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ABSTRACT 

Integrating Remote Sensing and Ecosystem Models for Terrestrial Vegetation Analysis: 

Phenology, Biomass, and Stand Age 

by 

Gong Zhang, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Dr. Michael A. White 
Department: Watershed Sciences 
 
 

Terrestrial vegetation plays an important role in global carbon cycling and climate change 

by assimilating carbon into biomass during the growing season and releasing it due to natural or 

anthropogenic disturbances. Remote sensing and ecosystem models can help us extend our 

studies of vegetation phenology, aboveground biomass, and disturbances from field sites to 

regional or global scales. Nonetheless, remote sensing-derived variables may differ in 

fundamental and important ways from ground measurements. With the growth of remote sensing 

as a key tool in geoscience research, comparisons to ground data and intercomparisons among 

satellite products are needed. Here I conduct three separate but related analyses and show 

promising comparisons of key ecosystem states and processes derived from remote sensing and 

theoretical modeling to those observed on the ground. First, I show that the Moderate Resolution 

Imaging Spectroradiometer (MODIS) greenup product is significantly correlated with the earliest 

ground phenology event for North America. Spring greenup indices from different satellites 

demonstrate similar variability along latitudes, but the number of ground phenology observations 

in summer, fall, and winter is too limited to interpret the remote sensing-derived phenology 

products. Second, I estimate aboveground biomass (AGB) for California and show that it agrees 



iv 
	  
with inventory-based regional biomass assessments. In this approach, I present a new remote 

sensing-based approach for mapping live forest AGB based on a simple parametric model that 

combines high-resolution estimates of Leaf Area Index derived from Landsat and canopy 

maximum height from the space-borne Geoscience Laser Altimeter System (GLAS) sensor. 

Third, I built a theoretical model to estimate stand age in primary forests by coupling a carbon 

accumulation function to the probability density of disturbance occurrences, and then ran the 

model with satellite-derived AGB and net primary production. The validated remote sensing data, 

integrated with ecosystem models, are particularly useful for large-region vegetation research in 

areas with sparse field measurements, and will help us to explore the long-term vegetation 

dynamics.  

(123 pages) 
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PUBLIC ABSTRACT 

 
Integrating Remote Sensing and Ecosystem Models for Terrestrial Vegetation Analysis:  

 
Phenology, Biomass, and Stand Age 

 
 

by 
 
 

Gong Zhang, Doctor of Philosophy 

Utah State University, 2012 

 
Major Professor: Dr. Michael A. White 
Department: Watershed Sciences 

  
Terrestrial vegetation, especially forest, stores plenty of carbon from carbon dioxide in 

atmosphere into biomass by photosynthesis, and serves as an important carbon sink in global 

carbon cycle. Meanwhile the carbon stored in live biomass of terrestrial vegetation is released due 

to natural or anthropogenic disturbances, such as wild fire, hurricane, and urbanization. The 

phenology, representing the seasonal change of vegetation, is a sensitive indicator for carbon 

fluxes via vegetation. Remotely sensed imagery from sensors abroad on satellite can help us 

extend our study of terrestrial vegetation from field sites to regional or global scales. Researchers 

have employed remote sensing data to monitor phenology change, forest biomass, and fire 

activities. Nonetheless, remote sensing-derived variables may be different in definitions and 

important ways from ground measurements. The more remote sensing data is used in geoscience 

research, the more validation with ground data and intercomparison among satellites are needed. 

Here I conduct three separate but related analyses and show comparison of key ecosystem states 

and processes derived from remote sensing and ecosystem models to those observed on the 

ground. First, I find that the greenup from Moderate Resolution Imaging Spectroradiometer 

(MODIS) product agrees with the earliest phenology event measured in various sites crossing 
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North America. The greenup indices from different satellites also show the similar latitude trend. 

However, the number of ground phenology observations in summer, fall, and winter is limited to 

validate the remote sensing derived phenology products. Second, I generate California forest 

aboveground biomass maps from Landsat imagery and space-borne Lidar data. I test my model 

over the forested areas of California with various climatic and land-use conditions and I show that 

my AGB estimates are comparable to inventory estimates. After the validation and 

intercomparison of those variables, an exciting opportunity lies in integrating these remote 

sensing derived data together by ecosystem model. I build a ecosystem model by linking the 

remote sensing-derived carbon accumulation rate, carbon storage and disturbance together, and 

produce the first global forest stand age map. My model with integrating remote sensing-derived 

data is particularly useful for vegetation areas with underrepresented field measurements, and will 

help us to explore the long-term vegetation history. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The terrestrial ecosystem carbon exchange with the atmosphere is one of the most 

important components of the global carbon cycle, and can partially offset the course of 

anthropogenic greenhouse gas emissions (Canadell et al., 2007; IPCC, 2007). The atmosphere-

ecosystem exchange of carbon also has a  profound impact on climatic conditions at the Earth’s 

surface (Sellers et al., 1996), ultimately driving various climatological processes at regional and 

global scales, like evapotranspiration, precipitation, and absorbed radiation (Dirmeyer, 1994). 

Therefore, accurate estimation of carbon fluxes and pools in terrestrial ecosystems in the context 

of global change is a challenging and important task. 

Previous studies (e.g., Baldocchi and Vogel, 1996; Falge et al., 2002; Hanson et al., 2004; 

Reich et al. 1995) have shown that the net ecosystem exchange of carbon (NEE) from subtropical 

to boreal ecosystems varies seasonally, and the seasonal variability of NEE is closely related to 

vegetation phenology, the seasonal dynamic of vegetation. Phenophases, which refer to stages in 

the timing of plant development and physiological status, influence seasonal patterns of net 

carbon flux (White et al., 1999; Cramer et al., 1999). Vegetation in temperate regions is typically 

a net source of carbon during the period of plant dormancy and a net sink during the period of 

active growth.  The seasonal change in NEE affects the concentration of atmospheric CO2 at 

local to hemispheric scales (e.g., Keeling et al. 1996; Murayama et al. 2003).  

Various methods have been employed to explore vegetation phenology. Ground plant 

phenology events are measured at many ground observation sites to quantify plant seasonal 

change and to provide data for phenology and ecosystem modeling studies. But ground 

measurements are usually limited in terms of sites the number of observed species, thus 
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restricting the application of ground phenology data for regional studies. With the virtue of high 

spatio-temporal resolution, remote sensing presents a promising alternative for large area 

phenology research (Schwartz, 2003). The beginning and end of the growing season, as well as 

other development periods of growth and reproduction (e.g. Zhang et al., 2003), may be extracted 

from time series of satellite vegetation indices. Yet identifying phenological stages for individual 

plants or for particular stages such as blooming remains problematic for remote sensing. Linking 

long-term ground measurements of plant phenology with remote sensing-derived land surface 

phenology products remains a fertile research field critical for scaling phenology from individual 

plants to canopies, regions and the globe. 

Carbon storage in terrestrial ecosystems dramatically exceeds annual carbon fluxes, and 

changes in carbon storage has the potential to rapidly affect atmospheric CO2 content. 

Monitoring and preserving the carbon stored in terrestrial ecosystems can therefore help to limit 

ongoing climate change induced by greenhouse gasses (GHGs) or, as in the case of reducing 

emissions from deforestation and degradation (REDD), may actually lead to carbon storage 

(Miles and Kapos, 2008). Mapping and monitoring carbon stocks that change dynamically over 

time require spatially explicit estimates of forest cover (Saatchi et al., 2011; Baccini et al., 2008), 

and estimates of long-term carbon uptake in forests. A direct measurable property of carbon 

stored in forests is the forest biomass, in particular, the aboveground portion of the total biomass 

carbon (Gurney and Raymond, 2008).  

The U.S. Forest Service Inventory and Analysis Program (FIA) provides the most 

extensive and accurate field observations of forest biomass and disturbance history for the U.S. 

and thus has been a key information source in many carbon studies (Keith et al., 2010). In many 

nations and regions, however, a detailed ground inventory is not available since it requires 

extensive labor, funding and materials for ground measurements. To date, several studies have 
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provided an extensive knowledge base for estimating forest aboveground biomass (AGB). 

Currently, research on AGB is progressing rapidly with advancements in space-based modeling 

of the 3-D canopy structure, combined with canopy reflectance measured by passive optical 

sensors and radar backscatter (Lefsky et al., 1999; Drake et al., 2002; Asner et al., 2010; Saatchi 

et al., 2011). But most studies are either detailed assessments at local scales or large region 

estimates from coarse resolution remote sensing data. Few studies have looked at estimating high-

resolution biomass density from finer resolution sensors such as Landsat or other commercial 

satellites over continental-to-regional and local scales. 

Disturbances on ecosystems are an important regulator of the states and fluxes of 

ecosystem carbon, and can quickly transform forests from carbon sinks to carbon sources (Turner 

et al. 1993). In addition, carbon storage and fluxes in terrestrial ecosystems are linked with forest 

stand age under given disturbance regimes. Severe disturbances acting over large regions are 

recorded in forest inventories, but individual disturbance events are easily misinterpreted due to 

their temporal and spatial irregularity. Here, as for phenological research, remote sensing can 

provide an alternative method to pick up such disturbances from local to global scales during the  

past several decades. Yet disturbance and recovery cycles in forests may last decades to hundreds 

years, mandating theoretical approaches to combine the recent observational record with longer-

term processes. 

1.2 Objectives 

My goal is to link remote sensing data with ecosystem models to provide a broad analysis 

of vegetation dynamic and conditions. In particular, I have the following objectives in the areas of 

phenology, AGB and stand age: 

1) Compare the Moderate Resolution Imaging Spectroradiometer (MODIS) phenology 

products of multi-phenophase information with plant phenology events during spring, 
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summer and fall. Combine the ground plant phenology records from various 

observational networks and evaluate the relationship between the most appropriate plant 

phenology events and remotely sensed land surface phenology. Compare the MODIS 

phenology products with other state-of-the-art phenology products derived from different 

algorithm and sensors.      

2) Develop a method to convert tree height to AGB model based on spaceborne Lidar 

metrics and a Landsat vegetation index, and apply the approach for a large region. 

Compare my AGB map and other existing satellite-derived AGB density estimates with 

available FIA inventory data at an aggregated regional level. Address spatial scaling 

issues arising from comparing satellite estimates of AGB density across various 

resolutions and with forest inventory plot level measurements.  

3) Build a theoretical framework of disturbance regime based on AGB and net primary 

production (NPP). Then try to estimate long-term disturbance regimes in primary forests 

using current remote sensing data, and extract forest turnover rate and stand age. 

1.3 Motivation 

As such, all objectives rely on remote sensing data with global coverage at low cost.  

Thematically, all of my research is related to the vegetation carbon cycle and may ultimately 

prove useful in international efforts to consistently and transparently measure, monitor, and verify 

terrestrial carbon sequestration. 
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CHAPTER 2 

EVALUATION OF THE MODIS PHENOLOGY PRODUCT WITH GROUND 

MEASUREMENTS AND INTERCOMPARISON WITH EXISTING PHENOLOGY 

PRODUCTS FROM THE MERIS AND AVHRR SENSORS FOR NORTH AMERICA 

Abstract  

Vegetation phenology can serve as a sensitive diagnostic of ecosystem response to global 

change. Long-term ground measurements of plant phenology have been instrumental in our 

understanding of local patterns of seasonality with changing climate, but ground measurements 

are focused on particular species or individual plants at specific sites across different 

observational networks. Their relationship to landscape change is therefore often unclear. 

Conversely, land surface phenology derived from satellite remote sensing can monitor seasonal 

change in ecosystems across large areas, but suffers from unknown relationships to plant 

phenology. The moderate-resolution imaging spectroradiometer (MODIS) Global Land Cover 

Dynamics Product (MOD12Q2) provides estimates of seasonal and interannual dynamics in 

vegetation phenology (metrics related to start of growing season, maturity, senescence and 

dormancy) at a 500 m resolution. The MOD12Q2 has been validated previously with ground 

plant phenology measurements at a few representative sites, but an comparison of MODIS and 

ground phenology at a continental scale is absent. Here, I compared the MODIS phenology 

product with ground phenology data from numerous sites and networks across North America. 

On average, the MODIS onset of greenup was 3.1 day earlier than the earliest plant spring 

phenological events, implying that MODIS can reliably capture vegetation greenup across North 

America. The results also suggest that heterogeneous ground phenology data should not be 

universally compared to remote sensing data.  Instead, comparisons of ground phenology data at 

intensively measured sites should be used to first identify the plant stage that most closely 
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corresponds to remotely-sensed estimates. Further, intercomparison of MODIS phenological 

phases in summer, fall, and winter with the corresponding plant phenological events suggests that 

the MODIS algorithm is robust in capturing different phases of vegetation growing cycle, 

although with the exception of spring, ground measurements are limited. I then compared 

MOD12Q2 to two additional greenup products: (1) greenup date calculated based on the midpoint 

method with the Advanced Very High Resolution Radiometer (AVHRR) data; and (2) onset of 

greenup detected as the time series inflection point from the Medium Resolution Imaging 

Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI). Results show a broad agreement in 

zonal averages of green-up dates with the MODIS and MTCI products, while AVHRR was 10 to 

20 days late in middle and low latitude regions. Overall, the moderate resolution remotely sensed 

phenology products capture the spatial pattern of vegetation phenology across different 

landscapes in North America. 

2.1 Introduction 

Vegetation phenology represents the seasonal dynamics of vegetation and their 

connection to climate, and varies with species and their geographical distribution (Schwartz, 

2003). Temperature plays a significant role in spring phenology such that a warming spring is 

attributed to an earlier green-up of temperate vegetation (Badeck et al., 2004; Chmielewski & 

Rötzer, 2001; Schwartz et al., 2006), although some studies suggest that colder temperatures in 

winter are required to meet the chilling requirements for greenup of forests and crops (Cesaraccio 

et al., 2004; Zhang et al., 2007). Fall phenology (e.g. leaf senescence) is related to photoperiod 

where shorter day lengths induce dormancy (White et al., 1997). Other abiotic factors, such as 

precipitation, soil, and topographic variables, also influence plant phenology in different ways. 

For instance, in the tropics and subtropics, the start of the rainy season controls the photochemical 

capacity in trees (Ishida et al., 2006). Therefore, vegetation phenology is now widely used as an 
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ecological indicator to understand and quantify the impact of global changes on ecosystems. 

Vegetation phenology also has a strong impact on seasonal and interannual variability in 

ecosystem carbon, water and energy cycling (Keeling et al., 1996; Körner & Basler, 2010; 

Myneni et al., 1997; Peñuelas & Filella, 2009). Growing-season length, the period from the start 

of growing season (SOS) to the end of growing season (EOS), is related to the timing of  

vegetation photosynthesis and heterotrophic respiration (Euskirchen et al., 2006; Piao et al., 

2008). In addition, the overall vegetation phenological cycle can be divided into several distinct 

phenophases, each of which is related to plant development, morphological and physiological 

processes (Morisette et al., 2008). Characteristics of plant photosynthesis and, in turn, the 

amounts of carbon exchange vary with phenological stages, like higher photosynthetic capacity 

during leaf expansion as compared to leaf senescence (Wilson et al., 2000). Accurate knowledge 

of the timing in plant phenophases is therefore required for observing and understanding intra- 

and inter-annual variability in terrestrial ecosystem processes.  

As any local community is composed of a number of plant species, vegetation phenology 

for a plant community is distinct from the phenology of individual species inside a community 

(Forrest et al., 2010). In essence, vegetation phenology is the combination of plant phenology 

dynamics for all species coexisting in a community. Plant phenology, the timing of phenological 

events on individual plants, provides a biological indicator of historical and current climate 

change and its impact on vegetation (Chuine et al., 2004; Schwartz & Reiter, 2000). Species-level 

phenological observations have been recorded by individuals and organizations in North America 

for several decades, although recording frequency and extent is irregular (Schwartz, 2003). 

Ground phenological observation usually focus on phenological events of individuals, involving 

the leaf, flower and seed that can be easily observed and measured by amateur observers without 

special skills or tools. 
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The leaf is the core organ where photosynthesis takes place, so “leaf out” -- or initial leaf 

expansion -- is regarded as a signal of SOS. Leaf senescence is another key stage in plant growth 

as it indicates the decline of photosynthesis and the end of the growing season. Besides the events 

related to leaves, vegetation phenological events occur in other parts of a plant as documented by 

in situ observations, such as blooming and seeding that represent a reproductive cycle as 

compared to a growth cycle. Blooming, which occurs even before leaf-out for some species, is 

considered as an early signal of plant development. Due to various competition and reproduction 

strategies, however, blooming for specific species may be far posterior to leaf-out and the start of 

photosynthesis, and may even occur in different phases of the calendar year. The variety of events 

occurring during the growing season may provide useful cues in identifying specific events, but 

they also muddle attempts to identify a dominant cardinal date for SOS or EOS.  

A few species with visually observable events act as standard biological indicators for 

environmental change studies in large-scale operational networks, for e.g., the North American 

Lilac-Honeysuckle Observation Network (Schwartz, 1994). Because people tend to select 

common species whose phenological events are readily and inexpensively identified, 

phenological greenup data are biased towards events like lilac blossom as opposed to leaf 

flushing of evergreen plants. Phenological networks thus represent a confined set of species with 

a wide presence across different bio-climatic zones and provide a spatially extensive platform for 

robust and consistent measurements. But the observations based on these few common species 

may not completely illustrate the phenological patterns in large regions across various local 

vegetation communities.  

