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ABSTRACT

Homogenization of Large-Scale Movement Models in Ecology

with Application to the Spread of Chronic

Wasting Disease in Mule Deer

by

Martha J. Garlick, Doctor of Philosophy

Utah State University, 2012

Co-Major Professors: Dr. James A. Powell and Dr. Mevin B. Hooten
Department: Mathematics and Statistics

A difficulty in using diffusion models to predict large-scale animal population dispersal

is that individuals move differently based on local information (as opposed to gradients) in

differing habitat types. This can be accommodated by using ecological diffusion. However,

real environments are often spatially complex, limiting application of a direct approach. Ho-

mogenization for partial differential equations has long been applied to Fickian diffusion (in

which average individual movement is organized along gradients of habitat and population

density). In this work, we derive a homogenization procedure for ecological diffusion, which

allows us to determine the impact of small-scale (10-100 m) habitat variability on large-scale

(10-100 km) movement, and apply it to models for chronic wasting disease (CWD) in mule

deer.

CWD is an infectious prion disease that affects members of the Cervidae family. It is

a slow-developing, fatal disease, which is rare in the free-ranging deer population of Utah.

We first present a simple spatial disease model to illustrate our homogenization procedure

and the use of ecological diffusion as a way to connect animal movement with disease
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spread. Then we develop a more disease-specific sex-structured model for the spread of

CWD, incorporating both horizontal and environmental transmission pathways. We apply

our homogenization technique to greatly reduce the computational load for a simulation of

disease spread from the La Sal Mountains to the Abajo Mountains of Southeast Utah. We

use the averaged coefficients from the homogenized model to explore asymptotic invasion

speed and critical population size for portions of our study area. Lastly, we describe the

estimation of motilities for the disease-specific model from GPS location data, using a

continuous-time correlated random walk model.

(127 pages)



v

PUBLIC ABSTRACT

Homogenization of Large-Scale Movement Models in Ecology with Application to the
Spread of Chronic Wasting Disease in Mule Deer

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE)
that affects deer, elk, and moose. TSEs are prion diseases which include mad cow disease
and scrapie in sheep and goats. The disease agent is a misshapen protein called a prion,
which causes lesions in the brain, and to date, there is no cure. CWD is a slow-developing,
fatal disease, which is rare in the free-ranging mule deer population of Utah. Infected deer
shed prions into the environment through saliva, feces, and decaying carcasses. These prions
remain infective in soils for many years and healthy deer may contract CWD by ingesting
them while grazing, as well as through direct contact with infected deer. CWD positive
deer shed prions into the environment for as long as two years before they appear visibly
sick. This complicates detection and control of this potentially devastating disease.

Mathematical modeling is one of the tools used in analyzing how wildlife diseases spread
across the landscape. Historically, diffusion models with constant coefficients have been used
to predict spread. They are limited, however, in their ability to connect disease spread to
how animals move across differing habitats. Individuals make movement decisions based
on local information, i.e. they move quickly through areas that do not provide needed
resources and linger in areas that do. Ecological diffusion is a form of spatially varying
diffusion that accommodates this through a motility coefficient. In this work we develop
two disease models with ecological diffusion: a simple, general disease model and a sex-
specific CWD model. We use GPS location data gathered from collared mule deer in the
La Sal mountains of Utah (2005-2006) to estimate the motility (a measure of how animals
move) for each land cover type in Southeast Utah to use in our models.

Real environments are often spatially complex, limiting application of a direct ap-
proach to modeling with ecological diffusion. Here we derive a homogenization procedure
for ecological diffusion, which allows us to determine the impact of small-scale (10-100 m)
habitat variability on large-scale movement (10-100 km). Our homogenized models take
1/10000 the computational time to solve than small scale ecological diffusion models. Also
the average coefficients in the homogenized equations can be used in analysis of speed of
disease spread and critical population size necessary for the speed of spread to be zero.
This work is important from a disease management point of view. Possible applications
are identification of barriers or corridors for disease spread and estimation of population
size needed to control spread from disease hotspots. These methods may also be applied to
other dispersal problems, such as invasive species, insect invasions, and escaped genetically
modified organisms.

Martha J. Garlick
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CHAPTER 1

INTRODUCTION

Application of diffusion models to biological problems has a long history. Fisher pi-

oneered their use in genetics [20], while Turing developed their use in modeling pattern

formation [66, 94, 99]. Skellam combined the diffusive dispersal of organisms with pop-

ulation dynamics via reaction-diffusion equations of the form ∂u
∂t = D∇2u + f(u), where

D is the rate of random movement (diffusion) of organisms across the landscape and the

function, f(u), describes the population density at a particular time and place [90]. Models

of this type assume diffusion of organisms over a homogeneous landscape [108], and have

been used to explore critical patch size [46] and biological invasions [2, 28, 90]. Patlak added

biological realism by deriving the diffusion approximation for correlated and biased random

walks [76] . Turchin and Thoeny facilitated the use of diffusion models in ecology with their

work in analyzing data from mark-recapture experiments [98].

Because diffusion is based on a random walk, it has been considered only applicable to

organisms with simple movement patterns [73]. However, when applied at a large enough

scale, it has been useful in modeling more complex behavior such as coyote home range

use [65]. Diffusion models with constant coefficients were first applied to epidemiology by

Kendall [45] and have been used to study the spread of wildlife diseases for many years,

such as rabies in fox [42, 67], foot and mouth disease in feral pigs [77], and conjunctivitis

in house finches [34].

Realistically, landscapes are heterogeneous, requiring a connection between habitat

type and animal movement [43]. The relationship between small-scale movement through

heterogenous landscapes and large-scale dispersal of organisms is key to understanding the

spatial spread of wildlife diseases [34]. In fact, environments can act as the principal or-

ganizers for spatial processes [5, 35, 82]. The effect of heterogeneous landscapes on the

dispersal of populations and the spread of diseases has been studied in the movement of

hispid cotton rats [9], the abundance of scarab beetles [3], and the spread of feline leukemia
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virus [21]. Cantrell and Cosner examined the effect of fragmented landscapes on dispersal

[10], and Ovaskainen and Cornell explored the need for diffusion processes to be discontin-

uous at habitat boundaries [75], necessitating the need to classify landscapes in order to

determine habitat-specific diffusion coefficients [73]. Other approaches to connect landscape

with spatial spread include circuit theory [55] and explicit network models [8].

In order for the dispersal of organisms to reflect heterogeneous landscapes, variable

diffusion rates are needed [43]. Two types of diffusion with variable coefficients are Fickian

diffusion and ecological diffusion [97]. Fickian diffusion, of the form ∂u
∂t = ∇[D∇u], where D

is the spatially varying diffusion coefficient, is derived from Fick’s Law [51], which says flux

is proportional to the gradient. It is used to model the distribution of organisms when they

move from high densities to low densities at a rate proportional to the density gradient [29].

Fickian diffusion eventually distributes organisms evenly across the landscape regardless of

habitat type, when a zero density gradient has been reached [97]. It has been widely used

in ecological models [21, 47, 50].

Although Fickian diffusion may be appropriate in the case of simple organisms, most

animals do not diffuse like particles in heterogeneous environments [70]. Rather they are

much more likely to aggregate in habitats that provide needed resources and avoid or move

quickly through areas that are inhospitable. Ecological diffusion, represented by ∂u
∂t =

∇2[µu], accommodates this variation in motility and is appropriate when organisms make

local decisions regarding movement. The motility parameter, µ, represents the rate at

which organisms choose to leave a habitat patch, irrespective of density gradients [97]. Thus

ecological diffusion gives an eventual distribution of animals which is inversely proportional

to the motility and allows for distinct population differences at habitat boundaries. A

derivation of the ecological diffusion equation from a random walk is included in Turchin

[97].

Even though diffusion equations with variable coefficients are recognized as necessary

to reflect the heterogeneity of landscapes [70], they can be daunting to implement, espe-

cially at large spatial scales. This is chiefly due to the added mathematical complication
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and lack of data to derive motility coefficients for each landscape type in an area of interest.

Dobzhansky et al. [16] were the first to attempt to incorporate spatial heterogeneity into

an ecological diffusion model. They divided a study area for the movement of fruit flies

(Drosophila pseudoobscura) into cells, classified into six habitat types, and estimated a dif-

fusion coefficient for each type. The limited computing capacity of the time kept them from

obtaining reliable parameter estimates [73]. Today, increased computing power and homog-

enization techniques can help deal with the mathematical complication of using variable

coefficients and advances in telemetry have enhanced data collection [72].

Homogenization of partial differential equations (PDEs) is a technique for facilely ac-

commodating small-scale variability in diffusion coefficients for large-scale simulation [15].

It has been applied to Fickian diffusion models in engineering applications, such as heat

transfer in composite materials, for decades. In ecology such techniques have been used to

model seed dispersal [80], the spread of biofilms [14], the spread of feline leukemia [21], and

the relationship between dispersal ability and habitat fragmentation [15]. Homogenization

uses the method of multiple scales [30] to approximate PDEs with rapidly-varying coeffi-

cients with similar PDEs with averaged coefficients. One advantage of this technique is that

the ‘homogenized’ PDE is framed on large spatial and temporal scales, while preserving the

influence of the small scale variability in the averages. In this work we derive a homogeniza-

tion procedure for ecological diffusion and apply it to the spread of chronic wasting disease

(CWD) in mule deer.

CWD is a contagious transmissible spongiform encephalopathy (TSE) in North Amer-

ican cervids, namely mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus vir-

ginianus), elk (Cervus elaphus), and moose (Alces alces shirasi) [4]. Like all other TSEs,

a misfolded cellular prion protein is believed to be the disease agent [89]. However, CWD

has the distinction of being the only TSE known to affect free-ranging species [106]. It is

a slow-developing, always fatal disease; infected mule deer may live 12-24 months before

showing outward signs of infection. Clinical symptoms include weight loss, excessive sali-

vation, and behavioral changes, such as hyperexcitability, lack of awareness, and repetitive
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walking [105].

CWD transmission has been established from empirical studies as being horizontal

[12]. The disease may be contracted by direct contact with infected deer [61], potentially

through saliva [52], as well as indirectly through contact with contaminated environments

[37]. Prions shed into the environment through the feces, saliva, and decaying carcasses of

infected deer may remain infective for many years [25, 62, 85, 102].

Data from captive mule deer studies indicate equal susceptibility of males and females

to infection [62, 107]. However, observed CWD prevalence in free-ranging deer is 2-4 times

higher in breeding-age males than in younger males or females [18, 57, 63]. This may be due

to deer social structure and breeding behaviors [57]. Female deer form matrilinear groups

that show strong fidelity to winter and summer ranges. Male deer wander more, especially

during breeding season [53]. Mature male deer practice polygyny, covering a wide area

searching for receptive females and testing them for receptiveness through extensive licking

[24, 69]. Males also interact with each other in competition for females [49].

CWD was first discovered in Utah in 2002. There are three distinct areas where the

disease has since been found, near Vernal, the La Sal mountains near Moab, and near

Fountain Green. To date, there have been 54 mule deer and one elk that have tested

positive. The highest prevalence rate is two percent in the buck population in the La Sal

Mountains, where 38 of the 54 cases have been found [100].

Mathematical models are critical tools in assessing the impact of CWD on deer popu-

lations and analyzing different management strategies [86]. Existing mathematical models

for CWD include discrete-time deterministic models [63], individual-based models [26], dif-

ference equation models [36], and SI epidemic models [58, 87, 104]. Models that incorporate

the spatial aspect of disease spread have been statistical for the most part [13, 18, 41]. Sta-

tistical approaches require a large body of data, which is not available in areas where the

disease is in its initial stages, such as Utah. A deterministic, process-based model does not

need the same amount of data to be useful.

We present two spatial models for the spread of CWD in mule deer, using ecological
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diffusion. The first model is a simple SI model with diffusion, which does not include envi-

ronmental transmission. The main purpose of this model is to illustrate our homogenization

technique and the connection between animal movement over heterogeneous landscapes and

disease spread, using spatially varying motility coefficients. We simulate the spread of CWD

in a small area of Utah including the La Sal Mountains where the disease was first detected

and discuss the use of the coefficients from the homogenized model to analyze critical pop-

ulation size (i.e. the population size at which the speed of the wavefront of disease spread

is zero) [23].

The second model is a disease-specific sex-structured model, incorporating both hori-

zontal and environmental transmission pathways. Male and female deer are modeled sep-

arately to reflect distinct behavioral differences that may impact the spread of CWD. The

motility coefficients for this model vary spatially and temporally (by season of the year),

as well as by sex. Although this model is a system of partial differential equations, our

homogenization procedure still applies. We use the homogenized system to simulate the

spread of CWD from the La Sal Mountains to the Abajo Mountains (100 kilometers to the

southwest). The parameters from the homogenized model can be used to analyze asymp-

totic invasive speed of spread from areas of interest, which can be important to disease

management.

Motilities for the disease-specific model are estimated using landscape data and GPS

movement data, collected at irregular time intervals. Traditional methods of determining

motilities involve approximating mean-squared displacement over time by connecting data

points with straight lines [44]. This means dividing or combining moves when data are col-

lected at irregular time intervals, [96], which can obscure the underlying movement process

[95]. To address this, we employ the methods of Johnson et al. [38, 39], which consider

animal movement to be a continuous process regardless of how it is sampled.
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CHAPTER 2

HOMOGENIZATION OF LARGE-SCALE MOVEMENT MODELS IN ECOLOGY 1

2.1 Introduction

Diffusion models have been applied to biological problems for many years. Fisher [20]

pioneered their use in genetics, while Turing [99], Swindale [94], and Murray [66] are among

many to use them to model pattern formation. Skellam [90] greatly impacted mathematical

modeling in ecology by combining the diffusive dispersal of organisms with population

dynamics via reaction-diffusion equations of the form ∂u
∂t = D∇2u+f(u). Here D is the rate

of random movement (diffusion) of organisms across the landscape and f(u) is a function

describing the population density at a particular time and place. This type of equation has

been used to study critical patch size [46], biological invasions [2], and disease spread [42].

These models assume diffusion of organisms occurs over a homogeneous landscape [108].

Realistically, landscapes are heterogeneous, requiring diffusion rates to vary with habi-

tat type [43]. Fickian diffusion, of the form ∂u
∂t = ∇[D(x1, x2)∇u], models the distribution

of organisms along habitat quality or population density gradients [29]. It is derived from

Fick’s Law, which states that the amount of substance that moves through a cross section

of the domain at time t is proportional to its density gradient ∇u [51]. For u representing

a population, organisms move from high densities to low densities at a rate proportional to

the density gradient, and are advected at a speed proportional to habitat gradients. This

means that the organisms are making nonlocal decisions (i.e. sensing spatial differences in

either habitat or population density) as they move [97].

Fickian diffusion has been used widely in ecological models [21, 47, 50] and leads to

a uniform population distribution at equilibrium, even when D varies spatially [97]. That

is, according to a Fickian model (and neglecting birth and death processes), organisms are
1This chapter is reprinted from Martha Garlick, James Powell, Mevin Hooten, and Leslie McFarlane

Homogenization of large-scale movement models in ecology, Bulletin of Mathematical Biology 73 (2011),
2088-2108.
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just as likely to (eventually) be found in habitats that do not provide food and shelter as

those which do, as well as on the boundaries of vastly different land cover types.

Although this may be appropriate for simple organisms at small scales, most animals

do not diffuse like particles in heterogeneous environments [70]. They are greatly influ-

enced by habitat type, moving slowly through landscapes that provide needed resources

and more quickly through inhospitable regions and are therefore much more likely to be

found some places than others. Ecological diffusion, represented by ∂u
∂t = ∇2[µ(x1, x2)u],

accommodates this variation in motility, predicting that animals eventually accumulate in

desirable habitats and leave or avoid undesirable ones [97]. The motility parameter, µ, is

analogous to the diffusion coefficient, D, in the Fickian diffusion equation, however, eco-

logical diffusion gives an eventual distribution of animals which is inversely proportional

to the motility. Ecological diffusion is appropriate when organisms make local decisions

regarding movement, rather than nonlocal decisions as in the Fickian case, e.g. when their

probability of moving or rate of movement depends entirely on the habitat within which

they reside. Unlike Fickian diffusion, ecological diffusion supports discontinuous solutions,

allowing for distinct population differences at habitat boundaries. A derivation of the eco-

logical diffusion equation from a random walk is included in Turchin [97], and is known as

the Fokker-Planck or Kolmogorov equation without an advection component [83]. A simple

comparison of ecological diffusion with Fickian diffusion is shown in Figure 2.1, illustrating

the aggregation of individuals in areas with low motilities (longer residence times).

Although diffusion equations with variable coefficients reflect the heterogeneity of land-

scapes, they can be daunting to implement in a model, particularly at large spatial scales.

A technique for facilely accommodating small scale variability in diffusion coefficients for

large scale simulation is homogenization. Homogenization techniques for partial differential

equations (PDEs) with Fickian diffusion have been widely used in engineering applications,

such as heat transfer in composite materials, for decades. In ecology they have been used

in modeling such things as seed dispersal [80], the spread of biofilms [14], the spread of fe-

line leukemia [21], and the relationship between dispersal ability and habitat fragmentation
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Figure 2.1: A comparison of ecological diffusion with Fickian diffusion using the same diffu-
sion (motility) coefficient and initial condition. After the same amount of time, the distri-
bution of animals becomes inversely proportional to the motility with ecological diffusion,
while becoming smooth over the entire domain with Fickian diffusion.

[15]. The homogenization procedure, which uses the method of multiple scales [30], allows

one to approximate PDEs that have rapidly-varying coefficients with similar “homogenized”

PDEs having averaged coefficients. The primary advantage is that the “homogenized” PDE

is framed in large scales in space and time, with the influence of the small scale variability

in the averages.

Homogenized models are more efficient to solve numerically. Modeling the dispersal of

organisms over a large area, such as the state of Utah, can be very computationally taxing,

especially if the diffusion coefficient has variability on the scale of a meadow or stand

of trees. Viewed from a suitably large spatial scale, however, many habitats have more
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or less periodic structure with repetitively interspersed subpatches [21]. More generally,

almost every landscape can be approximated as a section of a quasi-periodic function. This

quasi-periodic structure allows us to use a homogenized PDE model to better understand a

system at a large scale, while preserving the effects of fine scale variability in the diffusion

coefficients. As far as we know, ecological diffusion, as defined above, has not been the

subject of homogenization techniques; we will show that the homogenization technique and

its effects are actually much simpler for ecological diffusion than Fickian diffusion.

Ecological diffusion and homogenization can be applied to spatial models in epidemi-

ology. In particular, ecological diffusion is especially fitting for modeling wildlife diseases

in free-ranging organisms, since the spread of a disease is linked to how hosts move and

interact in a varying environment. A wildlife disease where such modeling efforts could be

especially useful because of its potential impact to wildlife populations is chronic wasting

disease (CWD). CWD is a contagious prion disease known to affect members of the Cervi-

dae family which include deer (Odocoileus spp.), elk (Cervus elaphus), and moose (Alces

alces) [4]. The disease is always fatal and in mule deer (Odocoileus hemionus) infected ani-

mals can live from 12-24 months before outward signs of the disease become apparent [105].

Deer-to-deer and deer-to-environment interactions are important for transmission dynamics

and infectious prions can be shed into the environment from infected animals through fe-

ces, saliva and decaying carcasses where they may remain infective for many years [37, 62].

It has been suggested that over decades CWD can affect local population dynamics with

possible long-term effects on ecosystems [59].

CWD was first detected in free-ranging mule deer from Utah in 2002 and is currently

found in three distinct geographic areas of the state [53]. The areas found in Utah repre-

sent movement of the disease west of the Rocky Mountains and delineate the western-most

boundary for distribution of CWD in the United States. To predict the impact of CWD

west of the Rockies, a compartmental model would be sufficient from a disease perspective,

but would not capture the spatial aspects of spread. Current spatial disease models are

constrained to spread a disease or population everywhere over the domain, using Fickian
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diffusion. Transmission of CWD is contingent on population densities which reflect the

heterogeneity of the environment. In other words, density-dependent spatial spread is de-

pendent on how patches of population at variable distances infect each other. This is not

intuitive and requires a model incorporating ecological diffusion, to accommodate landscape

variability. Here we develop a technique specifically designed to deal with spatial hetero-

geneity and apply it to a simple disease model. We are developing a more disease-specific

CWD model with a coupled system of equations which will be the subject of a future pa-

per. Even though the model will have increased complexity, ecological diffusion and our

homogenization procedure will still apply.

