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ABSTRACT 

 

 

In Situ Method of Measuring Atmosphere Neutral 

Winds with a Rigid Falling Sphere 

 

by 

 

Joshua F. Martineau, Master of Science 

Utah State University, 2012 

 

Major Professor: Dr. Stephen A. Whitmore 

Department: Mechanical and Aerospace Engineering 

The new falling sphere instruments will measure lower E-region winds and density, which are critical 

for many of the electrodynamics and plasma physics studies that are carried out as part of the NASA 

suborbital rocket program. The new falling sphere design will take advantage of modern commercially 

available electronic components and materials. Of primary importance, it is proposed to fly an in-situ 

instrument that targets the measurement of neutral wind profiles over the altitude range from 80 to 150 km, 

with accuracy better than that achieved in previous implementations of the falling sphere technique and 

those typically obtained with the chemical release technique. The falling sphere instrument will measure 

the lower E-region winds and density, which are critical for many of the electrodynamics and plasma 

physics studies that are carried out as part of the NASA Geospace suborbital rocket program. This gives a 

report of the overall design and the rigid body dynamics involved as well as some post flight analysis. 

(91 pages) 
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INTRODUCTION 
 

VER the past five decades, nearly all in-situ E-region wind profile measurements have been made 

with the chemical release technique. In the 1960’s, a large number of chemical release measurements 

were made at various sites around the world to establish a climatology of the winds and wind fluctuations. 

More recently, such wind measurements have become a more-or-less standard part of NASA sounding 

rocket campaigns/experiments that focus on electrodynamics, plasma physics, or neutral dynamics of the E-

region/lower thermosphere. For example, in the Coqui 2 campaign in Puerto Rico in 1998, three of the five 

experiments that constituted the campaign included chemical release wind measurements[1]. In the more 

recent EQUIS 2 campaign in Kwajalein, three of the four experiments that constituted the campaign 

included chemical release wind measurements[2]. Larsen (2002) has summarized the chemical release 

wind measurements made since the first experiment in 1957, including the characteristics of the measured 

winds. To date, more than 500 such wind profile measurements have been made.  

The chemical release wind measurement technique involves the release of a chemical tracer in the upper 

atmosphere that is visible from the ground and that can be tracked optically. A large variety of chemicals 

have been used over the years, including some that become ionized and serve as tracers of the plasma 

motion (e.g., barium), and others that serve as tracers of the neutral motion. The primary neutral tracer 

chemicals have been sodium, lithium, and TMA. In general, the chemical release technique has been very 

successful, yielding wind profile measurements over a large fraction of the E-region altitude range with 

good height resolution (250-500 meters) and small error bars (3-10 m/s). TMA measurements have been 

shown to be in good agreement with lidar wind measurements made in the same altitude range as the TMA 

in the mesosphere and lower thermosphere (MLT) region where the two measurements overlap[3]. 

There are drawbacks to the chemical release technique, however. For example, both sodium and lithium 

require solar illumination to be visible from the ground and therefore are used solely for twilight releases 

when the trails are in sunlight and the ground station is in darkness. Lithium has been used to a much more 

limited extent for daytime wind measurements by observing the releases with cameras equipped with 

special narrow filters. The requirement for solar illumination significantly limits the application of those 

chemicals in experiments that focus on specific geophysical phenomena. TMA, on the other hand, is 

O 



2 
chemiluminescent and can be deployed at any time during the night, making it more versatile. The latter 

chemical has therefore been used in the vast majority of the E-region chemical release wind measurements. 

A further drawback is related to the operational aspects of sounding rocket experiments that include 

chemical release measurements in that the combination of the clear-sky requirements and the geophysical 

condition requirements generally extends the launch window beyond what it would be if the geophysical 

conditions alone dictated the launch conditions. NASA maintains sky condition requirements for their 

launches as dictated by safety concerns, but they only apply to the launch site and can accommodate much 

more cloud cover than the chemical release technique permits. 

In-situ instrument measurements of the neutral winds would therefore provide significant advantages 

for the typical sounding rocket campaign/experiment since measurements would be possible over a much 

broader range of solar illumination conditions and the restrictive clear-sky requirement would be almost 

entirely eliminated. Only a few in-situ instrument measurements of the E-region neutral winds have been 

attempted, primarily because any measurements that require sampling of the atmosphere on the rocket 

platform are difficult to implement due to interaction of the rocket body with the target medium. A notable 

exception is the falling sphere measurements made by R. Philbrick and co-workers in the 1970’s and 

1980’s [4]. Only a relatively small number of falling sphere measurements were made in the past but the 

results from those measurements suggest that the technique is a viable alternative to the chemical release 

technique, with height resolution, altitude coverage, and error bars comparable to the release technique. 

The technical challenges associated with the falling sphere measurement are primarily related to the high-

sensitivity required of the instrument accelerometers, which are the key sensors for the technique, and the 

tracking and attitude determination of the sphere. Recent improvements in high-resolution ultra-sensitive 

commercial accelerometers, as well as the availability of miniature GPS tracking systems and inertial 

measurement unit attitude determination systems, make it possible to develop a new high-performance 

falling sphere instrument for wind measurement applications that is not limited by operational restrictions 

of the chemical release technique. Ultimately, the development of this new falling sphere instrument will 

enable the deployment of multiple falling spheres from one rocket for 3D determination of neutral wind 

measurements.  



3 
PREVIOUS HISTORY 

 

The Active Falling Sphere (AFS), as it was termed, was developed in the 1970s as an in-situ sounding 

rocket instrument for measuring neutral density and wind velocity, turbulence, and wave structure [4], 

[5]throughout the D- and E-regions. The AFS was used on ten successful flights between the late-1970s 

and mid-1980s [6]. The AFS achieved accuracy (sensitivity) levels of approximately 2-5 m/s for wind 

velocity measurements and 10-9 kg/m3 for density measurements, with a vertical resolution of approx. 100 

m.  

A fairly massive 25 cm sphere was cradled in the rocket payload section. Following nose cone ejection, 

the sphere was ejected at a typical altitude of 65 km on the upleg at a velocity of approximately 4 m/s from 

a spring-loaded cradle. The cradle was designed to minimize torque during the ejection of the sphere and 

limit the precession cone angle of the sphere spin axis (z-axis). The sphere was often released with a z-axis 

spin of approximately 6 Hz. The z-axis moment of inertia was adjusted using a rotating pendulum to be 

approximately 15% greater than the uniform moment of inertia of any axis in the orthogonal plane. This 

resulted in a precession frequency of approximately 1 Hz [5]. 

The AFS sphere contained a sensitive 3-axis piezoelectric accelerometer, a less sensitive single-axis 

accelerometer, a telemetry encoder and transmitter, transponder, and other supporting structure and 

electronics. The 3-axis accelerometer was used for wind and density measurements. The single-axis 

accelerometer was used to monitor the magnitude of the precession cone angle and precession acceleration. 