Phenological observational sites, operated by professional staff, for example the Long 

Term Ecological Research Network (LTER, http://globalmonitoring.sdstate.edu/LTER-

phenology/), measure a number of phenological events amongst various representative species in 
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the local community. Such extensive observations of species at one site contain abundant 

phenological information for a whole community, which conversely limits the number of 

locations possible due to high labor and knowledge costs. The ground phenology records from 

species extensive and spatial extensive networks each have their advantages, but it is not clear to 

what extent of these two types of ground phenology datasets characterize vegetation phenology 

and landscape seasonal pattern. 

The term land surface phenology (LSP), representing an integrated surface phenology 

estimate from remotely sensed observations, is used to explore the physical connection between 

ground observed phenological events and satellite derived estimates (De Beurs & Henebry, 2004; 

Ganguly et al., 2010). The signal measured by a satellite sensor, in most cases, is a convolved 

reflectance intensity value that results from the interaction between atmosphere, vegetation, snow, 

soil, and other objects above or on the land surface. Thus, LSP usually represents mixed 

information from various species in the local vegetation community as well as other objects in a 

pixel, and for this reason the LSP is also used as a reference to detect the timing of snowmelt, soil 

thaw and freeze (Kimball et al., 2004).  

 Of course, it is still difficult if not impossible to identify species or individual plants at 

the native spatial resolution of moderate-to coarse resolution satellite sensors, and LSP estimates 

must be taken a broad indication of community phenological development. Several studies have 

proposed methodologies to detect events such as SOS or EOS from time-series of remote sensing 

data, predominantly using vegetation indices (VIs) as a proxy for modeling the seasonal behavior 

of vegetation activity (e.g. Dash et al., 2010; Liang & Schwartz, 2009; Reed et al., 1994; 

Thompson & Wehmanen, 1979; Zhang et al., 2003;). VIs, such as the Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), are formulated to measure 

photosynthetically active vegetation (Huete et al., 2002), however, the VI time-series are noisy 
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due to effects introduced by mixed-pixel behavior and atmospheric contamination. Multiple 

distinct phenologies within a single pixel also make it difficult to determine events like SOS or 

EOS from a gradual change in a VI. Further, selection of a technique for LSP detection may 

influence the LSP results. There has been a systematic evolution of methodologies in detecting 

the timing of greenup from VI time-series (White et al., 2009) but the majority of the algorithms 

can be broadly classified into four groups – (1) global thresholds - the date when the magnitude 

of the VI time series exceeds a “unique threshold” ; (2) local thresholds – instead of having a 

“unique threshold” like the global threshold method, this method uses a tuned value of the 

threshold, for e.g., the midpoint method where the threshold is between the maximum and 

minimum of the VI time series; (3) conceptual-mathematical, modeling the phenological 

evolution through mathematical fitting functions, for e.g., the logistic growth function as in 

MOD12Q2 product (Ganguly et al., 2010); and (4) hybrid, combining two or more of the above 

methods (e.g. the Gaussian method in Myneni et al., 1997). 

Spectral reflectances from different sensors show characteristic bias due to differences in: 

(a) purity of the pixel containing a target (mixture vs. pure classes); (b) spectral differences in the 

wavelength bandwidth; (c) viewing and illumination geometry; (d) pre-calibration and/or 

atmospheric correction procedures if any; and (e) geolocation uncertainties. Therefore, the time 

series of VIs calculated from the different algorithms will differ in magnitude and phase for the 

same spatial grid; e.g. , the MODIS VI time series at a moderate spatial resolution displayed 

greater sensitivity of seasonal change compared to the Advanced Very High Resolution 

Radiometer (AVHRR) VI at a coarse spatial resolution (Huete et al., 2002). Thus LSP metrics 

derived from time series of VIs from different sensors may have inconsistencies and hence 

unknown uncertainties in phenological estimates. 

Both LSP and ground plant phenology are related to seasonal changes in terrestrial 
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vegetation, although they differ in terms of definition, materials, methodology, and scale – ideally 

they provide complementary information. The straightforward ground plant phenological 

measurements on individual plants lead to a dilemma in the balance between species and spatial 

representativeness, while the large spatial coverage of remote sensing data enables LSP 

estimation at regional-to–global scales and may not capture the species level information. It is 

challenging, but valuable to attempt to link LSP and ground plant phenology given their different 

sets of strengths and weaknesses and different spatial scales of representation (Morisette et al. 

2008). Such a linkage becomes crucial in order to measure the vegetation seasonal changes with 

the aid of satellite-derived metrics. Several studies have attempted to compare remote sensing-

derived SOS with related ground phenological measurements (Liang et al., 2011; Schwartz & 

Hanes, 2010; White et al. 2009); however, there a re difficulties in directly relating AVHRR 

based LSP to species level phenological events as observed by ground measurements, such as 

point vs. pixel problem and different measurement protocols (White et al., 2009).  

In this study, my goal is to understand the difference and agreement between ground 

phenological observations and LSP, in particular MCD12Q2, across North America. Specifically, 

I focus on two aspects:  

(a) Direct comparison: Previous studies have compared satellite derived greenup metrics 

with ground measurements from representative sites (Ganguly et al., 2010; Hufkens et al., 2011; 

Zhang et al., 2006); however, comparisons of ground measured phenological events against LSP 

metrics like maturity, senescence and dormancy (Zhang et al., 2006) are rare. Here, I performed a 

comprehensive evaluation of the latest version of the MODIS derived phenology metrics using 

various ground observations across North America. I included ground measurements recording 

the onset of greenup, maturity, senescence and dormancy during the spring, summer and fall 

period. My specific aim was to elucidate the physical connection between species- and plant-



14 
	  

	  

specific phenological events and the MODIS LSP metrics, which has not been attempted at the 

continental scale.  

(b) Indirect comparison: A previous study, using AVHRR measurements, has 

demonstrated the incongruities in SOS patterns due to differences in estimation algorithms (White 

et al., 2009). At regional- to continental-scales, however, intercomparison studies of greenup 

metrics derived from different satellite sensors are again rare (Fishard and Mustard, 2007; Liang 

et al., 2011). To this end, I made an indirect comparison of the greenup onset timings derived 

from three sensors - MODIS, AVHRR, and the Medium Resolution Imaging Spectrometer 

(MERIS). All the three sensors are distinct in terms of spatial resolution and spectral 

characteristics, so LSP products are based on different detection algorithms. Note that my aim 

here is to compare leading LSP estimation products, rather than the difference of detection 

algorithms (the subject of White et al., 2009). 

The following sections describe the data used for this study, methodologies in extracting 

phenology metrics from ground observations and satellite measurements, and present the results 

from this intercomparison exercise.   

2.2 Data and Methology 

2.2.1 Ground observation phenology data 

Unlike the previous study with only greenup records (White et al., 2009), I used a total of 

7011 phenological events acquired from 19 networks and sites across Northern America from 

2001 to 2006.  I grouped events into three phenophases: greenup, maturity, and senescence (Table 

2.1, Figure 2.1). These records are either spatially extensive or species extensive, and in addition 

include phenological events during summer and fall to evaluate the multi-phase satellite-derived 

phenological metrics in this study.  Flowering, representing the reproductive timing, may occur 

before or after greenup, and over more extended period than leaf out (Lechowicz, 1995). The 
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plants flowering in summer generally separate the reproductive growth phase from vegetative 

growth phase, so flowering time of these plans is irrelevant to greenup or SOS (Kudo et al., 

2008). Ideally, it would be possible to screen the data by species and to include only those 

flowering events that are known to be contemporaneous with leafing. Unfortunately such species-

specific data is not generally available, and I classified all blooming events into greenup due to 

the limited knowledge about species-specific phenology.  

Table 2.1: Events recorded in phenology datasets. There are 13 phenological events observed; the 
number of observations for each event varies from 2 to 2,829 during 2001-2006, individual sites 
contain between 1 to 413 locations and 2 to 535 species. 

Development Events Abbreviation Total Records 
Number of 
Locations 

Number of 
Species 

Leaf bud burst LBB 459 90 80 

First leaf FL 1287 162 273 

75% leaf expanding 75LE 49 1 17 

Full expansion FE 10 1 2 

First flower bud FLB 100 3 37 

First flower FF 2829 351 483 

Greenup Middle blooming MB 1513 238 85 

Seed maturity SM 2 2 2 

Maturity Seed shedding SS 150 1 17 

First leaf color change FCC 445 2 20 

Leaf fall begin LFB 13 2 2 

Last leaf color change LCC 143 2 17 

Senescence Leaf fall complete LFC 11 2 2 
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To illustrate the phenology of a local community, I gathered the phenological events for a 

specific location that occurred at same year into one year-location cluster. I selected the earliest 

event from all greenup events within each year-location cluster to represent the onset of greenup 

rather than pooling the entire greenup phenophase record. Similarly, I selected the latest 

Figure 2.1: The location of ground measurements used. The duration of observation at each 
location is shown in color, and the number of observed species for each location is illustrated as 
box size. 
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senescence events from the year-location clusters for the end of the growing season or onset of 

dormancy. Although these earliest/latest records may not capture the beginning or end of the 

growth curve, this approach provides a uniform approach for estimating phenological timing for 

species extensive sites in order to match the definition of LSP indices. 

2.2.2 Land surface phenology data 

Specific approaches have been developed to capture the timing of vegetation growth 

stages by utilizing satellite remote sensing derived products. MODIS sensors aboard the Terra 

and Aqua satellites offer a valuable data source to monitor regional-to-global scale land surface 

dynamics in the last decade at a spatial resolution of 500 m to 1 km. The MODIS vegetation 

index product suite provides both the NDVI and the Enhanced Vegetation Index (EVI) - the later 

incorporates the blue spectral band and is calculated as,  

                                                                         Eq. 2.1                    

where ( 0.62-0.67µm), (0.84-0.88µm), and (0.46-0.48µm) are reflectances for narrow wavelength 

intervals as compared to AVHRR. The MODIS EVI can capture vegetation variations in high 

biomass areas and/or drought conditions, whereas the NDVI relies on the red band and tends to 

saturate in closed canopies (Huete et al., 2002). Based on EVI, the MODIS Land Cover 

Dynamics (MCD12Q2) product is produced to estimate the timing of vegetation phenology at 

global scales, and I used the 500 m refined Collection 5 (C5) MCD12Q2 product for this study 

(Ganguly et al. 2010). The MCD12Q2 product defines four phenophases in a typical plant 

development cycle: greenup, maturity, senescence, and dormancy. The product fits a logistic 

function to the EVI curve in one cycle, and the four phases are demarcated by calculating the 

maximum rate of change in curvature of the fitted logistic curve. The MODIS product estimates 

more plant phases than other products, which may be beneficial for estimating seasonal changes 
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in photosynthesis and other plant activities (Sakamoto et al., 2005; Zhang, 2006). 

To monitor long-term changes in phenological shifts, many studies have utilized the 

AVHRR products, especially the Normalized Difference Vegetation Index (NDVI). NDVI is 

computed from spectral reflectances as, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 2.2 

where (~0.58-0.68µm) is the reflectance in red channel , and (~0.72-1.1µm) is the reflectance in 

NIR channel. The Global Inventory Modeling and Mapping Studies (GIMMS) dataset provides a 

l981 to present 16-day composited NDVI at global 8-km grids (Tucker et al., 2005), and is widely 

used for global and regional phenology estimates. In a prior intercomparison study between 

different methods based on NDVI from AVHRR, the pixel midpoint method based on the 

maximum and minimum of annual NDVI curve was found to be more closely related to ground 

plant phenology than other algorithmic methods (White et al., 2009). In t his study, I used the 

GIMMS data and the pixel midpoint method to calculate the start of growing season (Figure 2.2).  

MERIS, onboard Envisat, is another valuable sensor for monitoring LSP at regional to 

global scales, since it has 15 programmable (2.5 nm-20 nm wide) wavebands in the region of 390 

nm to 1040 nm and a spatial resolution of 300 m with a three-day repeat cycle. Because of 

MERIS’s fine spectral and moderate spatial resolution, the MERIS Terrestrial Chlorophyll Index 

(MTCI) combines three MERIS visible and infrared bands (Dash & Curran, 2004) to provide 

information related to vegetation chlorophyll content and is calculated as, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Eq. 2.3  

where , , and  are the reflectances of bands 8 (681.25±7.5nm), 9 

(708.75±10nm) and 10 (853.75±7.5nm), and respectively in the MERIS standard band setting. 

Dash et al (2010) developed a discrete Fourier transform approach to smooth MTCI 8-day time 
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series dataset, and then identified the inflection points with maximum curvature. A change in 

derivative from positive to negative indicates a valley point (with the algorithm moving 

backwards in time), which in turn is identified as onset of greenup (Figure 2.2). This hybrid 

method for MERIS MTCI was found to be a reliable algorithm for measuring greenup of both 

natural vegetation and cropland areas with complex landscapes and multiple growth cycles (Dash 

et al., 2010). I used the MERIS MTCI greenup metrics for the conterminous USA (CONUS), 

which is available from 2003 to 2006 at 1 km spatial resolution. 

 

Figure 2.2: The LSP onset of greeup detection algorithms illustration for a representative forest 
pixel in California. Onset of greenup (vertical lines) for three methods and datasets: midpoint 
method with AVHRR NDVI linearly interpolated daily curve (green); MODIS EVI time series by 
logistic function fitting (blue), MERIS MTCI smoothed  curve by discrete Fourier transform (red 
line). 
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2.2.3 Comparison 

I compared the MODIS derived onset of greenup, maturity, senescence, and dormancy to 

ground phenological events from 2001 to 2006 (duration limited by the availability of MCD12Q2 

at the time of research). I matched the timings of ground phenological events with MCD12Q2 

phenophases extracted from the pixel of the native 500 m imagery nearest to locations of the 

ground records. If MCD12Q2 is missing in the corresponding pixel due to clouds or other effects, 

I discarded this pixel from the comparison (rather than using the value from a neighboring pixel). 

To quantify the comparison, I calculated the Pearson’s correlation coefficients, bias, and root 

mean square error (RMSE) between MCD12Q2 and ground phenology. Instead of ordinary least 

squares (OLS) regression, I used orthogonal regression analysis (reduced major axis, RMA) to 

explore the relationship between LSP and observation (Berterretche et al., 2005), which is more 

appropriate in accounting simultaneously for the errors in both variables (Sokal and Rohlf, 1995). 

I produced the AVHRR phenology metrics every year from 2001 to 2006, but the MTCI 

phenology production is only available from 2003 to 2006 for CONUS. To provide a more direct 

intercomparison among sensors, I averaged both the MODIS 500 m greenup data and MERIS 

MTCI 1 km greenup data to an 8 km spatial resolution to match the AVHRR products. I 

eliminated pixels with missing data in any products to assure unified standards in calculating the 

statistical metrics. I processed the intercomparison amongst MODIS, MTCI, and AVHRR 

phenology products for all available pixels in CONUS from 2003 to 2006. Further, due to the 

different definitions of greenup for the MODIS and AVHRR products, I also calculated their 

standard deviation for North America from 2001 to 2006 (to reflect interannual change). 

2.3 Results and Discussion 

Ground observations of different phenological events span early spring to late fall (Figure 

2.3). Most ground phenological events, especially when classified into the three phenophases, 
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occur around the expected MODIS events. Often the median date of each MODIS phenological 

event is within the interquartile range of the corresponding phenophases. Median “leaf bud burst” 

is close to onset of greenup, while median “75% leaf expending” and median “Full expansion” 

are near the end of greenup. Some ground events, however, like “First leaf” (1287 records) and 

“First flower” (2829 records) extend over a broader range (Figure 2.3). “First leaf” events may 

contain late leaf-out of drought-enduring plants in some arid/semi-arid sites, for example the 

Sevilleta LTER sites in New Mexico. “First flower” also has a large range, and its median value 

is later than day of year 200.  

 

Figure 2.3: Comparison of ground and MODIS phenology. Boxplot shows ground data: shaded 
area is interquartile range and black line is the median; x-axis labels refer to events described in 
Table 2.1. Colored horizontal lines show median MODIS phenology events: green, greenup 
onset; blue, maturity onset; yellow, senescence onset; red, dormancy onset. As the ground 
phenology events transition from early season on the left to late season on the right, the MODIS 
phenology event closest to the median ground event also shifts toward later stages (green to red).  
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Table 2.2: The correlation coefficient between ground phenological events and corresponding 
MODIS phenology products 

Phenophases Events N  Greenup  Maturity Senescence Dormancy 

Leaf bud burst 459 0.74** 0.42   

First leaf 

128

7 -0.07 0.07   

75% leaf expanding 49 0.66** 0.72**   

Full expansion 10 -0.37 0.15   

First flowers bud 100 -0.41 -0.30   

First flower 

282

9 -0.26 0.01   

Greenup Middle bloom 

151

3 0.14 -0.09   

Seed maturity 2     

Seeding Seed shedding 150  0.17 0.19  

First leaf color change 445   0.00 -0.03 

Leaf fall begin 13   0.47** -0.20 

Last leaf color change 143   0.10 -0.06 

Senescence Leaf fall complete 11   -0.18 0.71** 

** Correlation passed 0.05 significant test. 

 
Although the blooming of specific species is commonly observed in the spatial extensive 

network, as I addressed before, flowering is often not coincident with greenup, especially for 

species extensive network. The relationship between ground phenological events and onset of 

corresponding MODIS phenophases is shown in Table 2.2. Two greenup events “Leaf bud burst” 

and “75% leaf expanding” have significant correlations to the onset of greenup from MODIS, 

while the events related to flowering have no such significant correlation to MODIS indexes. 