To illustrate our homogenization technique we simulate the spread of CWD in mule

deer in an area that includes the La Sal Mountains of Utah. Our homogenization technique

introduces a way to numerically solve the model on a scale much larger (multiple kilometers)

than the scale of variability (10’s of meters) in the motility coefficients. Although variability

in model parameters is reduced by the averaging, it turns out that homogenization of

ecological diffusion returns small scale variability to the result. This preservation of small-

scale population consequences, coupled with the analytic simplicity, make homogenization

of ecological diffusion a very attractive technique. As we will show, the computational

time is markedly reduced, while the error introduced by the homogenization procedure is

asymptotically small.

2.2 Model for CWD

To illustrate the idea of homogenizing ecological diffusion, let us consider a simple

spatial model for CWD in mule deer based on a general model for a disease with no recovery.

What sets this model apart from other spatial epidemiology models is the use of ecological

diffusion rather than diffusion with a constant coefficient as in Meade and Milner [56].

We will assume that the disease is in its initial stage, spread by direct contact of

diseased individuals with healthy individuals, and always fatal. Mule deer in Utah are a

managed game species, with population estimates projected using computer models. We

therefore assume death from causes other than CWD is balanced by births, and we will
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ignore the environmental hazard associated with CWD (which is the subject of ongoing

research). Similarly, we will ignore other modeling considerations such as seasonal and sex

differences in movement and age structure of the disease for purposes of developing the

homogenization approach. Uninfected and infected individuals are linked as in a traditional

SI model,

St = ∇2(µS)− βSI, (2.1)

and

It = ∇2(µI) + βSI − λI, (2.2)

where S refers to the susceptible population and I refers to the infected population. The

differential operator,∇2, is the Laplacian, ∂2

∂x1
2 + ∂2

∂x2
2 , and the parameter, µ = µ(x1, x2), is

the spatially varying motility coefficient. The infection rate, β, and the rate of death from

the disease, λ, may also vary spatially if behaviors are linked to habitat type. The motility,

which is inversely proportional to residence time, will be low in areas where the deer linger

for food and shelter, and high in the places devoid of resources [97].

In the initial stages of the spread of a disease it is appropriate to view the healthy

population as predominant. When the number of infected deer is very small compared to

susceptibles, 0 < I << S, and (2.1) becomes St = ∇2(µS), which has the steady-state

solution

S̃ =
K

µ
, (2.3)

where K is a constant proportional to the total number of susceptible individuals. Then

the initial spread of the disease is captured by

It = ∇2[µ(x)I] + βS̃I − λI = ∇2[µ(x)I] + α(x)I, (2.4)

where α(x) = βS̃ − λ = β K
µ(x) − λ varies spatially as S̃ varies over the landscape. The

model given in (2.4) is very general, applying to all manner of spatial invasion and dispersal

situations, except using ecological diffusion.
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2.3 Homogenization of a model
with ecological diffusion

In order for (2.4) to reflect the connection of the spread of CWD with the movement of

deer, we need to know the habitat types comprising the desired landscape and estimate a

motility value for each type. The National Land Cover Database (NLCD) provided by U. S.

Geological Survey Landcover Institute classifies habitat in 30× 30 meter blocks [92]. If we

assume those blocks form a repeating pattern over a much larger scale, say 9× 9 kilometer

blocks, we can regard µ as varying quickly over the small scale and much more slowly over the

large scale. Viewing µ in (2.4) as varying over two different scales in this manner allows us

to apply a homogenization procedure similar to the one derived for two-dimensional Fickian

diffusion in Holmes [30]. However, as we will show, the result for ecological diffusion is much

simpler and easier to use in computer simulations. The homogenization procedure for the

one spatial dimension case is derived in Hooten et al. [32].

The easiest way to apply the homogenization procedure is to assume a quasi-periodic

motility function, which allows the periodicity to vary on the large scale. We will discuss

this assumption in detail in the periodicity assumption section below, showing that this

assumption is much more broad then might be expected. Let the order parameter, ε,

represent the ratio of small and large scales; for the landscape described above ε = 30
9000 =

1
300 . Let x be the large spatial scale in two spatial dimensions, with an associated slow time

scale, t. Then the small scale y is defined in relation to x by y = x
ε . Thus O(ε) changes in x

become O(1) changes in y [80]. The fast time scale associated with y is τ = t
ε2

. The motility

coefficient thus becomes a function of both spatial scales, µ = µ(x,y). Quasi-periodicity

means there exits a vector p(x) such that

µ(x,y + p(x)) = µ(x,y) (2.5)

for all x and y under consideration.
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2.3.1 Derivation of homogenized
model

We now employ the method of multiple scales. The derivatives transform, with ∇ −→

∇x + 1
ε∇y, where the subscript indicates the variable being differentiated, and ∂

∂t −→
1
ε2

∂
∂τ + ∂

∂t = 1
ε2

∂τ + ∂t. Substituting the new scales and derivatives into (2.4) gives (after

multiplication by ε2)

(∂τ + ε2∂t)I = (∇y + ε∇x) · [(∇y + ε∇x)µ(x,y)I] + ε2αI. (2.6)

The dependent variable, I, is now a function of t, τ , x, and y. We replace I in (2.6) with

a power expansion in ε,

I = I0(x,y, t, τ) + εI1(x,y, t, τ) + ε2I2(x,y, t, τ) + O(ε3),

and gather terms of common powers of ε.

At O(1) this gives

∂τI0 = ∇y
2(µI0). (2.7)

Since the term on the left hand side of (2.7) involves a derivative in the fast time scale, τ ,

and the equation is parabolic, the solution decays rapidly to its steady state. In fact the

transient parts of the solution decay to zero as ε → 0 like e−
µ1t

L2ε2 , where µ1 is a lower bound

on µ, i.e. 0 < µ1 < µ, and L2 is the area of the largest habitat patch. Since e−
µ1t

L2ε2 << ε

for all t > 0, we neglect transients and solve

∇y
2(µI0) = 0. (2.8)

A solution for (2.8) (using periodicity in y) is

I0 =
c(x, t)
µ(x,y)

, (2.9)
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with c = c(x, t) having no y dependence.

The O(ε) equation is

∂τI1 = ∇y
2(µI1) +∇x · [∇y(µI0)] +∇y · [∇x(µI0)]. (2.10)

Substituting (2.9) into (2.10) and simplifying (noting that ∇y · (µI0) = ∇yc(x, t) = 0), we

have

∂τI1 = ∇y
2(µI1).

Considering the steady state problem as in the O(1) case, the solution is of the form

I1 =
b(x, t)

µ
.

Due to homogeneous boundary conditions for all orders above ε0, we deduce I1 = 0.

The O(ε2) equation is

∂τI2 + ∂tI0 = ∇y
2(µI2) +∇x

2(µI0) + αI0. (2.11)

Substituting (2.9) into (2.11) and considering again the steady state with respect to the

fast time scale (i.e. ∂τI2 = 0) yields

∂t

(
c

µ

)
= ∇y

2(µI2) +∇x
2c + α

c

µ
. (2.12)

Let p(x) in (2.5) be defined as the periodicity vector p(x) = [l1(x1), l2(x2)]T . We

determine the homogenized problem by averaging each term of (2.12) over a l1(x1)× l2(x2)

cell, with area A = l1(x1)l2(x2), following Holmes [30]. The average of a function v(x,y)

over an l1(x1)× l2(x2) cell is defined as

〈v〉 =
1
A

∫ l1(x1)

0

∫ l2(x2)

0
v(x,y)dy1dy2. (2.13)
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Note that this is not the average value of the function over the entire domain. It is a local

average for the current position of interest, and the region of integration depends on the

(changing) local cell size.

Using the Divergence Theorem and periodicity on a cell,

〈
∇y

2(µI2)
〉

=
1
A

∫
∂Ω0

n · ∇y(µI2)dSy = 0,

where ∂Ω0 is the boundary of the cell, n is the outward normal vector, and dSy is along the

cell boundary. This is valid if we require limx↑x0(µ1I) = limx↓x0(µ2I) and limx↑x0 [∇(µ1I) ·

n] = limx↓x0 [∇(µ2I) ·n] where µ1 and µ2 are the values of µ for two adjacent cells, x0 is the

location of their shared boundary. This means that on the boundary of cells with different

motilities, the number of infected individuals that are mobile is proportional to µI. The

flux of individuals over the boundary is proportional to the first derivative of µI (as opposed

to µ times the derivative of I), which is a consequence of using ecological diffusion. Thus,

the density of the infected population over the landscape reflects the habitat boundaries

defined by the motility coefficients at the resolution of the land cover data.

Averaging the other terms in (2.12) yields

〈
∂t

(
c

µ

)〉
=

〈
µ−1

〉
∂tc

and 〈
α

c

µ

〉
=

〈
α

µ

〉
c.

The term∇x
2c, which has no y dependence, remains unchanged by the averaging procedure.

Equation (2.12) is now homogenized,

〈
µ−1

〉
∂tc = ∇x

2c +
〈

α

µ

〉
c, (2.14)
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where 〈
µ−1

〉
=

1
A

∫ l1(x1)

0

∫ l2(x2)

0

1
µ

dy1dy2

and 〈
α

µ

〉
=

1
A

∫ l1(x1)

0

∫ l2(x2)

0

α

µ
dy1dy2.

Simplifying, we can write (2.14) as

∂tc = µ̄∇x
2c + µ̄

〈
α

µ

〉
c, (2.15)

where µ̄ = 1
〈µ−1〉 is the harmonic average of µ(x,y) over an l1(x1) × l2(x2) cell. Our

homogenized equation, (2.15), is now in terms of the large spatial scale x and the slow

time scale t. The small scale variability, however, still influences the leading order solution

for infectives through the averages and through the definition of c(x, t). The function

c = c(x, t), which is a function of the long time scale and the large spatial scale, relates to

the leading order distribution of diseased animals by

I0 =
c(x, t)
µ(x,y)

. (2.16)

Thus the homogenized solution reflects small scale variability (as it should), but can be

solved dynamically on large time/space scales. The multiple-scale approach makes sense

in the context of the spread of CWD. The spread of the disease is closely related to the

movement of deer, which stabilizes rapidly on the timescale of τ , but can be viewed as

stationary on the long time scale, t. Therefore, changes in the population distribution over

the landscape occur on a scale of hours or days, while changes in the disease dynamics

occur over years. Spatially, local movement and interaction of deer underly the large-scale

spread of CWD. This homogenization technique can be applied to more complex disease or

invasion models as will be illustrated in a future paper.

The result of homogenizing ecological diffusion is surprisingly simple when compared
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to the homogenization of Fickian diffusion as derived in Holmes [30]. In the Fickian case

the large-scale diffusion coefficient is not simply a harmonic mean but rather a matrix of

averages depending on solutions to an associated elliptic PDE on a cell. The ecological

diffusion result also differs from the Fickian case in that the small scale variability is still

present in the solution due to its inverse proportionality to µ. This is an unexpected

benefit of applying the method of multiple scales to ecological diffusion. Fickian diffusion

loses ecologically realistic small-scale behavior under homogenization, but this behavior is

preserved by homogenization of ecological diffusion.

Although the presence of the harmonic average of µ in the homogenized equation

(2.15) is a natural result of the homogenization process, it also intuitively makes sense.

As mentioned in the introduction, if µ is constant in a contiguous block, it is inversely

proportional to the mean residence time in that block [97]. Given a large landscape unit

containing n1, n2, ..., nk number of blocks with corresponding areas A1, A2, ..., Ak and motil-

ities µ1, µ2, ..., µk, the projected residence time, T , for individuals in the unit would be

T =
n1A1

µ1
+

n2A2

µ2
+ · · ·+ nkAk

µk
, (2.17)

since Ai
µi

, i = 1, · · · , k, is the mean residence time of each individual block. Then the effective

µ for the entire unit, which we will call µ̄ becomes,

µ̄ =
n1A1 + n2A2 + · · ·+ nkAk

T
=

n1A1 + n2A2 + · · ·+ nkAk

n1A1
µ1

+ n2A2
µ2

+ · · ·+ nkAk
µk

, (2.18)

where n1A1 + n2A2 + · · ·+ nkAk is the total area of the unit. Noting

n1A1

µ1
+

n2A2

µ2
+ · · ·+ nkAk

µk
= (n1A1 + n2A2 + · · ·+ nkAk)

〈
1
µ

〉
,

and substituting into (2.18), we see µ̄ = 1〈
1
µ

〉 , which is the harmonic mean of µ.

The average µ̄
〈

α
µ

〉
also has an intuitive meaning. If α1, α2, ..., αk are the net rates
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of change in the population density of infected deer in the corresponding blocks, niAi, of

motility µi, then 〈
α

µ

〉
=

n1α1
A1
µ1

+ n2α2
A2
µ2

+ · · ·+ nkαk
Ak
µk

n1A1 + n2A2 + · · ·+ nkAk
.

Using (2.18) and simplifying,

µ̄

〈
α

µ

〉
=

n1α1
A1
µ1

+ n2α2
A2
µ2

+ · · ·+ nkαk
Ak
µk

n1
A1
µ1

+ n2
A2
µ2

+ · · ·+ nk
Ak
µk

=
n1α1

A1
µ1

+ n2α2
A2
µ2

+ · · ·+ nkαk
Ak
µk

T
.

(2.19)

The denominator is the expected residence time, T , from (2.17). Rewriting (2.19) with

ti = Ai
µi

as the mean residence time for each block, we have

µ̄

〈
α

µ

〉
=

n1α1t1 + n2α2t2 + · · ·+ nkαktk
T

. (2.20)

If we consider (2.15) without the diffusion term, the solution for ct = µ̄
〈

α
µ

〉
c is the

projected increase or decrease in the density of infected deer due to the time spent in the

unit. It is of the form

c = eα1
t1
T

teα1
t1
T

t · · · eα1
t1
T

t︸ ︷︷ ︸
n1times

eα2
t2
T

teα2
t2
T

t · · · eα2
t2
T

t︸ ︷︷ ︸
n2times

· · · eαk
tk
T

teαk
tk
T

t · · · eαk
tk
T

t︸ ︷︷ ︸
nktimes

= (en1α1t1en2α2t2 · · · enkαktk)
t
T = e

∑k
i=1 niαiti

T
t = e

µ̄
〈

α
µ

〉
t
,

where αi is the net rate of change in the density of infected deer and ti
T is the fraction of

time spent in the habitat with area Ai and motility µi, and t is the time spent in the unit.

Noting ct = µ̄
〈

α
µ

〉
c, we see that (2.20) is the projected exponential rate of change. So the

average µ̄
〈

α
µ

〉
can be thought of as the net effect of the rates of contracting the disease in

different habitats depending on the time spent in each habitat.

A one-dimensional example of solutions to this homogenized model is shown in Fig-

ure 2.2. The graph 2.2(c) compares the solutions for the non homogenized model (equations

(2.3) and (2.4)) and the homogenized model (equations (2.15) and (2.16)) with a continuous
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µ(x, y = x
ε ), shown in 2.2(a). The solution illustrates the idea that the population density

of diseased animals will be greater in areas of low motility and less in areas of high motility.

Figure 2.2: Graph(a) shows a one-dimensional example of a continuous µ(x, y = x
ε ) with

an obvious relationship between the large and small scales. µ(x, y) = 0.45− 0.2(1−x2)(1+
cos(2πy)), with ε = 0.05. The time evolution of solution is shown in graph(b). The lightest
shade is the initial condition, with subsequent times becoming darker. The solutions, I for
the non-homogenized model and I0 for the leading order distribution of sick animals, are
plotted on top of each other in graph(c). The difference between I and I0 is not visually
apparent with the maximum error, max(|I − I0|) = 0.027.

2.3.2 Periodicity assumption

The homogenization procedure we have just described is facilitated by a quasi-periodicity

assumption on the motility coefficient. We want to apply this procedure to natural land-

scapes that are not periodic in the strict sense, but also not completely random. Here we

wish to argue that the assumption of quasi-periodicity applies broadly, and in particular

to natural landscapes. When viewed at large scales there are repeating elements such as
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mountains and valleys or subpatches of different habitat types. We apply this procedure to

landscapes by allowing the periodicity to vary with the slow variable x [30], as in (2.5).

To illustrate this idea in one dimension, consider functions, f(x), which have Fourier

transforms of the form

f̂ =
1
ε
ĝ

(
k − k0

ε

)
+ c.c.,

where c.c. denotes the complex conjugate. The graph of |f̂ |2 has a peak at k0, indicating

repeating elements at a scale of 2π
k0

.

The inverse Fourier transform for f(x) is

2πf(x) =
∫ ∞

−∞

1
ε
ĝ

(
k − k0

ε

)
eikxdk + c.c. (2.21)

Let l = k−k0
ε . Then k = k0 + εl, dk = ε dl, and (2.21) becomes

2πf(x) =
∫ ∞

−∞

1
ε
ĝ(l)ei(k0+εl)yε dl + c.c. = eik0y

∫ ∞

−∞
ĝ(l)eil(εy)dl + c.c.

Noting x = εy gives

f(x) = eik0yg(x = εy) + c.c.,

where eik0y is the carrier wave and g(x) is a slowly-varying envelope function.

Writing g(x) in polar coordinates, g(x) = h(x)eim(x)x, where m and h are both real.

Then

f(x) = h(x)ei(k0y+m(x)x) + c.c. = h(x)eiy(k0+εm(x)) + c.c.,

using x = εy. Therefore f(x) is periodic with the period p(x) = 2π
k0+εm(x) which varies in

the slow variable x.

Thus, functions with clear, narrow peaks in their spectrum can naturally be viewed

as quasi-periodic. While this is no guarantee that a given motility distribution will be

quasi-periodic, all of the landscape that we have classified using deer motilities in Utah

had precisely this Fourier structure, possibly due to interactions between the 30× 30 meter
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landscape classification and natural periodicities of the landscape. In any event we now

assume that the landscape of interest can be viewed as periodic in the fast scale with

slowly varying periodic function, p(x). Now the challenge is that we do not know p(x)

precisely, and the homogenization procedure outlined above requires exact knowledge of

p = [l1(x1), l2(x2)]. We now address this difficulty.

If we divide the landscape into rectangular regions for the averaging procedure, we can

view each region as a multiple of the quasi-periodicity function p(x) = [l1(x1), l2(x2)]T plus

a small remainder. Let R∗ be the chosen rectangular region with area AR∗ that contains

a region R with area AR = Nl1(x1)Ml2(x2), where NM is the largest multiple of an

l1(x1)l2(x2) cell that fits into R∗. Then the region R∗−R is the small remainder with area

AR∗−R (See Figure 2.3). Let f be a motility function with periodicity as defined in (2.5).

Then using the average defined in (2.13)

〈f〉 =
1

Nl1Ml2

∫ Nl1(x1)

0

∫ Ml2(x2)

0
f(x,y)dy1dy2 =

1
AR

∫
R

fdA

=
1

AR

[∫
R

fdA +
∫

R∗−R
fdA−

∫
R∗−R

fdA

]
=

AR∗

AR
〈f〉R∗ −

1
AR

∫
R∗−R

fdA.

So,

〈f〉R∗ =
AR

AR∗
〈f〉+

1
AR∗

∫
R∗−R

fdA. (2.22)

Since R is a smaller region than R∗, AR
AR∗

< 1 and the second term in (2.22) can be bounded

by

∣∣∣∣ 1
AR∗

∫
R∗−R

fdA

∣∣∣∣ <
[2l1l2(N + 1) + 2l1l2(M + 1)]|f |max

l1l2NM
=

2(M + N + 2)|f |max

NM
,

resulting in

〈f〉R∗ < 〈f〉+
2(M + N + 2)|f |max

NM
.
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Figure 2.3: An illustration of choosing a rectangle to average over without knowing p(x)
explicitly. The region enclosed in the dashed line is R∗. The smallest rectangle is the region
R with area Nl1Ml2.