The transponder was used for accurate trajectory tracking as an altitude trajectory error of 60 m results in 

an apparent 1% density error.  
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Figure 1. Schematic of the AFS 3-axis accelerometer configuration (Philbrick et al., 1978) 

 

Figure 1 shows the 3-axis accelerometer configuration that was designed and made specifically for use 

in those early experiments. Three separate tungsten proof masses were suspended by piezoelectric crystal 

bimorph arms which were then secured to an enclosure fabricated from a solid block of metal. Caging jaws 

were used to secure the proof masses until the sphere was ejected from the rocket payload section. This 

prevented fracture of the bimorph arms during handling and launch operations. The system was calibrated 

using a forced simple harmonic oscillator. This design resulted in measurement sensitivity of ~ 10-8 m/s2 

(10-9 g). 

  

X axis 

Z axis 

Y axis 



5 
PURPOSE 

 

Our proposal objective is to develop and carry out an in-flight test and calibration of a next-generation 

falling sphere instrument for E-region neutral wind and density profile measurements. This new falling 

sphere instrument will measure lower E-region winds and density, which are critical for many of the 

electrodynamics and plasma physics studies that are carried out as part of the NASA suborbital rocket 

program. Temperature profiles can also be derived from the density profile by using the hydrostatic 

equation. The new falling sphere design will take advantage of modern commercially available electronic 

components and materials. Of primary importance, we propose to develop an in-situ instrument that targets 

the measurement of neutral wind profiles over the altitude range from 90 to 150 km, with accuracy better 

than that achieved in previous implementations of the falling sphere technique and those typically obtained 

with the chemical release technique. In addition, the proposed measurement technique will not be subject to 

stringent ground weather and solar illumination conditions. 

  



6 
DYNAMICS 

 

In flight dynamics there are three types of forces acting on the vehicle: propulsion forces, gravitational 

forces, and aerodynamic forces [7]. In this case, the FSP has no propulsive forces, and the dynamics are 

described only from the gravitational and aerodynamic forces. 

A 6-DOF approach decomposes the rigid-body motion into a translation of the center of mass and a 

rotation about an axis passing through the center of mass location. The position of the center of mass is 

updated using Newton’s laws of motion in the inertial frame, while the rotation of the body is determined 

by numerically integrating Euler’s equations of motion in a body principal-axis system. The rotational 

position of the body is specified using Euler parameters, which are updated by numerical integration of the 

angular velocity. 

A. Governing Equations 

In order to understand the motion of an object moving through a fluid, air in this case, an understanding 

of the forces and moments acting on the object must be known.  Through Newton’s second law, i.e. F = ma, 

and under the assumption of inviscid flow, the forces and moments are calculated. These forces and 

moments are the aerodynamic forces and moments and gravitational forces. The aerodynamic forces of 

interest are the forces due to drag and lift, expressed as, 

஽ܨ  ൌ
1
2
ஶߩ ஶܸ

ଶܣ௥௘௙ܥ஽ (4.1.1)

௅ܨ  ൌ
1
2
ஶߩ ஶܸ

ଶܣ௥௘௙ܥ௅ (4.1.2)

 The equations of motion for a rigid body undergoing both translation and rotation with respect to some 

inertial frame are also derived from Newton’s second law. From the total angular momentum, Euler’s 

equations of motion are derived. This derivation is shown in detail in ref[8]. This, in conjunction with the 

kinematic equation, fully describes the rotational motion of a rigid vehicle. The use of a quaternion method 

is preferred. The Euler and kinematic equations are, respectively, 

ࡶ  ሶ߱ ൌ െሾ߱ ൈሿ߱ࡶ ൅ ܶ (4.1.3)
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ሶݍ  ൌ
1
2
ષሺ߱ሻ(4.1.4) ݍ

where J is the Moment of Inertia matrix, ω is the angular velocity of the body relative to the inertial frame, 

T is the applied total body torque, q is the quaternion, and  

 ષሺ߱ሻ ൌ ൤െ
ሾ߱ ൈሿ ߱
െ்߱ 0

൨ (4.1.5)

 ሾ߱ ൈሿ ൌ ൥
0 െ߱ଷ ߱ଶ
߱ଷ 0 െ߱ଵ
െ߱ଶ ߱ଵ 0

൩ (4.1.6)

 The translational motion of a rigid vehicle is determined by the external forces acting on the center of 

mass of the body. Again, using Newton’s second law, the translational acceleration is due to the external 

body forces, 

 ܽ஻ி ൌ
஻ܨ ݉ிௌ௉
ൗ  (4.1.7)

Where FB is the total external body forces acting on the FSP. In an inertial coordinate system the total 

acceleration also accounts for the gravitational forces. The gravitational force acting between two masses, 

from Newton’s law of gravity, is expressed as, 

௚ܨ  ൌ ܩ
݉ܯ
ଶ‖ݎ‖

ෝ࢛௥ (4.1.8)

where 

 ෝ࢛௥ ൌ
റݎ
‖ݎ‖

 (4.1.9)

from these equations and using the relationship of relative two-body motion, the governing equation of 

motion of M relative to m is, 

റሷݎ  ൌ െ
ܯሺܩ ൅݉ሻ
ଷ‖ݎ‖

റ (4.1.10)ݎ

since the mass of the sphere, m, is much smaller than that of the earth, M, it can be neglected so that 

റሷݎ  ൌ െ
ߤ

ଷ‖ݎ‖
റ (4.1.11)ݎ

where the gravitational parameter µ is defined as: 
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ߤ  ൌ (4.1.12) ܯܩ

and r is the position vector between the two masses M and m, being the earth and the Falling Sphere Probe, 

respectively. 

 Then the total acceleration of the FSP as seen from an inertial frame is, 

 ܽூ ൌ ܽ஻ி ൅ റݎ ൌ ஻ܨ ݉ிௌ௉
ൗ െ

ߤ
ଷ‖ݎ‖

റ (4.1.13)ݎ

Under the assumption of an inviscid, irrotational flow outside the boundary layer, the continuity and 

momentum equations are respectively, 

 
ߩ߲
ݐ߲

൅ ሺܸ ∙ ߩሻ׏ ൅ ׏ߩ ∙ ܸ ൌ 0 (4.1.14)

 
߲ܸ
ݐ߲

൅ ൬׏
1
2
Vଶ൰ ൅

ܲ׏
ߩ
൅ Fୠ୭ୢ୷ ൌ 0 (4.1.15)

Where Fbody represents the body forces (per unit volume), which in this case is a gravitational force. 

B. Mission Objectives 

Measurements with the Falling Sphere Probe, FSP, will be used to directly determine atmospheric 

density and wind profiles. The 3-axis accelerations measured by the sphere have two contributions, namely 

a contribution due to the atmospheric density and a contribution due to the atmospheric winds. In order to 

make the analysis tractable, two assumptions are made, namely that the vertical winds are negligible and 

the horizontal winds are uniform across the distance separating the upleg and downleg portion of the 

trajectory. With those assumptions, a sphere that is moving vertically will experience a vertical acceleration 

related to the atmospheric density and horizontal accelerations related to the horizontal winds. In reality, 

the sphere motion has both vertical and horizontal components and the accelerations will have 

contributions from both density and wind effects. The data analysis requires a solution for all of the 

unknown parameters simultaneously, which can be done in a straightforward manner. The density profile 

will be determined by the equation for the atmospheric drag force in a given direction, which for this case 

is the z-component of the measured acceleration. Taking Eq. (4.1.1) and solving for the density yields, 
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  ஶߩ ൌ
2݉ܽ஽

௥௘௙ܣ஽ܸଶܥ
  (4.2.1)

where m is the mass of the sphere, aD is the drag acceleration, ρ∞ is atmospheric density, V∞ is the velocity 

component in that direction relative the background atmosphere, CD is the drag coefficient, and Aref is the 

cross-sectional area of the sphere.  

