonicated for 3 10-second intervals to 

reduce sample clumping.  Ten milliliters of the cloudy sample was removed into a 

centrifuge bottle.  For liquid samples, 1 mL sample was mixed in 10 mL water in 

centrifuge bottles.  To each sample, 1 mL 0.15% deoxycholate solution was added.  After 

10 minutes, 1 mL 20% TCA solution was added causing immediate precipitation.  The 

samples were centrifuged for 30-60 minutes at 20000 rpm.  Supernatant solution was 

carefully decanted to remove any excess drop of liquid.  The protein pellet was 

redissolved in 1 mL of a solution (CTC) containing a 1:1:1:1 ratio of the following 

reagents: 1% cupric sulfate, 2% sodium tartrate, and 1 mg mL-1 sodium carbonate; 10% 

sodium dodecyl sulfate; 0.8 M NaOH; and distilled water.  Once the protein pellet had 

dissolved, it was diluted with 10 mL distilled water.  From this solution, 0.2 mL protein 

solution was removed to a clean test tube and filled to 1 mL.  Bovine Serum Albumin 
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(BSA) standards were also made in test tubes and filled to 1 mL at concentrations of 

0.02, 0.04, 0.06, 0.08, 0.1 mg mL-1.  To each sample and standard was added 1 mL CTC 

solution.  After 10 minutes, 0.5 mL of 0.33 N Folin-Ciocalteu phenol reagent was added.  

Absorbances were read at 750 nm after 30 minutes but before 90 minutes.  Protein 

concentrations were calculated using the standard curve and proper dilution factors. 

2.10. Total Nitrogen Determination 

 The total concentration of nitrogen in solution was determined in culture 

supernatants and raw waste waters by use of QuikChem 8500, Series 2 (Lachat, 

Loveland, CO). 

3.  Results and Discussion 

3.1. R. opacus Batch Growth 

R. opacus has been identified as a unique bacterial strain that is capable of 

producing and storing significant amounts neutral lipids.  Reports in the literature state 

growth of R. opacus at 77 g L-1 dry weight and 38% TAG content using glucose and 

ammonium sulfate as C/N sources (Kurosawa et al., 2010).  Another report has 

demonstrated that neutral lipid production begins at depletion of nitrogen from the 

environment and continues until the exogenous carbon source depletes (Alvarez et al., 

2000), but fails to report growth as dry weight, using optical density instead as a 

representation of growth.  This organism has never been shown to grow on lactose, which 

is of interest because of the lactose concentration in wastewaters of interest to our 

laboratory (i.e. Delac and Blue Bunny).  Because of the work of lab members, it became 
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an experiment of interest to understand the nutrient environment and cellular 

composition of R. opacus during a batch growth. 

Eight identical 100 mL cultures were started as described above, with one culture 

harvested a day.  Samples were analyzed for cellular dry weight, lipid, and ash content 

and total nitrogen and lactose concentration of the supernatant media.  Results are shown 

below in Figure 5.1. 

As seen above, growth (Figure 5.1a) and lipid (Figure 5.1c) content seemed to 

reach a peak at day 5, with 32 g L-1 dry weight and 44% biodiesel content.  There may 

have been some error in the analysis of nutrients, because it seems unlikely, indeed 

impossible, that both the exogenous lactose (Figure 5.1b) and nitrogen (Figure 5.1d) 

concentrations could double after one day of growth, exceeding the amount that was even 

 

 

Figure 5.1. Results of batch growth of R. opacus in lactose media. (a) Cellular dry 
weight, (b) lactose concentration of growth medium, (c) FAME content as a percent of 
the dry weight, and (d) total nitrogen concentration of the grown medium vs. time. 

a b 

c d 
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present in the flask to begin with.  These anomalies make it difficult to draw definite 

conclusions from this growth experiment, except that five days, or 120 hours, seems 

optimal for harvesting maximal dry weight and lipids in the R. opacus culture. 

3.2. Growth of R. opacus on Delac 

 Experiments were also done with R. ocapus using Delac, the whey permeate 

wastewater from Glanbia®, supplemented with sodium nitrate (see Table 4.1 for nutrient 

analysis).  Because some nutrients were found to be so high, four different dilutions of 

Delac were tested: 25%, 50%, 75%, and 100% Delac diluted with distilled water.  After 

five days, cultures were tested for ash and lipid content, dry weight, and remaining 

nitrogen and lactose in solution.  The results are shown in Table 5.1 below. 

According to Table 5.1, growth is clearly suppressed at 100% Delac 

concentration, with minimal utilization of the lactose in solution and high ash content of 

what cells were recovered.  With only 5.4 g L-1 dry weight, the 25% Delac concentration 

produced the greatest lipid of the three tested samples.  Other experiments showed that 

Cryptococcus curvatus, an oleaginous yeast organism, was able to grow on Delac at 16 g 

L-1 dry weight and 35% biodiesel content at a 25% Delac dilution supplemented with 

ammonium sulfate.  R. opacus is clearly not the best heterotrophic organism for growth  

Table 5.1.  Results of growth of R. opacus on Delac at various dilutions.  Includes 
cellular dry weight, total nitrogen and lactose concentrations remaining in medium at end 
of growth, and ash and lipid content as a percent of the dry weight. 