23 
	  

	  

“Leaf fall begin” is related to onset of senescence, as well as “Leaf fall complete” to the onset of 

dormancy. I present a more detailed comparison between phenological events and LSP in the 

following sections. 

Table 2.3: The comparison of MODIS phenophase onset time with all corresponding ground 

phenology, and the same comparison with the earliest events at each location. 

MODIS Greenup onset Maturity onset Senescence onset Dormancy onset 

Eventsa 
LBB, FL, 75LE, FE, 

FLB, FF, MB 
SM, SS FCC, LFB, LCC, LFC FCC, LFB, LCC, LFC 

Selection All Early All Early All Early All Late 

n 6247 773 136 6 408 15 144 15 

r -0.09 0.52** 0.56** 0.99 0.37 0.28 0.63** 0.92** 

Bias (day) 41.14 3.11 25.94 0 12.08 17.07 14.69 3.27 

RMSE 

(day) 
66.40 23.16 33.06 12.6 19.03 49.47 25.98 14.22 

a The abbreviation of phenology events: LBB (Leaf bud burst); FL (First leaf); 75LE (75% leaf expanding); 
FE (Full expansion); FLB (First flower bud); FF (First flower); MB (Middle blooming); SM (Seed 
maturity); SS (Seed shedding); FCC (First leaf color change); LFB (Leaf fall begin); LCC (Last leaf color 
change); LFC (Leaf fall complete). 
** Correlation passed 0.005 significant tests. 

2.3.1 Comparison between MCD12Q2 greenup             
and ground greenup events 

 
Spring phenological events are classified as crucial events in all ground measurements. 

There is, however, no significant relationship between the MODIS greenup onset date and all 

spring phenological events when combined (r=-0.09, Table 2.3). Conversely, the earliest greenup 

events chosen from each year-location cluster are related to the MODIS greenup onset date with a 

statistically significant correlation (r=0.51, Table 2.3). The earliest phenology events for year-

location clusters include “Leaf bud burst,” “First leaf,” “First flowering bud,” “First flower,” and 
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“Middle blooming.” The RMA analyses of earliest phenology events and MODIS onset of 

greenup provided a regression slope close to 1:1 line by considering errors from  both of them 

(Figure 2.4). 

 

 

 

I employed a separate exercise of phenology events and MODIS changes along latitude. 

Calculated by latitudinal bands, the average of all the MODIS greenup pixels agreed well with the 

corresponding earliest ground phenology event (Figure 2.5); the MODIS-based estimate showing 

more variance relative to the ground-based estimates. To represent the phenology of a whole 

plant community, I plotted the year-location clusters (c.f. Section 2.2.1) with more than 30 

phenological events across taxa (Figure 2.6). Although the frequency distributions of all spring 

phenological events in different sites varied in amplitude and dispersion, the corresponding 

MODIS onset of greenup is close to the beginning of the spring event frequency distribution for 

Figure 2.4: The earliest greenup ground phenological events at all sites, and corresponding 
MODIS onset of greenup. Dotted line is RMA regression: GreenupMODIS = 10.13+0.89* 
Greenupground, p < 0.01. The abbreviation of phenology events: LBB (Leaf bud burst); FL (First 
leaf); FLB (First flower bud); FF (First flower); MB (Middle blooming) 
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most of the year-location clusters, supporting the results shown in table 2.3. This implies that the 

MODIS-based onset of greenup matches the earliest ground phenological events in the 

community. In addition, the MODIS onset of greenup was more closely related to the earliest 

ground-based greenup events for sites with more than five species in the record, where the 

extensive observed species have a better representation of local vegetation (r=0.61, Figure 2.7).  

 

Figure 2.5: Average earliest ground phenological events (red line and diamond) and the 
corresponding average MODIS onset of greenup (blue line and diamond) calculated by latitude. 
Standard deviations are shown as horizontal lines. Bars on the left show the number of available 
samples (red, ground; blue, MODIS) in each latitude bin.   

Lilac is often used as an indicator species for phenological observation, and it is planted 

and observed in some large networks and even in international phenology networks. The “First 

flower” of lilac is a relatively early event in temperate region, and thus might be considered as an 

indicator of the start of growing season for most communities in North America. Yet the species 

tends to keep its own development rhythm, which may not be the same as the dynamics as 

observed from its respective local community. The “First flower” of Lilac may occur at a 
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relatively late period  in some regions, and may not reflect the onset of a community greenup. 

Since satellite sensors gather integrated information from the land surface, it is also questionable 

whether the MODIS phenology is related to the phenology of selected single species.  I compared 

the MODIS onset of greenup with “First flower” of common lilac (different genetic stock) and 

cloned lilac (same genetic characteristics) from different observational networks. Results show 

that selected species of lilacs are comparable to MODIS-based greenup estimates from day of 

year 60 to 150. But MODIS underestimates greenup by about 20 days for lilac flowering after day 

of year 150, and the “First flower” of lilacs occurs much later when the MODIS onset of greenup 

is below 60 day of year (Figure 2.8). 

The comparative results for greenup show that the MODIS phenology product captures 

the earliest events of plant community growth. Of all the plant phenological stages, the greenup 

events on leaves are most consistently related to the MODIS-estimated greenup. The earliest 

blooming of plants also has a high correlation with MODIS-estimated greenup. Due to the 

previously discussed uncertainties, the blooming dynamics of a whole community may not be a 

good candidate for representing greenup. Lilac early blooming is also significantly correlated 

with MODIS-based greenup but it is still questionable whether a singular species event can 

represent a plant community phenology across large regions.  

2.3.2 Comparison for maturity, senescence, and dormancy 

Four events are recorded during the senescence phenophases in ground observations: 

“First leaf color change,” “Leaf fall begin,” “Last leaf color change,” and the “Completion of leaf 

fall.” In my study, I compared the MODIS-based senescence onset timing with two relatively 

early plant senescence events, “First leaf color change” and “Leaf fall begin.” Neither of the 

combination of plant senescence events or single events was correlated to MODIS-based 

senescence onset (Figure 2.9a). The data points of the “First leaf color change” against the 
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MODIS-based senescence onset are around 1:1 line, while the “Leaf fall begin” was independent 

from the senescence onset. The onset of dormancy from MODIS represents the “Last leaf color 

change” and “Leaf fall complete” (RMSE=25.98 day for all events, Figure 2.9b, Table 2.3), and 

the last events as recorded in the “leaf fall complete” and “last leaf color change” resemble 

MODIS-derived dormancy onset (RMSE=14.22 day, Table 2.3). The dates of all seeding are 

related to the MODIS-based maturity onset ( r=0.56, p<0.05, Table 2.3), in spite of only a few 

seeding records at three locations in the dataset (Figure 2.9c). 

 

 

Figure 2.6: The frequency of spring phenological events (histogram bars at 10-day bins) and 
MODIS onset date of greenup (vertical dotted line) in five sites with more than 30 species. 
Locations of five sites are showed in lower right plot. 



28 
	  

	  

 

Figure 2.7: The earliest greenup ground phenological events on the sites observed more than five 
species, and corresponding MODIS onset of greenup. RMA regression showed in dotted line: 
GreenupMODIS =12.45+0.98*Greenupground, P<0.01. 

 

Figure 2.8: Comparison between common lilac and cloned lilac spring phenological events and 
onset of greenup. The RMA regression for all lilac events and MODIS greenup onset is showed 
in dot line: GreenupMODIS =8.15+0.78* Greenupground , p<0.05. 
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Overall, there are relationships from some ground observed phenology events during 

maturity, senescence, and dormancy to the corresponding MODIS LSP metrics, for example, 

“First leaf color change” to onset of senescence, “Last leaf color change” to onset of dormancy, 

and “Developing fruit”/ “Seed maturity” to onset of maturity. However the robustness of the 

relationships is difficult to assess because the measurements are spatially sparse and temporally 

undersampled relative to the extensive measurements that exist for spring phenological events.  

 

Figure 2.9: The comparison of ground measurements and MODIS indices during maturity, 
senescence, and dormancy. (a) MODIS senescence onset vs. ground early fall events; (b) MODIS 
dormancy onset vs. ground late fall events; (c) MODIS maturity onset vs. seeding events. 
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2.3.3 Intercomparison of greenup among MODIS,                 
AVHRR and MERIS 
 
The standard deviations of MODIS and AVHRR show similar spatial patterns (Figure 

2.10a&b). The interannual variability of these two datasets is generally less than 10 days in the 

east of the CONUS, northwest Canada, and in Alaska. The standard deviation of AVHRR 

greenup, however, is conspicuously larger than 15 days in the north of New England compared to 

the low values as seen in the MODIS greenup. In the west of the US both datasets have standard 

deviations more than 10 days, and AVHRR is much lower in most of the eastern US (less than 5 

days).  

	  

Figure 2.10: The standard deviation of MODIS greenup onset (a) and AVHRR greenup (b) from 
2001 to 2006. 
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Due to MTCI data availability, I present MTCI comparisons for CONUS over 2003 to 

2006. The variation in average timing of onset of greenup by latitude for MODIS and MTCI 

follows each other more closely than with does AVHRR, which is often delayed by 15 days from 

31°N to 45° N (Figure 2.11). In low latitude regions below 30°N, the onset of greenup from 

AVHRR is often 20 days later than MODIS and MTCI values, and the differences between 

MODIS and MTCI are also higher. However, the AVHRR product precedes the MODIS greenup 

dates by about five days from 50°N to 70° N. I calculated the interannual average onset of 

greenup from these three sensors for all pixels in the North America from 2003 to 2006, and the 

correlation coefficients were calculated to intercompare each of the sensors (Figure 2.12). The 

correlation between MODIS and MTCI was observed to be the largest while the AVHRR and 

MTCI displayed a lower correlation. 

 

Figure 2.11: Average onset of greenup time from 2003 to 2006 based on AVHRR, MODIS, and 
MTCI calculated by latitude in each half degree latitude bin. The shaded area is the MODIS 
standard derivation. 
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Figure 2.12: Plots of average onset of greenup in CONUS during 2003 to 2006 from different 
sensors and their correlation coefficient (a) MODIS and MTCI; (b) AVHRR and MTCI; (c) 
MODIS and AVHRR. The color shows point density in the 2D space. Dotted line is 1:1 line; 
dashed line is the slope line of two data. 

 
The MODIS - MTCI comparison has the highest correlation (Figure 2.12). This is 

encouraging because both products involve distinct spectral combinations in vegetation indices 

calculation and the phenology detection algorithm. The midpoint methods used in the AVHRR 

greenup product reflects the transition period of greenup between dormancy and maturity by 
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considering low VI values due to snow and bare soil, whereas algorithms of MODIS and MTCI 

greenup products tend to capture the onset of greenup (beginning of increasing trend on VI 

curves) as their goal. Hence, AVHRR greenup indices tend to occur later than MODIS and MTCI 

greenup in the low and middle latitude region without snow cover in winter and spring. 

Additionally, AVHRR greenup is derived from an antiquated sensor, GIMMS is stored at a far 

coarser spatial resolution, and the sensors all use different band combinations: any of these 

factors could influence the observed differences. At least for the sites analyzed and at the specific 

scale of analysis undertaken here, this study implies that similar spatial patterns of greenup can be 

extracted from different sensors even with different methodologies and band combinations, 

although the exact greenup dates derived from these products differs in particular regions. 

2.4 Conclusion 

The intercomparison exercise in this paper shows that the MODIS onset of greenup is 

statistically correlated with the earliest plant phenological events during greenup in different 

landscapes over North America. Since the observed species are limited in spatially extensive 

observation networks, these networks may not capture the beginning of the growing season for 

various communities across North America. Besides the spring phenological events, ground 

measurements of other events during summer and fall are severely inadequate for interpreting the 

remotely sensed product, although the direct comparison in limited sites shows similarity between 

MODIS products and a few ground records for maturity and senescence stages.  

An extended growing season due to senescence delay can lead to net carbon dioxide 

losses, due to enhanced respiration combined with reduced photosynthetic capacity during 

autumn warming (Piao et al., 2008). This urges for the construction of more ground observations 

networks for recording senescence events. Overall, the number of ground plant phenological 

records is still spatially and temporally inadequate to reveal large scale variability in growing 



34 
	  

	  

season length, and thus there is a pressing need for more species-level observations available 

through a spatially extensive database. Promising efforts, such as the National Phenology 

Network (Betancourt et al., 2007), are already underway. 

All LSP indices, despite being calculated from different sensors based on various 

algorithms, consistently reflect variation in phenology patterns along latitude. The MODIS onsets 

of greenup in North America is correlated to MTCI greenup at similar spatial resolution 

(R=0.76), whereas the AVHRR greenup shows less interannual variance than the ones derived 

from MODIS. Since the LSP may vary in different spatial resolutions especially for 

heterogeneous landscapes (Liang et al., 2011), phenological products of higher resolutions should 

provide more accurate and detailed estimates of vegetation seasonal dynamics. The notable lag of 

AVHRR greenup against onset of greenup from the MODIS and MTCI products implies a diverse 

definition in phenological indices. Therefore LSP indices require further clarification for 

definitions and closer connection with ground vegetation/plant phenology. Then LSP indexes 

amongst sensors might match each other after being carefully validated by ground measurement. 

References  

Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., et al. (2004), 
Responses of spring phenology to climate change, New Phytologist, 162(2), 295–309. 

Berterretche, M., Hudak, A. T., Cohen, W. B., Maiersperger, T. K., Gower, S. T., & Dungan, J. 
(2005), Comparison of regression and geostatistical methods for mapping Leaf Area 
Index (LAI) with Landsat ETM+ data over a boreal forest, Remote Sensing of 
Environment, 96(1), 49–61. 

Betancourt, J. L., Schwartz, M. D., Breshears, D. D., Brewer, C. A., Frazer, G., Gross, J. E., et al. 
(2007), Evolving plans for the USA National Phenology Network, Eos, Transactions 
American Geophysical Union, 88(19), 211. 

De Beurs, K. M., & Henebry, G. M. (2004), Land surface phenology, climatic variation, and 
institutional change: Analyzing agricultural land cover change in Kazakhstan, Remote 
Sensing of Environment, 89(4), 497–509. 

Cesaraccio, C., Spano, D., Snyder, R. L., & Duce, P. (2004), Chilling and forcing model to 



35 
	  

	  

predict bud-burst of crop and forest species, Agricultural and forest meteorology, 126(1-
2), 1–13. 

Chmielewski, F. M., & Rötzer, T. (2001), Response of tree phenology to climate change across 
Europe, Agricultural and Forest Meteorology, 108(2), 101–112. 

Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., & Ladurie, E. L. (2004), Historical 
phenology: grape ripening as a past climate indicator, Nature, 432(7015), 289–290. 

Dash, J., & Curran, P. J. (2004), The MERIS terrestrial chlorophyll index, International Journal 
of Remote Sensing, 25(23), 5403–5413. 

Dash, J., Jeganathan, C., & Atkinson, P. M. (2010), The use of MERIS Terrestrial Chlorophyll 
Index to study spatio-temporal variation in vegetation phenology over India, Remote 
Sensing of Environment, 114(7), 1388–1402. 

Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S., Dargaville, R. J., 
et al. (2006), Importance of recent shifts in soil thermal dynamics on growing season 
length, productivity, and carbon sequestration in terrestrial high�latitude ecosystems, 
Global Change Biology, 12(4), 731–750. 

Fisher, J. I., & Mustard, J. F. (2007), Cross-scalar satellite phenology from ground, Landsat, and 
MODIS data, Remote Sensing of Environment, 109(3), 261–273. 

Forrest, J., Inouye, D. W., & Thomson, J. D. (2010), Flowering phenology in subalpine meadows: 
Does climate variation influence community co-flowering patterns?, Ecology, 91(2), 
431–440. 

Ganguly, S., Friedl, M. A., Tan. B., Zhang, X., & Verma, M. (2010), Land surface phenology 
from MODIS: Characterization of the Collection 5 global land cover dynamics product, 
Remote Sensing of Environment, 114(8), 1805–1816. 

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002), Overview of 
the radiometric and biophysical performance of the MODIS vegetation indices, Remote 
Sensing of Environment, 83(1-2), 195–213. 

Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., & Richardson, A. D. 
(2012), Linking near-surface and satellite remote sensing measurements of deciduous 
broadleaf forest phenology, Remote Sensing of Environment, 117(0), 307–321. 

Ishida, A., Diloksumpun, S., Ladpala, P., Staporn, D., Panuthai, S., Gamo, M., et al. (2006), 
Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and 
evergreen forests in Thailand, Tree Physiology, 26(5), 643–656. 

Keeling, C. D., Chin, J. F. S., & Whorf, T. P. (1996), Increased activity of northern vegetation 
inferred from atmospheric CO2 measurements, Nature, 382(6587), 146–149. 

Kimball, J. S., McDonald, K. C., Frolking, S., & Running, S. W. (2004), Radar remote sensing of 



36 
	  

	  

the spring thaw transition across a boreal landscape, Remote Sensing of Environment, 
89(2), 163–175. 

Körner, C., & Basler, D. (2010), Phenology under global warming, Science, 327(5972), 1461. 

Liang, L., & Schwartz, M. D. (2009), Landscape phenology: an integrative approach to seasonal 
vegetation dynamics, Landscape ecology, 24(4), 465–472. 