C. Mathematical Model 

To simulate the expected response from the system, a Simulink/Matlab model was developed using the 

governing equations of motion. The model has the capability of forcing the sphere with randomly generated 

wind velocities to create an accelerometer signal output. The output is then taken, and the model backs out 

the wind velocities that caused the accelerations and is compared to the initial wind velocity (ones that were 

randomly generated). 

Because of the complexity of the model, several assumptions are made to simplify the systems to 

something solvable. From the estimation of the rocket trajectory and profile, the sphere will be assumed to 

be at high velocities for the entire flight. Because the sphere is not completely smooth on its outer surface, 

i.e. there are many screw heads, seams, divots, and the majority of the surface is a fiberglass composite, the 

flow will be considered turbulent during the entire flight. This will be verified by the Reynolds number, Re. 

Flows with Re > 5x105 are considered turbulent flow, ref [9]. 

D. Initial Conditions & Inputs 

The simulation starts the time of ejection, teject = 70.0 seconds. Several initial conditions must be known 

to start the simulation. The initial position is the Wallops Flight Facility (WFF) launch pad. The given 

latitude, ϕ = 37.48o, longitude,  λ = -75.48o, and altitude, h = -0.021 m, of the launch pad allow for the 

calculation of the X, Y, Z coordinates in Earth Centered Fixed (ECF) frame according to ref[8] as, 

 ܺா஼ி ൌ ሾܰሺ߶ሻ ൅ ݄ሿ cosሺ߶ሻ cosሺߣሻ (4.4.1)

 ாܻ஼ி ൌ ሾܰሺ߶ሻ ൅ ݄ሿ cosሺ߶ሻ sinሺߣሻ (4.4.2)

 ܼா஼ி ൌ ሾܰሺ߶ሻሺ1 െ ݁ଶሻ ൅ ݄ሿ sinሺ߶ሻ (4.4.3)

where N is the length of the normal to the ellipsoid given by, 
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 ܰሺ߶ሻ ൌ
ܽ

ඥ1 െ ݁ଶ݊݅ݏଶሺ߶ሻ
 (4.4.4)

where according to the WGS 84 model, the earth’s semi-major axis, a = 6378.137 km, and the eccentricity 

of earth’s ellipsoid, e = 0.0818. 

 The estimated position of the launch vehicle (Terrier Mk70-Improved Orion) at the ejection time is an 

altitude, hTerrier = 82.2 km, a range, Rterrier = 26.7 km, an elevation angle, El = 68.2o, and an azimuth angle, 

Az = 115o.  From this the estimated initial position at the time of ejection is, from methods used in ref [10], 

is 

 ܺ଴,ா஼ி ൌ ଺ܧ2.357 ݉ (4.4.5)

 ଴ܻ,ா஼ி ൌ െ4.567ܧ଺ ݉ (4.4.6)

 ܼ଴,ா஼ி ൌ ଺ܧ3.901 ݉ (4.4.7)

 The initial quaternion is calculated from the initial position vector of the launch facility and the known 

initial azimuth and elevation angles, and rail orientation. This is discussed in more detail in §FLIGHT 

DATA & TEST RESULTS.C: Flight Nutation & Precession 

 The initial inputs of the physical properties of the sphere were measured on the flight ready spheres. 

The method of these measurements is discussed in §BALANCING. These consisted of the center of mass, 

CM, the inertia tensor, J, the physical dimensions and mass. 

E. Aerodynamics 

Because the sphere is moving through the air, as well as spinning, the aerodynamic forces and moments 

need to be calculated. The aerodynamic forces and moments accounted for in this model are the drag 

forces, the Magnus force, and the torques caused from those drag forces on the surface of the sphere.  

1. Lift and Drag Coefficients 

 The sphere is assumed to have an initial spin at a rate of 2 Hz. For a spinning sphere at this rate in an 

ideal flow, the lift coefficient is approximately, CL ≈ 0.036 at a Reynolds number (Re) of 8.2x106. For this 

simulation, the lift coefficient was assumed constant through the entire flight. 
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 The drag coefficient, CD, is a bit more complex. The majority of the flight is at supersonic speeds, 

except through the point of apogee, at which the velocity is transonic. The flow around the sphere, in terms 

of calculating the drag coefficient, is assumed to be turbulent the entire flight. The drag coefficient at high 

Mach numbers has many different parts. The components included in the model for a total drag coefficient 

are: pressure drag, skin friction drag, shockwave drag (for transonic and supersonic flows), and drag from 

excrescencies (holes, rivets, scratches, etc…)[11]. The total drag coefficient is the summation of 

coefficients expressed as, 

஽;்௢௧௔௟ܥ  ൌ ஽;௉ܥ ൅ ஽;௙ܥ ൅ ஽;ௌௐܥ ൅ ஽;ா௫ (4.5.1)ܥ

The equations to model the various drag coefficients come from empirical data, based on rocket testing 

and performance characterization[11]. The pressure drag, ܥ஽;௉, was assumed to be a constant value of 0.2, 

as is reported in [12], and many other texts, for turbulent flow around a sphere. In calculating the drag due 

to skin friction, the roughness factor was assumed to be 0.0012 inches, the average surface finish to 

machined fiberglass composites [13]. 

2. Aerodynamic Forces 

 The aerodynamic forces include the drag force and the Magnus force. The drag force, FD, is parallel to 

the freestream velocity and opposes the direction of flight. The drag force is simply calculated as, 

஽ܨ  ൌ
1
2
஽,்௢௧௔௟ܥஶߩ ஶܸ

ଶܣ௥௘௙ଙ̂௏ಷೄು (4.5.2)

where A is the frontal area of the sphere, and ଙ̂௏ಷೄು is the unit vector in the direction of the velocity of 

the sphere. 