Flask Dry Weight (g L-1) [total N] (g L-1) [Lactose] (g L-1) % Ash % Lipid 
Delac 25% 5.4 0.95 17.9 19.0 16.1 
Delac 50% 8.8 1.10 39.8 32.5 5.1 
Delac 75% 12.9 1.02 41.8 35.1 2.3 
Delac 100% 3.3 1.45 265.8 26.5  
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or lipid production on whey permeate. 

3.3. Batch Growth of C. curvatus 

 Among the oleaginous yeast organisms, C. curvatus remains a strong competitor 

for biodiesel production despite the limitation of lacking a working genome.  Without 

genetic manipulation or understanding of its precise metabolic pathways, particularly of 

lipid metabolism, it has been observed to grow at cell densities of 118 g L-1 in a 50-hour 

fermentation at 25% lipid content (Meesters et al., 1996) and, in our own laboratory, 15 g 

L-1 in 120-hour fermentations at above 70% lipid content.  It has been shown to grow on 

diverse feedstocks, from glucose and sucrose to glycerol (Meesters et al., 1996) and whey 

permeate (Ykema et al., 1988).  Nitrogen limitation seems to be the key trigger for lipid 

production (Evans and Ratledge, 1984).  These characteristics make this workhorse 

organism an ideal starting place for industrial production of biodiesel (Thiru et al., 2011). 

Without genetics, our laboratory needed a better understanding of the effect of the 

nutrient environment on lipid production in this organism.  In a similar fashion as 

described for R. opacus, experiments were designed over a batch process to see the 

changes in extracellular nutrients and cell composition. 

These experiments, as seen in the Figure 5.2, show the relationship between 

carbon uptake (Figure 5.2b) and cell dry weight (Figure 5.2a), as well as between 

extracellular nitrogen concentration (Figure 5.2e) and lipid content (Figure 5.2d).  In the 

first batch run, as shown in the dotted line, nitrogen is depleted during the first day, after 

which is seen a monstrous climb in lipid content within the cell.  Also observed is the 

continuation of cell growth throughout the batch until the carbon source depletes, at day 
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Figure 5.2.  Results from the batch growth of C. curvatus on lactose media. (a) Cellular 
dry weight, (b) lactose concentration in the growth medium, (c) pH, (d) cellular FAME 
content as a percent of the dry weight, (e) total nitrogen concentration of the growth 
medium, and (f) cellular protein content as a percent of the dry weight, all as functions of 
time.  Symbols are defined as follows: , first batch growth during 6 days; ●, second 
batch growth during 9 days with a lactose spike on day 4; ○, second batch growth during 
10 days with a lactose and nitrogen spike on day 4; and *, single flask containing 80 g L-1 
lactose grown for 6 days.  

 

four, after which cell dry weight levels off. 

The second batch growth follows the same trend until day four, when cultures 

were spiked with either extra carbon and nitrogen or just carbon.  When spiked with 

ammonium, the cells take up the nitrogen source again within the first day (Figure 5.2e); 

however, FAME content within the cell does not increase much over the next five days 

(Figure 5.2d) as it was already at such high levels in the cell.  What is noticeable is the 

slight decrease in lipid content during the day following the spike.  It has been shown in 

literature with R. opacus, the presence nitrogen can cause the mobilization of carbon 

within the cell from storage lipids to other carbon sources (Alvarez et al., 2000); a similar 

a b c 

d e f 
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pathway may be occurring here in C. curvatus.  With regards to the carbon spike and 

cell growth, in both cases lactose continues to be depleted and the cell continues to grow 

(Figure 5.2b).  It is interesting to note that there was no large difference in growth in 

cultures which received a nitrogen spike versus those which received no nitrogen spike.  

The lactose was removed from solution at the same rate, and growth under both 

conditions seemed maximized at day eight, or four days after the spike.  Comparing this 

second batch experiment to the first reveals that doubling the amount of carbon source 

did increase the dry weight of the cells (Figure 5.2a), but only by 50%, not the 100% as 

might be expected.  Also, not all the carbon was utilized in the carbon spike; whether a 

toxic byproduct or another limiting reagent in the original medium prevented further 

depletion of the available carbon remains unknown. 

The third flask contained 80 g L-1 lactose, the same amount as the spiked cultures 

of the second batch but all at once at the beginning of the growth.  Although it is 

unknown how the available lactose, growth, and lipid content changed during the six 

days, it was shown that the culture was unable of using up all of the available carbon by 

the presumed end of the batch growth (Figure 5.2b).  High lipid content (Figure 5.2b) was 

still achieved (68%), but cell growth (Figure 5.2a) was similar to growths with half the 

amount of carbon (16.3 g L-1).  It is possible that the cell required an equal ratio of C:N to 

produce a higher dry weight as hoped. 
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3.4. The Capacity of Blue Bunny® Wastewaters 
 to Support Heterotrophic Growth 

 At the end of November 2011, two samples of waste water were provided from 

the Blue Bunny® ice cream plant near St. George, Utah.  As shown in Table 5.2, the 

composition was analyzed for both inorganic and organic material to observe the 

potential of both Waste Mix and Influent Process waste waters for growth of  

Table 5.2. Compositional analysis of Blue Bunny wastewaters.  Underlined values show 
large differences in laboratory media concentrations. 
Element/Compound 
(mg L-1) 