Liang, L., Schwartz, M. D., & Fei, S. (2011), Validating satellite phenology through intensive 
ground observation and landscape scaling in a mixed seasonal forest, Remote Sensing of 
Environment, 115(1), 143–157. 

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., Abatzoglou, J., et 
al. (2008), Tracking the rhythm of the seasons in the face of global change: phenological 
research in the 21st century, Frontiers in Ecology and the Environment, 7(5), 253–260. 

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997), Increased plant 
growth in the northern high latitudes from 1981 to 1991, Nature, 386(6626), 698–702. 

Peñuelas, J., & Filella, I. (2009), Phenology feedbacks on climate change, Science, 324(5929), 
887. 

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., et al. (2008), Net 
carbon dioxide losses of northern ecosystems in response to autumn warming, Nature, 
451(7174), 49–52. 

Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. 
(1994), Measuring phenological variability from satellite imagery, Journal of Vegetation 
Science, 5(5), 703–714. 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005), A 
crop phenology detection method using time-series MODIS data, Remote sensing of 
environment, 96(3), 366–374. 

Schwartz, M. D. (1994), Monitoring global change with phenology: the case of the spring green 
wave, International journal of biometeorology, 38(1), 18–22. 

Schwartz, M. D. (2003), Phenology: An Integrative Environmental Science, Springer-Verlag, 
Berlin. 

Schwartz, M. D., & Hanes, J. M. (2010), Intercomparing multiple measures of the onset of spring 
in eastern North America, International Journal of Climatology, 30(11), 1614–1626. 

Schwartz, M. D., & Reiter, B. E. (2000), Changes in north American spring, International 
Journal of Climatology, 20(8), 929–932. 

Schwartz, M. D., Ahas, R., & Aasa, A. (2006), Onset of spring starting earlier across the Northern 
Hemisphere, Global Change Biology, 12(2), 343–351. 



37 
	  

	  

Sokal, R. R., & Rohlf, F. J. (1995), Biometry: The Principles and Practice of Statistics in 
Biological Research, WH Freeman, New York. 892 

Thompson, D. R., & Wehmanen, O. A. (1979), Using Landsat digital data to detect moisture 
stress, Photogrammetric Engineering and Remote Sensing.  45:201-207. 

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., et al. 
(2005), An extended AVHRR 8�km NDVI dataset compatible with MODIS and SPOT 
vegetation NDVI data, International Journal of Remote Sensing, 26(20), 4485–4498. 

White, M. A., Thornton, P. E., & Running, S. W. (1997), A continental phenology model for 
monitoring vegetation responses to interannual climatic variability, Global 
Biogeochemical Cycles, 11(2), 217–234. 

White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P., et al. 
(2009), Intercomparison, interpretation, and assessment of spring phenology in North 
America estimated from remote sensing for 1982–2006, Global Change Biology, 15(10), 
2335–2359. 

Wilson, K. B., Baldocchi, D. D., & Hanson, P. J. (2000), Spatial and seasonal variability of 
photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest, 
Tree Physiology, 20(9), 565. 

Xu, L., Baldocchi, D. D., & Tang J. (2004), How soil moisture, rain pulses, and growth alter the 
response of ecosystem respiration to temperature, Global Biogeochemical Cycles, 18(4), 
GB4002. 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., et al. (2004), 
Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 84(3), 
471–475. 

Zhang, X., Friedl, M. A., & Schaaf, C. B. (2006), Global vegetation phenology from Moderate 
Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and 
comparison with in situ measurements, Journal of Geophysical Research 
(Biogeosciences), 111(G10), 04017. 

Zhang, X., Tarpley, D., & Sullivan, J. T. (2007), Diverse responses of vegetation phenology to a 
warming climate, Geophysical Research Letters, 34(19), L19405. 

 



38 
	  

	  

CHAPTER 3 

A SIMPLE PARAMETRIC ESTIMATION OF LIVE FOREST ABOVEGROUND BIOMASS 

IN CALIFORNIA USING SATELLITE DERIVED METRICS OF CANOPY HEIGHT AND 

LEAF AREA INDEX 

Abstract 

Accurate characterization of variability and trends in forests biomass at local to national 

scales is required for accounting of global carbon sources and sinks, and monitoring their 

evolution. Here I present a new remote sensing based approach for mapping live forest 

aboveground biomass (AGB), independent of the field inventory data needed in many other 

approaches. The model is based on a simple parametric model that combines high-resolution 

estimates of Leaf Area Index derived from the Thematic Mapper sensor onboard the Landsat 

satellite and canopy maximum height from the Geoscience Laser Altimeter System (GLAS) 

sensor onboard ICESat, the Ice, Cloud, and land Elevation Satellite. I tested my model over the 

forested areas of California. spanning a broad range of climatic and land-use conditions, and 

show that the AGB estimates are comparable to inventory estimates. The method is particularly 

useful for areas with underrepresented or outdated field measurements, and may help to minimize 

inconsistencies in AGB estimates caused by methodological variations in field inventories across 

nations. My approach offers a high-resolution approach for forest carbon monitoring with the 

potential of global applicability. 

3.1 Introduction and Motivation 

Quantifying and preserving the carbon stock in forests underpins sequestration and 

mitigation strategies, such as the program to Reduce Emissions from Deforestation and 

Degradation (REDD) (UNFCCC; Canadell et al., 2007; IPCC, 2007; Miles and Kapos, 2008), 
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and promotes carbon credits to offset greenhouse gas emissions from other sources. Forest carbon 

stocks change over time and can be monitored through periodic mapping of the total forest 

biomass (Gurney and Raymond, 2008; Saatchi et al., 2011; Baccini et al., 2012). National 

inventories, e.g. the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service, 

provide the most detailed and accurate field observations of forest biomass and disturbance 

history and thus are a key information source in many carbon studies (Keith et al., 2010). Yet the 

utility of such inventories for global-scale studies is limited because of national differences in 

measurement strategies and, in the case of remote forests such as those of the boreal and tropical 

regions, sparse sampling and out of date observations (Houghton, 2005).  

Recent efforts relying on remote sensing allow mapping the distributions of the 

aboveground portion of total forest biomass (AGB) over wide geographical extents, overcoming 

problems of field data underrepresentation (Lu et al., 2006; Gibbs et al., 2007). Canopy 

reflectance measured by passive optical sensors and radar backscatter may be correlated with 

field observed AGB (Gibbs et al., 2007; Saatchi et al., 2007). Precision, however, is limited for 

AGB densities greater than 300-400 Mg/Ha, as these reflective measures show an asymptotic 

behavior with canopy closure (Saatchi et al., 2007). Canopy 3-D modeling using space-borne 

Lidar and Interferometric synthetic aperture radar (InSAR) have improved the accuracy of the 

estimates of canopy vertical structure, with Lidar tending to outperform InSAR (Lefsky et al., 

1999; Drake et al., 2002; Asner et al., 2010). However, the sparse availability of Lidar data 

requires the fusion of multiple sources of data for large area mapping of AGB. Approaches 

include the combination of forest height derived from the Geoscience Laser Altimeter System 

(GLAS, onboard ICESat, the Ice, Cloud, and land Elevation Satellite Harding & Carabajal, 2005), 

reflected energy (e.g. from the Moderate Resolution Imaging Spectroradiometer -  MODIS and 

Phased Array type L-band Synthetic Aperture Radar - PALSAR) and ground data, all processed 
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with predictive models (Baccini et al., 2008; Boudreau et al., 2008; Goetz et al., 2009; Saatchi et 

al., 2011; Baccini et al., 2012). The field-data driven model estimates of AGB have large 

uncertainties in regions where inventory data are absent and the inferences on under-sampled 

areas are usually based on unified allometric models derived from a few representative sites. To 

circumvent these problems, in this study  I develop a methodology to estimate AGB based on the 

following steps: 

(a) Produce a robust continuous height map using a simple parametric model linking 

Landsat-derived leaf area index (LAI) to forest height from GLAS; 

(b) Estimate AGB using a height-to-biomass functional relationship; and  

(c) Compare my AGB estimates to inventory data and other satellite-derived maps of 

AGB available at different spatial resolutions.   

In the following sections I describe the region of study, data and methods used to estimate 

AGB and approaches to inter-compare AGB estimates with inventory based plot data. Detailed 

information on data and methods is provided in the auxiliary material and references to sections 

in the auxiliary are provided here for legibility.  

3.2 Data and Methods 

The study area for prototyping my methodology is the state of California, which 

encompasses various eco-climatic zones with large variations in AGB. The total forested land in 

California is approximately 9.54 million hectares (Section 3.5.1.2.1 and Figure 3.4a), with 

evergreen being the most common forest type. I define the structural attributes of the forested 

pixels through (1) the LAI derived from the Landsat 5 TM surface reflectance data in the Red and 

Near-Infrared (NIR) spectral bands and (2) the potential canopy height obtained from the 

available ICESat GLAS data. At the scale of a Landsat pixel, I assume that the LAI represents an 

average of the vertically integrated leaf density of the tree stands and correlates with the average 
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canopy height within homogeneous climate zones and stand compositions. A list of all the data 

used in this study is also detailed in Table 3.4. 

I used the available cloud-free (cloud cover less than 5%) Landsat 5 TM scenes from the 

USGS Global Land Survey (GLS) 2005 dataset covering the state of California. I identified 

images with low residual noise and nearly matching acquisition dates during the growing season 

(May to October) for the years from 2004 to 2006 to minimize phenological changes across the 

different scenes. The images were pre-processed using the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) for atmospheric correction and calibration to compute 

surface spectral reflectances (Section 3.5.1.1.1).  The surface reflectances, combined with 

National Land Cover Database land cover data, were used to retrieve LAI for the forested pixels 

using a radiative transfer based inversion approach (Section 3.5.1.1.2; Ganguly et al., 2008; 

Ganguly et al., 2012).  

I analyzed the 2003 to 2007 GLAS GLA14 data to assemble the best possible imagery 

(Section 3.5.1.1.3). GLAS emits a 1064 nm laser pulse at an elliptical ground footprint of ~64 m 

diameter (Abshire et al., 2005), and the echo waveform of the laser pulse at 0.15 m vertical 

sampling resolution contains information related to canopy structure, the land surface, snow 

coverage, and so on. I derived maximum canopy height from each of the GLAS waveforms 

(Figure 3.1a) and assessed the quality of the height values using accompanying flags as well as 

ancillary data from the National Elevation Data (NED) and Landsat (Section 3.5.2.1). My strict 

filtering approach resulted in 8193 GLAS shots that are spatially representative of the forests of 

California. A density scatter plot between the GLAS obtained maximum height (Figure 3.1a) and 

the Landsat LAI (Figure 3.5a) nearest to the center coordinates of the GLAS shots shows a 

moderate but highly significant linear correlation (r=0.521, p value = 2.2x10-6) (Section 3.5.3). A 

similar exercise with the Normalized Difference Vegetation Index (NDVI) shows a weaker 



42 
	  

	  

correlation because of saturation at high canopy height values. LAI has comparatively less 

saturation (Figure 3.5b).  

 

Figure 3.1: Estimating forest height in California. (a) Geographic distribution of GLAS shots and 
retrieved canopy height values for the forested region of California. The color bar shows retrieved 
maximum canopy height values (H14) calculated as the difference between the signal start (zs) 
and ground peak elevation (zg) as estimated from a GLAS waveform. The gray color in the shot 
profiles shows filtered GLAS data that are invalid (see Section 3.5.2.1)  (b) Density scatter plot 
between GLAS maximum canopy height (H14) and Landsat LAI nearest to the GLAS center 
locations. The total number of sample points is 8196. The fitted model is “H14 = 
24.097+5.22*LAI” and the RMSE is 12.327 with a correlation of 0.521. 

 
Capitalizing on the statistical correlation between LAI and maximum height from GLAS, 

I use a linear model to derive height values for the remaining 30 m forested pixels with a valid 

LAI (Figure 3.2a). The resulting continuous maximum height fields are then converted to a live 

AGB estimate (referred to as “ARC”, for Ames Research Center, from this point onwards; Figure 

3.2b) using a height-to-biomass functional relationship derived from the available FIA plot data 
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for California (Section 3.5.1.3 & 3.5.4; Figure 3.8). I assess the uncertainty in the final AGB 

estimates through a simple error propagation model (Section 3.5.7) that analyzes the effect of 

errors in the input observation data and the height prediction model.  

 

Figure 3.2: Height and biomass for California forests. (a) Continuous height derived using the 
model fit relationship obtained from Figure 3.1b. (b) AGB estimates using a height-biomass 
model derived from FIA plots. All 2205 FIA plots for California (Figure 3.7) were acquired for 
2004 to 2006. A relationship between FIA estimates of height and aboveground biomass was 
derived for all the plots. The model relationship is applied to each forested pixel with a valid 
height value. (c) Percent uncertainty in AGB estimates. The uncertainty is calculated by 
propagating a uniform bias of LAI = 0.5 and by choosing a linear fit model for estimating height 
from LAI (refer to Section 3.5.7 for more details).   

 
It is imperative to compare the spatial estimates AGB with available field data and inter-

compare with other existing satellite-derived biomass maps (identified as “USFS” and “NBCD”; 

Refer to Table 3.4 and Section 3.5.1.4 for detailed description). To this end, I stress that plot- and 

(a) (b) (c) 
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pixel-level AGB estimates are not directly comparable (Section 3.5.5; Baccini et al., 2011). A 

fundamental step therefore is to scale the FIA plot-level data and the remotely sensed data to an 

aggregated or stratified scale. To validate the satellite-derived maps with FIA, I aggregate the 

AGB to county and sub-ecoregion total biomass (Section S6; Section 3.5.1.3). I also compare the 

estimates by grouping the sub-ecoregions in three biomass classes (low, medium and high) for the 

dominant forested ecosystem provinces (Table 3.5).   

3.3 Results and Discussion 

Figure 3.3a shows the frequency distributions of AGB from the satellite-derived maps. 

The mean behavior and the dispersion in the AGB estimates show notable disagreements when 

compared at their respective spatial scales. Figure 3.9 tests the hypothesis that scaling ABG 

across different spatial resolutions is an incorrect step and that maps of AGB at different spatial 

resolution cannot be directly compared. Figure 3.9 shows that ARC AGB values decrease when 

the native 30-m pixel estimates are re-sampled to coarser resolutions (~10.6% decrease at the 

USFS equivalent spatial resolution; Section 3.5.5), while the forest cover remains nearly constant 

(~0.2% relative change due to resampling). When comparing the FIA total biomass estimates 

with the satellite-derived maps for all the counties and sub-ecoregions (Figure 3.3b,c and Table 

3.1), ARC shows the least absolute bias (~0.41 M ton for county total and ~0.35 M ton for sub-

ecoregions) and error from measured values (also see Figure 3.10 for spatial patterns of total 

biomass estimated at the sub-ecoregion level). The statistics reported in Table 3.1 show the 

correlation coefficient, bias, and RMSE between the ABG derived from satellite and from FIA 

summarized by both county and sub-ecoregion for the whole study area. My error propagation 

model results (Section 3.5.6) suggest that for a uniform bias of 0.5 LAI units and using a linear 

height prediction model, the uncertainty of AGB at the pixel level ranges from ±5% (for high 



45 
	  

	  

AGB) to ±30% (for low AGB) (Figure 3.2c), but is constrained to less than ±20% for the entire 

range of total AGB at the typical county (Figure 3.12c) and the sub-ecoregion level. 

 

Figure 3.3: Evaluation of AGB estimates. (a) Frequency distribution of pixel-level AGB estimates 
from ARC, USFS and NBCD. All the maps have been reprojected to an Albers Equal Area 
projection scheme at a spatial grid resolution of 30-m. (b) Comparison of satellite-derived 
aggregated estimates of total AGB and FIA total AGB for counties. The county total AGB from 
the satellite-derived maps is calculated as, where Area is the pixel area, BD is the Biomass 
Density, and Pn is the number of pixels for the respective county. (c) Similar comparison as (b) 
but for sub-ecoregions. The AGB values in the plot are presented in a log scale to elucidate lower 
dynamic range of AGB value. The statistical parameters for both county and sub-ecoregion 
comparisons with FIA are shown in Table 3.1 & 3.2. 

Table 3.1: Statistics for county and sub-ecoregion total biomass estimated from FIA and satellite 
derived estimates. All the counties and sub-ecoregions for the state of California with a valid total 
biomass value were included in the analysis. 

Metricsa 

(w.r.t. FIA) 
ARC 

 
NBCD USFS 

County 

R2 0.963 0.965 0.944 

Bias -0.413 5.209 5.360 

RMSE 8.630 11.597 14.174 

Sub-ecoregion 

R2 0.940 0.966 0.938 

Bias -0.346 5.710 5.99 

RMSE 8.379 9.113 11.304 
a The Abbreviation of metriecs is: ACR for this study; NBCD for National Biomass and Carbon Database; 

USFS for the results from Blackard et al (2008) 
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Table 3.2: Sub-ecoregion total AGB difference between remote sensing methods and FIA as 
obtained in Figure 3.8 for three broad class ranges (Figure 3.3c). The ACCURACY relates to the 
mean value of relative total biomass difference at sub-ecoregion level (

! 

1
N

(RSi " FIAi)
FIAii=1

N

# $100), 

while the BIAS represents the mean value of total biomass difference in M tons expressed 

(

! 