 The Magnus force is the lift produced by the rotation of the spinning sphere. The lift is in the direction 

of the cross product between the velocity vector and the spin axis. The rotation rate and the surface 

roughness affect the lift and drag coefficients. The force due to rotation is, 

ெܨ  ൌ ௅ሺ߱ܨ ൈ ሻݒ ൌ
1
2
௥௘௙ଙ̂ிಾ (4.5.3)ܣ௅ܸୄଶܥஶߩ

where V┴ is the velocity perpendicular to the axis of rotation, andଓ̂ிಾ is the unit vector in the direction of 

the cross product, expressed as, 
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 ଙ̂ிಾ ൌ
൫ଙ̂ఠಷೄು ൈ ଙ̂௏఼൯

ฮ൫ଙ̂ఠಷೄು ൈ ଙ̂௏఼൯ฮ
 (4.5.4)

Therefore the total external forces exerted on the rigid sphere, is the total body force as, 

	 ஻ிܨ ൌ ஽ܨ ൅ ெܨ (4.5.5)

 

3. Aerodynamic Moments 

The only torques acting on the sphere are the aerodynamic moments. These are the moments due to the 

skin friction drag force acting on the surface of the sphere and the pressure drag force acting at the center of 

pressure of the sphere. (The moment caused by the umbi cords disconnecting will be neglected.) The 

moment arm to the skin friction drag is the radius of the sphere, which is approximately, rFSP = 6.125” (it is 

approximate because the outer components do not make a perfect 3D sphere). The moment arm to the 

pressure drag force is the distance from the center of pressure, xcp, to the center of mass, xcm. The center of 

mass is a physical measurement described in § BALANCING, the distance, xcp, is calculated as, 

௖௣ݔ  ൌ െ
1
2
ଓ̂ிವ;ು (4.5.6)ݎ

Then the torque acting on the body can be expressed as, 

 ஻ܶ ൌ ௖௣ݔ ൈ ஽;௉ܨ ൅ ிܶವ;೑ (4.5.7)

where r is the sphere radius, ܨ஽;௉ is the drag force due to pressure drag, ଓ̂ிವ;ು is the unit vector in the 

direction of the drag force due to pressure drag, and ிܶವ;೑ is the torque caused by the drag force due to skin 

friction, 

 ிܶವ;೑ ൌ െܨ஽;௙ݎிௌ௉ଓ̂ఠಷೄು (4.5.8)

F. Rotational and Translational Dynamics 

The attitude of the sphere is determined by simply integrating the governing equations of motion, Eq. 

(4.1.3) and Eq.(4.1.4), with respect to time. The integration is handled using a Simulink integration block. 

Integrating ሶ࣓  gives the rotation axis, and integration of ࢗሶ  gives the quaternion describing the orientation of 

the sphere from body coordinates to inertial coordinates. The applied torques and disturbance torques 
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acting on the system must be known. It is assumed that there is no applied torques, given that this is a free 

falling system, and the disturbance torques is estimated from the drag forces acting on the surface of the 

sphere. The quaternion also must be normalized as, 

ூݍ 
஻ ൌ

ூݍ
஻

ඥሺݍூ
஻ሻ்ݍூ

஻
 (4.6.1)

From the quaternion, a Direction Cosine Matrix, DCM, to rotate from Inertial to Body coordinates can 

be developed [14], 

ூࡾ 
஻ ൌ ቎

ଵଶݍ െ ଶݍ
ଶ െ ଷݍ

ଶ ൅ ସଶݍ 2ሺݍଵݍଶ ൅ ସሻݍଷݍ 2ሺݍଵݍଷ െ ସሻݍଶݍ
2ሺݍଵݍଶ െ ସሻݍଷݍ െݍଵଶ ൅ ଶݍ

ଶ െ ଷݍ
ଶ ൅ ସଶݍ 2ሺݍଶݍଷ ൅ ସሻݍଵݍ

2ሺݍଵݍଷ ൅ ସሻݍଶݍ 2ሺݍଶݍଷ െ ସሻݍଵݍ െݍଵଶ െ ଶݍ
ଶ ൅ ଷݍ

ଶ ൅ ସଶݍ
቏ (4.6.2)

The translational dynamics are also a simple integration of the governing equation of motion, 

Eq.(4.1.13).  

G. Accelerometer Response 

The acceleration is calculated as seen for each of the six science accelerometers. This acceleration 

includes any translation acceleration and any acceleration due to rotations about any axis. The results of the 

rotation rate from the previous section will be used in determining the accelerations of the sphere. The 

accelerometers measure any acceleration in the direction of the axis of the device. Each accelerometer may 

see translational accelerations and centripetal accelerations. The translational acceleration is found from the 

aerodynamic body forces (as described above) acting on the sphere is given by Eq. (4.1.7), and the 

centripetal acceleration is expressed as, 

 ܽ௖ ൌ െ߱஻
ଶ(4.7.1) ݎ

where, r, is the perpendicular distance from the accelerometer to the axis of rotation. 

It is assumed that the measuring device is at the middle of the accelerometer housing. The channels of 

the accelerometers are shown in Figure 2.  The acceleration of each channel is calculated as follows in 

matrix form, 

௖௛ܣ  ൌ ऍܺ (4.7.2)
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where A is the vector of all the channel measurements, X is the state variable vector, and ऍ is the matrix of 

coefficients, defined as, 

௖௛ܣ  ൌ ሾܽ௖௛௔௡ଵ ܽ௖௛௔௡ଶ ܽ௖௛௔௡ଷ ܽ௖௛௔௡ସ ܽ௖௛௔௡ହ ܽ௖௛௔௡଺ሿ் (4.7.3)

 ܺ ൌ ൣܽ௫ ܽ௬ ܽ௭ ߱௫ଶ ߱௬ଶ ߱௭ଶ൧
்
 (4.7.4)

	 ऍ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
			 cosሺߙሻ 			sin	ሺߙሻ 0 െݎ௩௘௥௧ െݎ௛௢௥௭ െݎ௔௡௚௟௘ௗ
െcos	ሺߙሻ െsin	ሺߙሻ 0 െݎ௩௘௥௧ െݎ௛௢௥௭ െݎ௔௡௚௟௘ௗ

0 0 1 െ݄௩௘௥௧ 0 െ݄௩௘௥௧
0 0 െ1 െ݄௩௘௥௧ 0 െ݄௩௘௥௧
0 െsin	ሺߙሻ 			cos	ሺߙሻ െݎ௔௡௚௟௘ௗ െݎ௛௢௥௭ െݎ௩௘௥௧
0 			sin	ሺߙሻ െcosሺߙሻ െݎ௔௡௚௟௘ௗ െݎ௛௢௥௭ െݎ௩௘௥௧ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

	 ሺ4.7.5ሻ

Then solving for the state variable, 

 ܺ ൌ ऍିଵܣ௖௛ (4.7.6)

where the distances r and h are measured from the CG to the point of measurement in the accelerometer. 

For the angled mounted accelerometers, rvertis the vertical offset, rhorz is the horizontal offset, and rangled is 

the total distance. For the vertically mounted accelerometers, hvert is the vertical offset. 

 The results in Eq. (4.7.6) give the x, y, and z axes accelerations and rotation rates in the sphere body 

coordinates. A simple rotation will change the results from the sphere coordinates into ECI coordinates. 