Blue Bunny 
Waste Mix 

Blue Bunny 
Influent Process 

Ag <0.001 <0.001 
Al 2.446 0.092 
As 0.034 0.007 
B 0.986 0.119 
Ba 0.26 0.024 
Be 0.003 <0.001 
Ca 1282.473 35.556 
Cd 0.006 0.001 
Co 0.016 0.001 
Cr 0.117 0.007 
Cu 0.423 0.039 
Fe 20.279 0.481 
K 2100.593 248.329 
Li 0.045 0.018 
Mg 187.832 13.389 
Mn 0.772 0.064 
Mo 0.087 0.004 
Na 747.373 66.704 
Ni 0.133 0.003 
P 1030.245 21.772 
Pb 0.005 0.001 
Sb 0.004 <0.001 
Se 0.169 0.003 
Si 26.899 17.328 
Sn 0.009 <0.001 
Sr 1.655 0.207 
Tl 0.003 <0.001 
V 0.018 0.006 
Zn 5.219 0.16 
Lactose (g L-1) 41.9 0.86 
Total Carb. (g L-1) 109 2.6 
Protein (g L-1) 13.1 0.524 
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heterotrophic oleaginous organisms.  Due to the favorable carbohydrate content of the 

Waste Mix, four flasks were inoculated with C. curvatus, similar to the Delac experiment 

with R. opacus, at the following concentrations (diluted with distilled water): 25%, 50%, 

75%, and 100%.  They were harvested after five days, the typical time for C. curvatus 

growth.  The Influent Process water was considered too carbon-poor to sustain 

heterotrophic growth; however, the ICP analysis seems favorable toward algal growth, 

especially freshwater strains.  Experiments could be designed in the future for such 

potential. 

According to Table 5.3, as the concentration of Waste Mix increased, the yeast 

grew less.  Following centrifugation, the more concentrated cultures seemed to consist 

more of chocolate syrup than white yeast cells.  Mass was lost in the 100% Waste Mix 

culture from adhering to the sides of the culture flask during the five days.  Otherwise, 

dry weight increased as waste mix became more concentrated, which leads one to wonder 

how much of the dry weight was yeast and how much was from the raw Waste Mix.  

FAME content from the culture followed the opposite trend, increasing in FAME content 

as the dilution of waste mix increased.  This demonstrates that yeast are indeed present in 

the culture and are responsible for concentrating the lipid in solution upon harvesting.  

When FAME productivity is considered, it is seen that for every L of raw Waste Mix, a 

25% mix with 75% distilled water will produce 7.8 g biodiesel L-1 day-1, or 39 g L-1. 

Ice cream labels indicate the high fat content of ice cream of any given flavor.  

When diluted to a proper amount, either to create the ideal C:N ratio or else bring other 

elements present in the waste mix below toxicity, yeast appear to be able to consume the 

sugars and the fats in solution.  The question can be posed if fermentation is even 
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Table 5.3.  Results from C. curvatus growth on Blue Bunny Waste Mix at various 
dilutions.  Includes cellular dry weight, FAME content as a percent of the dry weight, 
FAME productivity, and the FAME productivity of the raw wastewater when water 
dilution is accounted for. 

 
Blue Bunny Waste Mix Dilutions 

25% 50% 75% 100% 
Dry Weight (g L-1 ) 14.3 34.2 45.2 36.2 
% FAME 68.5 48.5 40.3 33.3 
FAME productivity (g L-1 day-1) 2.0 3.3 3.6 2.4 
Raw Waste Mix productivity (g FAME L-1 day-1) 7.8 6.6 4.9 2.4 

 

economically worth the effort.  Analysis of raw Blue Bunny Waste Mix revealed 

interesting data.  Upon centrifugation, the Waste Mix separates into three layers: solids 

(47 g L-1), liquids, and a top layer presumed to be fat.  This layer is difficult in the 

centrifuge tubes to separate from the liquid, although in an industrial setting, it is likely 

that scraping off this top layer could be sufficient.  Attempts to lyophilize the top two-

layer mixture for transesterification gave poor results, nevertheless yielded 16% FAME 

content.  The solids, in contrast, contained 26% lipid.  This means that the Waste Mix, 

without fermentation, can produce 12.2 g biodiesel L-1.  Comparing the 25% Waste Mix 

dilution fermentation to raw waste mix, one can see that the yeast adds to the 12.2 g lipid 

L-1 already available by converting the sugars within the mix to produce a total of 39 g   

L-1 biodiesel within the solids layer upon centrifugation. 

3.5. Use of Mixed Hexose and Pentose  
Sugars for Yeast Growth 

Yeast fermentation, as seen above, hold great potential for biodiesel production, 

with high cellular densities, high lipid content, short batch times, and its ability to 

ferment anywhere regardless of sunlight.  The comparison of yeast to algae as a biodiesel 
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feedstock is remarkable.  However, the greatest limitation of yeast fermentation as a 

viable biodiesel feedstock is its need for a carbon source.  Conventional fixed carbon 

sources, such as lactose or sucrose, compete with food stocks and perpetuate the same 

problem as corn ethanol.  Food waste sources are the solution, but there must be a large 

enough consistent/steady stream of waste products to make appreciable amounts of 

biodiesel.  Blue Bunny® Waste Mix and Glanbia® Delac work well but will not replace 

our need for other sources of fuel to replace petroleum. 