1
N

(RSi " FIAi)
i=1

N

# ). Here N refers to the total number of sub-ecoregions in the respective total 

biomass range; RS refers to the remotely sensed estimates from ARC/NBCD/USFS. The RMSE 
is also reported in addition to the bias and accuracy.  

Total Biomass Range  
(M Ton; also see Figure 3.3c) 

Number of Sub-ecoregions ARC 
 

NBCD USFS 

BIAS 

<4.5 50 1.372 0.941 0.876 

4.5 - 20 33 1.391 2.647 3.800 

>20 27 -5.171 5.976 5.952 

RMSE 

<4.5 50 2.89 2.07 2.83 

4.5 - 20 33 4.44 4.90 7.71 

>20 27 12.2 11.62 13.54 

ACCURACY (%) 

<4.5 50 190.5 296.2 83.2 

4.5 - 20 33 19.2 23.6 32.6 

>20 27 -8.8 15.2 14.5 

 

Table 3.3: The percentage of sub-ecoregions from remotely sensed total biomass estimates that 
match the FIA estimates for relative difference thresholds obtained from Figure 3.11. The sub-
ecoregions in this calculation are represented by the four ecosystem provinces (M261, 263, 261 & 
M262 from Table 3.5) with forest as the dominant land cover. 

Error Range ARC NBCD USFS 
<10% 17.3 13.6 10.0 
<20% 36.4 27.3 14.5 
<30% 44.5 37.3 21.8 
<40% 50.9 42.7 32.7 
<50% 59.1 53.6 44.5 
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Table 3.2 provides the bias, error, and accuracy of the satellite-derived estimates as 

compared to FIA for three biomass classes. In terms of bias, most of the satellite-derived maps  

agree to FIA with bias less than 4 M ton for sub-ecoregions with more than 4.5 M ton of biomass, 

with the ARC showing the least bias (averagely 1.391 M ton). In the lower biomass category 

(<4.5 M ton), USFS shows the lowest bias. The RMSE of ARC shows less variability across all 

the maps and biomass classes. ARC has improved accuracies for classes >4.5M ton while the 

USFS shows a smaller relative error for the lower biomass class. Figure 3.11 shows spatial 

disparities between the satellite-derived maps and FIA estimates at an aggregated scale. Overall, 

the number of sub-ecoregions that show an agreement in total AGB with FIA is highest for ARC 

followed by NBCD and USFS (Table 3.3). Possible explanations for the disagreement are (a) the 

definition and extent of forested land within the sub-ecoregions; (b) a spatial pixel 

underrepresentation due to fewer FIA samples. 

3.4 Conclusions 

In this study I provide a method to estimate live AGB based on a simple parametric 

model. My model builds upon the premise that high-resolution estimates of LAI and canopy 

maximum height can be used to estimate AGB, and I show that at an aggregated scale such 

estimates are comparable to inventory estimates. I feel encouraged to re-iterate the following 

conclusions from this study: 

 (a) My simple parametric model can estimate biomass values independent of field-

measured values with an acceptable uncertainty, when compared to FIA regional biomass 

assessment. This is particularly useful for areas where field measurements are lacking and/or 

sparse.  

(b) My aggregated AGB estimates are comparable to inventory-based estimates and 

available satellite derived maps.  
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(c) I enumerate ways to compare AGB maps with different spatial resolution at an 

aggregated scale.  

 The results from this study are in support of the ongoing activities of NASA’s National 

Carbon Monitoring Assessment Program (CMS), which seeks to develop data fusion strategies 

for AGB estimation over regions at a moderately high spatial resolution with sparse or no field 

data. Limitations in my approach may result from input data availability (e.g. Landsat acquisition), 

corruption of data due to atmospheric contamination, and saturation effects in pixel retrieved 

surface reflectances. 

3.5 Auxiliary 

This auxiliary section includes detailed information about the data used, the methods 

applied to determine the validity of GLAS derived height metrics, the derivation of the height-

biomass allometric model, and the description of methods to study the changes in aboveground 

biomass (AGB) density with spatial scale and to calculate total biomass estimates at county and 

sub-ecoregion level. An exposition on uncertainty modeling is also presented. These details are 

not provided in the main text for brevity. Also included are Figures 3.4-3.12 and Tables 3.4-3.7. 

3.5.1 Data  

3.5.1.1 Satellite Data Sets 

  Data from a variety of satellite sensor systems are used in this study. A detailed 

description of the various datasets used and derived variables are provided below.  

3.5.1.1.1 Landsat Surface Reflectance Data  

The 2005 Global Land Survey (GLS) is a global data set of orthorectified Landsat data 

with core acquisition dates from 2005 to 2006. GLS 2005 consists of both Landsat 5 and gap-

filled Landsat 7 imagery with a spatial resolution of 30-m (Gutman et al., 2008; WWW1). Each 
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scene consists of a single day, cloud-free acquisition, and the time of acquisition generally falls 

during leaf-on conditions for the location. Data recorded in 2004 and 2007 are used to fill areas of 

low image quality or excessive cloud cover. In this study, we used the GLS 2005 data for the state 

of California (45 Landsat scenes in total). Most of the California scenes are acquired during the 

peak of the growing season, resulting in spatial discontinuities when the scenes are mosaicked 

together (e.g. the growing season for crops near the San Francisco Bay Area peaks around April 

while the vegetation in adjacent scenes covering portions of the Sierra Nevada peaks later in the 

summer, in July or August). To rectify this issue, we harmonize the specific scenes to the same 

acquisition time (July-August) by replacing the April scenes with other cloud-free Landsat 5 

scenes for July or August of the same year. If no Landsat 5 scenes are available during the GLS 

acquisition time, we choose scenes of the previous year or the year after (for 4 scenes in 

California). 

We generate the spectral surface reflectances from the Landsat GLS data using the 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric correction 

framework. Through the LEDAPS system, the raw data are calibrated to at-sensor radiance, 

converted to TOA reflectance, and then atmospherically corrected using the MODIS/6S 

methodology (Masek et al., 2006). Landsat surface reflectances that are derived from the TOA 

reflectances by the atmospheric correction routine assume that the target is lambertian and infinite 

and that the gaseous absorption and particle scattering in the atmosphere can be decoupled. The 

ancillary data used in the processing chain include gridded TOMS (Total Ozone Mapping 

Spectrometer) data, column water vapor from the National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental Protection (NCEP) reanalysis data, 

digital topography and NCEP surface pressure data. The dark, dense vegetation (DDV) type 

method is used to extract the atmospheric optical depth (AOD) directly from the imagery 
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(Kaufman et al., 1997). Based on the physical correlation between chlorophyll absorption and 

liquid water absorption, this method hypothesizes a linear relation between the shortwave-

infrared (2.2 µm) surface reflectance (nearly unaffected by the atmosphere) and surface 

reflectance in the visible bands (Masek et al., 2006). The specific relations are derived from an 

analysis of data from Aerosol Robotic Network (AERONET) sites where AOD is measured 

directly (WWW2). The output from the LEDAPS provides surface spectral reflectances for all the 

available spectral bands with corresponding quality assurance (QA) flags for clouds, missing data, 

and an aerosol optical thickness map for the blue band. The Red and Near-infrared (NIR) spectral 

bands are used in our study. We also compute the normalized difference vegetation index (NDVI) 

from the Red and NIR bands. 

 

Figure 3.4: (a) Forest land classes from the NLCD 2006. (b) Sub-ecoregions map obtained from 
the USDA forest department. A total of 147 sub-ecoregions with forests are utilized in this 
analysis (http://www.fs.fed.us/r5/projects/ecoregions/preface_main.htm). The sub-ecoregions are 
based on an eight class ecoregions map obtained from the same source. 
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3.5.1.1.2 Landsat Derived LAI 

We used the Landsat Red and NIR bands (Section 3.5.1.1.2) to retrieve Leaf Area Index 

(LAI) for all the 45 GLS scenes (Figure 3.5). A physically-based algorithm, based on the theory 

of canopy spectral invariants was implemented to retrieve LAI (Ganguly et al., 2012). The 

algorithm provides a computationally efficient way of parameterizing the Bidirectional 

Reflectance Factor (BRF) as a function of spatial resolution and wavelength. A reflectance model 

inversion is performed and operated through minimizing a merit function, which yields a value 

for LAI by minimizing the summed differences between simulated and measured reflectances for 

the Red and NIR bands. 

 

Figure 3.5: (a) A 30-m Leaf Area Index map derived from the Landsat Global Land Survey 
(GLS) 2005 data. The formulation of the algorithm is described in Ganguly et al., 2012. The 
NLCD 2006 map is also utilized to drive the LAI retrieval process for different land cover types. 
(b) Density scatter plot between GLAS maximum canopy height (H14) and Landsat NDVI 
nearest to the GLAS center locations. The total number of sample points is 8,196. The fitted 
model is “H14=exp{2.523+1.395*log(NDVI)}” and the RMSE is 32.011 with a correlation of 
0.48. 
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3.5.1.1.3 ICESat GLAS Data 

The ICESat GLAS echo waveform data is referenced as the GLAS/ICESat L1A Global 

Altimetry Data (or GLA01). Associated with the GLA01 product, there exists a GLAS/ICEsat L2 

Global Land Surface Altimetry Data (GLA14) product that provides the geo-location of each 

footprint along with other parameters derived from the waveform, such as the signal beginning 

and the echo energy peaks. In this study all the available GLA01 and GLA14 data for the time 

period from 2003 to 2007 are used to estimate the canopy height. Data after November 2007 are 

not used because of a decline in the Laser power of the GLAS instrument (Lefsky et al., 2010). 

3.5.1.2 Land cover map 

We use a high resolution land cover map and a sub-ecoregion map to identify the forest 

pixels and classify them by homogeneous eco-climatic zones.  

3.5.1.2.1 NLCD Land cover 

The National Land Cover Database (NLCD) 2006 provides accurate and consistent land 

cover at a spatial resolution of 30 m for the conterminous United States and is an updated version 

of NLCD 2001 (WWW3). Three land cover categories in the NLCD map, deciduous forest, 

evergreen forest, and mixed forest, are used in our analysis to identify forest pixels in California 

(Figure 3.4a). 

3.5.1.2.2 Sub-ecoregion Map 

A map of the ecological subregions of the conterminous US is available at 1:500,000 to 

1:1,000,000 scale from the US Forest Service (USFS) ECOMAP Team (WWW5). The attributes 

in the map include province, section and subsection of the ecoregions, and are consistent with the 

terminologies used for the USFS inventory records (Figure 3.4b). A total of 147 sub-ecoregions 

fall in California and are used in this analysis. 
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3.5.1.3 Forest Inventory Data 

The Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service measures 

and records information about forests at well-designed ground plots (a standard FIA base plot 

includes 1 sample location per 6,000 acres roughly). In this study, we gathered tree measurements 

of aboveground biomass (DRYBIO), height (ACTUALHT) and the number of trees per acre 

(TPA) from the Forest Inventory and Analysis database (FIADB - Version 4.0) for each plot 

within California (WWW6) for the time period 2001-2007.   

In addition to providing the plot samples, the FIA also reports the status and trend of 

forest tree measurements at an aggregated scale categorized by state, county and sub-ecoregion 

and the data is compiled FIA data for the time period 2001-2009. We obtain the total 

aboveground biomass values at the county and sub-ecoregion level by using the FIA Analysis 

EVALIDator tool (version 4.01.01; WWW7). 

3.5.1.4 Ancillary Aboveground Biomass Data 

3.5.1.4.1 NBCD AGB Data 

The Woods Hole Research Center has produced a high-resolution “National Biomass and 

Carbon Dataset for the year 2000” (referred to as NBCD) at a spatial resolution of 30 m. The 

NBCD AGB estimation is based on an empirical modeling approach that combines USDA Forest 

Service FIA data with high-resolution InSAR data acquired from the 2000 Shuttle Radar 

Topography Mission (SRTM) mission and optical remote sensing data acquired from the Landsat 

ETM+ sensor (WWW8). Products from both the NLCD 2001 (land cover and canopy density) 

and LANDFIRE (existing vegetation type) projects as well as topographic information from the 

USGS National Elevation Dataset (NED) are used within the NBCD AGB estimation as spatial 

predictor layers for canopy height and biomass. NBCD provides two biomass maps based on 



54 
	  

	  

different allometric equations. We used the map utilizing the Jenkins et al. (2003) allometric 

equation for our comparative analysis (Section 3.3).   

3.5.1.4.2 USFS AGB Data 

Blackard et al. (2008) provided a spatially explicit dataset of AGB (referred henceforth as 

USFS) by interpolating the FIA plot data mapping models through geospatial predictors. The 

predictors included the Moderate Resolution Imaging Spectrometer (MODIS)-derived image 

band composites and percent tree cover, land cover proportions from the NLCD, topographic 

variables, monthly and annual climate parameters, and other ancillary variables (WWW9).  

3.5.2 Validity of GLAS Maximum Canopy Height 

3.5.2.1 Maximum Canopy Height 

The signal start of the echo waveform detects the elevation of the uppermost surface of 

the canopy and the last signal peak is ideally attributed to the ground surface reflection (Harding 

& Carabajal, 2005). The maximum canopy height is calculated as the distance between the signal 

start and the centroid of the ground peak recorded in GLA14 waveform data (we term the 

maximum canopy height as H14 from now onwards). This approach is only suitable for relatively 

flat surfaces where the echo waveform has a pronounced return from the ground surface 

compared to regions with rough topographical surfaces and high slopes (Sun et al., 2008). In 

order to establish the validity of the maximum canopy height retrievals, the GLA14 plots are 

filtered according to the following steps: 

(a) The seasonal time period from May to October for each year is used as a first level 

screening of GLAS shots to best approximate the growing season.  
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(b) To avoid factors pertaining to atmospheric forward scattering and signal saturation, 

only the cloud-free (flag corresponding to FRir_qaFlag=15 in the GLA14 product) and 

saturation-free (i.e. saturation index satNdx=0 in the GLA14 product) shots were considered.  

(c) A data filter was applied to make sure that the difference in elevation of the ground 

peak derived from the waveform and the ground elevation derived from the 30-m National 

Elevation Dataset (NED) data is less than 100m.  

(d) Additional filtering is performed by using the terrain slope gradient information 

calculated from the NED 30-m elevation data. A 3x3 slope gradient kernel centered over each 30-

m pixel is calculated. The center location of the GLAS shot with the nearest slope gradient pixel 

is matched to perform the filtering. If the slope gradient value is 0.1 and higher, the nearest GLAS 

shot is excluded from the analysis.  The GLAS shots will be analyzed in the main algorithm.  

(e) The 30-m NLCD 2006 map (Section 3.5.1.2.1) is utilized to delineate forest versus 

non-forest pixels. The center location of the GLAS shot with the nearest NLCD pixel center 

coordinate is matched to classify the GLAS shot as either non-forest or forest.  

(f) Using the Landsat spectral band data (Section 3.5.1.1.2), a threshold RED spectral 

reflectance value of 0.3 is further used for the forest-classified pixels. If a forest pixel has a RED 

reflectance value of 0.3 and greater, the pixel is attributed to a bare soil or a non-vegetated pixel 

and is discarded from our analysis.  

The total number of GLAS shots for California amounts to 560,321, amongst which 

40,793 are shots over pixels classified as forest by the NLCD 2006 map. Further filtering, as 

described in the steps above, brings the number of usable GLAS shots used in our analysis to 

8,196 (Figure 3.1).  
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3.5.2.2 Lorey's Height 

In addition to using the maximum canopy height we also used Lorey’s height, which 

represents the basal area weighted height of all trees. Basal area weighting of tree heights 

increases the importance of the largest trees in a stand and in general represents the height of a 

stand’s tallest tree (Lefsky, 2010). We compared Lorey’s height with the H14 data (Section 

3.5.2.1) for a total of 1,466 samples. The H14 heights are usually higher than Lorey's height, and 

the coefficient of determination (R2) is 0.758 between the two height data (Figure 3.6). Lorey’s 

height over California was obtained from the GLAS dataset by the NASA JPL Center in 

collaboration with Dr. Lefsky from University of Colorado at Boulder.  

 

Figure 3.6: Comparison between GLAS derived maximum height (GLAS H14) and Lorey’s 
height obtained from NASA JPL. The number of samples for GLAS H14 is obtained from Figure 
3.1(a) and the Lorey’s height plots are co-geolocated with the GLAS H14 data, resulting in a total 
of 1,466 samples. The coefficient of determination (R2) is 0.758.  
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3.5.3 Theoretical Relation between LAI and             
Maximum Tree Height 
 
Field measurements and dynamic models show that different physiological traits of a 

forest are correlated with tree size following a power law. Based on a simple allometric model 

(West et al., 1999), the total leaf area is proportional to maximum tree height (h) such that:  

 al * (nN) ∝ h3             (S1) 

where al is the leaf area for each leaf, nN is the “n” number of leaves in “N” number of branches, 

and the product of them represents the total leaf area . Niklas and Spatz (2006) provide another 

relationship between canopy radius and maximum tree height such that:  

 rcan ∝ h                      (S2) 

where rcan is the canopy radius.  

Since LAI is the total leaf area divided by projected canopy area, using the 

proportionality rules from Eqns. S1 and S2, we can relate LAI with maximum height (Kempes et 

al., 2011) as: 

! 