 

 

Figure 2: Accelerometer Channels 
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Using the manufacturer’s specifications (see appendix), appropriate errors were added into the 

accelerometer signals in the simulation. These errors include position error, sensitivity error or scale factor, 

bias, and white noise.  
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OVERALL DESIGN 

 

A. Sensors 

The FSP structure (see Figure 3) is a 31.115 cm (12.25 in) sphere that is comprised of two dielectric 

material halves. The composite material shell ensures strength while minimizing mass and creates a 

“transparent” RF window for the telemetry and GPS antenna. An internal “can” with a deck-plate (see 

Figure 4) will serve as the mounting platform and faraday cage for two symmetrical ultrasensitive 3-axis 

accelerometer systems (the wind measurement sensors), an IMU that includes a less sensitive 3-axis 

accelerometer, gyros, and magnetometer for precise attitude determination, a GPS unit for accurate payload 

trajectory tracking, signal conditioning and encoding electronics, a S-band transmitter, and power 

switching/distribution system electronics. A 22.9 cm outer diameter, combination S-band/GPS antenna ring 

encircles the can. Except for the ultra-sensitive accelerometers, these components are all systems 

commonly used by NSROC for sounding rocket missions. The layout of the internal components is 

illustrated in Figure 5. The deckplate components are placed to optimize balance of the sphere and 

maximize spin-stability about the z-axis. All unnecessary material in the can and deck plate is removed to 

reduce the mass as much as possible. 
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Figure 3: Sphere Make-up 

 
 

 

Figure 4: Internal Can and Accelerometer Mounts 
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Figure 5: Sphere Internal Layout 

 

The ultra-sensitive 3-axis accelerometer systems are comprised of three commercially available single-

axis piezoelectric accelerometer devices. Each single-axis device is a 3.6 x 2.5 cm cylinder that is sensitive 

along the major axis. The 3-axis systems are completed by configuring three single-axis devices such that 

one single-axis device is positioned for sensitivity in each of the x, y, and z axes (see Figure 5 and Figure 

6). One3-axis accelerometer system is mounted on the top side of the deck-plate, with another system 

mounted directly below the deck-plate (see Figure 6). This configuration provides symmetry for removing 

the biases due to the offsets from the sphere center in the single-axis accelerometer device locations within 

the dual 3-axis configurations. The mounting fixture is designed to minimize the distance the two angled 

accelerometers are from center. Being off-center introduces centripetal accelerations in the measurements 

that must be accounted for. 
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Figure 6: Accelerometer Orientation 

 

 

 

 

B. Structure/ Attitude Control 

The Falling Sphere Probe is a spin-stabilized object with a spin rate of about 2 Hz. In order to be stable 

the sphere has to be a major axis spinner. That is, the angular velocity vector of the sphere must lie in the 

direction of its major axis of inertia. For the coordinate system shown in (Figure 7), this means that the 

sphere must spin about the y-axis. Because the sphere has no active control system, the stability of the 

sphere relies on the inertia tensor and is said to have a passive attitude control system. The easiest way to 

be a major axis spinner, or oblate spinner [10], is to be “short and fat”.  Since the sphere is symmetrical and 
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rigid, it cannot be short or fat. The control is then maintained by the physical geometry of the sphere, or 

more so, what’s inside the sphere and how it is placed.  

 

 

Figure 7: Sphere Coordinate System 

 
 
 The system internally is “tall and skinny”, as seen by the “can” assembly, and therefore the sphere 

naturally wants to be a minor axis spinner, or a prolate spinner [10]. A spacecraft that is a minor axis 

spinner with no active attitude control is considered to be unstable. To avoid this and make it a major axis 

spinner, a ring was put around the equator of the “can”. To not interfere with the antenna, the material of 

this ring had to be non-metallic. The ring was made of nylon and has a second purpose of joining the two 

dielectric halves of the sphere together. With this radially outward as far as possible from the center and at 

the equator, it created a spinning top-like object, making it a major axis spinner. The modeled stabilizing 

ring and an actual ring are shown in Figure 8. 
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Figure 8: Stabilizer/Joiner Ring 
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BALANCING 

 

To maintain stability of the sphere and not saturate the instruments on board, the orientation of the spin 

needs to be as constant as possible. The goal is to reduce the wobble of the sphere. This is done with the 

center of mass (CM) and the moments of Inertia (MOI). For the sphere to spin perfectly about its center 

axis, the CM would have to be located somewhere on the spin axis, and the Inertia tensor would have no 

products of Inertia (POI). When this is the case, the sphere is considered perfectly rotationally balanced. 

A. Center of Mass (CM) 

 
1. Concept and Ability 

In order to have the center of mass lie somewhere along the spin axis, or the y-axis (ideally, they are 

one and the same), there needs to be a way of changing the CM after all the components are installed 

including all the wiring harnesses. The method chosen was to use large weights (8-24grams) that attach to 

the outside of the can for “rough” balancing and to attach small weights (0.02-0.13 oz) the outer 

hemispheres for fine tuning to shift the CM to the desired location. Three different sizes of the large 

weights were used to vary the ability in “rough” balancing the sphere. They varied in thickness, but the 

dimensions were the same, allowing the weights to be stacked in various patterns to achieve the desired 

weight at a specific location. Since these larger weights are attached to the can, the sphere has to be opened, 

meaning the dielectric hemispheres have to be removed. The small weights are fasteners of two different 

material types, Aluminum and Stainless Steel, varying in lengths to give a varied of weights. The small 

weights are placed in locations around the encaps of the spheres. This allows for a “fine tuning” without 

having to change the final assembly of the sphere, the CM is adjusted in the flight configuration. The two 

kinds of weights used are shown in Figure 9below. 
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Figure 9: Balancing Weights 

a) Large weights for “rough” balancing, b) Small weights for “fine tuning” 
 

 
Adjusting the CM to the desired location was an iterative process. The sphere would be weighed and 

the CM would be calculated. Based on the results counter weights would be attached and the sphere re-

weighed and the CM re-calculated. This process would repeat until the difference between iterations was 

less than the contribution of the smallest weight available per stage. The CM balancing had to occur in two 

stages. The first stage is the “rough” balancing stage, using the large weights. As mentioned above, in order 

to attach the large weights, the sphere was opened. This required that all the adjustments to the CM with the 

large weights had to be done in one stage. Once the maximum resolution was met in this stage, the next 

stage commenced. The second stage is the “fine tuning” of the sphere. In the joint between the encaps and 

the dielectric hemispheres there are 16 holes. Every other hole is used for structural purposes joining the 

hemisphere and the encap to the “can”. The other 8 holes are tapped into the encap and are used for the 

“fine tuning”. The application of the different stages is seen in Figure 10 below. 
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Figure 10: Balancing Weights on Sphere 

a) Large weights in stage 1, b) Small weights in stage 2 
   
 

The Multiple Point Weighing Method was used to calculate the CM and also the total mass of each 

sphere [15]. The method is to support a platform by at least three load cells, and the CM is calculated from 

the resultant moments caused by the forces at these cells, refer to Figure 11 below. The accuracy of this 

method is reported to only be moderate. Some of the inherent problems with this method are the 

introduction of side loading by linking the load cells together with a platform and the deformation of the 

platform itself when under the load of the object being measured [16].  