Many researchers are working to make hydrolysate products from biomass that is 

otherwise not put to human use, or at least underutilized.  Wood, straw, grasses, other 

forestry waste, agricultural residues, and municipal solid waste are all sources of 

lignocellulose.  Wood, for example, is made of primarily cellulose and hemicellulose, 

with components also of lignin and ash.  Cellulose consists of polymers of glucose with 

β(1,4)-linkages; hemicellulose consists of branched polymers of mixed 5- and 6-carbon 

sugars, particularly xylose and glucose, but also mannose and galactose (Palmqvist and 

Hahn-Hägerdal, 2000).  Thus, hydrolysis of these polysaccharides would make available 

a large quantity of available sugars for fermentation.  However, it has been observed by 

many researchers that inhibitors also prevent cell proliferation due to the presence of 

weak acids from hydrolysis (i.e. acetic, formic, levulinic) (Dunlop, 1948; Ulbricht et al., 

1984; Palmqvist and Hahn-Hägerdal, 2000). 

Protocols are being developed to hydrolyze lignocellulosic biomass for the 

production of biofuels, but the next challenge still exists to find, or modify, an organism 

capable of utilizing not just the common hexoses but pentoses as well.  The following 

study demonstrated the ability of C. curvatus to grow on xylose comparative to lactose, 
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Table 5.4. Results of C. curvatus growth on combinations of lactose and xylose.   
Includes cellular dry weight, percent of the dry weight found converted to FAME, and the 
amount of sugar remaining in the medium after growth. 

 Lactose 
3:1 

Lactose:Xylose 
1:1 

Lactose:Xylose Xylose 
Dry weight (g L-1) 12.7 10.8 11.3 10.4 
% FAME 68.0 61.6 62.1 71.5 
FAME (g L-1) 8.6 6.7 7.0 7.4 
Total Unused sugar (g L-1) 1.77 1.24 0.99 2.19 

 

and also its ability to utilize a combination of the sugars in fatty acid synthesis. 

Using Angerbauer media and varying the sugar source, cultures containing 40 g 

L-1 xylose, 20 g L-1 xylose and 20 g L-1 lactose, and 10 g L-1 xylose and 30 g L-1 lactose 

were inoculated with C. curvatus, with an additional flask with 40 g L-1 lactose run as a 

control, for a 5-day batch growth.  Routine analyses provided the data as shown in Table 

5.4 above. 

Growth on xylose alone saw an 18% decrease compared to the lactose control 

(Table 5.4).  Both cultures with mixtures of lactose and xylose had growth between that 

of either pure sugar source.  Lipid content of all cells grown showed similar results, 

demonstrating that the carbon source did not disrupt the lipid synthesis pathway.  

Although there was a slight decrease in lipid content in cells grown with both lactose and 

xylose, any effect of growing cells on the carbon-source mixture is difficult to 

confidently state, given the lack of statistical analysis. 

A combination of glucose and xylose seems more biologically relevant to 

hemicellulose hydrolysate products than does lactose and glucose.  A recent estimate of 

corn stalk states that ideal hydrolysis would yield glucose and xylose at a ratio of 2:1 

(Zhao et al., 2008).   Given this information, the above experiment was repeated by 

substituting glucose for lactose, and testing the more biologically relevant glucose:xylose 
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Table 5.5. Results of C. curvatus growth on combinations of glucose and xylose.  
Includes cellular dry weight, percent of the dry weight found converted to FAME, and the 
amount of sugar remaining in the medium after growth. 

 Glucose 
2:1 

Glucose:Xylose 
1:1 

Glucose:Xylose Xylose 
Dry Weight (g L-1) 13.5 12.9 12.7 12 
% FAME 71.43 67.57 69.84 67.76 
FAME (g L-1) 9.64 8.72 8.87 8.13 
Total Unused Sugar (g L-1) 1.44 1.50 1.55 1.82 

 

ratios of 2:1 and 1:1, in addition to the pure glucose and pure xylose sugar concentrations 

for comparison.  The results are shown in Table 5.5. 

Dry weight of cells was reported highest in glucose growths, with decreasing 

cellular densities as the xylose content increases, up to an 11% decrease.  This is a small 

difference in growth capacity.  Lipid contents of samples were within reasonable 

experimental error of each other, leading to the conclusion that lipid production occurs 

evenly independent of the two sugar sources.  Considering the starting sugar 

concentration was 40 g L-1, the concentration of remaining sugar in the media following 

growth was almost total, with xylose growths leaving the highest of the 4.  The greatest 

amount of lipid was produced in the glucose media; however the glucose/xylose mixtures 

also gave acceptable yields. 