If we choose N and a corresponding M such that

2(M + N + 2)|f |max

NM
< ε,

then

〈f〉R∗ = 〈f〉+ O(ε).

Thus, the lack of explicit knowledge concerning p(x) does not influence the homogenization

at leading order if we replace 〈µ〉 with 〈µ〉R∗ , since the introduced error is O(ε).



23

2.4 A two-dimensional example

To illustrate our homogenization result, we apply the simple model, (2.3) and (2.4), and

the homogenized model, (2.15) and (2.16), to the spread of CWD in a 26.1×33.36 kilometer

piece of mule deer habitat in the La Sal mountains of Utah. Land cover types comprising the

area were determined using the National Land Cover Database [31]. Motility coefficients (µ)

were estimated from GPS movement data for collared deer collected by the Utah Division

of Wildlife Resources [53]. This was done by parsing the movement data by habitat type,

then estimating the mean-squared displacement per time for all movements within each

habitat [97]; these efforts will be discussed in more detail in a future paper. Motility values

for the different habitat types in the area are illustrated in Figure 2.4 and given in Table

2.1. The habitat types for the inset in Figure 2.4 are shown in detail in Figure 2.5. We used

an initial population of 7400 deer for the entire area and a small distribution of infected

deer (equivalent to approximately 38 deer) in the eastern part of the mountains where the

disease was first found [100]. We used the infection rate, β = 0.0326 yr−1 density−1, and

the death rate from CWD, λ = 0.481 yr−1, found in Miller et al. [58] and converted to

units of days−1.

Table 2.1: The estimated motility values (µ) for the land cover types used in the two
dimensional example.
Land cover type Estimated µ

(
km2

day

)
rock 2.01
scrub 0.97
conifer forest 0.66
deciduous forest 0.65
mixed forest 0.52
pasture 0.85
cultivated crops 0.86
grassland 0.51
developed (low intensity) 0.29
developed (medium intensity) 0.30
developed (open space) 0.70
woody wetlands 0.55
open water 3.02

An alternating direction implicit (ADI) numerical method with no-flux boundaries was

used to compute the population density of infected deer over time for both the homogenized
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Figure 2.4: The assigned motility values for the habitat types of mule deer habitat in the
La Sal mountains of Utah. Light shades indicate areas of high motility and darker shades
indicate areas of low motility. A closer view of the outlined portion is shown in figure 2.5.

and non-homogenized models. ADI is an implicit finite difference method which splits each

time step into two stages, a discretization in the x1 direction, followed by a discretization

in the x2 direction [64]. This is equivalent to solving two tridiagonal systems for each time

step. The details of this method are included in the Appendix. We chose an ADI method

for its ease in accommodating the variable motility coefficient, as well as its efficiency and

stability.

For the non-homogenized model (2.4) we chose a computational grid that aligned with

the 30× 30 meter land cover type blocks. For the homogenized model (2.15) and (2.16), we

chose ε = 0.01 which corresponds to averaging over 3000×3000 meter blocks. The technique

is also valid for other choices of ε << 1. We used a computational grid of 600× 600 meter

blocks for the numerical solution of the homogenized model, with each computational grid
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Figure 2.5: The assigned motility values for the habitat types in the outlined portion of
Figure 2.4. The high motilities represent areas such as barren rock formations (where deer
are absent) and sagebrush areas where deer spend a great amount of time moving (light
shades). The low motilities represent areas where the residence time is high such as in
pinyon juniper, deciduous, or mixed forest habitats where they bed and ruminate during
daylight hours (dark shades).

point being the center of a 3000 × 3000 meter block used for averaging. The periodicity

assumption was used to provide µ values for a grid larger than the study area for computing

averages at grid points on the boundary. This choice resulted in a significant reduction in

the number of needed operations as compared with solutions for the non-homogenization

model. The non-homogenized model with n spatial steps in each direction and m time

steps takes O(mn2) operations. If δ is the ratio of the large scale spatial steps to small scale

spatial steps (δ = 0.05 in our example), then the homogenized model with δn spatial steps

in each direction with δm time steps takes O(δ3mn2) operations. In terms of time saved

for this example, the non-homogenized model took 45 hours, 6 minutes and 11.51 seconds
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to run for 365 days, compared to 3.85 seconds for the homogenized model. That is 1
42000 of

the time, a substantial computational savings.

The results of the two-dimensional example are shown in Figures 2.6 and 2.7. Figure 2.6

shows the population densities for infected deer after 1 year for the homogenized model.

Solving (2.15) for the intermediate variable c resulted in the infection being spread over the

landscape at the diffusion rate of the averaged motilities µ̄. The density of infected deer is

then prorated by division by µ in (2.16). This places disease hotspots in the habitat types

where deer naturally gather, such as forests and riparian areas. As expected the model

predicts low densities of infected animals in areas of high motility, such as rocky, barren

areas and developed open space. A comparison of the homogenized and non-homogenized

models is shown in Figure 2.7. The maximum error between the homogenized and non-

homogenized models is consistently O(ε). The surfaces in this figure are not smooth, but

reflect the effect of motility on the density of infected deer.

2.5 Discussion

When modeling population densities of animals over a heterogeneous environment,

ecological diffusion, ∇2[µ(x1, x2)u], allows for the accumulation of animals in habitats where

they linger and not in areas they naturally avoid. Fickian diffusion, ∇[D(x1, x2)∇u], gives

a smooth distribution of animals over the landscape, disregarding the underlying motility.

The model used in this paper is a general model for the spread of a disease, using

ecological diffusion. It is meant to illustrate the appropriateness of ecological diffusion in

the context of heterogeneous landscapes and to demonstrate our homogenization procedure.

We are developing a more disease specific CWD model, which will be the subject of a

future paper. Contact with disease agents in the environment as well as contact between

susceptible and infected individuals will be considered. The behavioral differences of male

and female deer during the seasons of the year will be incorporated to more effectively

model disease dynamics. Female deer form matrilineal groups with fidelity to summer and

winter ranges while male deer wander between groups, especially during breeding season
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Figure 2.6: A view of the values for the population densities for infected deer for the
homogenized model. The idea that animals collect in areas with low motility and leave
areas of high motility is illustrated when compared with the motility values in Figure 2.4.

[53]. The estimation of motility values for male and female deer from GPS movement data

using Bayesian methods will be explored. Harvesting and culling practices for the study

area will be modeled as well.

This will result in a system consisting of separate equations for males and females

in both susceptible and infected classes and an equation for environmental hazard. How

behavioral differences between males and females affect disease spread can be explored

through various infection rates. The environmental impact of diseased females vs males can

also be explored.

Another management application of this model is determining a critical population of

deer for which the wave speed of the spread of CWD is zero, that is, is the wavefront speed
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Figure 2.7: This figure shows results from running the homogenized model with ε = 0.01
and the original model. The maximum error between the two models was 1.86 × 10−4.
An initial condition representing a small density of diseased deer in the eastern part of
the region was used. This graph represents the spread of the disease over a year in the
26.1× 33.36 kilometer study area.

in this area sufficient to allow the disease to propagate? The wave speed, v, for solutions to

the homogenized PDE, can be determined for an area of interest by v ≈ 2
√

µ̄ᾱ [88], where

ᾱ = µ̄
〈

α
µ

〉
and α = βS̃ − λ. The number, N , of deer for a steady state population with

density S̃ = K
µ , is given by

N =
∫∫
A

K

µ
dA = K

∫∫
A

1
µ

dA = KA

〈
1
µ

〉
,
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where A is the area of the region of interest. Then K = µ̄N
A and the wave speed becomes

v ≈ 2

√√√√µ̄2

〈
βµ̄N
Aµ − λ

µ

〉
= 2µ̄

√〈
βµ̄N

Aµ2
− λ

µ

〉
.

The value of N for which

〈
βµ̄N

Aµ2
− λ

µ

〉
=

βNµ̄

A

〈
1
µ2

〉
− λ

〈
1
µ

〉
= 0

is

N =
λA

β

〈
1
µ

〉2 〈
1
µ2

〉−1

.

For our study area, using the values for β, λ, and µ given in Section 2.4, the critical

population would be N = 12, 447. The current population is estimated at 7, 400 deer with

a goal of 13, 000 [100]. If the infection rate, β = 0.0326, is appropriate for CWD in the La

Sal mountains, the current deer population is less than the critical population suggesting

that the disease will not spread out of the area. If the number of deer approaches the goal

of 13,000 animals, however, the critical population would be exceeded and the wave speed

would no longer be zero. It is important to note that this critical population was determined

with an infection rate calculated from data for disease spread in a captive herd, scaled down

a factor of 10 for the larger ranges of wild deer [58]. If for example, the infection rate is 10

times larger (β = 0.326, as fitted by Miller et al.), the critical population would be 1,245

deer, far below the present population, indicating that the disease can spread through the

study area. We will revisit this idea with the more disease-specific model.

The homogenization procedure we have described will be invaluable in simulations of

more complex models over large areas. In fact, the homogenization of ecological diffusion

can be applied to many spatial invasion and dispersal models as well as spatial epidemiology

models, when the effect of heterogeneous landscapes on spread is desired. Homogenization

preserves small scale variability while allowing computation on a large scale.
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CHAPTER 3

A SPATIAL MODEL FOR CHRONIC WASTING DISEASE IN MULE DEER 1

3.1 Introduction

Chronic wasting disease (CWD) is an infectious prion disease that affects mule deer

(Odocoileus hemionus), as well as other members of the Cervidae family, namely white-

tailed deer (Odocoileus virginianus), elk (Cervus elaphus), and moose (Alces alces shirasi)

[4]. It is a rare, slowly-developing disease that is always fatal, and infected mule deer

may live 12-24 months before showing visible signs of the disease [105]. The disease may be

contracted by direct contact with infected deer [61], as well as by contact with contaminated

environments [37]. Prions shed into the environment through the feces, saliva, and decaying

carcasses of infected deer may remain infective for many years [62]. The existence of both

horizontal and environmental transmission pathways sets CWD apart from other infectious

wildlife diseases.

Miller et al. [59] have suggested that over decades, CWD has the potential to affect local

population dynamics with possible long-term effects on ecosystems. Mathematical models

are critical tools in assessing the impact of CWD on deer populations and analyzing different

management strategies [86]. CWD has been modeled in many different ways which include

discrete-time deterministic models [63], individual-based models [26], difference equation

models [36], and SI epidemic models [58, 104].

Even though these models have made important inroads to understanding disease dy-

namics, they ignore the spatial aspect of disease spread. An understanding of the spatial

variation in the distribution of susceptible hosts is critical in predicting the emergence or

spread of an infectious disease to new geographic regions [91], particularly considering the

lingering environmental hazard of CWD. A spatial picture of where the disease has been is

critical to management. Transmission of CWD is contingent on population densities which
1Coauthored by Martha Garlick, James Powell, and Mevin Hooten, anticipated submission to Bulletin

of Mathematical Biology, August 2012
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reflect the heterogeneity of the environment. In fact, environments can act as the principal

organizers for spatial processes, such as disease spread [5, 82]. In other words, density-

dependent spatial spread is dependent on how patches of population at variable distances

infect each other [23].

For the most part, spatial models for CWD have been statistical. Conner and Miller

[13] use cluster analysis and Farnsworth et al. [18] use a Bayesian hierarchical model to

study spatial spread in free-ranging mule deer populations in Colorado, while Joly et al.

[41] use spatial analysis to study the spread of CWD in white-tailed deer in Wisconsin. All

of these approaches require a large body of data, which is not available in areas where the

disease is in its initial stages, such as Utah.

A deterministic, process-based model does not need the same amount of data to be

useful. Rates of movement can be inferred from measurements of healthy deer, and trans-

mission parameters estimated for other populations used in an appropriately constructed

mechanistic model. One mechanism to introduce spread as a spatial process involves diffu-

sion. Diffusion was first applied to epidemiology by Kendall in 1965 [45] and has been used

to model the spatial spread of diseases in wildlife populations for many years, such as rabies

in fox [42, 68], foot and mouth disease in feral pigs [77], and conjunctivitis in house finches

[34]. These models use constant diffusion coefficients, which imply that disease spreads at

the same rate through all parts of the host’s range.

Hosseini et al. [34] recognized that a key aspect of the spatial spread of a directly

transmitted disease is how the hosts carrying the pathogen move over the landscape. In

order for dispersal to reflect heterogeneous landscapes, diffusion rates need to vary with

habitat type [43]. Fickian diffusion, of the form ∂u
∂t = ∇[D(x1, x2)∇u], models the distribu-

tion of organisms from high densities to low densities at a rate proportional to the density

gradient [29]. In this type of diffusion, the environment affects the rate at which populations

respond to gradients through the diffusion coefficient, D. Since the diffusion equation seeks

to minimize population gradients, it eventually distributes organisms equally in habitats

that provide food and shelter as those which do not.
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On the other hand, ecological diffusion, represented by ∂u
∂t = ∇2[(µ(x1, x2)u], allows

for distinct population differences at habitat boundaries [74], reflecting the aggregation of

organisms in desirable habitats and their dispersal from undesirable ones. The variable

motility coefficient µ(x1, x2) represents the rate at which organisms choose to leave a habi-

tat patch, irrespective of density gradients [97]. Ecological diffusion can be applied to

spatial models in epidemiology to make the connection between how hosts move and how

diseases spread. Population density in an area increases as motility decreases, increasing

the probability of disease transmission, potentially affecting disease dynamics.

Even though diffusion models with variable coefficients have been recognized as nec-

essary to model dispersal over heterogeneous landscapes [71], variable coefficients are often

abandoned in practice. This is chiefly for two reasons: added mathematical complication

and lack of data to derive motility coefficients for all landcover types in a study area.

Increased computing power and homogenization techniques can aid in dealing with mathe-

matical complication for numerical solutions [23] and advances in telemetry have enhanced

data collection over diverse habitats [72]. Homogenization of partial differential equations

(PDEs) is a technique for facilely accommodating small scale variability in diffusion coef-

ficients for large scale simulation [15]. It uses the method of multiple scales [30] to ap-

proximate PDEs that have rapidly-varying coefficients with similar, “homogenized” PDEs

having averaged coefficients, operating on much broader scales. Homogenized models are

more efficient to solve numerically. In epidemiology homogenization has been used with

Fickian diffusion to model the spread of feline leukemia [21] and with ecological diffusion in

an unstructured CWD model [23].

In this paper we present a spatial, sex-structured model for the spread of CWD in mule

deer, accounting for disease-specific behaviors of male and female deer separately through

motility parameters and infection rates. Both direct deer-to-deer transmission as well as

indirect environment-to-deer transmission are included. We apply a homogenization proce-

dure for ecological diffusion [23] to the system of equations to facilitate a numerical solution

over a large domain, simulating the spread of CWD in Southeast Utah. This homogeniza-
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tion procedure is strikingly simple when compared to similar techniques for Fickian diffusion

equations. The homogenized system not only provides a multi-scale approach to disease

spread, it also provides averaged coefficients that can be applied to predict invasion speed

and critical population size from epidemic spread. This can give insight into the receptivity

of invasion of certain landscape features, which can aid managers in decision-making.

3.2 Model for Disease Transmission
and Population Movement

Deer behavior is dependent upon the season of the year. Female deer form matrilinear

groups that show strong fidelity to winter and summer ranges. Male deer wander more,

especially during breeding season when they cover a wide area searching for receptive females

[69]. Males interact with each other in competition for females and males test females for

receptiveness through extensive licking [49]. Thus, male breeding behavior may contribute

to higher infection rates for males [53]. Farnsworth et al. [19] found CWD prevalence in

males to be much higher than in females. To incorporate the behavioral differences between

male and female deer, we develop a sex-structured model following the SI framework of

Anderson and May [1], with the addition of environmental hazard and ecological diffusion.

We do not include latency, since the existence and duration of a latency period is not known

[58] and evidence suggests agent shedding occurs long before clinical signs of CWD appear

[60].

The equations for susceptible deer are:

∂SF

∂t
= ∇2(µF SF )− βFF SF IF − βMF SF IM − γF SF H + ΦF (SF )

∂SM

∂t
= ∇2(µMSM )− βFMSMIF − βMMSMIM − γMSMH + ΦM (SM ),

where S refers to the susceptible population density, I to the infected population density,

and H to the amount of infectious material in the environment. The subscripts F and M

refer to female and male deer respectively. The differential operator,∇2, is the Laplacian,

∂2

∂x1
2 + ∂2

∂x2
2 . The motility coefficients µF and µM vary over space, reflecting differences
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in movement patterns between males and females. We allow for an infection rate for each

of four types of interactions, females infecting other females, βFF , males infecting females,

βMF , males infecting other males, βMM , and females infecting males, βFM . The parameters

γF and γM are the rates at which susceptible females and males contract the disease from

the environment. The functions ΦF and ΦM contain appropriate birth and death terms

for susceptibles which are not needed in detail for our modeling approach, which will use

steady-state approximations for susceptible populations.

The equations for infected deer are:

∂IF

∂t
= ∇2(µF IF ) + βFF SF IF + βMF SF IM + γF SF H − ωIF − φIF (3.1)

∂IM

∂t
= ∇2(µMIM ) + βFMSMIF + βMMSMIM + γMSMH − ωIM − φIM . (3.2)

The death rate for infectives, ω, includes death due to CWD. It may also be influenced by

the increased number of deaths of infected deer from predation [104] and vehicle collisions

[48] over that of healthy deer. One preventative measure in Utah is that visibly sick deer

are shot on sight and their carcasses removed. The parameter φ is the rate of this culling.

The total number of susceptible and infected deer is given by N = SF + SM + IF + IM .

The change over time of the amount of prions in the environment is modeled by a DE

for environmental hazard, H,

∂H

∂t
= αF IF + αMIM + αDF ωIF + αDMωIM − δH. (3.3)

Male mule deer can weigh 50 to 100 kilograms more than female mule deer, so we assume

their contribution to prion pollution in the environment may differ significantly from that of

females. The parameters αF and αM are rates that feces and urine pollute the environment,

while αDF and αDM are rates that decaying carcasses pollute. The parameter δ is the rate

at which hazardous material leaves the environment, whether via deactivation (unknown

means) or being washed away or covered up by soil deposition. The parameters for this
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model and the subsequent simulations are given in Table 3.1.

Table 3.1: The parameters for the CWD model and values used in the simulations.

Parameter Description Value Source

µF , µM Motility coefficients See Table 2 Estimated
βFF , βMF , Direct transmission rates 8.767 × 10−5- Miller et al., 2006
βFM , βMM 9.315 × 10−5 density−1 day−1

γF , γM Transmission rates from 0.0022 mass−1 day−1 Miller et al., 2006
contaminated environments

ω Death rate from CWD 0.0013 day−1 Miller et al., 2006,
φ Cull rate 0 day−1 Assigned

αF , αM Rates at which 0.00030411 mass density−1 day−1 Miller et al., 2006
prions are excreted

αDF , αDM Rates at which infected 0.1 mass density−1 Assigned
carcasses pollute
the environment

δ Rate at which infectious 0.007 day−1 Miller et al., 2006
material leaves
the environment

3.2.1 Rescaling to Reduce Number
of Free Parameters

In Utah the number of infected deer is much smaller than the number of susceptible

deer, i.e. 0 < IF << SF and 0 < IM << SM , because the disease is rare [100]. Therefore,

considering the initial density of susceptible deer to be close to the density at carrying

capacity (SF (0) + SM (0) = K) and the initial density of infected deer to be much smaller

(IF (0) + IM (0) = ηK, 0 < η << 1) leads to the following scales: S̄F = SF
K , S̄M = SM

K , ĪF =

IF
ηK , ĪM = IM

ηK , and H̄ = H
αDMηK . Rescaling time with t̄ = ωt leads to a non-dimensional

system if we assume the spatial coordinates, x1 and x2 are such that
∣∣∇2(µF S̄F )

∣∣ ∼ 1.