 

 

Figure 11: Multiple Point Weighing Method 
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The total weight of the measured object is simply the summation of the forces: 

 W ൌ A൅ B ൅ C (6.1.1)

The calculation of the center of mass is done by taking the moments about point A: 

 Σܯ௫ ൌ ሺB ൅ Cሻܮ െWݔ ൌ 0 (6.1.2)

 Σܯ௬ ൌ Wݕ ൅
D
2
ሺB െ Cሻ ൌ 0 (6.1.3)

 ई ൌ
ሺB ൅ Cሻܮ

W
 (6.1.4)

 उ ൌ
D
2W

ሺC െ Bሻ (6.1.5)

The presence of side loading in the system introduces large errors in the measurement results. To 

eliminate this error, the platform is not attached to the load cells, but floats on top. This is accomplished 

using kinematic mounts, where the first ball makes contact with the frame at exactly three points (a sphere 

in a trihedral, or cone for simplicity), the second ball at two (a sphere in a V-groove), and the third ball at 

just one (a sphere on a flat surface).These six points of contact exactly constrain the six degrees of freedom 

of the platform. This mounting technique is illustrated in Figure 12,  
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Figure 12: Kinematic Constraint (Courtesy of Newport Corpration) 

 

To reduce the error caused by the platform deformation, the thickness of the platform was increased to 

support loads up to 10 kg (including test fixtures). 

 

2. Falling Sphere Probe CM Measurements 

In order to get accurate measurements of the sphere the table platform and all fixtures used in the 

process had to be calibrated. The calibration process included using an object with a precisely known 

weight and center of mass. A high precision 3 inch steel ball bearing was used as the calibration object. The 

accuracy of the CM table was good to less than ½ mm. The fixtures had to allow for the sphere to be 

oriented in the 3 different x, y, and z axes, as well as allow the sphere to be removed from the table as part 

of the measuring procedure. 

For each orientation and every balance weight configuration, fifteen measurements were recorded. As 

mentioned earlier, the rough balancing had to take place first. Figure 13 shows the rough balance setup in 

two configurations: a) shows the orientation for measurements for the CM in the x-y plane, and b) shows 
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the orientation for measurements in the x-z plane. Measurements in the y-z plane are taken in an orientation 

rotated +90 degrees around the horizontal axis from that shown in Figure 13:(a). 

 

 

Figure 13: CM Measurements: Rough Balancing 

a) CM measurements in the x-y plane, b) CM measurements in the x-z plane 

 

Once the rough balance is complete, the outer shells (dielectric hemispheres) are put in place and the 

sphere has to be re-balanced in its final configuration. This process is illustrated in Figure 14for a couple of 

orientations. FIG (a) shows the setup for measuring in the x-y plane, (b) is measuring in the x-z plane. 

Measurements in the y-z plane are taken in an orientation rotated +90 degrees around the horizontal axis 

from that shown in Figure 14: (a). 

 

 

Figure 14: CM Measurements: Fine Tuning 

a) CM measurements in the x-y plane, b) CM measurements in the x-z plane 
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The final CM measurement results are shown below in Table 1.In calibrating the table, the geometric 

center of the fixture, and consequently the geometric center of the sphere are known. The values in the 

table reflect the deviation from the geometric center of the sphere. 

 

Table 1: Final CM Position of Falling Sphere Probes (y-axis == spin axis) 

Sphere: 41.090 Sphere: 41.091 

 
Mass 
[kg] 

dx 
[mm] 

dy 
[mm] 

dz 
[mm] 

mass 
[kg] 

dx 
[mm] 

dy 
[mm] 

dz 
[mm] 

Mean 9.645 -0.014 -0.020 0.040 9.833 -0.096 -0.037 -0.078 

std Dev 0.0095 0.060 0.098 0.060 0.0095 0.060 0.098 0.060 
 

B. Moments of Inertia (MOI) 

 
1. Concept and Ability 

Since the capability of measuring the products of inertia on a typical spin balance machine is not 

available in the lab, the method of measuring the moments and products of inertia is by oscillating the 

object on a torsion pendulum. This method consists of measuring the oscillation period of the object of 

interest and then calculates the inertia of the axis of rotation.  

The centrifugal and windage forces exerted on the sphere are neglected because the sphere moves very 

slowly during this kind of measurement. The entrapped and entrained air effects will also be neglected due 

to the sphere having a much higher density than air. Also the sphere has sufficient structural integrity so as 

to not deflect due to the oscillation motion. Typically the total number of MOI measurements made is nine: 

three in each of the three mutually perpendicular planes. However, since the coordinate axes are the 

intersections of these planes, then the MOI along these axes will be common in the two planes, thus 

reducing the total number to six measurements [17].The six oscillation measurements are about the body 

axes (X, Y, and Z) and about three axes at 45 degrees in each of the three planes, as shown in Figure 15. 
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Figure 15: MOI Measurement Axes 

 
 

Ideally the test fixture needs to be able to rotate the sphere into the six different orientations in such a 

way as to locate the CM on the axis of rotation of the machine; otherwise, the parallel axis theorem needs 

to be used. The fixture also needs to interface with the sphere with as little or no alteration of the final flight 

configuration of the sphere. Two separate fixtures were used to orient the sphere into the six different 

configurations, one fixture per 3 axes of rotation. The fixtures are shown in Figure 16below.  

 

 

Figure 16: MOI and CM Test Fixtures& Frame 

Fixtures 

Frame 
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Figure 17: Oscillating Table for MOI measurements 

 

To calculate the MOI, an oscillating table (shown in Figure 17above) is used to measure the period of 

oscillation. If the table is rotated by an angle, ߮, then the restoring torque acting on the system is, 

 ߬ ൌ െ݇߮ (6.2.1)

where k, is a constant of the oscillatory table, which has to be measured. With an object of interest on the 

table, the oscillation frequency will have the response of 

 ߱ை ൌ ඨ
݇ை
ைܫ

 (6.2.2)

where	߱ை is the oscillation frequency in rad/s, ݇ை is the effective stiffness constant, and ܫை is the total 

inertia of entire system. The frequency can also be expressed in terms of its period, 

 ߱ை ൌ ݂ߨ2 ൌ
ߨ2

ைܶ
 (6.2.3)

Therefore, the oscillation in terms of the measured period and the inertia is, combining Eqs. (6.2.2) and 

(6.2.3), 

 
ߨ2

ைܶ
ൌ ඨ

݇ை
ைܫ

 (6.2.4)

solving for the spring constant yields, 



31 

 ݇ை ൌ ൬
ߨ2

ைܶ
൰
ଶ

ை (6.2.5)ܫ

With two independent period measurements, one with the bare table and one with an object of a known 

moment of inertia, the table constants k and I can be determined. The object used to calibrate the system is 

a2 inch precision steel ball bearing. Since k = constant, using Eq. (6.2.5) above for two measurements, 

 ൬
ߨ2

௖ܶ௔௟௜௕௥௔௧௘
൰
ଶ

்ܫ ൌ ݇௧௔௕௟௘ ൌ ൬
ߨ2

௧ܶ௔௕௟௘
൰
ଶ

௧௔௕௟௘ (6.2.6)ܫ

where, 

்ܫ  ൌ ௧௔௕௟௘ܫ ൅ ௖௔௟௜௕௥௔௧௘ (6.2.7)ܫ

Then, 

௧௔௕௟௘ܫ  ൌ
ቀ

்೟ೌ್೗೐
்೎ೌ೗೔್ೝೌ೟೐

ቁ
ଶ
௖௔௟௜௕௥௔௧௘ܫ

1 െ ቀ
்೟ೌ್೗೐

்೎ೌ೗೔್ೝೌ೟೐
ቁ
ଶ  (6.2.8)