3.6. Use of Wheat Straw Hydrolysate as  
a Sugar Source for C. curvatus Growth 

 As stated above, lignocellulosic biomass represents a large amount of 

underutilized sugars that could potentially be used for the production of energy-dense 

fuels such as FAME in oleaginous organisms.  Protocols are being developed for the 

hydrolysis of the cellulose and hemicellulose sugar polymers.  However, the hydrolysis 

of hemicellulose and lignin produces toxic byproducts such as acetic acid, furfural, 



 119
formic acid, levullinic acid, and phenolic compounds that inhibit microorganism 

growth (Palmqvist and Hahn-Hägerdal, 2000).  Yu et al. (2011) demonstrated the growth 

of several oleaginous strains on wheat straw hydrolysate, both detoxified and non-

detoxified forms, among which was C. curvatus.  To verify these results within our own 

laboratory, attempts to repeat the experiment of non-detoxified and detoxified wheat 

straw hydrolysate as sugar sources within C. curvatus were performed. 

 A total carbohydrate analysis showed similar yield to that published by Yu et al. 

(2011).  Non-detoxified hydrolysate contained slightly higher sugar content, with an 

estimated 27 g L-1 sugar content.  Detoxified hydrolysate contained about 26 g L-1 sugar.  

Table 5.6 shows the growth results from both hydrolysates from with and without 

nitrogen supplementation. 

 As seen below, the dry weight was found to be similar but slightly higher in non-

detoxified and detoxified forms of hydrolysate when external nitrogen was added.  

However, sufficient growth was also observed without the addition of nitrogen, with 8.9 

g L-1 dry weight in detoxified hydrolysate and 8.2 g L-1 in non-detoxified hydrolysate.   

Cellular FAME content greatly increased in cultures without supplemental nitrogen, from 

24% to 37% in detoxified hydrolysate and 25% to 35% in non-detoxified cultures.  Total 

Table 5.6. Results from growth of C. curvatus on wheat straw hydrolysates.  Dry weight 
is given in g L-1, percent FAME as a percent of dry weight, and FAME amount and 
productivity rate reported from dry weight, percent FAME, and/or days of batch growth. 
  DTHa+Nb DTHa NDTHc+Nb NDTHc 

Dry weight (g L-1) 9.4 8.9 9.2 8.2 
% FAME 24.5 37.3 24.8 34.8 
FAME (g L-1) 2.30 3.32 2.28 2.86 
FAME Productivity (g L-1 day -1) 0.46 0.66 0.46 0.57 
aDetoxified Hydrolysate 
bSupplemented with 0.5 g L-1 ammonium sulfate 
cNon-detoxified Hydrolysate 
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FAME content of the culture and productivity rates show that FAME production is 

highest in cultures without adding nitrogen, and are slightly higher in detoxified cultures.  

Non-detoxified hydrolysate is still a viable culture medium if economic production costs 

are more favorable to cut out the detoxification steps. 

4. Conclusions 

 Heterotrophic growth of oleaginous organisms is a promising method of biofuel 

production.  Lipid productivities are magnitudes of order higher than that tested in 

phototrophic organisms (7.8 g L-1 day-1 in yeast compared to 0.07 g L-1 day-1 in algae).  

Nutrient uptake kinetics and lipid production was monitored in the bacterial organism R. 

opacus and C. curvatus.  It appears that in C. curvatus, dry weight increases throughout 

the batch until the carbon source is exhausted, and that adding more carbon at the end of 

the growth can increase cell density to some extent.  Also, the lipid content of the cell 

rapidly increases once the nitrogen has been depleted from the cell.  Spiking the culture 

with nitrogen and carbon near the end of a growth does not seem to effect growth or lipid 

production. 

These organisms are especially useful for biofuel production where a stream of 

waste carbon is available.  Whey permeate from Glanbia Foods, ice cream waste from 

Blue Bunny®, and lignocellulosic biomass hydrolysate were investigated as sources of 

waste nutrients for oleaginous biomass growth. 

Both R. opacus and C. curvatus were shown to grow on whey permeate, termed 

“Delac,” which contains over 170 g L-1 lactose.  In R. opacus, growth was best achieved 

when Delac was diluted with three times its volume of water, at 25% of its original 
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concentration.  Dry weight reached 5.4 g L-1 with 16% lipid content and 19% ash.  C. 

curvatus showed much more promise as a strain capable of growing on this sugar-rich 

medium, reaching 16 g L-1 dry weight and 35% lipid content.  Both organisms required 

addition of a nitrogen source for growth. 

Blue Bunny waste mix solids were isolated and found to contain 12.2 g L-1 FAME 

prior to inoculation of any microorganism.  However, diluting the sample to various 

amounts revealed the ability of C. curvatus to increase the FAME concentration by using 

the available sugars (109 g L-1 in the raw mixture) and converting them to lipid.  When 

the waste mix was diluted to 25% its original concentration, FAME concentration 

reached 39 g per liter of raw waste mix, or 7.8 g FAME per raw liter per day.   It was 

determined that Blue Bunny® waste mix is an excellent substrate for C. curvatus in the 

production of biofuels, requiring only addition of a nitrogen source. 

 Biologically relevant mixtures of glucose and xylose as found in various 

lignocellulosic biomass were tested as possible sugar sources in the yeast C. curvatus.  It 

was determined that growth could be achieved on either sugar source alone, or mixtures 

of the two.  Although growth was slightly lower (11% decrease) on xylose medium 

compared to glucose medium, differences were small and cellular FAME content seemed 

unchanged.  It was determined that both sugar sources were acceptable sources of sugar 

in C. curvatus growth. 