Rescaling the equations for susceptibles in this manner yields:

∂S̄F

∂t̄
=

1
ω

[
∇2(µF S̄F ) + ΦF (S̄F )− ηKS̄F

(
βFF ĪF − βMF ĪM − γF αDMH̄

)]
(3.4)

∂S̄M

∂t̄
=

1
ω

[
∇2(µM S̄M ) + ΦM (S̄M )− ηKS̄M

(
βFM ĪF − βMM ĪM − γMαDMH̄

)]
. (3.5)

Hunting and habitat management practices in Utah are aimed at reaching and main-

taining a population objective for mule deer, determined by wildlife managers [100] and
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given as a number of deer. Assuming the functions ΦF and ΦM contain birth, death, and

hunting rates such that a population level is maintained (i.e. Kβ
ω ∼ 1) and neglecting the

terms multiplied by the small parameter η, (3.4) and (3.5) become:

∂S̄F

∂t̄
=

1
ω
∇2(µF S̄F ) and

∂S̄M

∂t̄
=

1
ω
∇2(µM S̄M ),

which have steady-state solutions ŜF = CF
µF

and ŜM = CM
µM

, respectively. The constants

CF and CM are proportional to the density at carrying capacity, K. The Utah Division

of Wildlife Resources (UDWR) expresses the population of deer at carrying capacity as

a target population in numbers of individuals, N . For our modeling purposes, we need

the carrying capacity expressed as a density of the number of individuals per kilometer at

carrying capacity, K, chosen such that
∫∫
A

(
ŜF + ŜM

)
dA = KA ≈ N . Rescaling (3.1)-(3.3)

and using ŜF and ŜM for the susceptible populations, our system becomes:

∂ĪF

∂t̄
=

1
ω

[
∇2(µF ĪF ) +

(
βFF ŜF − ω − φ

)
ĪF + βMF ŜF ĪM + γF αDM ŜF H̄

]
, (3.6)

∂ĪM

∂t̄
=

1
ω

[
∇2(µM ĪM ) +

(
βMM ŜM − ωI − φ

)
ĪM + βFM ŜM ĪF + +γMαDM ŜMH̄

]
, (3.7)

and
∂H̄

∂t̄
=

αF

αDMω
ĪF +

αM

αDMω
ĪM +

αDF

αDM
ĪF + ĪM − δ

ω
H̄. (3.8)

Thus, the spread of CWD in the male and female populations is connected through the

environmental hazard, as well as the gender-specific steady-state population sizes and in-

fection rates. In fact, the steady-state population size of an area is inversely proportional to

the motility (ŜF ∼ 1
µF

), so the density of infectives increases when the motility decreases.

In other words, the environment plays a key role in how disease spreads through both

density-dependent transmission and dispersal of infectives.
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3.2.2 Homogenization

The system (3.6)-(3.8) must be solved numerically and in order to do so over a large

area, we employ a homogenization procedure. To illustrate this procedure, we assume that

habitat structure is locally quasi-periodic, as when the landscape is composed of repetitively

dispersed subpatches [21, 23], i.e., natural landscapes are not periodic in the strict sense,

but are also not completely random. As shown in Garlick et al. [23], we do not need an

explicit knowledge of this periodicity in order for this homogenization procedure to work.

Landscape classification data is available at various resolutions. The LANDFIRE data base,

from the Landscape Fire and Resource Management Planning Tools sponsored by the US

Department of the Interior and the US Department of Agriculture Forest Service, classifies

habitat in 30 × 30 meter blocks [93]. This provides the needed separation of scales, as we

can regard the motilities µF and µM as varying quickly over the small scale and much more

slowly over the large scale.

Let ε (0 < ε << 1) be an order parameter representing the ratio of small and large

scales [80]; for example, a small scale of 30 meters and a large scale of 3 kilometers would

yield ε = 30
3000 = 1

100 (as in Garlick et al. [23]). Let x be coordinates of the large spatial

scale, with an associated slow time scale, t. Then the small spatial scale y is defined by the

relation, y = x
ε , and the fast time scale corresponding to the small spatial scale becomes

τ = t
ε2

. The motility coefficients become functions of both spatial scales, µF = µF (x,y)

and µM = µM (x,y). Quasi-periodicity means that there exists a vector, p(x), such that

µF (x,y + p(x)) = µF (x,y) and µM (x,y + p(x)) = µM (x,y), (3.9)

for all x and y in the domain. Quasi-periodicity facilitates the homogenization procedure,

but is not strictly necessary for it.

With the introduction of these two scales, the derivatives become: ∇ −→ ∇x + 1
ε∇y,

where the subscript indicates whether the long scale (x) or short scale (y) variable is

differentiated, and ∂
∂t −→

1
ε2

∂
∂τ + ∂

∂t = 1
ε2

∂τ +∂t. Substituting the new scales and derivatives
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into (3.6)-(3.8), after multiplication by ε2, gives:

(∂τ + ε2∂t)IF =
1
ω

(∇y + ε∇x) · [(∇y + ε∇x)µF IF ]

+
ε2

ω

[(
βFF ŜF − ω − φ

)
IF + βMF ŜF IM + γF αDM ŜF H

]
,

(∂τ + ε2∂t)IM =
1
ω

(∇y + ε∇x) · [(∇y + ε∇x)µMIM ]

+
ε2

ω

[(
βMM ŜM − ω − φ

)
IM + βFM ŜMIF + γMαDM ŜMH

]
,

and

(∂τ + ε2∂t)H = ε2
[
αF + αDF ω

αDMω
IF +

(
αM

αDMω
+ 1

)
IM − δ

ω
H

]
,

where we have dropped the bar notation on the rescaled variables for convenience.

We replace IF with a series expansion in ε:

IF = IF0 + εIF1 + ε2IF2 + O(ε3),

and use similar expansions for IM and H. Collecting terms at common powers of ε, the

O(1) equations are:

∂τIF0 =
1
ω
∇2

y(µF IF0), (3.10)

∂τIM0 =
1
ω
∇2

y(µMIM0), (3.11)

and

∂τH0 = 0.

Since (3.10) and (3.11) are parabolic, the solutions decay exponentially to their steady state

in fast time scales [23]. The steady-state solutions for IF0 and IM0 are:

IF0 =
cIF (x, t)
µF (x,y)

and IM0 =
cIM (x, t)
µM (x,y)

, (3.12)
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where cIF and cIM are functions without any y or τ dependence. The leading order solution

for environmental hazard, H0 = H0(x,y, t), however, depends on both spatial scales.

The O(ε) equations are:

∂τIF1 =
1
ω

[
∇2

y(µF IF1) +∇y · [∇x (µF IF0)] +∇x · [∇y (µF IF0)]
]
, (3.13)

∂τIM1 =
1
ω

[
∇2

y(µMIM1) +∇y · [∇x (µMIM0)] +∇x · [∇y (µMIM0)]
]
, (3.14)

and

∂τH1 = 0. (3.15)

Substituting (3.12) into (3.13) and (3.14) and simplifying (noting that∇y(µF IF0) = ∇ycIF (x, t) =

0 and ∇y(µMIM0) = ∇ycIM (x, t) = 0), we obtain

∂τIF1 = ∇2
y(µF IFI

) and ∂τIM1 = ∇2
y(µMIMI

).

Considering the steady-state problems for IF1 and IM1 as in the O(1) case and solving

(3.15), yields solutions:

IF1 =
bIF (x, t)
µF (x,y)

, IM1 =
bIM (x, t)
µM (x,y)

, and H1 = bH(x,y, t). (3.16)

The solutions in (3.16) are precisely the same form as the solutions in (3.12), therefore any

boundary condition satisfied by (3.12) leaves homogeneous boundary conditions for (3.16),

giving IF1 = IM1 = H1 = 0.

The O(ε2) equations are:

∂τIF2 + ∂tIF0 =
1
ω

[
∇2

y(µF IF2) +∇2
x(µF IF0) + γF αDM ŜF H0

+
(
βFF ŜF − ω − φ

)
IF0 + βMF ŜF IM0

]
,



40

∂τIM2 + ∂tIM0 =
1
ω

[
∇2

y(µMIM2) +∇2
x(µMIM0) + γMαDM ŜMH0

+
(
βMM ŜM − ω − φ

)
IM0 + βFM ŜMIF0

]
,

and

∂τH2 + ∂tH0 =
αF

αDMω
IF0 +

αM

αDMω
IM0 +

αDF

αDM
IF0 + IM0 −

δ

ω
H0,

where the mixed derivative terms containing IF1 or IM1 have vanished since IF1 = IM1 = 0.

In the fast time scale, τ , IF2 and IM2 tend to steady-state solutions rapidly, so relevant

equations in the slower time scale are

∂t
cIF

µF
=

1
ω

[
∇2

y(µF IF2) +∇2
xcIF + γF αDM ŜF H0 (3.17)

+
(
βFF ŜF − ω − φ

) cIF

µF
+ βMF ŜF

cIM

µM

]
,

∂t
cIM

µM
=

1
ω

[
∇2

y(µMIM2) +∇2
xcIM + γMαDM ŜMH0 (3.18)

+
(
βMM ŜM − ω − φ

) cIM

µM
+ βFM ŜM

cIF

µF

]
,

and

∂tH0 =
αF

αDMω

cIF

µF
+

αM

αDMω

cIM

µM
+

αDF

αDM

cIF

µF
+

cIM

µM
− δ

ω
H0, (3.19)

where the values for IF0 and IM0 in (3.12) have been used to write equations in terms of

dependent variables on slower scales, cIF (x, t) and cIM (x, t). Note that dependence on the

small scale, y, is retained through coefficients containing ŜF or ŜM .

We now explain the averaging procedure associated with homogenization in two spatial

dimensions in terms of infected females. The procedure is the same for infected males. Let

p(x) in (3.9) be defined as the periodicity vector p(x) = [l1(x1), l2(x2)]T . We determine the
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homogenized problem by averaging each term of the system (3.17)-(3.19) over a l1(x1) ×

l2(x2) cell, with area Acell = l1(x1)l2(x2). The average of a function v(x,y) over an l1(x1)×

l2(x2) cell is defined as

〈v〉 =
1

Acell

∫ l1(x1)

0

∫ l2(x2)

0
v(x,y)dy1dy2, (3.20)

a local average for the current position of interest [30].

Using periodicity on a cell and the Divergence Theorem,

〈
∇y

2(µF IF2)
〉

=
1

Acell

∫
∂Ω0

n · ∇y(µF IF2)dSy = 0,

where ∂Ω0 is the boundary of the cell, n is the outward normal vector, and dSy is along

the cell boundary. The periodicity on the small scale also gives that the flux of individuals

on either side of the cell boundary is the same. The number of infected individuals that are

mobile (i.e. leaving the area) is proportional to µF IF , and continuity conditions therefore

apply to this quantity, i.e., µF IF (the number of individuals) and ∇(µF1IF ) (the flux) are

continuous across boundaries. The net flux of individuals over the boundary is proportional

to the first derivative of µF IF (as opposed to µF times the derivative of IF ), which is a

consequence of the ecological diffusion model for movement. Similarly, 〈∇2
y(µMIM2)〉 = 0.

We apply averaging to all terms in (3.17). This means the parameters that depend on

small-scale variability y stay inside of averages of the form (3.20), while parameters and

variables without y dependence can be moved outside of the averages, i.e.,

〈
∂t

cIF

µF

〉
=

〈
1

µF

〉
∂tcIF ,

〈
∇2

xcIF

〉
= ∇2

xcIF ,〈
1
ω

(
βFF ŜF − ω − φ

) cIF

µF

〉
=

〈
1
ω

(
βFF ŜF − ω − φ

) 1
µF

〉
cIF ,〈

βMF ŜF

ω

cIM

µM

〉
=

βMF

ω

〈
ŜF

µM

〉
cIM ,
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and 〈
γF αDM ŜF

ω
H0

〉
=

γF αDM

ω

〈
ŜF H0

〉
.

The averages are similar for the equation for IM and H0, except that the environmental

hazard H0 depends upon both spatial scales, so it must remain inside of the averages.

We obtain our homogenized system after averaging (3.17)-(3.19) and simplifying. The

homogenized equations are differential equations in the large spatial and slow time scales,

with small-scale variability expressed through the averages:

∂tcIF =
µ̄F

ω
∇2

xcIF + µ̄F

〈
1
ω

(
βFF ŜF − ω − φ

) 1
µF

〉
cIF

+ µ̄F
βMF

ω

〈
ŜF

µM

〉
cIM + µ̄F

γF αDM

ω

〈
ŜF H0

〉
, (3.21)

∂tcIM =
µ̄M

ω
∇2

xcIM + µ̄M

〈
1
ω

(
βMM ŜM − ω − φ

) 1
µM

〉
cIM

+ µ̄M
βFM

ω

〈
ŜM

µF

〉
cIF + µ̄M

γMαDM

ω

〈
ŜMH0

〉
, (3.22)

and

∂t 〈H0〉 = µ̄−1
F

(
αF

αDMω
+

αDF

αDM

)
cIF + µ̄−1

M

(
αM

αDMω
+ 1

)
cIM − δ

ω
〈H0〉 , (3.23)

where µ̄F = 1〈
1

µF

〉 and µ̄M = 1〈
1

µM

〉 . In fact, µ̄F and µ̄M are harmonic averages of the

motilities, a natural product of this form of homogenization [23].

Note that (3.23) is in terms of the averaged environmental hazard, 〈H0〉, the hazard

terms in (3.21) and (3.22) are averages of steady state populations multiplying the hazard,〈
ŜF H0

〉
= CF

〈
H0
µF

〉
and

〈
ŜMH0

〉
= CM

〈
H0
µM

〉
. It is a reasonable assumption that there

is a correlation between the deer aggregation and prion contamination. Therefore, in the

following simulations, we used
〈

H0
µF

〉
= σF

〈
1

µF

〉
〈H0〉 and

〈
H0
µM

〉
= σM

〈
1

µM

〉
〈H0〉 for

constants σF and σM . The constants can be calculated by returning to the small scale to

compute the difference between
〈

H0
µF

〉
and

〈
1

µF

〉
〈H0〉 after each time step. This is a time
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consuming process and we found that over a sufficient time period (≥ 1 year), σF = σM = 1

gives very similar results, as shown in the next section.

Our homogenized model is much easier to solve numerically than (3.6)-(3.8), yet retains

the small scale variability through division by the motility coefficient (3.12). This allows us

to run simulations over a large domain, exploring several different spread scenarios.

3.3 Simulating Spread of CWD

CWD was first detected in the free-ranging mule deer population in the La Sal Moun-

tains of Utah in 2002. Since then 54 positive cases have been identified in the state out

of 19,000 deer tested. The area with the highest prevalence is the La Sal Mountains in

Southeast Utah with 38 of the positive cases [100]. During the 2011 hunting season the

first positive CWD case was found in the vicinity of the Abajos Mountains [54]. Exploring

the spread of CWD from the La Sal Mountains southwest to the Abajo Mountains is the

objective for our simulations. A map of Southeast Utah with these mountain ranges circled

is found in Figure 3.1. In this section, we define the area for the simulations, including

boundary and initial conditions. We explain our method for estimating motilities from

GPS collar data and outline sources for the other model parameters. Then we describe the

assumptions for the different simulations and compare the results.

3.3.1 Study Area

Our study area is the trapezoidal region east of the Colorado River in Southeast Utah,

shown in Figure 3.1. The Colorado River acts as a barrier to deer movement [27], so we

approximate it by a line and reflect values across it to simulate a no-flux boundary. (See

Figure 3.2.) No-flux boundary conditions are used for the other boundaries of the region as

well, assuming no deer enter or leave.

Characteristic of the Colorado Plateau ecoregion [101], our study area is comprised

of high mountains, the La Sal Mountains and the Abajo Mountains, surrounded by val-

leys, canyons, shrubland, deserts, and farmland. Most deer migrate, sometimes for more
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Figure 3.1: A map of Southeast Utah which includes the La Sal Mountains and the Abajo
Mountains (circled) [81]. Our study area is enclosed by the trapezoid. The Colorado River
acts as a barrier to deer movement.
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(a) Breeding season motilities for male deer

(b) Reflection about the Colorado River

Figure 3.2: Motilities for male deer during breeding season. Dark shades indicate small
motility values, while light shades indicate large values. The area for our simulation is
the trapezoidal region east of the Colorado River shown in (a). The Colorado River is
approximated by a line and values are reflected across that line, to create no-flux condition
at the boundary, as shown in (b).
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than 80 kilometers, between lower elevation winter ranges and higher elevation summer

ranges. Important winter range habitats include sagebrush-steppe, pinyon-juniper wood-

lands, salt desert shrub, and ponderosa pine forests below 7,500 feet. Also, many deer

winter in irrigated agricultural areas. Summer habitats include aspen forests, mountain

shrub communities, Gambel oak forests, montane sagebrush-steppe, spruce-fir and mixed

conifer forests, and montane parks and meadows [79].

Since the La Sal and Abajo Mountains are approximately 100 kilometers apart (see

Figure 3.1), separated by critical winter range habitat, a management concern has been the

spread of CWD from the La Sals to the Abajos. In fact the first CWD positive deer was

found near the Abajos during the 2011 hunting season. We chose our study area to include

these two mountain ranges so we can explore this spread.

The Utah Division of Wildlife Resources (UDWR) divides the state into Wildlife Man-

agement Units. Our study area is contained in two of those units, La Sal (#13) and San Juan

(#14). A 15 buck/100 doe ratio is the goal of harvesting practices in these units. Steady-

state populations for our simulations were taken from post-hunting season estimates from

computer models used by the UDWR [100]. There is a 2% CWD prevalence in bucks in the

La Sal Mountains, while prevalence is believed to be less than 1% in the doe population

[100]. Samples are drawn from hunter-harvested deer for testing and since female deer are

not routinely hunted in Utah, there is little known about CWD prevalence in females.

3.3.2 Model Parameters

In 2005-06, the UDWR collared 50 deer, a mix of adult males, young males, and

adult females, in the La Sal Mountains. GPS data was collected on their movement, with

an emphasis on deer locations during breeding season, to explore the connection between

breeding behaviors and movement [53]. The time intervals for collecting location data

depended on the time of year: 12 hour intervals in late winter/early spring, 6 hour intervals

during spring migration/early summer, 12 hour intervals during summer/early fall, and 30

minute intervals during fall migration/breeding season.
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Mule deer exhibit high site fidelity to traditional summer and winter ranges with sea-

sonal migration occurring during specific times of the year. Females form matrilinear groups

which remain cohesive particularly during the breeding season when males begin wander-

ing between groups looking for receptive females [53]. This somewhat complicates the idea

of a motility being assigned to a land cover type, because the use of various habitats by

deer varies widely by sex and season. Partitioning the GPS movement data by sex and by

season allowed us to estimate motilities for males and females during winter, summer, and

breeding season. We did not compute motilities specifically for spring or fall migration,

since migration occurs during a relatively short period of time and represents the change of

motility between seasons, i.e. spring migration is the population response to the change in

motility between winter and summer.

To obtain motility coefficients, we used movement data from 11 female deer and 11

male deer, selected for having the most complete data (approximately a year long). The

method of Johnson et al. [39] and the R contributed package CRAWL were used to fit a

continuous time correlated random walk model to the location data and predict locations

at one minute time intervals, as outlined in Chapter 4 . This method considers movement

as a continuous process, so irregular time intervals were not an issue. A sample of 50

possible paths were drawn from the predictive posterior distribution for possible paths for

each deer. We used the LANDFIRE data set [93] to classify each predicted location by land

cover type. We counted the minutes spent in each of 38 land cover types and calculated the

mean time spent (residence times) in units of minutes per block. The motility coefficients

were obtained from the residence times by taking the multiplicative inverse and converting

to units of square kilometers per day. These values are found in Table 3.2. The summer,

breeding season, and winter motilities for male and female deer are compared in Figure 3.3

for the area containing the La Sal Mountains.