Simplifies to, 

௧௔௕௟௘ܫ  ൌ
௧ܶ௔௕௟௘
ଶ ௖௔௟௜௕௥௔௧௘ܫ

௖ܶ௔௟௜௕௥௔௧௘
ଶ െ ௧ܶ௔௕௟௘

ଶ  (6.2.9)

Using Eq. (6.2.9) in Eq.(6.2.5), the table constant is expressed as, 

 ݇௧௔௕௟௘ ൌ ൬
ߨ2

௧ܶ௔௕௟௘
൰
ଶ

௧௔௕௟௘ܫ ൌ
௖௔௟௜௕௥௔௧௘ܫଶߨ4

௖ܶ௔௟௜௕௥௔௧௘
ଶ െ ௧ܶ௔௕௟௘

ଶ  (6.2.10)

and the inertia about the axis of rotation of the object of interest can be expressed in terms of known fixture 

inertias and measured oscillation periods as,  

௢௕௝௘௖௧ܫ  ൌ ݇௧௔௕௟௘
௧ܶ௢௧௔௟
ଶ

ଶߨ4
െ ௧௢௧௔௟;௦௘௧௨௣ܫ ൌ

௖௔௟௜௕௥௔௧௘ܫ ௧ܶ௢௧௔௟
ଶ

௖ܶ௔௟௜௕௥௔௧௘
ଶ െ ௧ܶ௔௕௟௘

ଶ െ ௧௢௧௔௟;௦௘௧௨௣ (6.2.11)ܫ

where,ܫ௧௢௧௔௟;௦௘௧௨௣is the combined inertias of all items except the object of interest, about the rotation axis. 

This includes: the table, fixtures, and frames used to orient the sphere along the proper axis alignment. 

These inertias are estimated from precise CAD models and known weights of each item. 

 Once the inertia has been measured about all six axes, the Products of Inertia (POI) can be determined. 

The inertia about the axes oriented some angle, θ, off the principle axis and lying in a plane formed by two 
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adjacent principle axes, is not the product of inertia for the object. The measured axis will be denoted 

by,	ܫ஺and is related to the POI through the equation [17], 

஺௫௬ܫ  ൌ ሻߴଶሺ݊݅ݏ௬௬ܫ ൅ ሻߴଶሺݏ݋௫௫ܿܫ െ ௫ܲ௬sinሺ2ߴሻ (6.2.12)

where ௫ܲ௬ is the Product of Inertia. Solving Eq. (6.2.12) for the product, given the inertia measurements, 

 ௫ܲ௬ ൌ
ሻߴଶሺ݊݅ݏ௬௬ܫ ൅ ሻߴଶሺݏ݋௫௫ܿܫ െ ஺௫௬ܫ

sinሺ2ߴሻ
 (6.2.13)

 For the case where, θ=45o, Eq. (6.2.13) simplifies to, for the three products, 

 ௫ܲ௬ ൌ
௫௫ܫ ൅ ௬௬ܫ

2
െ ஺௫௬ (6.2.14)ܫ

 ௫ܲ௭ ൌ
௫௫ܫ ൅ ௭௭ܫ

2
െ ஺௫௭ (6.2.15)ܫ

 ௬ܲ௭ ൌ
௬௬ܫ ൅ ௭௭ܫ

2
െ ஺௬௭ (6.2.16)ܫ

 
2. Falling Sphere Probe MOI Measurements 

The MOI measurements were made on the oscillation table. The table uses a special suspension system 

custom designed and built by the Space Dynamics Laboratory. The design eliminates friction and stiction 

while minimizing the energy loss in the system. The period of oscillation was measured with a camera 

recording at 60 fps, giving the period a resolution of 0.0167 seconds. The setup simply measured the time 

between two tick marks on the table. A minimum of sixteen samples were taken for each measurement 

along each rotation axis. The sample mean and standard deviation are then calculated and the results used 

in determining the moments and products of inertia from Eq. (6.2.11) and Eqs. (6.2.14)-(6.2.16) above 

respectively. 

Since the sphere has to be measured in six different orientations, and two different setups where used to 

achieve the proper orientation (see Figure 18), these setups have to be accounted for in the final 

measurement. Each setup, in its entirety minus the sphere, will have a different MOI. Because of this each 

setup has to be measured and the inertias calculated, using Eq. (6.2.11), so as to “tare” the system for that 

axis measurement. This was done for each orientation. 
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Figure 18: MOI Setup Orientations 

a) MOI Measurements along Principle Axes, b) MOI Measurements along 45o Axes 

 

 Once all the fixture setup periods have been measured, the MOIs can then be measured in their six 

different orientations. The different orientations can be placed from various rotations of the sphere within 

one of the two fixtures. Three of the orientations are shown in Figure 19 below. 

 

 

Figure 19: MOI Measurement Orientations 

a) MOI Measurements along 45o Axis, in X-Y plane 

b) MOI Measurements along Principle Axis, Y-axis 

c) MOI Measurements along 45o Axis, in X-Z plane 



34 
The final measured MOIs, and calculated POIs are given in Table 2 below for both spheres. For a perfect 

spinner about the Principle axis, the products of inertia are zero. For these spheres, the products are not 

zero, but are considerably smaller than the MOIs. 

 

Table 2: Final MOI & POI of Falling Sphere Probes (y-axis == spin axis) 

Sphere: 41.090 Sphere: 41.091 

Inertia Tensor [kg-m2] Inertia Tensor [kg-m2] 

0.093798 0.001191 -0.000784 

 

0.096334 0.004425 0.001161 

0.001191 0.104970 0.001972 0.004425 0.105688 0.002567 

-0.000784 0.001972 0.096103 0.001161 0.002567 0.093110 
 

 
3. Falling Sphere Probe Angle of Precession 

Since the products of inertia are not zero, the sphere will nutate as it spins. This change in orientation of 

the spin axis can be defined by the products of inertia and is called precession. The nutation angle,ߠ௡, is 

calculated using the inertia tensor. Under the assumption of torque-free motion (neglecting secondary drag 

forces) the net moment about the center of gravity is zero. The angular momentum vector, HG, is a vector 

fixed in inertial space. Let HG define the Z axis of the inertial frame as shown in Figure 20 below. The 

angle between the y-axis and HG is the nutation angle (Euler angle definition) [10]. Assuming the nutation 

angle remains constant, by definition, 

௡ሻߠሺݏ݋ܿ  ൌ
ீܪ
‖ீܪ‖

∙ ଔ̂ (6.2.17)

where the angular momentum is defined as, 

ீܪ  ൌ ௦ (6.2.18)߱ࡵ

ீܪ  ൌ ൥
0.0963 0.0044 0.0012
0.0044 0.1057 0.0026
0.0012 0.0026 0.0931

൩ ൥
0
ݖܪ4
0
൩ ൌ ൥

0.111
2.656
0.065

൩ (6.2.19)

 ଓ̂ுಸ ൌ
ீܪ
‖ீܪ‖

 (6.2.20)

solving Eq. (6.2.17)for the nutation angle, ߠ௡, 
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௡ߠ  ൌ cosିଵ൫ଓ̂ுಸ ∙ ଔ̂൯ ൎ 2.77° (6.2.21)

The precession rate is expressed as, 

 ߱௉ ൌ
ݎ݃݉
௦߱ܫ

ൎ (6.2.22) ݖܪ0.90

where m is the mass of the sphere, g is the gravity constant, r is the distance from the pivot point to the 

center of gravity (which is also the radius of the sphere), I is the inertia tensor of the sphere, and ωs is the 

spin rate of the sphere.  