 Finally, wheat straw was hydrolyzed according to previously determined 

protocols and tested for capacity to support growth of C. curvatus.  This process produces 

a culture that was found to contain 25-29 g L-1 sugar for heterotrophic growth.  It was 

shown that this process can produce a cellular dry weight of 8.9 g L-1 with 37% FAME in 
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cultures using detoxified hydrolysate, and 8.2 g L-1 dry weight with 35% FAME in 

cultures using non-detoxified hydrolysate.  Lipid productivities were seen highest in 

detoxified hydrolysate at 0.66 g L-1 day-1. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 
 Driven by a need for alternative, sustainable fuel sources without placing 

additional burdens on the already taxed freshwater resources, various wastewaters have 

been investigated as a source of growth media in the production of biofuel from 

oleaginous organisms. 

 Produced water is one such wastewater of extreme abundance (an estimated 20 

billion barrels per year in the U.S.) currently being disposed of at great cost (Clark and 

Veil, 2009).  With some preliminary efforts to remove hydrocarbons, several strains of 

microalgae were shown to successfully grow with addition of nitrate and phosphate 

nutrients.  Among these strains are two that consistently reach higher biomass and lipid 

productivities than other strains tested: Chaetoceros gracillis, a brown diatom; and 

USU080, a green Chlorella species isolated from the Great Salt Lake.  USU080 was 

shown to successfully grow in a scaled-up experimental 220-L raceway.  Nutrient 

addition was optimized within C. gracilis.  While phosphate addition did improve growth 

and lipid content, it was not found necessary if production costs were desired to be 

maintained low.  Nitrate addition was optimized during several experiments, finally 

showing that supplementation with 300 mg L-1 was ideal for lipid productivity. 

 Remediation was also explored as a means to improve marketability of produced 

water as a growth medium, since microalgae have been used as decades for wastewater 

treatment.  Concentrations of contaminants were observed before and after algal growth, 

and after extensive analysis several conclusions were made.  Water quality standards vary 
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greatly across the country, and so it becomes difficult to standardize a single biofuels 

process to utilize the nutrients from produced water and end up with a water source that 

can then be disposed of as any wastewater.  Microalgae are successful at removing 

nutrients like phosphate and nitrate, as well as magnesium, iron, and calcium.  However, 

the high salinity of produced water brings the Total Dissolved Solids (TDS) orders of 

magnitude higher than permitted at any location in the state of Utah, and microalgae have 

no promise to uptake large amounts of salt.  The salinity alone makes it difficult to 

advertise remediation efforts at all within the wastewater biofuels project. 

 Aside from produced water, two other wastewaters, namely municipal wastewater 

from a nearby treatment facility and environmental brackish water taken near a fresh-

water inlet of the Great Salt Lake were tested for its capacity to serve as growth media for 

microalgal growth in the production of biodiesel.  These three wastewaters were tested 

for their capacity to grow both C. gracilis and USU080 species and produce lipids as 

compared to two laboratory-based media recipes.  It was shown that all three wastewaters 

had comparable growth to that of the media recipes, with similar or vastly higher lipid 

productivities in wastewaters.  To demonstrate the economic impact of using a 

wastewater to replace the purchased chemicals of laboratory medias, the chemical cost of 

each water source and media was determined.  It was found that using a laboratory media 

can cost up to 24 times the cost of a wastewater, with comparable or better growth and 

lipid productivities. 

 Additional efforts to increase the efficiency of the algae to biodiesel project were 

also made.  Phycocyanobilin was initially explored as a high value added product of 

cyanobacterial growth.  Brown algae strains were tested for their capacity to serve as pet 
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food.  Attempts to understand the relationship between silicate and sodium 

concentrations in diatoms were made to better identify the trigger of extreme cellular 

lipid accumulation.  Initial efforts were unsuccessful, although it was found that adding 

salt to municipal wastewater can induce the cell to store over 65% of its dry weight as 

lipid.  Other wastewaters were investigated for their ability to support algal growth.  

Whey permeate was determined unsuitable for algal growth; however, potato processing 

wastewaters obtained from Simplot Foods showed great promise to support growth of 

USU080 and Neochloris oleoabundans strains. 

 Non-phototrophic organisms also hold great potential to serve as sources of 

biological oils that can be used as biodiesel.  Heterotrophs such as yeast and bacteria have 

many advantages as feedstocks for biodiesel that currently limit microalgae, such as high 

cellular densities, known genomes, faster growth rates, and no land- or light-limitations.  

These organisms do require fixed carbon sources to grow, and therefore it becomes 

necessary to utilize streams of waste carbon in the production process.  Nutrient uptake 

and cellular composition was observed throughout the batch lives of bacterial strain 

Rhodococcus opacus PD630 and yeast strain Cryptococcus curvatus.  In the yeast strain, 

it was found that dry weight increases until the carbon source depletes from solution, and 

lipid accumulation seems to increase as soon as nitrogen is taken up from the cells.  