The other parameters used in the simulations are found in Table 3.1, many from Miller

et al. [58]. Since Miller et al. fit their ordinary differential equation models with data from

captive mule deer, they adjusted the infection rate downward by a factor of ten for free-
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Table 3.2: Mule deer motility coefficients in square kilometers per day. Small numbers
indicate habitats where deer linger, while large numbers highlight areas they quickly leave.

LANDFIRE Winter Summer Breeding

Classification, EVT male female male female male female

11 open water 0.10 0.22 0.29 0.40 0.27 0.99
21 dev. open space 0.57 0.44 0.16 0.12 0.25 0.05
22 dev. low intensity 0.54 0.38 0.07 0.08 0.03 0.02
23 dev. med. Intensity 0.42 0.41 0.40 1.30 0.41 0.96
31 barren 0.44 0.37 0.12 0.06 0.20 0.43
81 pasture/hay 0.51 0.31 0.08 0.36 0.17 0.03
82 irrigated crops 1.43 0.62 0.14 0.05 0.19 0.52
2001 sparse veg. 0.41 0.51 0.29 0.14 0.53 1.30
2006 alpine sparse veg. 0.82 1.56 0.09 0.08 0.21 12.96
2011 aspen 0.29 0.23 0.05 0.03 0.12 0.04
2016 pinyon-juniper 0.27 0.19 0.11 0.05 0.19 0.07
2051 dry mixed conifer 0.23 0.20 0.15 0.04 0.10 0.06
2052 mixed conifer 0.53 0.64 0.11 0.07 0.56 0.06
2054 ponderosa pine woodland 0.23 0.23 0.15 0.04 0.19 0.04
2055 dry spruce-fir 1.73 0.97 0.08 0.03 0.56 12.96
2057 subalpine limber pine 12.96 0.18 0.12 0.08 0.95 12.96
2061 aspen/mixed conifer 0.66 0.40 0.08 0.05 0.23 0.02
2062 mtn. mahogany 0.44 0.28 0.16 0.02 0.11 0.04
2064 low sagebrush 0.29 0.23 0.10 0.04 0.17 0.07
2066 saltbrush scrub 0.73 0.31 1.10 3.33 0.88 0.51
2080 big sagebrush 0.20 0.15 0.15 0.04 0.15 0.06
2081 salt desert scrub 0.32 0.21 0.12 0.46 0.19 0.25
2086 foothill scrub 0.47 0.36 0.19 0.08 0.11 0.34
2093 sand shrubland 0.72 0.64 0.10 5.83 0.70 0.22
2103 semi-desert chaparral 0.13 0.31 0.15 0.02 0.18 0.05
2107 Gambel oak 0.81 0.31 0.09 0.13 12.96 0.08
2117 ponderosa pine savanna 0.28 0.33 0.18 0.02 0.23 0.05
2126 sagebrush steppe 0.27 0.12 0.08 0.11 0.31 0.03
2135 semi-desert grassland 0.28 0.32 0.36 0.61 0.08 0.38
2153 greasewood flat 0.33 0.20 0.10 0.65 0.33 0.08
2159 riparian 0.29 0.18 0.14 0.04 0.20 0.08
2160 subalpine riparian 0.52 0.12 0.07 0.03 0.57 0.08
2180 intro. riparian 0.34 0.22 0.19 0.04 0.18 0.12
2181 annual grass 0.27 0.17 0.18 0.24 0.13 0.06
2210 shrubland-blackbrush 0.26 0.20 0.20 0.11 0.19 0.13
2214 shrubland-manzanita 0.28 0.22 0.07 0.05 0.15 0.06
2217 shrubland-Gambel oak 0.21 0.20 0.08 0.03 0.08 0.05
2220 shrubland-big sagebrush 0.22 0.14 0.20 0.10 0.38 0.03
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(a) Female Summer (b) Female Breeding (c) Female Winter

(d) Male Summer (e) Male Breeding (f) Male Winter

Figure 3.3: Comparison of motilities for female and male during summer, breeding season,
and winter in an area including the La Sal Mountains. Dark shades represent low motility,
i.e., areas where the deer aggregate and spend time, while the lighter regions represent high
motility i.e., areas that they avoid or move through quickly. In summer the deer are in the
mountains and then move to lower elevations for winter.
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ranging mule deer, assuming that natural populations would exhibit one tenth the density.

Our model uses motilities to reflect the spatial spread of the disease, which means that

where motility is low, the deer are congregating, occasionally as tightly as the captive herd

in Miller et al. [58]. It is therefore unclear what infectivity parameters to use. We explore

infection rates between the scaled and unscaled values in the simulations.

Our model assumes a steady-state population in the study area. This means that

even though the seasonal change in motilities redistributes the deer at the beginning of

each season, the total number of deer, N , in the domain needs to remain the same. The

constants, CF and CM for the steady-state population densities, ŜF = CF
µF

and ŜM = CM
µM

,

were computed separately for each season to maintain this constant number of deer.

3.3.3 Simulations

We conducted several simulations of the spread of CWD from the La Sal Mountains to

the Abajo Mountains, exploring different infection rates. The use of variable motility was

compared to a constant motility and the model with environment hazard was compared

to one without. Other simulations explored the spread during different seasons and a

comparison of two ways to average the environmental hazard,
〈

H0
µF

〉
(the average that is the

consequence of homogenization) or
〈

1
µF

〉
〈H0〉 (an approximation based on the assumption

that deer aggregation and prion contamination are correlated), as discussed at the end of

Section 3.2.2.

An alternating direction implicit (ADI) numerical method was adapted for the system

of homogenized equations (3.21)-(3.23) [64] (see Appendix). We chose a spatial compu-

tational step of 600 meters in both directions and a time step of 5 days although other

step sizes work as well. The averaging was done over 3000 meter blocks (ε = 0.01). We

started with an initial number of infected deer (which depends on the simulation) in the

La Sal Mountains and simulated the spread over ten years. Table 3.3 displays the results

of simulations exploring different infection rates. The number of infected deer were com-

puted from densities (number of infectives per square kilometer) by NIF =
∫∫
A

IF dA and
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NIM =
∫∫
A

IMdA, where NIF is the number of infected females and NIM is the number of

infected males.

Table 3.3: Simulations exploring different infection rates for the CWD model over 10 years.
Steady state-state populations are from estimations made by the UDWR with computer
models [100]. Numbers of females are indicated by f and numbers of males by m. The
results are in terms of numbers of infected males and females. The simulation numbers (1,
2, ..., 10) are to aid in referring to particular simulations in the text.

Simulation 1 2 3 4 5

Steady-state pop. 22,430 f 22,430 f 22,430 f 22,430 f 22,430 f
4070 m 4070 m 4070 m 4070 m 4070 m

Initial inf. 47 f 47 f 47 f 130 f 47 f
32 m 32 m 32 m 32 m 32 m

βFF , βMF 8.9315 × 10−5 5.39 × 10−4 6.25 × 10−4 6.25 × 10−4 6.25 × 10−4

βMM , βFM 8.9315 × 10−5 5.39 × 10−4 6.25 × 10−4 0.00125 0.00125
Notes 2007 pop. ×6 ×7 1% prev. in f βMM = βFF × 2
Results

No. of inf. f 0 f 44 f 199 f 539 f 205 f
No. of inf. m 0 m 1 m 4 m 18 m 7 m

Simulation 6 7 8 9 10

Steady-state pop. 22,430 f 22,430 f 22,430 f 16,957 33,565
4070 m 4070 m 4070 m 2543 5035

Initial inf. 47 f 47 f 47 f 29 f 79 f
32 m 32 m 32 m 11 m 54 m

βFF , βMF 6.25 × 10−4 6.25 × 10−4 7.15 × 10−4 6.25 × 10−4 6.25 × 10−4

βMM , βFM 0.0019 0.0019 0.00212 0.0019 0.0019
Notes βMM = βFF × 3 No hazard ×8 2010 pop. Obj. pop.
Results

No. of inf. f 214 f 112 f 1058 f 7 f all
No. of inf. m 13 m 5 m 55 m 0 m all

The first eight simulations use the 2007 estimated populations (the peak population

estimate for the last ten years) for the study area of 22,430 females and 4070 males, using an

18:100 buck to doe ratio (from post hunting season population counts). Initial conditions of

2% prevalence in males (32 infectives) and 0.5% prevalence in females (47 infectives) were

used for Simulations 1-3 and 5-8. The infection rate from Miller et al. [58] of 8.9315× 10−5

(Table 3.3) resulted in the disease dying out in ten years (Simulation 1). This has not

been the case since new cases of CWD have been detected in the La Sal Mountains every

year since 2002. Increasing this rate by a factor of ten for a simulation resulted in all deer

becoming infected.

An infection rate of 5.39 × 10−4 (8.9315 × 10−5 × 6) yields one infected male and 44
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infected females at the end of ten years (Simulation 2). Increasing the rate to 6.35× 10−4

yields 199 infected females and 4 infected males (Simulation 3). Changing the number of

initial infected females from 47 to 130 (1% prevalence) resulted in 539 infected females and

18 infected males (Simulation 4). Returning to 0.5% prevalence in females and setting the

infection rate for males (βMM = βFM = 0.00125) to be twice that of females (βFF = βMF =

6.23 × 10−4) increases the number of infectives to 205 females and 7 males (Simulation

5). Tripling the infection rate for males gives 214 infected females and 13 infected males

(Simulation 6). The result of this simulation is shown in Figure 3.4.

Keeping the same initial conditions and infection rates, we ran the model without

prions collecting in the environment (Simulation 7). After 10 years the number of infected

females was 112 compared to 214 for the model with environmental hazard. The number

of infected males was 5 compared to 13. Simulation 8 resulted in an increase in infected

males (from 32 to 55 over 10 years) by using infection rates βFF = βMF = 7.15 × 10−4

and βMM = βFM = 0.00212. It is interesting to note that this was the only one of the

first eight simulations that resulted in an increase in infected male deer from the initial

amount of infectives. The number of infective females, however, increased for lower infection

rates. This could be due to the fact that the estimated motilities for males are consistently

larger than those for females (see Table 3.2) in key mule deer habitats, such as sagebrush

steppe, pinyon-juniper forest, and ponderosa pine woodland. This means that female deer

congregate more, while male deer wander more. This connection between motility and

disease spread is a basic feature of the CWD model.

Next we returned to βFF = βMF = 6.23× 10−4and βMM = βFM = 0.0019 and varied

the steady-state population of susceptibles. The estimated population for the study area

for 2010 with 15 bucks to 100 does (from post hunting season population counts) is 16,957

females and 2543 males. Using these numbers resulted in 7 infected females and 0 infected

males (Simulation 9). The goal of the UDWR for the two management units in our study

area is to have an objective population of 38,600 mule deer [100]. Using this population

with the goal of 15 bucks to 100 does, all the deer become infected by the end of 10 years
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(a) Infected male deer (b) Infected female deer

(c) Environmental hazard

Figure 3.4: The results of running the simulation for ten years using βFF = βMF =
6.5 × 10−4 and βMM = βFM = 0.0019. The initial conditions are shown in Table 3.3,
Simulation 6. The lighter the shade the higher the density (in number per square kilometer)
of infected deer in (a) and (b) and the higher the concentration of prions in the environment
in (c). The densities of infected male and female deer were returned to the small scale at the
end of the simulations by using interpolation. Environmental hazard, however, remains in
terms of the homogenization scale, which accounts for the smooth appearance. The amount
of environmental hazard is in units of mass per square kilometer.



54

(Simulation 10).

We compared our model with variable motilities to one using a constant motility,

computed as a weighted average (Simulations 11 and 12 in Table 3.4). Beginning with

214 infected females and 64 infected males and a susceptible population of 21,348 females

and 3202 males, the model with variable motilities resulted in 890 infected females and 40

infective males after 10 years, compared to 48 infected females and 2 infected males for the

mode with constant motility. The spread was much wider for the constant motility model

as expected (see Figure 3.5). This is a substantial difference, illustrating that low motilities

in the variable motility model aggregate deer causing an increase in the number of infectives

while slowing the spread into new areas, an effect absent in the constant motility model.

Table 3.4: The results of simulations comparing variable motilities with a constant motility
(Simulations 11 and 12) and a comparison of two ways of averaging the environmental
hazard (Simulations 13 and 14).

Simulation 11 12 13 14

Steady-state pop. 21,348 f 21,348 f 22,430 f 22,430 f
3202 m 3202 m 4070 m 4070 m

Initial inf. 214 f 214 f 47 f 47 f
64 m 64 m 32 m 32 m

βFF , βMF 0.0005562 0.0005562 0.000625 0.000625
βMM , βFM 0.0007843 0.0007843 0.0019 0.0019

Notes 2002 pop. Constant motility
〈

H
µ

〉 〈
1
µ

〉
〈H〉

Results

No. of inf. f 890 f 48 f 94 f 105 f
No. of inf. m 40 m 2 m 5 m 6 m

As mentioned at the end of Section 3.2.2, we save computational time by using
〈

H0
µF

〉
=

σF

〈
1

µF

〉
〈H0〉 (similar for male motilities). In simulations 13 and 14 (See Table 3.4.) we

test this using σF = σM = 1. The average
〈

H0
µF

〉
is computed by returning to the small

scale every time step. In order to make this computationally feasible, we subsampled the

motility matrix for our study area, using every third value. This resulted in 94 infected

females and 5 infected males at the end of 10 years. Subsampling in this same manner for

the simulation using σF

〈
1

µF

〉
〈H0〉, we obtained similar results, 105 infected females and 6

infected males. This indicates that the approximation is worth the computational savings

and makes it possible to numerically solve the equations for a large domain.
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(a) Variable motility coefficient (b) Constant motility coefficient

Figure 3.5: The density of male infectives simulated with variable motilities (a) and with a
constant motility (b) computed as a weighted average of the male motilities. For the initial
vales and infection rates used see Table 3.4, Simulations 11 and 13. The simulation with
variable motilities predicted a total of 930 infected deer after 10 years, while the constant
motility simulation predicted a total of 50 infected deer.

The motilities for males and females vary with season, so we ran a simulation to compare

the spread of CWD over a single season to see if time of year influences spread. The same

steady-state susceptible population and number of infectives were used at the beginning of

each season. The length of each season is defined by how the GPS movement data was

collected (153 days for summer, 61 days for breeding season, and 151 days for winter). The

results are found in Table 3.5 and shown in Figure 3.6 for male deer. Even though breeding

season is much shorter than winter, the increase in infectives was very similar. However, the

spread of infectives during winter was much wider than during breeding season. Breeding

season had a net increase of 0.23 infected females per day and 0.1 infected males per day,

much higher that 0.1 infected females per day and 0.05 infected males per day during winter.

This reflects that breeding behaviors can increase the number of new infectives this time of

year.

3.4 Stability and asymptotic
speed of spread

The application of homogenization to our CWD model facilitated the simulations over
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(a) Summer (b) Breeding season

(c) Winter

Figure 3.6: A comparison of CWD spread for one season for male mule deer. The same
initial values were used at the beginning of each season, as found in Table 3.5. The resulting
numbers of infectives were quite similar (31 for summer, 38 for breeding season, and 40 for
winter). However, spread occurred over a much larger area during winter than during
breeding season and summer.
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Table 3.5: Comparison of CWD spread over one season. The length of each season is defined
by how the GPS movement data was collected (153 days for summer, 61 days for breeding
season, and 151 days for winter). The number of infectives per day is the net increase or
decrease in the number of infectives divided by the length of the season.

Simulation 15 16 17

Steady-state pop. 22,430 f 22,430 f 22,430 f
4070 m 4070 m 4070 m

Initial inf. 47 f 47 f 47 f
32 m 32 m 32 m

βFF , βMF 0.000625 0.000625 0.000625
βMM , βFM 0.0019 0.0019 0.0019
Notes 1 summer 1 breeding season 1 winter
Results

No. of inf. f 59 f 61 f 62 f
No. of inf. m 31 m 38 m 40 m
f inf. per day 0.08 0.23 0.1
m inf. per day -0.007 0.1 0.05

a large area of Utah. The small-scale variability is preserved in the averaged coefficients.

Those coefficients are also important in examining the asymptotic invasive speed of dis-

ease spread. Skellam [90] introduced this idea for constant coefficient reaction-diffusion

equations by estimating the speed of the spread of muskrats across Europe. Shigesada and

Kawasaki [88] extended it to ecological diffusion over an environment composed of two types

of patches. In this section we further develop this concept for ecological diffusion over a

heterogeneous landscape composed of many different habitat types, with the goal of using

the averaged coefficients from the homogenized equations to explore invasion speeds and

critical population levels for specific areas.

The spatially-structured “invasibility” of large-scale landscapes can be examined via the

homogenized equations (3.21)-(3.23). If we consider the system without the environmental

hazard, assuming horizontal transmission occurs on a faster time scale than accumulation

of prions in the environment, the system becomes:

∂tu = D1∇2
xu + A1u + A2v (3.24)

∂tv = D2∇2
xv + B1v + B2u., (3.25)
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where u = cIF and v = cIM for notational simplicity. The coefficients, after multiplication

by ω to return to the original time scale, are defined as follows:

D1 = µ̄F , D2 = µ̄M (3.26)

A1 = µ̄F

〈(
βFF ŜF − ω − φ

) 1
µF

〉
, B1 = µ̄M

〈(
βMM ŜM − ω − φ

) 1
µM

〉
, (3.27)

A2 = µ̄F βMF

〈
ŜF

µM

〉
, and B2 = µ̄MβFM

〈
ŜM

µF

〉
. (3.28)

At the leading edge of the spread of the disease, we assume a traveling solution of the

form  u

v

 =

 u0

v0

 eσt+λ(x−ct), (3.29)

where u0 and v0 are arbitrary constants, σ is the growth rate, λ is the shape of the front,

and c is the asymptotic speed. Substituting (3.29) into (3.24) and (3.25) and rearranging

gives the dispersion relation,

 −σ + cλ + A1 + D1λ
2 A2

B2 −σ + cλ + B1 + D2λ
2


 u0

v0

 =

 0

0

 . (3.30)

Setting the determinant of the matrix in (3.30) to zero, with σ = 0 (no growth in the trav-

eling frame of reference) and dσ
dλ = 0 (maximum growth) results in the system of equations,

f(c, λ,θ) = (cλ + A1 + D1λ
2)(cλ + B1 + D2λ

2)−A2B2 = 0 (3.31)

df

dλ
= (c + 2D1λ)(cλ + B1 + D2λ

2) + (c + 2D2λ)(cλ + A1 + D1λ
2) = 0, (3.32)

where θ is a vector containing the parameters.
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We can obtain an expression for the wave speed, c, by multiplying (3.31) by -2 and

(3.32) by λ and adding the resulting equations together.

c = g(λ, θ) =
−2(D1D2λ

4 + A2B2 −A1B1)
λ(D1λ2 + D2λ2 −A1 −B1)

. (3.33)

We substitute (3.33) into (3.31) to obtain a polynomial in λ, F (λ, θ) = 0. For a given set

of parameters, θ, we can numerically find a point (λ < 0, c) that satisfies F (λ, θ) = 0 and

c = g(λ, θ). We desire λ < 0 to be consistent with the exponentially decreasing shape of

the wavefront.

The parameters, defined in (3.26)-(3.28), are dependent on the motilities, µF and µM ,

and steady-state population densities, ŜF and ŜM . The number, NF , of female deer is given

by

NF =
∫∫
A

ŜF dA =
∫∫
A

CF

µF
dA = CF A

〈
1

µF

〉
,

where A is the area of a region of interest. Likewise, the number of males is given by

NM = CMA
〈

1
µM

〉
. Then CF = µF NF

A and CM = µMNM
A and (3.27)-(3.28) become:

A1 =
µ̄2

F

A

〈
1

µ2
F

〉
βFF NF − µ̄F

〈
1

µF

〉
(ω + φ), (3.34)

B1 =
µ̄2

M

A

〈
1

µ2
M

〉
βMMNM − µ̄M

〈
1

µM

〉
(ω + φ), (3.35)

A2 =
µ̄2

F

A

〈
1

µF µM

〉
βMF NF , and B2 =

µ̄2
M

A

〈
1

µF µM

〉
βFMNM . (3.36)

Now our exploration of c values can be framed in terms of NF and NM , for an area of

interest and given motilities, infection rates, death rate, and cull rate.