LAI = al "n
N

# " r
can2

$
h3

# "h2
$ h            (S3) 

The power law between LAI and maximum tree height is a first order approximation that 

supports the assumption that we can obtain a near-linear relationship between Landsat derived 

LAI and GLAS maximum canopy height. Differences in tree density across landscapes may blur 

this power law - for example, in evergreen broadleaf forests, significant canopy closure will result 

in measured signal saturation which will affect the power law approximation. In general, the 

order of the power law between LAI and tree height shows variability around unity (e.g. Enquist 

et al., 2009 shows that LAI is proportional to h0.72 in tropical regions). In this study, the conifer-

dominated forests of California are best modeled by a simple linear relationship between tree 

height and LAI. We also tested nonlinear relationships between height and LAI by building an 
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error propagation model to demonstrate the effect of using different power coefficients for height 

in regulating final AGB estimates (please see Section 3.5.7).  

3.5.4 Development of the Height-Biomass Model 

 

Figure 3.7: Plot level aggregated FIA aboveground biomass density estimates. The FIA plots 
level biomass estimates are generated from the FIADB raw data (http://apps.fs.fed.us/fiadb-
downloads/datamart.html). The aboveground biomass density for a plot is a summation of 
individual tree biomass estimates weighted with an intrinsic factor, such that  
BDplot =  , where n is the number of trees in each plot, CARBONAGi is 

Carbon in the aboveground portion of a tree, TPAi is the scaling factor resembling trees per acre, 
and 2.0 is a scalar factor to convert carbon to biomass in FIADB. 

To develop the height biomass model we gathered data from 2,205 FIA plots in 

California for the period 2000 to 2007 (Section 3.5.1.3). The maximum and mean tree heights are 
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calculated from all the trees available in each plot. The aboveground biomass density for a plot 

(BDplot) is the summation of individual tree biomass estimates weighted by an intrinsic factor, 

such that  

BDplot =

! 

CARBONAGi " TPAi " 2.0
i=1

n

#        (S4) 

where n is the number of trees in each plot, CARBONAGi is Carbon in the aboveground portion of 

a tree, TPAi is the species-specific scaling factor representing trees per acre and 2.0 is a scalar 

factor to convert carbon to biomass in FIADB. The spatial representation of the plot level 

biomass density is shown in Figure 3.7.  

 

Figure 3.8: Relationship between height and aboveground estimates for FIA plots for the period 
2004-2006. The plot level biomass in (Mg/ha) is calculated as in Figure 3.7. The total number of 
samples is 2205. The model for maximum height is AGB = 2.387+0.135* (Hmax2) and 
R2=0.642. The dotted line is the bin average and the solid line is the fitted model.  
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We built the relationship between maximum canopy height squared for each plot and the 

total biomass using the equation in Lefsky et al. (2005). When using maximum heights the 

resulting model is AGB = 2.387+0.135* (Hmax2) and gives a R2 of 0.642 (Figure 3.8).  

3.5.5 Variation of Biomass Density with Spatial Scales 

To analyze the variation of biomass density with spatial resolution, we perform an 

upscaling experiment by spatially aggregating our 30-m biomass density map (ARC) for a region 

spanning the hardwood forests of Northern Sierra (covering an area of ~5500 square miles). We 

start with a majority resampling of the 30-m NLCD land cover map to resolutions that are a factor 

of n (where n = 1 to 20). If a pixel grid at 60-m is identified as forest, we calculate the biomass 

density at this grid as the mean of the 4 corresponding 30-m pixels. If the pixel is non-forest, the 

biomass value is set to zero, which is commonly algorithm for forest aboveground biomass 

estimation. In this process, we calculate the mean biomass density, the dispersion in biomass 

density and the forest coverage for the whole region at different resolutions (Figure 3.9). The 

figure shows that the forest cover remains nearly constant during the upscaling process (~0.2% 

relative change). The mean biomass density and the standard deviation of biomass density from 

the ARC map decrease monotonically at coarser resolutions, declining by ~ 10.6% at the USFS 

equivalent spatial resolution, since the biomass in sparse forests are dropped off during the 

majority resampling of land cover. This upscaling exercise confirms the hypothesis that 

aggregating biomass density across different spatial resolutions is theoretically incorrect and that 

maps of AGB densities with different spatial resolution cannot be directly compared. 

3.5.6 Calculation of Regional Total Biomass 

Our inter-comparison exercise between satellite-derived AGB maps and FIA is restricted 

to two aggregated scales – a) county level and b) sub-ecoregion level. For each of county sub-
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ecoregion the AGB density values are converted to “total biomass” in Mega tons (M ton). These 

aggregated scales are also used to guide the FIA data plot design strategy. FIA total biomass data 

for the county and sub-ecoregions are readily obtained from the FIA EVALIDator tool (Table 3.4 

and Section 3.5.1.3). 

 

Figure 3.9: Variation of ARC biomass density mean and standard deviation with changes in 
spatial resolution. The NLCD map was resampled to the resolutions noted along the x-axis. For 
each resolution, the biomass numbers are calculated for the region of interest. The region of 
interest spans a wide region of hardwood forests in California covering an area of ~5500 square 
miles. If a pixel represented by the scale of interest is classified as forest, the biomass is 
calculated as the average from the total number of native 30m pixels; for a pixel that is classified 
as non-forest the biomass is set to zero. 

 
Table 3.4: Datasets used in this research 

Data  Source Time Period Notes 
Remote Sensing Data 
Landsat GLS 2005 USGS/NASA 2004-2006 Surface Reflectances were 

calculated using the LEDAPS 
processing framework 

Landsat LAI NASA ARC 2004-2006  
Geoscience Laser 
Altimeter System (GLAS) 

ICESat 2003-2007 The waveform data from 
GLA14 product was utilized 

Lorey’s Height JPL/ Lefsky et al., 2010 2003-2007 This data was provided by JPL 
 

The county/sub-ecoregion total biomass from the satellite-derived maps is calculated as: 

! 

AGBTotal = BDn
n=1

Pn

"
# 

$ 
% % 

& 

' 
( ( ) Area

         
(S5) 
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where Area is the pixel area, BD is the Biomass Density, Pn is the number of forest pixels within 

the respective  sub-ecoregions based on USFS sub-ecoregion map. The county total biomass is 

calculated in the same manner, in which case Pn is the number of forest pixels within the 

respective county. Figures 3.3b,c and Figure 3.10 show the total aboveground biomass value for 

counties and sub-ecoregions within California. The variance of total AGB among county and sub-

ecoregions is significant – with AGB ranging from less than 0.1 M ton to greater than 200 M ton 

(Figure 3.3b & c). 

  

 

Figure 3.10: Total aboveground biomass (in M ton) estimates at sub-ecoregion level from the 
ARC, NBCD, USFS and FIA biomass density maps. The sub-ecoregion map is showed in Figure 
3.4(b). Estimation of total biomass is explained in Section 3.5.6. The sub-ecoregion total biomass 

from the satellite-derived maps is calculated as , where Area is 
the pixel area, BD is the Biomass Density, and Pn is the number of pixels for the respective sub-
ecoregion.  

 
Figure 3.11 compares the differences between the various remote sensing derived AGB 

and the FIA estimates for each sub-ecoregion. We analyze the differences in spatial patterns of 

aggregated AGB values, by stratifying the sub-ecoregions by biomass class intervals and 

calculating statistical metrics as presented in Table 3.5 and Table 3.6.  Most forests in California 
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are located in five sub-ecoregion (Table 3.5) representing 99.1% of the total forest AGB. The 

ARC total AGB values compare best to the FIA estimates for the dominant forested ecosystem 

provinces (M261 and M263 encompass approximately 50% of the total area of the sub-

ecoregions) while they show a larger difference w.r.t. FIA values for the rest of the ecoregions. 

To supplement the analysis further, Table 3.6 provides a coefficient of determination matrix for 

sub-ecoregions grouped by total biomass ranges, illustrating the disparities that can be seen when 

we go from low to high biomass.  The correlation between different AGB maps and FIA 

improves when we pool all the sub-ecoregions together and for the sub-ecoregions with higher 

biomass (>10 M ton) but goes down significantly when we pool sub-ecoregions that cover the 

intermediate (1 to 10 M ton) and lower biomass ranges (<1 M ton). The ARC and JPL AGB 

values still show higher correlation across the whole biomass range. The similar correlation can 

be explained based on the fact that the two AGB estimation approaches depend on similar 

satellite-derived input metrics.  

The calculation of the total biomass aids the analysis as described in Section 3.2 and 3.3.  

 

Figure 3.11: Difference between the satellite and the FIA-derived total biomass estimates by sub-
ecoregion. The difference is estimated as ∆=((BRS-BFIA)/BFIA)x100, where B is the sub-ecoregion 
total aboveground biomass. 
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Table 3.5: Total biomass estimates (in M ton) and relative difference between total biomass and 
FIA estimates (in parenthesis) by ecoregion for California. The relative difference is calculated as 
((RS – FIA)/FIAx100), where RS refers to ARC/NBCD/USFS estimates.  

Region 
(No of sub-ecoregions) 

ARC NBCD USFS FIA 

M261 
(67) 

1270.3 
(-8.0%) 

1652 
(19.6%) 

1760 
(27.5%) 

1381 

263 
(7) 

282.7 
(0.3%) 

273.5 
(-2.9%) 

235.4 
(-16.4%) 

281.7 

261 
(14) 

110.3 
(57.8%) 

93.5 
(33.8%) 

53.9 
(-23.0%) 

69.9 

M262 
(22) 

98.3 
(82.9%) 

63 
(16.8%) 

66 
(24.3%) 

54 

262 
(6) 

1.2 
(-76.6%) 

6.3 
(23.1%) 

0.1 
(-98.5%) 

5.1 

Others 
(31) 

24.4 
(50.0%) 

59.62 
(221.4%) 

37.8 
(145.1%) 

15.4 

 

Table 3.6: Coefficient of determination matrix for sub-ecoregions for different total biomass 
ranges as calculated from Figure 3.10. 

(a) All 147 sub-ecoregions   (b) Biomass over 10 M ton (N = 41) 

Model NBCD USFS FIA Model NBCD USFS FIA 

ARC 0.876 0.928 0.940 ARC 0.893 0.818 0.913 

NBCD  0.970 0.966 NBCD  0.950 0.946 

USFS   0.938 

 

USFS   0.901 

(c) Biomass from 1 to 10 M ton (N = 54) (d) Biomass less than 1 M ton (N = 52) 

Model NBCD USFS FIA Model NBCD USFS FIA 

ARC 0.380 0.104 0.418 ARC 0.046 0.010 0.046 

NBCD  0.650 0.361 NBCD  0.166 0.032 

USFS   0.251 

 

USFS   0.010 

3.5.7 Uncertainty Modeling 

In order to assess the uncertainty of our AGB density estimates, we implement a simple 

error propagation model assuming that the errors in the distribution of forest biomass can be 

random or systematic in nature and can include the following: (a) observation errors associated 
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with the uncertainty in estimates of maximum height derived from GLAS Lidar, spectral surface 

reflectance and resulting LAI from Landsat and NLCD land cover classification; (b) prediction 

errors associated with LAI to maximum height prediction and from height to biomass. In building 

the uncertainty model, we assume that the NLCD 2006 classification accuracy for forest classes is 

acceptable and hence we do not introduce land cover uncertainties. Additionally, there are no 

spatial sampling errors as the native resolution of the land cover map is the same as Landsat. We 

realize that the pixel specific accuracy in maximum height values directly depends on the LAI-to-

Height prediction model, which implicitly also accounts for errors in GLAS derived height 

metrics (c.f. Section 3.5.2). The pixel specific error propagation model can be written in a 

functional form where the variation in AGB is related to the variation in LAI such that 

! 

"B(p)2 =
#B
#LAI
$ 

% 
& 

' 

( 
) 
2

* "LAI(p)2                                            (S6) 

where 

! 

"B(p)  is the uncertainty of AGB density for the pixel p, B is the pixel AGB density and 

! 

"LAI(p)  is the uncertainty in LAI for the pixel p.  

Now, from Section 3.5.2 and Figure 3.1, the Height-LAI functional relationship can take 

the form: 

! 

H(p) = e1 + e2 " LAI(p)
#                       

! 

!" = [0,2]               (S7) 

where H(p) is the predicted height for pixel p and 

! 

"  regulates the polynomial degree of the 

equation. e1 and e2 are the linear constants. 

Also, from Section 3.5.4, we can write the Height to Biomass relationship as  

! 

B(p) = a + b" H(p)2              (S8) 

We can express Eqn. (S6) as  
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From Eqn. (S7), we get 

! 

"H
"LAI

= #$ e2 $ LAI(p)
#%1  . 

and from Eqn. (S8), we get 

! 

"B
"H

= 2# b# H(p) = 2# b# e1 + e2 # LAI(p)
$( ). 

Substituting 

! 

"H
"LAI

 and 

! 

"B
"H

 in Eqn. (S9), we have  

! 

"B(p) = 2# b# e1 + e2 # LAI(p)
$( ) % $# e2 # LAI(p)

$&1( ) % "LAI(p)      (S10) 

The expression in Eqn. (S10) now explicitly incorporates the input errors in pixel 

retrieved LAI and predicted height values as a function of LAI.   

In order to map the uncertainties in AGB densities, we introduce two scenarios: 

Case (A): 

! 

"LAI(p)  = 0.5 (based on the accuracy of the standard MODIS LAI product is 

0.5 under stage 2 validation efforts) i.e. there is a uniform bias of 0.5 units of LAI for all forest 

pixels. If the LAI varies from 1 to 7.1, the percent uncertainty, calculated as

! 

"LAI(p)
LAI(p)

#100 , will 

vary from ~7% (LAI=7.1) to 50% (LAI=1).   

Substituting the value of 

! 

"LAI(p)  in Eqn. (S10), we simulate

! 

"B(p)  for four different 

values of 

! 

"  (

! 

" =0.5, 1, 1.5 and 2) and calculate the pixel specific percent uncertainty in AGB 

as

! 

µB =
"B(p)
B(p)

#100 . The variation in

! 

"  accounts for the bias introduced for model selection of 

estimating height from LAI.  

Case (B): Same as Case (A) but with 

! 

"LAI(p)  = 1 i.e. there is a uniform bias of 1 unit of 

LAI for all forest pixels. In this case the percent uncertainty in LAI varies from 14.08% (LAI=7.1) 

to 100% (LAI=1).  
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Figure 3.12: (a) Percent uncertainty in AGB density estimates. The uncertainty value is calculated 
by propagating a uniform bias in LAI =0.5 and by choosing a linear fitting model (

! 

" =1) for 
estimating height from LAI (refer to 3.5.7 for more details). (b) Same as (a) but for a bias in 
LAI=1. (c) County average uncertainty as a function of county total biomass for different values 
of

! 

" . 

Figure 3.12 (a) and (b) show example scenarios for Case (A) and Case (B) and for 

! 

"  

equal to 1. In order to demonstrate the effect of four different polynomial kernels, we compute the 

county level mean biomass uncertainty (averaging the pixel level AGB density uncertainty values 

within the specific county) for different values of

! 

" . Figure 3.12 (c) shows the county average 

percent uncertainty with respect to county total biomass – it is noted that for 

! 

" =1, 1.5 and 2, the 

county estimates were found to be constrained within 0-20% of the total biomass obtained from 

averaging the pixel AGB density values except for 

! 

" =0.5, where the percent uncertainty ranges 

from 0-50% for low values of total biomass. In a separate exercise, we also calculate the 

uncertainty numbers at a sub-ecoregion level by grouping the sub-ecoregions by total biomass 

classes (Table 3.7) – we portray three scenarios with varying uncertainties in LAI (uniform bias 

of 0.5, 1 and 1.5) and for different power coefficients that control the LAI-height equation. The 

percent uncertainties are constrained between 11 to 38% for both Case 1 and Case 2 and for α=1 

and 1.5 (see Table 3.7), however, the uncertainties are significantly higher in lower biomass 
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regions when the input bias in LAI is 1.5 (for example if the LAI of a given pixel is 0.5 and the 

observed bias is 1.5 LAI units, the percent uncertainty in LAI is ~300%).  

This exercise shows that the uncertainty in the AGB estimates can be constrained within 

an acceptable range but will vary depending on the scale at which it is reported.   

Table 3.7: Uncertainty in sub-ecoregion total biomass estimates for different case scenarios as 
described in Section 3.5.7. The total biomass ranges and the sub-ecoregions that fall under these 
ranges are obtained from Figure 3.3(c). 

Total Biomass 
Range (M Ton) 

Uncertainty in Sub-ecoregion Biomass (%) 

Case 1 

! 

"LAI(p)=0.5 α=0.5 α=1.0 α=1.5 
>20 14.83 16.90 13.49 

4.5 - 20 16.95 25.40 12.11 
<4.5 17.77 33.05 11.12 

Case 2 

! 

"LAI(p)=1.0 α=0.5 α=1.0 α=1.5 
>20 36.35 31.67 28.86 

4.5 - 20 55.59 36.46 25.88 
<4.5 73.31 38.34 23.89 

Case 3 

! 