Whey permeate, a wastewater resource from dairy manufacturing with high lactose 

concentrations, was found to grow C. curvatus well with only addition of ammonium 

sulfate; R. opacus grew somewhat only when the wastewater was diluted to 25% 

strength.  Blue Bunny® Waste Mix, a wastewater resource from an ice cream plant 

containing many sugars and fats, was also found to support growth of C. curvatus, with 
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up to 7.8 g biodiesel being formed from every liter of waste mix per day when the 

waste mix is diluted to 25% strength.  C. curvatus was able to grow on mixtures of 

glucose and xylose, the two major components of lignocellulosic biomass.  It was also 

shown to grow on wheat straw hydrolysate without the addition of an external nitrogen 

source.  Heterotrophs, particularly the yeast organism C. curvatus, hold great promise as 

a feedstock for biodiesel when sources of waste carbon are considered. 

 Phototrophic microalgae and heterotrophic bacteria and yeast all hold the capacity 

to utilize wastewaters for the production of biodiesel.  Because of limitations on 

freshwater resources, it will be necessary to incorporate technologies and biological strain 

selection that include the replacement of wastewater for freshwater for large-scale 

production of biodiesel.  The vast technological development of over a century is taking 

the idea of Rudolph Diesel’s peanut oil diesel engine in 1900 to the potential of powering 

thousands of vehicles with a sustainable biological fuel from wastewater.  Diesel’s 

prophetic statement is becoming a reality: “motor-power can still be produced from the 

heat of the sun…even when all our natural stores of solid and liquid fuels are exhausted” 

(Nitske & Wilson, 1965). 
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Protocol for Total Carbohydrate Determination (Phenol Sulfuric Acid Method) 
Valerie Godfrey December 2011 
 
Prepare solutions: 

1. 5% Phenol: 5 g phenol in 100 mL distilled water. 
2. Standard Glucose (1 g/L): 100 mg glucose in 100 mL water. 
3. Working Standard Glucose (100 mg/L): 10 mL of standard glucose solution 

diluted to 100 mL. 
 
For dry biomass, the following presteps are necessary: 

a. Weigh out 100 mg biomass in a test tube. 
b. Add 5 mL of 3 M HCl. 
c. Place test tube(s) in a boiling water bath for 3 hours.  Stir occasionally. 
d. (I find it most helpful to empty contents into clean 200-250 mL beaker for this 

step:)  Neutralize solution by adding sodium carbonate until effervescence stops. 
e. Fill volume to 100 mL. 
f. Remove 3-5 mL into a clean test tube and centrifuge for 2 minutes. 

 
For all samples (liquid or pre-treated and now suspended dry material): 

1. Prepare standard solutions: 
a. Pipette 0.2, 0.4, 0.6, 0.8, and 1.0 mL working glucose stock into separate 

test tubes.  Fill to 1 mL. 
2. Pipette 0.1 mL sample solution into new test tube.  Fill to 1 mL.  (Note: some 

samples will need to be diluted to varying degrees so as to fit within standard 
curve) 

3. Set a blank with 1 mL water. 
4. Add 1 mL 5% phenol solution to each tube. 
5. In the fume hood and with gloves/goggles/coat, add 5 mL 96% sulfuric acid to 

each tube.  (I find that the 5 mL pipette works well, or the serological 10 mL 
pipette.  Addition should be rapid and directly into solution.)  Tubes will be hot to 
touch.  Use only tube rack, not Styrofoam holder. 

6. Vortex carefully (use appropriate vortex speed for test tube). 
7. After 30 minutes, read absorbance at 490 nm. 
8. Calculate the amount of carbohydrate using the standard curve. 

 
 
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. Colorimetric method 
for determination of sugars and related substances, 1956.  Anal. Chem., 28, 350-356. 
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Protocol for Total Protein Determination (Lowry Method) 
Valerie Godfrey December 2011 
 
Prepare solutions: 

1. CTC (copper-tartrate-carbonate): 100 mg cupric sulfate and 200 mg sodium 
tartrate dissolved in 50 mL distilled water.  Dissolve 10 g sodium carbonate in 50 
mL distilled water.  Slowly mix the two solutions together.  Stable for 2 months at 
room temperature. 

2. 10% SDS (sodium dodecyl sulfate):   10 g in 100 mL distilled water. 
3. 0.8 M NaOH: 8 g in 250 mL distilled water. 
4. 0.15% DOC (deoxycholate): 150 mg in 100 mL distilled water. 
5. 20% TCA (trichloroacetic acid): 10 mg in 50 mL distilled water.  
6. Reagent A: Mix equal volumes of stock CTC, NaOH, SDS, and distilled water 

(25 mL each works well for many samples at a time).  Keeps for 2 weeks at room 
temperature.  Solution may form white-light blue crystals which will dissolve in 
mild heat or is also fine to use if mixed thoroughly before using. 

7. Reagent B: One volume Folin-Ciocalteu phenol reagent (2 N) mixed with 5 
volumes distilled water.  Stable at room temperature in amber storage bottle. 

8. BSA (bovine serum albumin): Stored in main lab freezer as 10 mg/mL 
microcentrifuge tube stocks.  Completely thaw one stock and pipette out 50 µL 
into a new 1.5 mL microcentrifuge tube .  Dilute to 1 mL with distilled water (0.5 
mg/mL).  Prepare a working stock by removing 600 µL into a test tube and 
diluting to 3 mL (0.1 mg/mL). 