To illustrate this, we used two rectangular regions in our study area, shown in Fig-

ure 3.7. Area A includes the La Sal Mountains and contains critical summer range habi-

tats. It is where CWD was first discovered in Utah in 2002. Area B is critical winter range

between the La Sal and Abajo Mountains, and the area through which a wave of infection
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would have to travel to reach the Abajo Mountains.

Using population estimates for 2007 and 2010, and the population goal of the UDWR

(objective), we calculated the female and male population for each area separately for

summer and winter, subject to the respective motilities. Those populations in Area A and

Area B for winter are shown as points on the graphs in Figure 3.8. For infection rates

βFF = βMF = 6.23 × 10−4and βMM = βFM = 0.0019, the areas where the invasive speed,

c, is greater or lesser than zero are indicated. For these infection rates all of the population

points fall in the region of positive invasive speed, although for Area A the 2010 winter

population estimate (193 males and 1233 females) is close to the c = 0 curve, indicating a

much slower rate of spread.

Figure 3.7: Areas averaged across for critical population examples. Area A includes the
La Sal Mountains and is critical summer range for mule deer. It is where CWD was first
discovered in Utah (2002). Area B is an area between the La Sal and Abajo mountain
ranges and is critical winter range.
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(a) La Sals (Area A) (b) Area between the mountains (Area B)

Figure 3.8: The asterisks show populations for these areas subject to winter motilities for
male (NM ) and female (NF ) deer using the population estimates for 2007and 2010, and
the objective goal. The green curves indicated where the asymptotic invasive speed is zero
using infection rates βFF = βMF = 6.23× 10−4and βMM = βFM = 0.0019. In Area A the
2010 estimated population is close to the c = 0 line.

Figure 3.9 compares the c = 0 curves for a variety of infection rates for Area A with

summer motilities. The scaled infection rate from Miller et al. [58], 8.93× 10−5, produces

the longest curve. This rate would mean that the disease for all the population estimates

would not diffuse from the La Sals. The discovery of CWD in the Abajos indicates that

the disease has spread from the La Sals [54]. An infection rate of greater than 3.57× 10−4

is needed for spread from a population the size of the 2007 estimate. This increases to

5.36× 10−4 for a population at the 2010 level.

Figure 3.10 includes contours of speed, c, for Area A, comparing summer and winter

results, using βFF = βMF = 6.23 × 10−4and βMM = βFM = 0.0019. The units of c are

kilometers per day. Converting them to kilometers per year helps put population size into

the context of the speed needed for CWD to spread the 100 kilometers from the La Sal

Mountains to the Abajo Mountains. For summer (Figure 3.10a) 9.125 < c < 10.95 km yr−1

at the objective population level, while c < 5.475 km yr−1 at the 2010 population level.

For winter the 2007 population level c is between 7.3 km yr−1 and 10.95 km yr−1. This
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Figure 3.9: A comparison of c = 0 lines for many different infection rates for the La Sals
(Area A) with summer motilities. The longest curve is for an infection rate of β = 8.93×10−5

as in Miller et al. [58]. This rate is multiplied by 2, then 3, etc., until the curve closest to
the origin, which is β = 8.93× 10−5 = 6.23× 10−4 (the rate used in Figure 3.8).

would be a rate fast enough for the disease to spread 100 kilometers from the La Sals to

the Abajos in approximately 10 years.

3.5 Discussion and Conclusion

In this paper we have presented a spatial model for the spread of CWD in Utah,

incorporating ecological diffusion as a way to connect disease spread to animal movement.

Motility coefficients were estimated separately for each season for both male and female

deer. Our modeling efforts show that ecological diffusion is an effective way to connect

large-scale disease spread to small-scale animal movement. Our homogenization technique

allows us to model spread of CWD over a large area with computational ease and provides

us with coefficients for analyzing asymptotic rates of spread.

CWD in Utah is rare and in its initial stages, so there are many things we do not know

about it, including infection rates, amounts of prions in the environment and how long they
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(a) La Sals (Area A) Summer (b) La Sals (Area A) Winter

Figure 3.10: A look at the contours for speeds, c, Area A. With summer motilities the
estimated population for 2010 is between c = 0.01 and c = 0.015 kilometers per day, which
is between 3.7 and 5.5 kilometers per year. Using winter motilities, the estimated population
for 2010 falls between c = 0 and c = 0.01, making the speed of invasion for that population
less than 3.7 kilometers per year. The infection rates βFF = βMF = 6.23 × 10−4and
βMM = βFM = 0.0019 were used.

stay infective, and the prevalence of CWD in the female population. Because of this lack

of knowledge, there are many ways to explore spread with the CWD model, varying initial

conditions, infection rates, and influence of the environment.

However, CWD has been present in the La Sal Mountains for 10 years and has just

recently been detected in the Abajos. Our simulations showed that this time line is plausible

for our model with very reasonable infection rates. The rates and initial conditions in

Simulation 6 (see Table 3.2) would result in 1 infected deer in the Abajos after 10 years and

2 infected deer after 12 years. The increased infection rates in Simulation 8 gives 3 infected

deer in the Abajos after 10 years.

Connecting the landscape with speed of invasion and critical population levels can
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be important from a management perspective. The permeability of key portions of the

landscape for different population levels and infectivities can be analyzed using the methods

of Section 3.4. These methods allow spread to be analyzed separately for areas of high

prevalence. Current populations increase spread, but lower target populations in selected

areas could potentially stop spread from those areas.

In the future this model could be applied to other areas in the Western U.S. where

CWD is a concern to wildlife managers. Also, the techniques outlined can be extended to

many ecological applications. Not only can they be used to model other wildlife diseases,

but they can be applied to insect infestations, invasive species, and escaped genetically

modified organisms. Tying the spatial structure of the environment to how organisms move

is key to understanding spread and invasive speed of organisms and diseases.
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CHAPTER 4

ESTIMATING RESIDENCE TIMES FROM GPS MOVEMENT DATA FOR

ECOLOGICAL DIFFUSION MODELS 1

4.1 Introduction

Ecological studies have been widely impacted by the onslaught of GPS collar data

and the availability of several land classification data sets. Meaningfully incorporating in-

formation from this data into ecological models is a challenge. One piece of information

that can be very useful is a measure of how much time an organism spends in a particu-

lar habitat (residence time or residence index [97]). Residence time can be incorporated

into spatiotemporal models over heterogeneous environments dealing with invasive spread,

spread of disease, habitat use or population dynamics.

In diffusion models, residence time can be considered as inversely proportional to the

diffusion coefficient under the assumption that individuals move via a random walk [80].

Thus, residence time provides a connection between an individual’s movement and the redis-

tribution of a population [97]. The classic reaction-diffusion equation, ∂u
∂t = D∇2u + f(u),

assumes a constant diffusion rate, modeling the spread of organisms over a homogeneous

landscape [90].

Both Fickian and ecological diffusion provide a way to incorporate variable diffusion

coefficients into spatial models to accommodate heterogeneous environments. Fickian dif-

fusion, of the form ∂u
∂t = ∇[D(x1, x2)∇u], models the random redistribution of organisms

from high densities to low densities at a rate proportional to the population density gradi-

ent. In terms of a random walk, organisms leave different habitats at the same rate until

there is no longer a population gradient. This eventually distributes organisms uniformly in

habitats that provide food and shelter as well as those which do not, and does not connect

population distribution with residence time [23]. On the other hand, ecological diffusion,
1Coauthored by Martha Garlick, James Powell, Mevin Hooten, and Leslie McFarlane
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represented by ∂u
∂t = ∇2[D(x1, x2)u], allows for distinct population differences at habitat

boundaries, reflecting the aggregation of organisms in desirable habitats and their dispersal

from undesirable ones. For ecological diffusion the variable diffusion coefficient, D(x1, x2),

represents the rate of movement of organisms (motility), which is the multiplicative inverse

of residence time. In fact residence time is proportional to the equilibrium population den-

sity (the population density as t →∞). In other words, the faster organisms move through

an environment (the less time they spend), the smaller we expect the population density at

equilibrium in that environment to be [97].

The effect of heterogeneous landscapes on the dispersal of populations and the spread

of diseases has been the subject of many studies [103]. Dunning et al. [35] stressed the need

to link population models to landscape features in order to examine possible population

response to local and global change. Such models have been applied to the movement of

hispid cotton rats [9], the abundance of scarab beetles [3], and the spread of feline leukemia

virus [21]. Fragmented landscapes, where favorable habitat for a species is surrounded by

less favorable habitat, are examined by Cantrell and Cosner [10]. They use diffusion models

that consider population growth rate to differ between regions of different habitat types

and apply them to refuge design. Ovaskainen and Cornell [75] also explore the need for

diffusion processes to be discontinuous at habitat boundaries. This necessitates classifying

landscapes in order to determine habitat-specific diffusion and mortality coefficients [73].

McRae et al. [55] use a circuit theory approach to equate the connectivity of landscapes

to the flow of electrical current. Brooks et al. [8] use spatially explicit network models to

study how heterogeneous structure can promote the persistence of species in landscapes.

Statistical approaches that tie species preference to habitat include using resource se-

lection functions (RSFs). A RSF is a function that is proportional to the density of locations

used by a population given the resources present at all locations on a desired domain [22].

For most applications, the value of RSF models is how well they predict the location of

organisms on a landscape [7]. This approach describes probabilities based on data and

requires enough observations relative to the chosen classification scheme to have confidence.
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Because of this, RSF’s are often limited to populations at equilibrium [6], but see Johnson

et al. [40] and Forester et al. [22]. Here we present a different way to relate habitat and

population. A PDE model provides a mechanism for movement, so we can look at the

dynamics of spread and the effects of transients, not just the steady state.

Even though diffusion models with variable coefficients have been recognized as nec-

essary to model dispersal over heterogeneous landscapes [70], variable coefficients are often

abandoned in practice. This is chiefly for two reasons: added mathematical complication

and lack of data to derive diffusion coefficients (motilities) for all landcover types in a study

area. Increased computing power and homogenization techniques can aid in dealing with

the mathematical complication for numerical solutions [23] and advances in telemetry have

enhanced data collection over diverse habitats.

Land classification data is available in blocks as small as 30 × 30 meters. Ideally for

modeling purposes, one would like to associate each 30 × 30 pixel with a residence time

for a population. However, by necessity GPS data from collared animals are collected at

discrete time intervals and are often nonuniform temporally. Due to battery-life, length of

study, and other considerations, data points may be hours or even days apart. Thus the

land cover data can be at a much finer resolution than the GPS location data. This means

that there may be very little or no data collected in habitat types of low residence time.

Traditional methods of analyzing animal movement to determine motilities involve ap-

proximating mean-squared displacement over time by connecting data points with straight

lines [44]. When data are collected at irregular time intervals, this means dividing moves

into smaller segments or combining moves [96], which can obscure the underlying move-

ment process [95]. Since telemetry removes the observer from data collection, it is difficult

to make a connection between movelength and habitat preference [97].

Other methods of extracting measures of residency out of movement data exist in

the literature. Ovaskainen and Cornell solve for occupancy times from problems that are

adjoint to the original ecological diffusion problem [73, 74, 75]. They apply this tech-

nique to mark/recapture data from butterfly movement studies. Pedersen et al. [78] use
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a process-based statistical approach to estimating residency and behavior from movement

data collected with electronic tags. A hidden Markov model on a spatial grid in continuous

time is used to compute the joint posterior probability distribution of location and behavior

at each point in time. They demonstrate this method by analyzing southern bluefish tuna

(Thunnus maccoyii) telemetry data.

Johnson et al. [39] use a continuous-time correlated random walk (CTCRW) model

which makes the assumption that successive moves are related to each other, i.e. animals

have inertia that keeps them moving for a period of time at a nearly constant rate [97].

The moves in a random walk (the basis of an ecological diffusion model) are not correlated.

However, habitat types in natural landscapes are correlated, i.e. nearby locations are more

likely to be of similar land cover type than distant locations. An animal in a preferred

habitat is likely to remain there, rather than move to an undesirable one. A random walk

over a heterogeneous environment reflects this. The probability that an organism stays in a

desirable patch is greater than the probability of leaving it for a less desirable patch. Thus

a random walk inherits structure from the environment.

In this paper we discuss how to use the methods of Johnson et al. [38, 39] to fit a

CTCRW model to GPS collar data from mule deer (Odocoileus hemionus) in the La Sal

Mountains of Utah and obtain the posterior predictive distribution (PPD) of animal paths

between data points at a desired uniform time interval. The PPD for the path is classified

according to a land cover data set and residence times for each land cover type are inferred.

This allows inference to be made in finer detail than given by the collected data, including

the ability to estimate time in very infrequently visited landscape types. Motilities can then

be calculated for use as ecological diffusion coefficients, such as the model for the spread of

chronic wasting disease (CWD) in mule deer in Chapter 3. Lastly, we conduct a simulation

study to examine if we can recover our results using simulated data over landscapes with

differing correlation structures to test how motility estimates are affected.
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4.2 Methods

To estimate residence time, we follow the methods of Johnson et al. [39], which we

briefly describe. The data are fit to a CTCRW model, considering movement as a change in

location. If µ(t) is a continuous, smooth path of locations, then the instantaneous rate of

change in location is velocity, v(t). An Ornstien-Uhlenbeck process can be used to model

velocity, defined by

v(t + ∆) = γ + e−β∆[v(t)− γ] + ζ(∆), (4.1)

where ∆ is the change in time, γ is mean velocity, β is an autocorrelation parameter, and

ζ is a two-dimensional Gaussian random variable,

ζ ∼ N(0, σ2[1− exp(−2β∆)]/2β). (4.2)

The correlation parameter, β, controls how rapidly the influence of past speed decays; large

β implies more rapid decay. The parameter σ controls the overall variability in velocity

through the time step ∆. When ∆ is close to zero there is almost no change in velocity.

However, when ∆ →∞ the next velocity is completely random with variance σ2. Equations

(4.1) and (4.2) are therefore defining the velocity at time t+∆ as a random variable whose

variance grows with ∆ plus an adjustment related to the velocity at time t. Then µ(t) is a

continuous-time location process obtained by

µ(t) = µ(0) +
∫ t

0
v(s)ds. (4.3)

This equation essentially says that the location at time t is the initial location plus the

“sum” of all the steps taken between the initial time and time t. Thus a model for animal

location is obtained by modeling velocity. The CTCRW model is defined by (4.1) and (4.3).

The velocity and location of an animal at any time t along its continuous path can

be represented by this model. However, this continuous process can only be observed at a

finite number of sampled times, subject to measurement error. To account for error and to
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expedite likelihood calculation, the CTCRW model is placed into a Gaussian state-space

model (SSM) formulation which uses the Kalman filter [17]. The SSM is given by two

equations, the observation equation,

yi = Ziαi + εi, (4.4)

and the state equation,

αi+1 = T iαi + ηi, (4.5)

where yi is the observed location at time ti, εi is a normal measurement error with variance

Hi, αi = [µ(ti),v(ti)]′ is the current state vector, Zi and T i are transformation matrices

and the vectors ηi are normal error vectors with covariance matrix Qi. The matrices T i,

and Qi depend on a vector θ of the movement parameters, β and σ from (4.1) and (4.2).

Even though the CTCRW is not Markovian (meaning the current location is dependent

upon all the past locations, not just the previous one), the SSM combines the velocity and

location processes in such a way that a Markovian process results for αi [39].

We use the Bayesian methods of Johnson et al. [38] to predict locations at a uniform

time interval between the observed locations. The posterior predictive distribution of the

actual movement path is the conditional distribution of the unknown states, α, given the

observed locations, y, and is denoted by [α|y], where the notation [·|·] refers to a condi-

tional distribution f(·|·). Figure 4.1 shows possible paths drawn from a posterior predictive

distribution for the movement of a male mule deer during breeding season. We use [α|y]

to find the posterior predictive distribution of residence times, [g(α)|y], by landcover type,

where g(α) is a function relating movement to landscape. In the following application,

the function g(α) is the number of minutes spent in each land cover type. The posterior

predictive mean can be used for a point-estimate of g(α) [11]. Therefore, we seek to find

the posterior expectation

E(g(α)|y) =
∫

g(α)[α|y]dα.
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This integral is analytically intractable, but can be approximated using Monte Carlo inte-

gration of the form:

E(g(α|y)) ≈
∑K

k=1 g(αk)
K

,

where αk, k = 1, ...,K, represents a sample drawn from [α|y]. By the Strong Law of Large

Numbers, the accuracy of this approximation increases as the sample size increases [84].

Techniques for drawing this sample are outlined in Johnson et al. [38].

(a) A CTCRW model fit to GPS data. (b) Ten predicted paths.

Figure 4.1: The path of one male deer during breeding season when locations were recorded
every 30 minutes. A CTCRW model is fit to the GPS data (in UTM coordinates) as shown
in (a). The posterior predictive distribution of animal paths between data points at one
minute intervals is obtained. Ten paths drawn from this distribution are shown in (b).

4.2.1 Estimating mule deer residence times
for a chronic wasting disease model

Chronic wasting disease (CWD) is a contagious prion disease that affects members of

the Cervidae family, including mule deer (Odocoileus hemionus) [4]. It is a rare, slowly

developing disease that is always fatal. Infected mule deer may live 12-24 months before

showing visible signs of the disease [105]. The disease may be contracted by direct contact

with infected deer as well as indirectly via contact with prions in the environment. Prions
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shed into the environment through the feces and decaying carcasses of infected deer remain

infective for many years [62]. The spread of CWD is connected to the movement of deer

through the environment and where they congregate; obviously rates of infection will in-

crease in habitats where deer spend more time. We also desire residence times to calculate

motilities for an ecological diffusion model of CWD spread [23].

CWD was first detected in the free-ranging mule deer population of Utah in 2002 and

is currently found in three distinct areas in the state [53]. In 2005-6 the Utah Department of

Wildlife Resources collared 50 deer, a mix of adult males, young males, and adult females,

in the La Sal Mountains of southeastern Utah, one of the areas with known cases of CWD.

Movement data was collected at different intervals, depending on the time of year: 12 hour

intervals in late winter/early spring (December 15th to April 14th), 6 hour intervals during

spring migration (April 15th to May 14th), 12 hour intervals during the summer/early fall

(May 15th to October 14th), and 30 minute intervals during fall migration and breeding

season (October 15th to December 15th). This choice of irregular data was to save the

GPS collar’s battery life for the main focus of their research, the behavior of deer during

breeding season and how it might relate to CWD [53]. This makes the CTCRW model very

attractive in obtaining predictions for unobserved times.

Mule deer exhibit high site fidelity to traditional summer and winter ranges with sea-

sonal migration occurring during specific times of the year. Females form matrilinear groups

which remain cohesive particularly during the breeding season when males begin wander-

ing among groups looking for receptive females [53]. This somewhat complicates the idea

of residence time, because the use of various habitats varies widely depending on sex and

season. Partitioning the GPS movement data by sex and then by season allowed us to

estimate residence times for males and females during winter, summer and breeding season.

We did not compute residence times specifically for spring or fall migration, since migration

occurs during a relatively short period of time and represents the change of motility between

seasons, i.e. spring migration in a diffusion model is the population response to change in

motility between winter and summer.
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For this example, we chose the movement data from 11 female deer and 11 male deer,

selected for having the most complete data (approximately a year). The methods described

in the previous section were used to fit a CTCRW model to the location data and predict

locations at one minute time intervals. A sample of 50 possible paths were drawn from the

predictive posterior distribution of paths for each deer. A CTCRW model fit to the GPS

data for one male deer during breeding season in shown in Figure 4.1a. Ten predicted paths

for that deer are shown in Figure 4.1b.