"LAI(p)=1.5 α=0.5 α=1.0 α=1.5 
>20 57.90 50.51 46.32 

4.5 - 20 89.56 58.53 41.54 
<4.5 119.11 617.24 383.27 
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CHAPTER 4 

FIRST GLOBAL STAND AGE MAP FOR PRIMARY FORESTS BY USING REMOTE 

SENSING DATA 

Abstract 

Disturbance plays an important role in terrestrial carbon storage and dynamics, especially 

for forests whose large carbon pool –aboveground biomass (AGB) - could be dramatically 

reduced by disturbances. The stand age of large regions represents the frequencies of disturbance 

and is a key factor in analysis and modeling of carbon cycle. Characterizing global forest stand 

age is still challenging in regions without abundant long-term inventory data. This study, for the 

first time, I generated a stand age map for global primary forests based on remote sensing-derived 

AGB and net primary production (NPP). I built a theoretical framework by coupling a theoretical 

carbon accumulation function with the probability density functions of disturbance occurrences, 

thus linking potential biomass, current biomass, net carbon fluxes into biomass, and disturbance 

frequency. I compared my stand age estimates against another stand age map based on 

interpolation of extensive inventory data in North American and found overall agreement but 

some important regional differences. Uncertainties in my approach are not trivial, and I explored 

the sensitivity of estimated stand age to variations in model parameters and input variables.  

4.1 Introduction 

Global forests are an important component of the terrestrial carbon cycle, and contribute 

to a net carbon sink of about 1 Pg carbon per year, and net carbon balance tends to be positive (i.e. 

indicating net uptake of carbon from the atmosphere) in established and regrowing forests but 

negative in cases of deforestation and land-use change (Canadell and Raupach, 2008; Pan et al., 

2011). Compared to other biomes, forests store more carbon (~80% living biomass) in 



73 
	  

	  

aboveground biomass (AGB), which is also usually the most rapidly changing carbon pool 

(Houghton, 2005; Fahey et al., 2009). The carbon stored in forest AGB is frequently released to 

atmosphere by natural and anthropogenic disturbances (Achard et al., 2002). These two types of 

disturbances are the primary mechanisms affecting the change from carbon sinks to sources in 

ecosystem (Baldocchi, 2008). It is therefore of key importance to understand the timing of forest 

disturbances and their effect on current and potential carbon stored in terrestrial ecosystems 

(Gurney and Raymond, 2008). 

Ecosystem carbon storage is controlled by two types of processes: (1) internal processes, 

including photosynthesis, respiration, decomposition, and natural mortality, through which 

carbon stored in ecosystems is gradually accumulated or consumed; (2) natural or anthropogenic 

disturbances on ecosystem structure and function (Tilman, 1985), in which sudden mortality 

removes the carbon from live biomass (Huston, 2004). Both processes play crucial roles in carbon 

storage, but with different mechanisms and at various spatio-temporal scales. Compared to 

internal processes, disturbances are generally temporally stochastic with specific spatial range 

(O’Halloran et al. 2011) linked to the underlying human or natural forcings, such as land-use 

change, wild fires, hurricanes, and insect outbreaks (Bender et al., 2010; Kurz et al., 2008; 

Turetsky et al., 2010). Disturbances also differ in severity, frequency, magnitude, and their 

impacts on forest structure and function (Westerling et al., 2011). It is necessary to account for 

carbon accumulation and disturbance in assessing and modeling current and potential forest 

carbon storage, since regional carbon storage capacity -- the carbon mass stored in an ecosystem 

under a dynamic equilibrium (sometimes referred to as carbon storage capacity) -- is always 

lower than the sum of individual tree potential maximum biomass due to disturbance (Luo and 

Weng, 2010). In principle, it should be possible to estimate carbon storage capacity by first 

approximating potential maximum biomass via remotely sensed net primary production (NPP) 
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and then reducing potential biomass as a function of the local disturbance regime (Keith et al., 

2009; Keith et al., 2010). 

Measurements of disturbances are a major source of uncertainty in global carbon cycle 

research (Mildrexler et al., 2007). Remote sensing techniques expanded measurements of 

disturbance events from local (Lentile et al., 2006) to global scales (Running, 2008) in the past 

several decades. The data from remote sensors is used to detect active disturbance (Ichoku et al., 

2003) and ecosystem changes in post-disturbance spectral response (Chambers et al., 2007). 

Passive remote sensing is useful for determining near-past disturbances, but cannot directly 

capture the influence of disturbances occurring well before the remote sensing era, especially for 

quickly-recovering forests (Turner, 2010). It may be possible, though, to use tree height estimates 

from active remote sensing approaches (such as Light Detection And Ranging, LiDAR) to infer 

past disturbances in ecosystems in which height is related to prior disturbance intensity (Sun et al. 

2008; Goetz et al. 2010). Unfortunately, LiDAR data are sparse and point-based and therefore 

cannot provide wall-to-wall estimates of stand age, particularly because stochastic disturbances 

occur at specific regions, leading to a patchwork mosaic of stand ages and tree heights on 

landscape scale (Weir, et al., 2000). 

To avoid the uncertainty from the spatial and temporal contingency described above, it is 

necessary to explore the general natural disturbance regimes at landscape scales by averaging the 

seral stages or stand ages over a sufficiently large area at landscape equilibrium (Turner et al., 

1993). Here I define stand age as the mean age of all trees inside a stand. This definition may not 

directly apply to ecosystems in which individual trees die, but the stand itself persists 

indeterminately, such as some tropical forests. The concept of landscape equilibrium is generally 

applied to describe a region where the spatial pattern of stand age is aggregated up from the 

mosaic of stand age and biomass created by past disturbances (Connell and Sousa, 1983; 
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DeAngelis and Waterhouse, 1987). By aggregating previous disturbances, the overall disturbance 

regime in landscape equilibrium can be characterized by a spatial parameter (disturbance severity) 

and a temporal parameter (mean disturbance interval, MDI) (Smithwick, et al. 2007; Turner et al., 

1993). Disturbance severity, which is the proportion of trees and their propagules killed by one 

disturbance within the landscape (Oliver, et al., 1990), directly links to the decline of biomass 

during disturbance. The frequency of disturbance occurrence is represented by MDI, which is 

mean interval time between disturbances. MDI is the same as the mean stand age in a landscape, 

given that the severity is counted as the death rate of individual trees during one disturbance. 

Therefore, the pattern of stand age at the landscape scale represents the natural disturbance 

regime under prevailing environmental conditions (Franklin et al., 2002).         

To date, forest inventories mostly measure the tree stand age from tree rings or a 

combination of remote sensing and stand inventories to produce wall-to-wall regional stand age 

maps (Chen et al., 2003; Pan et al., 2011). Characterizing the global forest stand age is still 

challenging in regions without remote sensing disturbance detection and abundant inventory data. 

In this study, for the first time, I generated a stand age map for global primary forests based on 

the latest remote sensing-derived AGB and NPP estimation. I incorporated a carbon accumulation 

equation and disturbance occurrence probability in a framework to describe the analytical linkage 

among the carbon storage, carbon influx and disturbance regimes. I calculated the carbon 

residence time (CRT) from maximum AGB and mean NPP over the landscape and then 

introduced a spatial-to-temporal conversion to link AGB to the frequency of disturbance on the 

equilibrium landscape (Van Wagner, 1978). Hence I solve for stand age from spatial patterns of 

AGB in an equilibrium landscape based on simultaneous equations of carbon accumulation and 

natural disturbance occurrence.  
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4.2 Methodology and Data 

4.2.1 Carbon Accumulation Model 

Forests gain biomass from NPP but lose carbon due to turnover, characterized here as the 

mean CRT in biomass. The difference between NPP and turnover determines how much biomass 

can be accumulated by a forest, so derivation of current biomass is expressed as, 

                                                                                                                 Eq. 4.1 

where NPP (gC/m2/yr) is the mean NPP for each grid; B(t)(gC/m2) is the biomass at time t (yr), 

and τ (yr) is CRT (Figure 4.1a). Similar carbon cycle formulation is widely used in ecosystem 

modeling, such as CENTURY model (Parton et al., 1993) and TECO (Luo et al., 2003) 

In the absence of disturbance, for example, in old growth forests, forest biomass 

eventually reaches its potential (maximum) capacity when its carbon gain through NPP is 

balanced by its carbon loss via natural mortality (Stephenson and Mantgem, 2005). Such a 

relationship can be described by an idealized equation, 

                                                                                                                         Eq. 4.2 

where, Bp(gC/m2) is potential maximum biomass under local climate condition. Clearly, the CRT 

(τ) can be estimated given NPP and biomass. The mean CRT is firstly calculated from maximum 

biomass and mean NPP within landscape and used later as the parameter for stand age estimation. 

In reality, the accumulation of biomass may be interrupted by the occurrence of 

disturbances. Thus the potential biomass without disturbances may never be achieved at large 

spatial scales. The current carbon pool is the summation of the carbon increment (influx) since 

last disturbance and the legacy carbon left after last disturbance. If the carbon influx rate is 

assumed to be constant (details addressed in NPP estimation), the carbon pool could be estimated 

by the integration of Eq. 4.1, 
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                                                                        Eq. 4.3 

where, Bt(gC/m2) is the current carbon content, B0(gC/m2) is previous biomass before disturbance, 

thus the legacy carbon right after a disturbance event is given by B0 timed the disturbance severity 

(s) , and t(yr) is the time counted since the last disturbance event (Figure 4.1b).  

4.2.2 Occurrence Probability of Disturbances 

The stochastic nature of disturbances poses new difficulties in describing forest biomass 

dynamics. For example, information about disturbance frequency and severity is rarely available 

at large scales and both are commonly described by statistical distributions. For instance, Johnson 

and Van Wagner (1985) used the exponential distribution to describe the occurrence probability 

of disturbances including wildfire, storm, and other natural disturbances. In this study, I 

characterize the probability density of the disturbance return interval in landscape as: 

                                                                                                  Eq. 4.4 

 

Correspondingly, the cumulative distribution function is: 

                                                                                                 Eq. 4.5 

in both Eq. 4.4 and 4.5, T (yr) is the interval of two consecutive disturbance events, and λ (yr) is 

the MDI specific to the ecoregion or biome. In the landscape with a certain MDI, the probability 

that another disturbance occurs after the last disturbance increases as time goes by (Figure 4.1c).  
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Figure 4.1: Model performance with varied parameters. (a) biomass (Eq. 4.1) simulated for 
variable NPP (Mg C/ha) and CRT (yr), dashed lines show CRT located at stand age axis. (b) 
biomass (Eq. 4.3) simulated for variable disturbance severity (s). (c) probability of disturbance 
(Eq. 4.5) simulated for variable MDI, dashed lines are MDI located at stand age axis. (d) biomass 
change under different disturbance regimes (MDI and s), dashed lines are the average biomass at 
quasi-equilibrium. 
 

4.2.3 Solution of Disturbance Regime 

By applying the recovery biomass accumulation equation (Eq. 4.3) in the exponential 

distribution of disturbance intervals (Eq. 4.5), I determine the expectation of the biomass (E[X], 
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gC/m2) from disturbance severity (s) and the MDI (λ) with stable carbon influx in an equilibrium 

landscape (Figure 4.1d; Weng et al., in press), 

                                                                                                                      Eq. 4.6 

Reversely the MDI (λ) is derived as, 

                                                                                                                        Eq. 4.7 

4.2.4 Equilibrium Landscape Candidates 

If the spatial scale of my analysis had been indefinite, equilibrium would no longer be 

relevant due to the distinctness of disturbance regimes and the discontinuities or gradients in 

topography, soils, moisture or other environmental factors. Shugart and West (1981) suggested 

that a quasi-steady state is likely to exist only at the landscapes much larger than the average size 

of the disturbances, for example, the landscape of a stable patch mosaic from 100,000 ha to 

400,000 ha. Consequently, in this study I assessed the landscape at 0.5 degree resolution (about 

300,000 ha), which contains thousands of pixels in 1 km resolution AGB and NPP map. 

The scenario of landscape equilibrium ideally requires a primary forest inside each grid 

cell, because other vegetation types with distinctive disturbance behaviors may alter the 

theoretical construct outlined above. Landscape grids of the sparse forest cover mixed with grass, 

shrub or anthropogenic modification could introduce noise in the input data measurement and 

model simulation, like decreasing mean NPP and mean biomass. In this study, to avoid such noise 

in the representative equilibrium landscapes, all 0.5 degree grids must pass rigorous filtering: I 

only selected 0.5 degree grids with at least 90% forest cover. I calculated the forest fraction for 

each grid from the MODIS IGBP land cover product (MOD12Q1) at 500 m resolution in year 

2005. Most of the candidate grids are within boreal and tropical forest; a few temperate forests 

passed the screening as well (Figure 4.2). 
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4.2.5 Data 

 
4.2.5 Data 

I assembled the data required to simulate stand age as described in the above equations 

and in Figure 4.3. Compared to the scarce measurements about belowground carbon pools, AGB 

is relatively easily estimated from available field observations and remote sensing (Houghton, 

2005). Thus, I applied the disturbance model only for the live AGB in the equilibrium forest. To 

estimate the global disturbance regime, several independent data sets with global coverage are 

required at corresponding grids, including carbon influxes to forest AGB, current carbon storage 

in AGB, potential AGB, and turnover rate of carbon in AGB. 

Passive sensors with visible and infrared bands are able to capture information about tree 

cover, leaf area, shadow and other canopy structure characteristics, while LiDAR or RADAR can 

penetrate into the canopy to obtain tree height and tree density. Combining passive and active 

Figure 4.2: The percentage of global forest fraction in 0.5 degree grid. All forest types in 
MOD12Q1, including evergreen needle leaf forest, evergreen broadleaf forest, deciduous 
needleleaf forest, deciduous broadleaf forest, and mixed forest, were considered as forest. The 
forest fraction is the forest cover area divided by the land area for each grid. 
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multi-sensor data, Yu et al. (2010) developed a fusion algorithm for regional AGB monitoring, 

and validated the biomass with ground inventory. I used an updated 1 km global AGB map, based 

on a similar algorithm but driven by MODIS reflectances and LiDAR metrics (Saatchi et al., 

2011). 

I used 0.5 degree mean annual NPP derived from 8-day 1 km MODIS NPP data from 

2001 to 2004 (MOD17A2). The NPP product has been validated with large footprint ground 

measurements (Turner et al., 2006), and, conceptually, is the annual total carbon influx under 

local climate conditions. Although NPP may rapidly accelerate in young forests and decrease 

with age (Luyssaert et al. 2008), preliminary sensitivity tests showed that the amount of potential 

carbon storage capacity was not significantly related to the short-term temporal change of NPP 

for the equilibrium forest (Weng et al., in press). Weng et al. (in press) found that biomass 

estimated with an assumption of constant carbon influx was negligibly different that biomass 

estimated with variable carbon inputs, at least when the residence period is longer than 20 years. 

In this study, therefore, I use the spatially averaged annual NPP in each 0.5 degree grid cell as the 

annual constant carbon influx. 

The allocation of NPP to AGB and belowground biomass varies across different nutrient 

regimes and stand ages of forests (Gower et al., 2001). There are some general scaling rules 

established for NPP partitioning and estimates of aboveground NPP (ANPP). For example, Potter 

(1999) succeeded in running an ecosystem NPP model with empirical values of the partitioning 

rate. In this simple framework, I assumed half of total NPP is allocated to AGB (Potter, 1999). 

Pan et al. (2011) used inventories from the United State Forest Inventory Analysis (FIA) 

and the Canadian national forest inventory (CanFI), fire data, remote sensing and an interpolation 

scheme to produce a 1km stand age map for North America. It provides the best if not the only 

detailed stand age for North America. I aggregate Pan’s “interpolated map” to the 0.5 degree 
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resolution of my “estimated map” and compared the two products. Finally, I conducted a 

comprehensive analysis of the effect of uncertainties in estimating grid parameters, remotely 

sensed NPP and AGB, and parameter values (see Auxilliary section for details). 

Figure 4.3: The framework of estimating turnover rate and stand age from remote sensing derived 
NPP and Biomass. 

4.3 Results 

4.3.1 Mean CRT Calculation 

The mean CRT (calculated from maximum AGB and mean NPP, Eq. 4.2) of tropical 

forests is less than 50 years in most of the Amazon and Congo basins except some fringe region 

close to Atlantic Ocean, while CRT is between 50 and 100 years in Southeast Asia (Figure 4.4). 

In contrast, carbon in most boreal forests turns over at time scales longer than 100 years. The 

boreal forests in Eurasia with long residence time extend from Scandinavia to Siberia, though the  
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Figure 4.4: The CRT (year) for AGB of primary forest in 0.5 degree grids. The residence time is 
the reciprocal of mortality rate calculated from NPP and maximum AGB. 

 

Figure 4.5: The observed (Stephenson and Mantgem, 2005) and estimated tropical and temperate 
forest mortality rates. Boxes are the standard deviation range. The vertical line encompasses the 
25th through 75th percentiles; the solid horizontal lines indicate mean mortality rate. Dotted 
horizontal lines indicate the median. 
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CRT is slightly shorter than 100 years in northern Siberia, East Asia, and southern Scandinavia. 

Similarly, the CRT of boreal forests over North America is mostly over 100 years, consistent with 

those over Eurasia. The results above clearly show that the CRT of tropical forests is shorter than 

in boreal forests, qualitatively consistent with previous studies from ground measurement (e.g., 

Stephenson and Mantgem 2005, Figure 4.5). 

4.3.2 Stand Age Estimation 
	  

I further estimated a stand age map for all equilibrium grids from NPP and live 

aboveground biomass based according to Eq. 4.7. As in the case of CRT, the results show that the 

stand ages for tropical forests are much shorter than temperate and boreal forests (Figure 4.6). 