 
Procedure: 

a. Weigh out 50 mg biomass in a 150 mL Erlenmeyer flask (works well in batches 
of 6 samples). 

b. Add 100 mL of distilled water. 
c. Sonicate each solution for 10 seconds until chunks of biomass are dissolved (up to 

30 seconds total, algae biomass takes longer than yeast). 
d. Remove 10 mL biomass solution into xxx centrifuge tubes.  (If samples are 

already in solution, remove sufficient volume to contain 1-50 mg protein) 
e. Add 1 mL 0.15% DOC solution.  Mix and wait 10 minutes (cutting this time 

down seems to lead to poor cell pellet formation). 
f. Add 1 mL 20% TCA solution and mix.  Protein will immediately begin to 

precipitate. 
g. Tare bottles for centrifugation using distilled water.  Using the SS-34 rotor, spin 

for at least 30 minutes at 20,000 g.  (I prefer using the old Sorvall centrifuge 
because it takes much longer to slow down and disturbs the cell pellet less; also, 
less people like to use it and when I’m running multiple batches I can generally 
keep the rotor between cycles.) 

h. Take a beaker for waste (100 mL plastic beaker sufficient) to the centrifuge room.  
Immediately decant solution from pellet.  If protein pellet dislodges into solution, 
re-centrifuge.  (It is typical to see translucent “floaties” in supernatant, this is 
okay).  Wipe away any drops of supernatant from inverted tube with a Kimwipe. 
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i. To protein pellet in centrifuge bottles, add 1 mL Reagent A to dissolve 

protein.  Stir with a metal spatula to aid if necessary. 
j. Add 10 mL distilled water. 
k. Remove 0.2 mL dissolved protein solution to a clean test tube.  Fill to 1 mL.  
l. Prepare BSA standards (best done during centrifugation process): Remove 50, 

100, 250, 500, 750, and 1000 µL working BSA stock (0.1 mg/mL) into six clean 
test tubes and fill each to 1 mL.  

m. Prepare blank solution of 1 mL distilled water in clean test tube. 
n. To all samples, standards, and blank, add 1 mL Reagent A.  Mix and wait 10 

minutes. 
o. Add 0.5 mL Reagent B.  Mix. 
p. After 30 minutes (before 90 minutes), read absorbance at 750 nm.  Color loss is  

1-2% per hour following. 
q. Calculate protein content using standard curve. 

 
 
O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall. J. Biol. Chem,  193  (1951), 
pp. 265–275. 
 
Peterson, G.L., 1977. A simplification of the protein assay method of Lowry et al. which 
is more generally applicable. Anal. Biochem. 83, 346-356. 
 
Chemical Principle: 
TCA is known to precipitate all proteins in solution (the acid disrupts the surface charges 
of the protein folding which causes proteins to aggregate and precipitate from solution).  
Deoxycholate aids this process lysing the cell membrane and recovering membrane 
proteins as well.  Complete resolubilization of the protein pellet free of other interfering 
substances (i.e. lipids) is necessary for accurate reading.  Interfering substances will 
cause a lower protein yield.  The phosphomolybdic tungstic mixed acid in the phenol 
reagent reacts with mainly tyrosine residues to cause a blue color with an absorbance 
maximum at 750 nm. 
 
Note: Some algae papers hydrolyze biomass in 1 M NaOH for up to 24 hours before TCA 
precipitation.  It has been cited that such conditions causes oxidation of lipids which react 
with the Lowry assay. 
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Process for preparation of wheat straw hydrolysate (Yu et al., 2011). 
Valerie Godfrey February 2012 
 

1. Wash straw and dry completely 
2. Blend straw to powder 
3. Acid pre-treatment: Using 20mL H2SO4 per L distilled water (2% v/v), stir in 100 

g milled straw per L dilute acid 
4. Autoclave (121°C for 60 min.) 
5. Centrifuge 
6. Vacuum filter (store at 4°C until further use) 
7. Using NaOH, bring the pH up to 5.5 
8. Add micronutrients of following concentrations, readjusting pH to 5.5 as needed: 

a. 0.4 g L-1 MgSO4•7H2O 
b. 2 g L-1 KH2PO4 
c. 3.51 mg L-1 MnCl2•4H2O 
d. 0.1 mg L-1 CuSO4•5H2O 
e. 1.5 g L-1 yeast extract 

9. Filter through a 0.22 µm membrane 
 
Additional detoxification steps 

1. Wash straw and dry completely 
2. Blend straw to powder 
3. Stir in 100 g milled straw to 1 L dilute sulfuric acid (20 mL H2SO4 in 1 L). 
4. Autoclave (121°C for 60 min.) 
5. Centrifuge 
6. Vacuum filter (store at 4°C until further use) 
7. Heat to 42°C while stirring 
8. Add NaOH until pH reached 10.0.  Maintain temperature at 50°C on a heated stir 

plate for 30 minutes. 
9. Reacidify with sulfuric acid to pH 5.5 
10. Add micronutrients listed in step 8 above, readjusting pH as needed. 
11. Filter through a 0.22 µm membrane 

 
 
Yu, X., Zheng, Y., Dorgan, K.M., Chen, S., 2011. Oil production by oleaginous yeasts 

using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. 
Bioresour. Technol. 102, 6134-6140. 
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