The LANDFIRE data set from the Landscape Fire and Resource Management Plan-

ning Tools sponsored by the U.S. Department of the Interior and the U.S. Department of

Agriculture Forest Service was used to classify each predicted location by land cover type

[93]. The residence time was estimated for each of the 38 land cover types in the area by

dividing the number of minutes spent in each type by the number of cells of that type. The

LANDFIRE grid cells are 30x30 meters, so the residence times are in units of minutes per

900 square meters. The motility for each land cover type was obtained by taking the mul-

tiplicative inverse of the mean residence time and converting to units of square kilometers

per day. We use these motilities as the coefficients for the CWD model in Chapter 3.

4.2.2 Simulation study to check
accuracy of residence
time estimations

We conducted a simulation study to test the accuracy of using a CTCRW model to

estimate motilities for an ecological diffusion model. This involved generating animal move-

ment data by simulating a random walk over landscapes composed of the land cover types

with our estimated motilities for male deer during breeding season. We used the techniques

described in this paper to estimate residence times for the simulated data and compared

them to our estimates for the GPS data.

We did this for four different landscapes: the La Sal Mountains study area, another

piece of Utah encompassing the Abajo Mountains, and two artificial landscapes comprised of

land cover types in the same proportions as the study area, one with a high degree of spatial

correlation called “Rockies” and the other with no spatial correlation called “Random” (see



74

Figure 4.2). Our expectation was that the more correlated the landscape, the better we

would recover our original estimates (from the CTCRW model), i. e., residence times

from the Rockies simulation would best reflect our estimates and the values obtained from

the Random simulation would be the farthest from our estimates. We expected results

from the La Sal and Abajo simulations to fall somewhere in between Rockies and Random

simulations.

The Abajo Mountain area contains the same land cover types as the La Sal study area,

but in different proportions (see Table 4.1). They are both dominated by pinyon-juniper

forests and big sagebrush steppe. The La Sal area has more blackbrush shrubland, Gambel

oak shrubland and ponderosa pine woodlands, while the Abajo area has more riparian

habitat, irrigated cropland, and developed open space. They contain similar amounts of

aspen forests, mixed conifer forests, and salt desert scrub, as well as many of the land covers

comprising less than one percent of the study area.

The Rockies landscape was generated using Fourier transforms, where the power law

was chosen, but the phase was generated randomly. This resulted in a mountains and valleys

landscape shown in Figure 4.2c. We parsed the land cover types according to elevation and

assigned them to similar “elevation” on the Rockies landscape in the same proportion as

they occur in the study area. This put high elevation habitat such as alpine vegetation and

spruce-fir forest types at the “peaks” and lower elevation habitats such as shrublands and

sagebrush steppe in the “valleys.” This created a spatially correlated environment with

similar land covers following contours around the mountains. The higher elevation types

are more mixed.

The other artificial landscape was populated with the land cover types in a random

fashion to purposely avoid spatial correlation. A matrix with uniformly distributed random

numbers between zero and one was assigned landcover types by value in the same proportion

as the study area (Figure 4.2d).

For the simulations we associated the land cover types on our landscapes with the

motilities, D(x1, x2), calculated from our estimated residence times. For convenience, we
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(a) La Sal Mountains (b) Abajo Mountains

(c) Rockies (d) Random

Figure 4.2: Male breeding season residence times for the La Sal study area (a) and three
other landscapes used for simulating data (b)-(d). The lighter the color, the larger the
residence time



76

Table 4.1: Comparative composition of the La Sal Mountains and the Abajo Mountains
with respect to the LANDFIRE classification in percentage of area comprised of the 38
landcover types. Both are dominated by pinyon-juniper forests and big sagebrush steppe.
The La Sal area has more blackbrush shrubland, Gambel oak shrubland, and ponderosa
pine woodlands, while the Abajo area has more riparian habitat, irrigated cropland, and
developed open space.

LANDFIRE class, EVT La Sals Abajos

2016 pinyon-juniper 33.96 45.88
2210 shrubland-blackbrush 14.33 3.68
2080 big sagebrush 12.82 22.20
2217 shrubland-Gambel oak 6.10 3.61
2054 ponderosa pine woodland 5.48 2.98
31 barren 4.97 4.09
2011 aspen 4.75 2.24
2159 riparian 2.97 4.98
2181 annual grass 2.19 0.29
2055 dry spruce-fir 1.82 0.56
2061 aspen/mixed conifer 1.65 1.51
2051 dry mixed conifer 1.19 1.03
2081 salt desert scrub 1.12 0.92
2006 alpine sparse veg. 0.87 0.08
2180 into. riparian 0.81 0.72
81 pasture/hay 0.78 0.42
2135 semi-desert grassland 0.56 0.59
2064 low sagebrush 0.54 0.21
21 dev. open space 0.37 1.28
2126 sagebrush steppe 0.33 0.03
2160 subalpine riparian 0.31 0.11
2001 sparse veg. 0.27 0.53
2086 foothill scrub 0.27 0.06
2153 greasewood flat 0.26 0.14
2062 mtn. mahogany 0.22 0.06
2052 mixed conifer 0.21 0.06
2220 shrubland-big sagebrush 0.21 0.02
11 open water 0.14 0.05
22 dev. low intensity 0.11 0.14
2214 shrubland-manzanita 0.11 0.09
2057 subalpine limber pine 0.06 0.08
2093 sand shrubland 0.06 0.02
2107 Gambel oak/mixed shrubland 0.05 0.01
2117 ponderosa pine savanna 0.05 0.01
2066 saltbrush scrub 0.04 0.03
82 irrigated crops 0.03 1.25
2103 semi-desert chaparral 0.03 0.06
23 dev. med. intensity 0.01 0.02
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chose a move length of λ = 30 meters, the same length as the resolution of the land cover

data. Moves could occur in one of four directions: to the left, to the right, to the back, or

to the front of a cell. The probability of a “deer” leaving a cell with the highest motility,

Dmax, was assigned to be one and the time step, τ , was given by τ = λ2

4Dmax
. Thus the

probabilities, pi(x1, x2), associated with the other motilities, Di(x1, x2), were computed by

pi(x1, x2) = 4Di(x1,x2)τ
λ2 .

Movement data were simulated by randomly placing a “deer” on a landscape in a

pixel with probability of leaving determined by the motility value of that pixel. A random

probability was generated and compared to the assigned probability to determine if the

“deer” moved to one of the neighboring cells or if it stayed at its present location [33]. This

process was repeated to generate data over a time period equivalent to the GPS data for

one hundred “deer” on each landscape. We used the CTCRW method described above to

find the mean residence times for each land cover type for the simulated deer movement

data. Figure 4.3 shows an example of a randomly generated deer path. The resulting mean

residence times are found in Table 4.2.

(a) A CTCRW model fit to simulated data. (b) Ten predicted paths.

Figure 4.3: The path of one “deer” from simulated data generated from a random walk on
the Rockies landscape using male breeding season motilities. The result of fitting a CTCRW
model to the simulated data is shown in (a). Ten paths drawn from the posterior predictive
distribution of possible paths are shown in (b).
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Table 4.2: The estimated mean residence times (in minutes per 900 square meters) for
male deer in breeding season along with the results of the simulation study. The % column
contains the percent of the study area comprised of the LANDFIRE classification

LANDFIRE class, EVT % Estimates La Sals Abajos Rockies Random

2016 pinyon-juniper 33.96 6.1284 5.5396 5.6153 5.1256 6.1409
2210 shrubland-blackbrush 14.33 6.1988 5.1553 5.1881 4.9690 6.1500
2080 big sagebrush 12.83 7.9882 6.0249 6.3503 6.2434 6.3979
2217 shrubland-Gambel oak 6.10 17.2963 8.1951 8.5378 10.5163 7.7320
2054 ponderosa pine woodland 5.48 6.1460 5.4697 5.5044 5.3005 6.1666
31 barren 4.97 5.8287 5.1422 5.1583 5.0195 6.1289
2011 aspen 4.75 10.4703 7.4592 6.5389 7.2476 6.7374
2159 riparian 2.97 5.7012 5.3716 5.4342 5.1601 6.0686
2181 annual grass 2.19 9.3082 6.6501 6.3365 6.1507 6.5629
2055 dry spruce-fir 1.82 2.5780 4.0319 3.9751 3.7102 5.6930
2061 aspen/mixed conifer 1.65 5.3677 5.2024 5.7521 4.5089 6.0364
2051 dry mixed conifer 1.19 12.9073 6.8212 6.9238 6.7621 7.2030
2081 salt desert scrub 1.12 6.2901 5.0093 5.5245 5.4434 6.0573
2006 alpine sparse veg. 0.87 6.3097 4.2381 7.0273 4.9201 6.1493
2180 intro. Riparian 0.81 6.7048 5.6766 5.6933 5.3216 6.3304
81 pasture/hay 0.78 7.4735 6.1251 5.7295 6.2712 6.3169
2135 semi-desert grassland 0.56 16.8702 7.1224 7.4385 8.4597 7.6052
2064 low sagebrush 0.54 7.1320 6.5440 6.2279 6.0251 6.3635
21 dev. open space 0.37 4.8107 5.6594 5.2826 5.1800 6.0976
2126 sagebrush steppe 0.33 4.0139 5.9668 5.9298 3.9437 5.9550
2160 subalpine riparian 0.31 1.9653 4.8881 5.6183 3.4173 5.5280
2001 sparse veg. 0.27 1.7176 4.8877 4.7694 3.6360 5.4629
2086 foothill scrub 0.27 10.9961 6.3732 6.2591 5.2638 6.8808
2153 greasewood flat 0.26 4.0367 4.7750 5.2311 4.4725 6.0037
2062 mtn. mahogany 0.22 11.6190 5.9221 6.2949 5.4936 6.9027
2052 mixed conifer 0.21 1.7614 4.4341 3.7039 4.4660 5.4484
2220 shrubland-big sagebrush 0.21 2.7432 5.5883 6.8648 4.1794 5.8685
11 open water 0.14 4.1000 5.8648 4.1516 6.0864 5.8683
22 dev. low intensity 0.11 41.3987 10.0692 10.1730 10.6117 10.8746
2214 shrubland-manzanita 0.11 7.8721 6.9641 7.1103 6.9690 6.2530
2057 subalpine limber pine 0.06 1.5378 4.8033 4.4024 4.5231 5.4974
2093 sand shrubland 0.06 2.5885 4.4541 4.7153 5.9698 5.9064
2107 Gambel oak 0.05 2.3265 4.6019 7.5572 3.6945 5.5422
2117 ponderosa pine savanna 0.05 6.7272 5.7592 5.6381 3.9705 6.0573
2066 saltbrush scrub 0.04 1.5907 4.2600 4.5788 3.3309 5.9263
82 irrigated crops 0.03 7.9258 12.4117 5.0358 4.3445 6.3766
2103 semi-desert grassland 0.03 7.3856 7.5975 5.6886 3.6767 5.7342
23 dev. med. intensity 0.01 2.8090 6.7414 8.8104 3.6416 5.4073

Weighted R 0.4206 0.4868 0.6115 0.3941
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4.3 Results

Two types of results are reported below, the residence times estimations and the sim-

ulation results. Residence times were estimated from GPS data collected from the La Sal

study area for both male and female mule deer for winter, summer, and breeding season.

The simulations were conducted using breeding season residence times for male mule deer.

Data were simulated and residence times were estimated, using the same methods as used

for the GPS data.

4.3.1 Residence time estimates
for La Sal study area

Estimated residence times, as shown in Table 4.3, appear to reflect seasonal mule deer

behavior. Pinyon-juniper woodlands, sage brush steppe, and low elevation ponderosa pine

forests are important winter (December 15th to April 14th) habitats for both female and

male deer, as well as semi-desert grassland and salt desert scrub [101]. Winter residence

times for these land cover types range from 4.5 to 11 minutes/900 meters2 for both sexes.

Riparian, mountain mahogany, and pasture/hay were used more by females, while males

had a higher residence time in semi-desert chaparral.

Residence times in relatively inaccessible habitat (alpine vegetation, dry spruce-fir for-

est, and mixed conifer forest for both sexes; limber pin, subalpine riparian , and aspen/mixed

conifer for males) were small (< 3 min/900m2), indicating that deer migrate to lower ele-

vations this time of year. However, values for aspen forests, and mixed conifer forests for

both males and females and limber pine and subalpine riparian areas for females were in

the range of known winter habitats (5-10.5 min/900m2). Deer may be able to access these

areas during part of the season depending on local snow accumulation. Also the methods

of Johnson et al. [38, 39] predict paths between data points without knowledge of seasonal

deer behavior, so paths may cross areas not used by deer this time of year.

During summer months (April 15 to October 14) females, who actively raise young,

spend large amounts of time in areas rich in cover and desirable food resources [79]. This is

reflected in the high female residence times (40-65 min/900m2) for Gambel oak, ponderosa



80

Table 4.3: Estimated residence times in minutes per 900 sq. meters. Male and female mule
deer residence times were calculated separately for winter, summer and breeding season.
Generally, residence times for high elevation habitats are much lower in winter than in
summer.

LANDFIRE Winter Summer Breeding

Classification, EVT male female male female male female

11 open water 12.78 5.90 4.52 3.20 4.10 1.31
21 dev. open space 2.29 2.92 7.89 10.46 4.81 26.77
22 dev. low intensity 2.40 3.44 17.59 16.24 41.40 84.80
23 dev. med. intensity 3.10 3.14 3.29 1.00 2.81 1.36
31 barren 2.93 3.50 11.00 21.11 5.83 3.00
81 pasture/hay 2.56 4.19 15.68 3.65 7.47 39.34
82 irrigated crops 0.91 2.11 9.09 24.14 7.93 2.49
2001 sparse veg. 3.15 2.55 4.49 9.25 1.72 1.00
2006 alpine sparse veg. 1.58 0.83 14.19 16.22 6.31 0.00
2011 aspen 4.45 5.72 26.79 41.18 10.47 29.67
2016 pinyon-juniper 4.79 6.79 12.40 27.61 6.13 19.45
2051 dry mixed conifer 5.75 6.42 8.69 35.48 12.91 21.90
2052 mixed conifer 2.44 2.03 12.31 19.23 1.76 22.54
2054 ponderosa pine woodland 5.66 5.56 8.62 34.53 6.15 30.28
2055 dry spruce-fir 0.75 1.33 17.09 43.81 2.58 0.00
2057 subalpine limber pine 0.00 7.29 10.78 16.88 1.54 0.00
2061 aspen/mixed conifer 1.95 3.24 16.84 26.57 5.37 56.10
2062 mtn. mahogany 2.96 4.56 8.27 63.06 11.62 31.35
2064 low sagebrush 4.43 5.77 12.88 35.90 7.13 17.84
2066 saltbrush scrub 1.78 4.15 1.18 0.39 1.59 2.56
2080 big sagebrush 6.34 8.81 8.82 32.57 7.99 21.98
2081 salt desert scrub 4.02 6.30 10.95 2.82 6.29 5.16
2086 foothill scrub 2.75 3.63 6.81 17.20 11.00 3.79
2093 sand shrubland 1.81 2.03 13.68 0.22 2.59 5.84
2103 semi-desert grassland 9.87 4.18 8.69 58.01 7.39 24.44
2107 Gambel oak 1.60 4.23 14.06 10.18 2.33 16.43
2117 ponderosa pine savanna 4.58 3.95 7.42 65.22 6.73 26.49
2126 sagebrush steppe 4.80 11.27 16.75 12.05 4.01 39.58
2135 semi-desert grassland 4.60 4.07 3.61 2.13 16.87 3.37
2153 greasewood flat 3.97 6.65 12.45 2.00 4.04 15.75
2159 riparian 4.52 7.31 9.26 33.15 5.70 16.53
2160 subalpine riparian 2.50 10.42 18.16 44.85 1.97 16.62
2180 intro. Riparian 3.87 5.88 6.68 37.35 6.70 10.79
2181 annual grass 4.83 7.65 7.30 5.40 9.31 21.84
2210 shrubland-blackbrush 4.99 6.56 6.60 12.20 6.20 10.01
2214 shrubland-manzanita 4.57 5.96 18.10 25.90 7.87 21.27
2217 shrubland-Gambel oak 6.05 6.43 16.52 42.03 17.30 28.32
2220 shrubland-big sagebrush 5.85 9.57 6.65 13.14 2.74 45.36
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pine, spruce-fir, and aspen forests and semi-desert chaparral, riparian habitat, and mountain

mahogany shrubland. Some land cover types such as saltbrush scrub, sparse vegetation,

salt desert scrub, sand shrubland, semi-desert grassland, and greasewood flats have little

to no use during this time of the year for females, as shown by low residence times (0.22-3

min/900m2). Male mule deer spend time in high mountain aspen, spruce, and fir forests and

subalpine riparian areas (12-27 min/900m2) at lower levels than females. They spend more

time than females in lower elevation land cover types such as sagebrush steppe, shrublands,

and low-intensity developed areas (14-18 min/900m2).

Breeding season (October 15 to December 14) residence times for females are consistent

with seasonal migration from high elevations to lower elevations. The female residence times

for alpine sparse vegetation, spruce-fir forests, and subalpine limber pine are zero. With

fawns older and mobile, females can use more open areas such as low-intensity developed

land, pasture, hay fields, and sagebrush steppe, as shown by the high residence times (30-84

min/900m2). Males also move to lower elevation open areas during breeding season. The

highest residence times for males (10-42 min/900m2) are for land cover types such as low-

intensity developed land, aspen and dry mixed conifer forests, foothill scrub and shrubland,

and semi-desert grassland.

Generally the residence times are consistence with seasonal behavior, especially the

use of distinct summer and winter ranges. The behavioral differences are reflected as well.

Females tend to spend time in habitats with cover when raising young, while males wander,

using many types of land cover.

4.3.2 Simulation study results

Residence times estimated from the simulated data are compared for the four differ-

ent landscapes (see Figure 4.2) in Table 4.2. The second column of Table 4.2 shows the

percentage of the La Sal Mountains study area comprised of each land cover classification.

Using these percentages as weights, the correlation coefficients, R, were calculated for each

simulation. The random landscape simulation had the lowest value, R = 0.3941, while
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the Rockies landscape simulation had the highest, R = 0.6115. The values for the natu-

ral landscapes were R = 0.4206 for the La Sal Mountains and R = 0.4868 for the Abajo

Mountains.

Out of 38 land cover classifications, only 13 are greater than 1 % of the landscape (see

Table 4.4). Using only the classes greater than one percent, we recalculated the weighted

R values. All the values were slightly higher except the one for the Abajos. The random

landscape still had the lowest with R = 0.3951 and the Rockies landscape had the highest

with R = 0.6470. The values for the La Sals and the Abajos were R = 0.4441 and R =

0.4756, respectively.

It is interesting to note that three land cover types make up 61.12% of the study area:

pinyon-juniper forest (33.96%), blackbrush shrubland (14.33%), and big sagebrush steppe

(12.83%). These are very important habitats for mule deer during all times of the year

[101]. Our estimated residence times from GPS data for male deer during breeding season

in these habitats were 6.13, 6.2, and 8.0 min/900m2 for pinyon-juniper forest, blackbrush

shrubland, and big sagebrush steppe, respectively. These values were recovered fairly well

by the simulations, with the simulation from the random landscape closely mirroring two

of these values with 6.14, 6.15, and 6.4 min/900m2.

The random landscape simulation yielded close estimations for the three dominant land

cover types, but had the lowest weighted R value overall. The estimated residence times

for the dominant land covers fell within the range of residence times for this simulation,

5.4-10.88 min/900m2. The GPS data estimations show a far greater variety of residence

times over the landscape with a range of 1.6 to 41.4 min/900m2.

The resulting residence times from the Rockies simulation also spanned a smaller inter-

val than the GPS estimates, 3.33-10.6 min/900m2, yet this simulation had the best weighted

R value. This tends to confirm our assumption that a random walk inherits correlation from

the environment. The Rockies landscape was assigned land cover types by ‘elevation’, re-

sulting in a correlation strikingly different than that of natural landscapes.

Although elevation plays a role in the distribution of land cover types in the La Sal
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and Abajo areas, other factors contribute, such as aspect, water availability, and land use.