Tropical forest MDI is usually lower than 50 years, but MDI in the northeastern Amazon, West 

Congo Basin, and New Guinea is between 50 and 100 years. In comparison, boreal forests in 

Eurasia exhibit high mean stand age from 100 to 300 years. Most core regions of boreal forests,	  

Figure 4.6: The mean stand age for all primary forest 0.5 degree pixels. 
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e.g. Western Russia and Central Siberia, are homogeneously covered with old growth forests. The 

forests in Eastern Siberia are of younger mean stand ages, where the CRT is short as well. 

Similarly, lower stand ages corresponding to short CRT are found in boreal forests along the 

coast of the Sea of Japan. 

Unlike the spatial pattern of CRT, which is consistent over Eurasia, the estimated stand 

age of temperate and boreal forests displays a remarkable transition in North America. The 

estimated forest stand ages are about 150 years in the Pacific North-West regions, similar to the 

corresponding CRT. However, for the vast areas stretching from Canadian Rockies all the way to 

the East Coast (New England/Nova Scotia), the estimated forest stand ages are mostly ~50 years, 

much lower than the corresponding residence time (100-150 years).  

 

Figure 4.7: The mean stand age maps from Pan et al’s interpolated method (a) and model 
estimation (b) on equilibrium grids. (c) is the relative difference between the two maps (b-
a)/a*100% 
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The estimated mean stand age map of this study mostly agrees with the interpolated stand 

age map based on ground inventory data and recent disturbances (Figure 4.7). In both maps, the 

oldest forests are located in western Canada with 300 years of stand age followed by Montane 

Cordilleran forest older than 200 year. Both maps illustrate young forests from the Canadian taiga 

in middle regions to northern forests near the Atlantic Ocean. Regionally, the estimated map 

differs from the interpolated map in a few key respects: (1) higher values in the US west coast 

forest; (2) shorter MDIs for the northern forest grids near the Great Lakes; and (3) higher ages 

around Appalachian Mountains.  

 

Figure 4.8: Comparison plots between estimated age and interpolated age. (a) The comparison 
between Pan's age map and the estimated age from my model (Unit: years). The correlation 
coefficient of all available 793 grids is 0.59, with bias at -1.25 year and root mean square 
deviation of 31.03 year. (b) Same comparison at ecoregional scale, the plots are aggregated to 10 
major ecoregions. The diamonds are the mean stand age of each ecoregion, and the two bar 
crossing the diamond are the standard deviations of the two stand age maps inside each 
ecoregion. 

I compared every pixel in the two maps (Figure 4.8a), which again shows that the 

estimated stand age generally agrees with interpolated map. There is a significant correlation (r = 
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0.58, p<0.05, n=802) between two maps within the whole range, and the bias of estimation is 1.3 

year (Figure 4.4a). The estimated values scatter around the interpolated one, but the RMSE is 

modest (31 year) compared to the range of stand ages (0 to 400 years). The estimated stand age 

tends to be older in the middle range from 80 to 150 year, yet also underestimates the age for 

some very old forests. Based on the level II ecoregions of North America (Commission for 

Environmental Cooperation, 1997), I aggregated the two stand age maps into 10 ecoregions 

containing no less than 20 grids of 0.5 degree. The plots of ecoregional mean stand age from both 

maps are close to the 1:1 line, and the estimated stand age has a lower standard deviation in 

younger ecoregions (mean age < 90 years) than the interpolated map (Figure 4.8b). 

4.3.3 Total Uncertainty 

 

Figure 4.9: The uncertainty of estimated stand age by using Monte Carlo errors propagation 
method. The uncertainty is expressed as percentage of standard derivation against estimated value. 

I calculated the total uncertainty of the stand age map from the uncertainties in grid 

parameters, remotely sensed NPP and AGB, and model parameters (see Auxilliary section, Figure 
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4.9). The eastern part of North America and Southeast Asia have lowest uncertainty (less than 

15%), followed by western North America, European, Africa, and most of Amazonia with 

uncertainties from 10 to 25%.  Siberia and small parts of South America have large uncertainties 

up to 50%, which may due to the small difference between mean and maximum AGB. 

4.4 Discussion 

This framework describes only natural disturbances of the primary forest equilibrium 

landscape, not anthropogenic disturbances which seldom follow the exponential distribution of 

disturbance probability (Eq. 4.4 and 4.5). The 90% forest land cover filter may eliminate regions 

with recent anthropogenic effects, but may not be able to exclude all human effects. Although 

over 35 percent of the global forest area is unmanaged primary forest according to FAO (2010), 

anthropogenic disturbance, nitrogen deposition, and other human activities extend the human 

footprint to the temperate and boreal forest (Magnani et al., 2007). For instance, forests in eastern 

North America have a short stand age, which is usually explained as the consequences of human 

development since the 19th Century (Pan et al., 2011). After decades of reforestation, it is 

difficult to filter the anthropogenic disturbance only by identifying the land cover. A human 

footprint map characterizing the anthropogenic disturbance separately from natural disturbances 

would help improve the results of simulation on primary forest. I used “The Last of the Wild” 

version 2 map (Sanderson et al., 2002) to select the ‘wild’ grid (that human footprint index no 

more than 10) from 0.5 degree candidates. The refined ‘wild’ grids led to an estimated stand age 

map closer to interpolated map (R= 0.68, Figure 4.10) but only half grids left. 

Some particular ecoregions with detailed anthropogenic footprint mapping are now 

available (Peres, et al., 2006), and further refinements to my stand age framework could be 

implemented to remove human disturbed places, providing a potentially more accurate and 

practical guideline for programs like reduced emissions from deforestation and degradation 
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(REDD). On the other hand, the current stand age regime undergoing human effects, as on 

opposite of natural disturbance regime with similar climate background, provides a possible clue 

to track the historical anthropogenic disturbance, and to detect valuable carbon sequestration 

region. For example, Figure 4.4 indicates that boreal forests over North America are ~50 years 

younger than those over Eurasia. If anthropogenic disturbances are the main factor determining 

the short stand age of boreal forests in North America, it is implied that those forests may have a 

higher potential to sequester carbon than those in Eurasia. Therefore, I report the stand age map 

before human footprint filtering, which shows a global overview of disturbance with more spatial 

coverage, and could hint the region with anthropogenic disturbances. 

 

Figure 4.10  Comparison of 0.5 degree grids filtered by human footprint map (Sanderson et al. 
2002) against interpolated map in North America 
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Moreover, the assumption on equilibrium landscape also requires steady states of carbon 

storage and fluxes. But some recent and extreme disturbances with impacts over vast areas may 

lead to unconvincing disturbance regime. It is beneficial to eliminate the regions which suffered 

from recent extremely disturbances by using the remote sensing derived records about burnt 

regions during last decades (Barbosa et al., 1999; Roy et al., 2008). 

4.5 Conclusion 

	   A mechanistic framework for generating stand age of equilibrium forest based on several 

basic assumptions was explained in this study, and it revealed a theoretical pathway linking 

historical disturbance with independent current AGB and NPP measurement. The mean stand age 

map produced in this study is the first analysis of all primary forests globally based on remote 

sensing data. It provides a fresh view of understanding long-term ecosystem dynamics and states 

from short-term remote sensing data. The model was validated with the interpolated age map 

from ground inventories in North America, and the estimated age map generally agrees with the 

interpolated map in spatial pattern and magnitude of stand age in both pixel and ecoregion scale, 

with some differences in particular regions. The analysis on assumptions addressed the limitation 

usage of this model, especially for tropic forest age estimation. 

4.6 Uncertainty Analysis 

Since the stand age estimation integrated remote sensing and theoretical ecosystem models 

under some key assumption, it is necessary to assess the uncertainty of the turnover and stand age 

maps. The uncertainty analysis of the whole framework involved: (1) statistical errors in 

representing biomass distribution inside equilibrium grids, including landcover, grid size, 

maximum and mean biomass values; (2) observation errors of the remote sensing derived NPP 

and AGB; (3) prediction errors of parameters in the framework formulation, such as aboveground 
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NPP allocation rate and mean disturbance severity. 

4.6.1 Statistical Errors in Biomass Distribution 

In this study, I used the maximum biomass to represent the potential biomass inside an 

equilibrium grid. To test the sensitivity of the maximum biomass estimate, I used the 85th, 90th, 

and 95thpercentiles of sub-grid AGB, instead of maximum value, to calculate CRT. The results 

were not significantly different from each other concerning the residence time (turnover rate 

increased less than 5%). On the other hand, it is possible that the size of the grid may still not be 

large enough to represent the regional equilibrium, and the grid maximum value may 

correspondingly be smaller than the true potential maximum. If the grid size is too large, 

however, only a few candidates without anthropogenic effect would meet the natural equilibrium 

scenario. The dilemma between the spatial scale and assumption of natural equilibrium poses an 

obstacle to this study and remains to be solved in the future. 

 

Figure 4.11: Grid sensitive plots: comparison of predicted stand age calculated at a 1 degree (a) 
and 1.5 degree (b) resolutions against interpolated map in North America. 
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I next executed the framework at 1 and 1.5 degree landscape grids to exam the 

framework performance along spatial scale as well (Figure 4.11a&b). Compared to Pan's 

interpolated age map, the estimation at 1 degree is similar to original 0.5 degree results, while 

results on 1.5 degree grid shows a higher correlation but with fewer grids. This suggests that the 

methods works better for a larger grid with more biomass samples, if noises from land cover and 

human effect are filtered. 

I also assumed that the current mean biomass in a grid cell is the true biomass of an 

equilibrium forest, but in reality, it could represent the biomass of recovering or disturbed forest. 

Recent research (Iwao et al., 2011) shows that the MODIS landcover product has 78.2% 

agreement with a vast field data for global forest land. 

4.6.2 Observation Errors of the Remote Sensing                 
Derived NPP and AGB 
 
The four year average MODIS NPP data employed in this study may not represent the 

average status of carbon fluxes, considering the long-term trend of carbon fluxes influenced by 

climate change, such as global NPP decreasing (Zhao and Running, 2010) and mortality 

increasing in Canada's boreal forests (Peng et al, 2011). But those are difficult to involve in this 

uncertainty analysis. 

The MODIS NPP production was validated with large footprint ground data (25km2), 

and gave the ratio of root mean square error to the mean of the measured annual NPP at average 

0.26 (Turner et al. 2006). Since I used the 0.5 degree average NPP, the grid error should be 

                                                                                       Eq. 4.8 

where, N is the number of pixels in grid, NPPi is the pixel level NPP, εNPPi is the error at pixel 

level, and εNPPgrid is the error at grid level. Since N is getting large when grid size increased, the 
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relative error will quickly decline. Hence, the error of grid average NPP is much lower than pixel 

level, for example the average NPP error stay below 3% for N=50 (1km pixels in 0.5 degree). So 

the average AGB value at 0.5 degree also has low errors range around 2% compared to over 20% 

error at 1km pixel (Saatchi et al. 2011). Since both the maximum biomass and 90th percentile 

biomass lead to similar result of turnover, the maximum biomass should represent the top 10 

percent biomass pixels in grid (N=25). So I set the maximum AGB error as 4%.  

4.6.3 Prediction Errors of Parameters in Formulation 

The NPP partitioning to aboveground –ANPP– is set as half of total NPP to simplify the 

framework. But this ratio is different for various vegetations, and also varies along the growth 

period for same vegetation. Although Litton et al.(2007)’s review shown small changes of 

partitioning in response to age, the spatial variability of ANPP to NPP ratios are report from 0.35 

to 0.50 (Luyssaert 2007).  The relative high ANPP based on 0.5 partitioning rate may lead to 

underestimation of CRT and stand age based on Eq 2&7. 

	  

Figure 4.12 The relative differences between four estimated mean stand age and mean 
interpolated stand age (Pan et al 2011). The mean stand ages are estimated based on four severity 
scenario, 0.4 in red, 0.7 in blue, 0.9 in green, and 1.0 in pink. 
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In estimating the CRT, I have assumed the impacts of natural disturbances on vegetation 

to be severe (>=90% biomass are removed), so the varied status of forest biomass during the 

recovery period can be clearly detected by fitting the distribution of disturbance. This assumption 

is particularly reasonable for high-latitude primary forests, which are mostly disturbed by wildfire 

with significantly clear-cut burned area over 1000ha (Bergeron et al., 2002). The sensitivity of 

disturbance severity is explored by setting model with the severity at 0.5, 0.75 and 1.0. Compared 

to interpolated age map, the stand ages estimated with low severity are generally younger than the 

interpolated age, and high severity results less bias in North America (Figure 4.12). It also 

implied the high severity assumption is suitable for high-latitude region.	  

However, various nature disturbances in tropic forests may not have as high severity as 

the wildfire does in boreal forests (e.g. Espírito‐Santo et al. 2010), and the severity of 

disturbance are related to vegetation type and tree density (Frelich and Reich 1999). As such, 

forests within a grid cell may not be completely cut-off but with much legacy biomass, which 

does not match the high severity parameter in the model. Figure 4.8 illustrated the limitation of 

low severity and fast turnover on the AGB-to-MDI pathway. The difference of MDIs in high 

severity and slow mortality scenario will lead to large variance of average biomass like the 

wildfire in boreal forest (Figure 4.13a), but the biomass values with same MDI gradient are not 

distinct for low severity and fast turnover rate scenario (Figure 4.13b & Figure 4.13c). 

In this study, the estimations of CRT time and stand age based on the framework 

described in Eq. 4.3 and Eq. 4.7 may not be suitable for tropic forests. The mixture of disturbance 

and growth within one pixel weakens the no-disturbance assumption in CRT estimation. Hence 

the turnover rate for tropic forest may be overestimated by coupling inside-pixel-cutting effects. 

The biomass of tropical forests after low severity disturbance restores quickly due to high NPP, 

and thus there are not enough pixels at recovery period with below average biomass to determine 
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the parameter of disturbance distribution. Although there is limit knowledge about severity value 

for global vegetation, the uncertainty of severity on stand age is due to the linear relation between 

severity and MDI. Here the possible severity range is set from 0.6 to 1.0.  

	  

Figure 4.13 Scenarios of disturbance severity and mortality rate. (a) severity =80%, mortality = 
30 year; (b) severity = 80%, mortality = 6 year; (c) severity = 50%, mortality = 30 year. The 
average biomass (dashed line) with three disturbance regimes: red (MDI) = 66 year); blue (MDI = 
100 year); green (MDI = 200) are shown in each scenario. 
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4.6.4 Total Uncertainty Analysis 

With above input variable error range (maximum AGB at 4%, mean ABG at 3%, mean 

NPP at 2%, partitioning ratio from 0.35 to 0.50, severity from 0.8 to 1.0), I built a Monte Carlo 

approach- making random 2000 values inside the error range for each input variable and 

parameter separately, then ran the model with 2000 input variable and parameter vector and 

produced the output vector. Then I calculated the standard derivation of output vector as total 

uncertainty in stand age estimation. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The conclusion of this dissertation is some key variables either short-term or long-term 

could be extracted from remote sensing data by integrating ecosystem models, as it has been 

shown in estimation of phenology, biomass, and stand age. 

5.1 Contribution 

The overall contribution of the research reported in this dissertation is an exploration of 

the application of remote sensing data to the problem of specifying and verifying the structure, 

function, and behavior of terrestrial ecosystem, and a demonstration that such applications of 

remote sensing data are both feasible and portable in terrestrial vegetation research, especially for 

the region without extensive ground measurement of vegetation. The contributions include: 

• Validating the MODIS phenology products with ground vegetation phenology data and 

other existing remote sensing phenology indexes.  

• Standardizing the plant phenology events of various species from different networks as 

uniform index representing vegetation phenology of local plant community. 

• Exploiting the linear relationship between Landsat-based Leaf Area Index (LAI) and 

canopy height metrics derived from the ICESat GLAS measurements in California at 30 

m resolution, and then deriving high-resolution (30-m) spatially continuous estimates of 

canopy height and AGB. 

• Establishing the standard comparison theme against various AGB density map at 

different resolution by aggregating the density map to regional total biomass. 
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• Acquiring the first stand age map for global primary forests from the remote sensing 

derived NPP and AGB data based on theoretical framework between carbon flux, carbon 

storage, and disturbance regime. 

5.2 Future Research Directions 

Even though the framework of three topics has been greatly extended by the work 

described in this dissertation, there are still plenty of research opportunities. 

• The ground phenology dataset need including recent ground observation after 2006, such 

national phenology network with standard protocol. 

• People are more interested in the change of vegetation, but the interannual trend analysis 

of MODIS phenology products is absent in this study due to the limit data from 2001 to 

2006. The remote sensing derived phenology could reflect the trend or change of 

vegetation phenology, since it may have significant but consistent bias compared to 

ground observations. It would be valuable to extend this research to the latest dataset and 

to explore the interannual change of MODIS phenology data.  

• I have shown that AGB density decreases at coarser spatial resolution. To overcome this 

problem, I plan to build an AGB density at sample regions by aggregating tree-level 

AGB at a desired grid size, which is the best validation data for the satellite AGB density 

map 

• This study address the possibility of theoretical disturbance model applied in particular 

region, which is curial for recent REDD and carbon credit system. With a detailed land 

cover map and specific parameters (such as NPP allocation rate and mean severity of 

local disturbance), it is very likely to produce a improved stand age map and carbon carry 

capacity estimates. 
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• Besides the disturbance, other environmental factors, such soil, slope, and water with 

spatially heterogeneity, may also lead to the biomass mosaic inside equilibrium forest 

grid. It is valuable to refine the framework on some regions with detailed soil, topography 

and hydrology map. 
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