The Abajo simulation resulted in a higher R value than the simulation over the La Sal

study area. The values ranged over an interval similar to the Rockies landscape, 3.7-10.2

min/900m2. The mid-range residence times were reflected well by the Abajo and La Sal

simulations (4-7 min/900m2) , but they did not capture the small and large residence times.

Several different strategies were evaluated during the simulations. The number of

random paths simulated on the landscapes was increased from 25 to 50 and finally to 100.

This did not result in better R values. The varying of spatial steps and length of paths also

did not improve the results.

The simulations did not capture the high residence time estimates well. Table 4.5

contains the landcover types with estimates larger than 7 min/900m2. These landscapes

comprise a total of 29.71 % of the study area. As shown in Table 4.6 the high mean residence

time estimates had large standard deviations. The predicted paths from the CTCRW model

were highly variable. This may contribute to the difficulty in reproducing these numbers.

A critical breeding season habitat, big sagebrush, which is 12.83% of the study area, had a

mean estimated residence time of 8.0 and a standard deviation of 2.9. The simulations better

approximated this value than the large residence times with large standard deviations.

Table 4.4: Simulation results for landcover types comprising greater than 1% of the study
area landscape.

LANDFIRE class, EVT Percent Estimates La Sals Abajos Rockies Random

2016 pinyon-juniper 33.96 6.1284 5.5396 5.6153 5.1256 6.1409
2210 shrubland-blackbrush 14.33 6.1988 5.1553 5.1881 4.9690 6.1500
2080 big sagebrush 12.83 7.9882 6.0249 6.3503 6.2434 6.3979
2217 shrubland-Gambel oak 6.10 17.2963 8.1951 8.5378 10.5163 7.7320
2054 ponderosa pine woodland 5.48 6.1460 5.4697 5.5044 5.3005 6.1666
31 barren 4.97 5.8287 5.1422 5.1583 5.0195 6.1289
2011 aspen 4.75 10.4703 7.4592 6.5389 7.2476 6.7374
2159 riparian 2.97 5.7012 5.3716 5.4342 5.1601 6.0686
2181 annual grass 2.19 9.3082 6.6501 6.3365 6.1507 6.5629
2055 dry spruce-fir 1.82 2.5780 4.0319 3.9751 3.7102 5.6930
2061 aspen/mixed conifer 1.65 5.3677 5.2024 5.7521 4.5089 6.0364
2051 dry mixed conifer 1.19 12.9073 6.8212 6.9238 6.7621 7.2030
2081 salt desert scrub 1.12 6.2901 5.0093 5.5245 5.4434 6.0573

Weighted R 0.4441 0.4756 0.6470 0.3951
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4.4 Discussion and conclusion

In this paper we outlined a way to estimate residence times from irregularly collected

GPS movement data. We used the methods of Johnson et al. [39] to fit a CTCRW to the

data and obtained the posterior predictive distribution (PPD) of animal paths between data

points at 1-minute time intervals. We randomly selected 50 paths from the PPD for each

deer and classified the predicted locations using the LANDFIRE data set. We calculated

the mean residence time for each of 38 landcover classifications in the La Sal Mountain

study area. Lastly we conducted a simulation study using breeding season residence times

for male mule deer. Data were simulated using four different landscapes and residence times

were estimated from the simulated data. These residence times were compared with the

residence times estimated from the GPS data.

Table 4.5: Large residence times for male mule deer during breeding season compared to
the simulation results.

LANDFIRE class, EVT Percent Estimates La Sals Abajos Rockies Random

22 dev. low intensity 0.11 41.3987 10.0692 10.1730 10.6117 10.8746
2217 shrubland-Gambel oak 6.1 17.2963 8.1951 8.5378 10.5163 7.7320
2135 semi-desert grassland 0.56 16.8702 7.1224 7.4385 8.4597 7.6052
2051 dry mixed conifer 1.19 12.9073 6.8212 6.9238 6.7621 7.2030
2062 mtn. mahogany 0.22 11.6190 5.9221 6.2949 5.4936 6.9027
2086 foothill scrub 0.27 10.9961 6.3732 6.2591 5.2638 6.8808
2011 aspen 4.75 10.4703 7.4592 6.5389 7.2476 6.7374
2181 annual grass 2.19 9.3082 6.6501 6.3365 6.1507 6.5629
2080 big sagebrush 12.83 7.9882 6.0249 6.3503 6.2434 6.3979
82 irrigated crops 0.03 7.9258 12.4117 5.0358 4.3445 6.3766
2214 shrubland-manzanita 0.11 7.8721 6.9641 7.1103 6.9690 6.2530
81 pasture/hay 0.78 7.4735 6.1251 5.7295 6.2712 6.3169
2103 semi-desert grassland 0.03 7.3856 7.5975 5.6886 3.6767 5.7342
2064 low sagebrush 0.54 7.1320 6.5440 6.2279 6.0251 6.3635

Total 29.71

The residence time estimations from the GPS data for the most part reflect male

and female seasonal behavior, especially for the land cover types that comprise the largest

proportions of the study area. These residence times can be converted to motilities for

use as coefficients for ecological diffusion models. The residence information gleaned from

the location data links the diffusion model to the heterogeneous landscape. Many of the

LANDFIRE classifications make up a very small percentage of the study area. This means
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Table 4.6: The mean residence times estimated from GPS data along with the standard
deviations. The long residence times have the highest standard deviations.

LANDFIRE class, EVT Percent Estimates SD

22 dev. low intensity 0.11 41.3987 45.7567
2217 shrubland-Gambel oak 6.10 17.2963 29.4080
2135 semi-desert grassland 0.56 16.8702 29.1372
2051 dry mixed conifer 1.19 12.9073 12.5841
2062 mtn. mahogany 0.22 11.6190 22.3369
2086 foothill scrub 0.27 10.9961 11.3519
2011 aspen 4.75 10.4703 7.4931
2181 annual grass 2.19 9.3082 9.2458
2080 big sagebrush 12.83 7.9882 2.8950
82 irrigated crops 0.03 7.9258 8.3686
2214 shrubland-manzanita 0.11 7.8721 4.8981
81 pasture/hay 0.78 7.4735 5.3922
2103 semi-desert grassland 0.03 7.3856 4.0485
2064 low sagebrush 0.54 7.1320 6.1530

2117 ponderosa pine savanna 0.05 6.7272 2.9627
2180 intro. Riparian 0.81 6.7048 4.0302
2006 alpine sparse veg. 0.87 6.3097 4.9292
2081 salt desert scrub 1.12 6.2901 4.6732
2210 shrubland-blackbrush 14.33 6.1988 3.2592
2054 ponderosa pine woodland 5.48 6.1460 3.6089
2016 pinyon-juniper 33.96 6.1284 1.9822
31 barren 4.97 5.8287 8.2388
2159 riparian 2.97 5.7012 2.7749
2061 aspen/mixed conifer 1.65 5.3677 4.0986
21 dev. open space 0.37 4.8107 3.9945
11 open water 0.14 4.1000 5.7015
2153 greasewood flat 0.26 4.0367 3.0644
2126 sagebrush steppe 0.33 4.0139 3.4506

23 dev. med. intensity 0.01 2.8090 5.2059
2220 shrubland-big sagebrush 0.21 2.7432 1.8984
2093 sand shrubland 0.06 2.5885 2.2806
2055 dry spruce-fir 1.82 2.5780 1.7794
2107 Gambel oak 0.05 2.3265 1.6446
2160 subalpine riparian 0.31 1.9653 1.8329
2052 mixed conifer 0.21 1.7614 1.9701
2001 sparse veg. 0.27 1.7176 2.3259
2066 saltbrush scrub 0.04 1.5907 1.4736
2057 subalpine limber pine 0.06 1.5378 0.9102
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that there is little data to determine how deer move thorough these habitats. It is not

possible to collar all the deer in the area and keep track of all their movements, so we

are without a direct way to measure motility. The methods presented here provide a way

to estimate residence times from irregularly collected data that reasonably reflect seasonal

behavior of male and female deer. A CWD diffusion model using motilities calculated from

these residence times can connect the spread of disease with the landscape in a way that

can incorporate GPS location data.

Simulation studies were conducted to examine self consistency of our estimates and the

effect of landscape correlation. The residence times best matched by the simulations were

those in the medium range, 4-7 min/900m2 (see Table 4.7). This group of residence times is

67.31% of study area and includes significant habitats for mule deer such as pinyon-juniper,

blackbrush shrubland and ponderosa pine woodlands. The La Sal and Abajo simulations

are closer to the estimates for this range than for the large and small residence times.

None of the simulations did a good job at recovering the small residence times as shown in

Table 4.8. They represent only 3% of the study area and did not contain many data points.

Table 4.7: Mid-range residence times for male mule deer during breeding season compared
to the simulation results.

LANDFIRE class, EVT Percent Estimates La Sals Abajos Rockies Random

2117 ponderosa pine savanna 0.05 6.7272 5.7592 5.6381 3.9705 6.0573
2180 intro. Riparian 0.81 6.7048 5.6766 5.6933 5.3216 6.3304
2006 alpine sparse veg. 0.87 6.3097 4.2381 7.0273 4.9201 6.1493
2081 salt desert scrub 1.12 6.2901 5.0093 5.5245 5.4434 6.0573
2210 shrubland-blackbrush 14.33 6.1988 5.1553 5.1881 4.9690 6.1500
2054 ponderosa pine woodland 5.48 6.1460 5.4697 5.5044 5.3005 6.1666
2016 pinyon-juniper 33.96 6.1284 5.5396 5.6153 5.1256 6.1409
31 barren 4.97 5.8287 5.1422 5.1583 5.0195 6.1289
2159 riparian 2.97 5.7012 5.3716 5.4342 5.1601 6.0686
2061 aspen/mixed conifer 1.65 5.3677 5.2024 5.7521 4.5089 6.0364
21 dev. open space 0.37 4.8107 5.6594 5.2826 5.1800 6.0976
11 open water 0.14 4.1 5.8648 4.1516 6.0864 5.8683
2153 greasewood flat 0.26 4.0367 4.7750 5.2311 4.4725 6.0037
2126 sagebrush steppe 0.33 4.0139 5.9668 5.9298 3.9437 5.9550

Total 67.31
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Table 4.8: Small residence times for male mule deer during breeding season compared to
the simulation results.

LANDFIRE class, EVT Percent Estimates La Sals Abajos Rockies Random

23 dev. med. intensity 0.01 2.8090 6.7414 8.8104 3.6416 5.4073
2220 shrubland-big sagebrush 0.21 2.7432 5.5883 6.8648 4.1794 5.8685
2093 sand shrubland 0.06 2.5885 4.4541 4.7153 5.9698 5.9064
2055 dry spruce-fir 1.82 2.5780 4.0319 3.9751 3.7102 5.6930
2107 Gambel oak 0.05 2.3265 4.6019 7.5572 3.6945 5.5422
2160 subalpine riparian 0.31 1.9653 4.8881 5.6183 3.4173 5.5280
2052 mixed conifer 0.21 1.7614 4.4341 3.7039 4.4660 5.4484
2001 sparse veg. 0.27 1.7176 4.8877 4.7694 3.6360 5.4629
2066 saltbrush scrub 0.04 1.5907 4.2600 4.5788 3.3309 5.9263
2057 subalpine limber pine 0.06 1.5378 4.8033 4.4024 4.5231 5.4974

Total 3.04

Though landscape correlation did influence the ability to recover residence times from

simulated data, it was not strong enough to reproduce our original results. Future work

could include finding ways to estimate residence times using a random walk model rather

than a CTCRW which would be consistent with the random walk associated with ecological

diffusion.
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CHAPTER 5

SUMMARY AND CONCLUSION

In this dissertation we explored the use of ecological diffusion models as a way to

connect the movement of animals over heterogeneous landscapes with the spread of dis-

ease. Ecological diffusion is appropriate when organisms make local decisions in response

to habitat, aggregating in places with needed resources and avoiding or moving quickly

through those without food and shelter, eventually giving a population distribution that

is inversely proportional to the motility. This allows for solutions to be discontinuous at

habitat boundaries. In order to facilitate the use of ecological diffusion models over complex

environments, we derive a homogenization procedure for ecological diffusion and apply it to

spatial models for the spread of CWD in mule deer populations. The averaged coefficients

in the homogenized equations can be used in analysis of asymptotic speed of spread and

critical population sizes.

We first illustrated the use of ecological diffusion in a simple disease model for CWD,

using an SI framework with no environmental hazard and no sex-structure. We derived

the homogenized equation for this model, where the motility coefficient (now the harmonic

mean of motilities) is outside of the Laplacian and the reaction term coefficient is an av-

erage weighted by how long individuals spend in a particular habitat and how aggregated

the population is in that habitat. Motility coefficients were estimated by taking the mean-

squared displacement per time for all movements within each habitat. Other parameters,

such as infection and death rates, were obtained from Miller et al. [58]. In the simulation of

the spread of CWD in the La Sal Mountains of Southwest Utah, we compared the numer-

ical solutions of the non-homogenized model and the homogenized model to demonstrate

accuracy and illustrate the computational savings in using the homogenized model. It was

shown that the averaged coefficients from the homogenized equation can be used to explore

the asymptotic speed of spread of the disease and critical population size in order for the

speed of spread to be zero.
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Next, we developed a more disease-specific, sex-structured model for CWD which adds

environment-to-deer transmission to the deer-to-deer transmission. Motility coefficients

were computed separately for summer, breeding season, and winter for both males and

females, using the methods of Johnson et al. [38, 39]. This added seasonal behavioral dif-

ferences between males and females to the model. Even though this model is a system of

three partial differential equations, our homogenization procedure still applied. The homog-

enized system was used in simulations of the spread of CWD from the La Sal Mountains to

the Abajo Mountains of Southeast Utah.

Simulations explored various infection rates using population estimates for 2007, 2010,

and the UDWR target population. It has taken ten years for CWD to be detected in

the Abajos since its discovery in the La Sals. Our model demonstrates the plausibility

of this time line for spread from the La Sals to the Abajos for reasonable infectivities for

population levels near the 2007 estimates. Simulations show the spread would take longer

for current population size, but CWD would devastate a population large enough to meet

the UDWR goal. The number of infected deer from simulations with direct transmission

and environmental transmission were double that of simulations with direct transmission

only. Using seasonal, habitat-specific motilities resulted in over ten times more infected deer

than using a constant motility (though the spread was far wider for the constant motility),

illustrating that connecting the spread of disease to how animals move and aggregate across

the landscape is essential. This idea was also demonstrated in a comparison of spread over

a single season. The model with breeding season motilities yielded more new infectives per

day, then with summer or winter motilities, consistent with the seasonal changes in deer

behavior. The model with winter motilities resulted in wider spatial spread.

The coefficients from the homogenized equations were used to explore the asymptotic

invasion speed and critical population sizes. We derived equations that can be numerically

solved for asymptotic wave speed and connected them to the parameters of our homogenized

model through numbers of female and male deer. We explored wave speed for different

population sizes for two areas of interest, the La Sal Mountains (containing critical summer
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range) and an area of critical winter range between the La Sal and Abajo Mountains. This

shows an advantage of our model; it can be used to analyze CWD infected areas separately

from other areas. It can also be used to see if sections of landscape act as barriers or conduits

for disease spread. This is applicable to the management question of how populations may

be controlled to stop disease spread from a particular area.

Lastly, we explained in more detail the methods used to estimate the motilities for the

CWD model and compared the results to known mule deer behavior. We used the methods

of Johnson et al. [38, 39] to fit a CTCRW model to GPS telemetry data and obtain the PPD

of animal paths between data points at a desired uniform time interval. We classified the

predicted locations on animal paths drawn from the PPD and estimated the amount of time

spent in each land cover type. For the most part, these residence times reflect deer behavior,

especially wandering behavior of males contrasted with the aggregating behavior of females.

We conducted simulation studies over increasingly correlated landscapes to test the validity

of these methods for estimating coefficients for ecological diffusion models. The idea that

a random walk inherits correlation from the environment was reflected in our results. The

estimated residence times were closest to our GPS data estimates for the landscape with

the most spatial correlations and farthest for the random landscape. The simulation results

were best for the landscape types that comprise the majority of the study area.

Perhaps the most significant part of this work is the development of a homogenization

procedure for ecological diffusion models. This is an simple yet effective mathematical way

to make large-scale predictions from small-scale data. This addresses the computational

complexity of using ecological diffusion parameterized by small-scale movement data over

a large domain. The computational time to numerically solve homogenized equations is far

less than that need to solve non-homogenized equations.

The parameters from the homogenized equations can be used to find invasive speed

of spread for different population sizes. Using this procedure can enhance the ability to

examine critical, emergent behavior on large, heterogeneous landscapes. This could be im-

portant from a disease management point of view. Identification of barriers or corridors
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for disease spread and population sizes needed to control spread from disease hotspots are

applications that are possible with this modeling approach. It can be applied to other dis-

persal problems, such as invasive species, insect invasions, and escaped genetically modified

organisms. It has been used for change of support in inverse implementations of statistical

differential equation models [32].

Our modeling efforts for CWD in mule deer show that ecological diffusion is an effective

way to connect large-scale disease spread to small-scale animal movement. Especially in the

case of an environmentally transmitted disease, allowing organisms to aggregate in desirable

habitats and disperse from undesirable ones is an important feature for an instructive model.

Homogenization of our disease models results in averaged coefficients that are useful in

analyzing the asymptotic speed of spread of the disease. This leads to a management

question,“Is there a population level for an area with infected individuals, at which the

disease can not spread from the area?” Having spread contingent on how organisms move

through the environment, allows us to look at spread in specific areas as well as over the

entire domain.
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Numerical Method

For the non-homogenized model (2.4), let the spatial step be the same in both direc-

tions, i.e. h = ∆y1 = ∆y2 and let k = ∆τ . An alternating direction implicit (ADI) method

for the non-homogenized model (2.4) has two equations for each time step, a discretization

in the y1 direction and a discretization in the y2 direction:

I
n+ 1

2
l,m − k

2h2

(
µl+1,mI

n+ 1
2

l+1,m − 2µl,mI
n+ 1

2
l,m + µl−1,mI

n+ 1
2

l−1,m

)
− k

2
αl,mI

n+ 1
2

l,m

= In
l,m +

k

2h2

(
µl,m+1I

n
l,m+1 − 2µl,mIn

l,m + µl,m−1I
n
l,m−1

)
+

k

2
αl,mIn

l,m

and

In+1
l,m − k

2h2

(
µl,m+1I

n+1
l,m+1 − 2µl,mIn+1

l,m + µl,m−1I
n+1
l,m−1

)
− k

2
αl,mIn+1

l,m

= I
n+ 1

2
l,m +

k

2h2

(
µl+1,mI

n+ 1
2

l+1,m − 2µl,mI
n+ 1

2
l,m + µl−1,mI

n+ 1
2

l−1,m

)
+

k

2
αl,mI

n+ 1
2

l,m .

The superscript is the index for time, the first subscript is the index for y1 and the second

subscript is the index for y2. Note that the motility coefficient, µ, is included inside of the

central difference formula, since it is inside the Laplacian in (2.4).

For the homogenized model (2.15), let h = ∆x1 = ∆x2 and let k = ∆t. Then the ADI

method equations become
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where the coefficients, µ̄ and ᾱ = µ̄
〈

α
µ

〉
are the averaged coefficients in (2.15). The homog-

enization procedure brings the motility coefficient outside of the Laplacian, so µ̄ remains

outside of the central difference formula.

The coupled system (3.21)-(3.23) is also solved numerically using an ADI scheme. For

notational ease, let u = cIF , v = cIM , and h = 〈H0〉. The system becomes:

∂tu = µ̄F∇2
xu + A1u + A2v + A3h,

∂tv = µ̄M∇2
xv + B1v + B2u + B3h,

and
dh

dt
= a1u + a2v − δh, (7.1)

where the equations have been multiplied through by ω to return to the original time scale

and the coefficients are defined as follows:
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The method of integrating factors can be used to solve (7.1) to obtain

h = e−δt

∫ t

0
eδs(a1u + a2v)ds. (7.2)
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Applying the trapezoidal rule yields
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Then the ADI method equations become
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where (7.3) is treated as a forcing function.
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