With a spin rate of 4 Hz and an approximate nutation angle of about 3 degrees, the diameter of the 

nutation cone is approximately 5/8th of an inch.  For that much “wobble” in the sphere, the outer edges of 

the deck plate will move approximately 0.210 inches. The acceleration due to this motion must be 

accounted for, as discussed in §DYNAMICS.G: Accelerometer Response, as well as results shown in 

§FLIGHT DATA & TEST RESULTS.C: Flight Nutation & Precession. The precession frequency is close 

to one Hertz. 

 

 

Figure 20: Falling Sphere Probe in Torque-free Motion 
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VIBE CALIBRATION 

 

A vibe shake test was used to characterize the science accelerometers. From this data the calibration 

curve for these accelerometers is determined. This calibration curve gives the correction factors to the 

manufacturer supplied sensor specifications, or the general calibration performed by the manufacturer.  

The test consisted of gently shaking the system in each of the three principles axes of the Sphere 

Centered Fixed (SCF) coordinate system. A sufficiently thick fixture, so as to not affect any of the sphere’s 

mode shapes or frequencies, was used to attach the sphere to the vibrating table. The setup for the vibration 

testing is shown in Figure 21. The shaker table has an accelerometer on it acting as the control response to 

the system; the load seen on the table is not constant as seen in Figure 22. The result for sphere 41.091 for 

the 400 mg shake is shown in Figure 23. The data recorded by the Falling Sphere has roll-off due to the 

filtering of the electronics board. The frequency range of most interest, and expected to see on flight, is the 

range from 0.2 Hz to 20 Hz. This frequency range is affect least of all by the filtering. This roll-off is 

evident in the calibration curve of Figure 23, the curve is not linear for all the data. It is however, fairly 

linear in the range of interest. 

 

 

Figure 21: Vibration Setup for Accelerometer Calibration 
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Figure 22: Vibration Input for Accelerometer Calibration 

 

 

Figure 23: Calibration curve for Accelerometer (sphere 41.091, Channel 1) 
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GYRO CALIBRATION 

 

A gyro spin test was conducted to calibrate the gyro sensors in the μIMU device. From this test a 

calibration curve is determined. Similarly, this calibration curve gives the correction factors to the 

manufacturer supplied sensor specifications.  

The test consisted of spinning the sphere about each of its axes on a precision spin table at the Wallops 

Flight Facility for seven different rotation rates for both clockwise and counter-clockwise rotations, giving 

fifteen steps total including no spin rate (0 deg/s). Each rotation rate was held for a minimum of ten 

seconds, giving over 1,000 samples per step in rotation rate. Note that the sphere’s coordinate system in 

NOT the same as the coordinate system of the μIMU device. This coordinate system difference is shown in 

Figure 24. The results from the test are first rotated to the Sphere Centered Fixed (SCF) coordinate system 

and then processed to determine the calibration. 

 

 

Figure 24: Coordinate System rotation for μIMU 
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The calibration results for sphere 41.091 are shown below in Figure 25. As can be seen in the data from 

the test, the y-axis gyro (along the sphere spin axis) has a higher range than the gyros in the x and z axes. 

The saturation limit on the spin axis gyro is about 2000 deg/s, whereas the other two gyros saturation limits 

are about 200 deg/s. This is evident in the calibration curve, where the data turns from a linear relationship 

to a non-linear one. 

 

 

Figure 25: Calibration Curve for Gyro Calibration (sphere 41.091) 
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PREDICTED EJECTION CONDITION & TIMELINE 

 

The launch vehicle analysis and Flight performance was completed by NSROC II at Wallops Flight 

Facility (WFF). The Falling Sphere Probe was a secondary payload onboard a Terrier Mk70-Improved 

Orion, launched out of WFF, Virginia. At the time of ejection, the predicted position and velocity are 

shown in Table 3. 

 

Table 3: WFF Predicted Conditions at Time of Ejection 

Event 
Time      

[s] 
Altitude 

[km] 
Range 
[km] 

Velocity 
[m/s] 

Mach No. 
Q       

[psf] 

Flight 
Elevation 

[deg] 

Sphere 
Ejection 

70.0 82.2 26.7 1314.2 4.8 0.3 68.2 
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FLIGHT DATA & TEST RESULTS 

 

The data collected from the sensors during flight was done in semi-real time. All data was downloaded 

and saved during the flight, the sphere was not recovered. It shall spend the rest of its days at the bottom of 

the Atlantic Ocean off the coast of Virginia. The launch took place on July 10, 2011 at 14.00.15 Universal 

Time (UTC) at Wallops Flight Facility. The Falling Sphere Probe was a secondary payload with another 

neutral wind measuring campaign, a lithium chemical release method. The primary payload, the science 

payload, was onboard another rocket. Both rockets (science payload and neutral wind measuring payload) 

were to be launched within 90 seconds of each other. Two flights of these sets or pairs of rockets were 

scheduled. The first in an active condition, the second to be launched into a quiet environment, 

approximately a 2 day turn around. However, there was a malfunction with the chemical release testing and 

that method failed completely and as a result, the second launch set was scrubbed. With that, the Falling 

Sphere Probe #41.091 was the only instrument system to gather wind data from the first launch set. 

A Javad TR-G2 GPS was onboard the sphere for position tracking. The communication link consisted 

of Wallops’ Mosquito PCM stack, a transmitter, and standard wrap around antenna (as shown in Figure 3 

and Figure 5). There was a loss of signal (LOS) from the GPS approximately between the times t = 10 

seconds to t = 30 seconds. This is likely due to the intensity of the launch and the high g-loads experienced. 

The Terrier Mk70 burnout was at t = 6.2 seconds, and the Improved Orion (2nd stage) ignition was at t = 

15.0 seconds. The telemetry signal was not lost during launch and had a signal lock for the entire flight. 

Throughout the burn of both stages the Positional Dilution of Precision (PDOP) of the GPS was 

anywhere from good to fair. The rating values being:1-2 as Excellent, 2-5 as Good, 5-10 as Moderate, and 

10-20 as Fair. After the nose cone ejection, the PDOP was Good to Excellent for the rest of the flight. The 

average PDOP value was approximately 2.1 for the entire free flight of the sphere. The PDOP for the GPS 

signal is shown in Figure 26;the LOS is also evident in the figure. 
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Figure 26: GPS Positional Dilution of Precision 

 

A. Simulation vs. Real Data 

The first look at the data was to compare what was actually collected to what was expected based on the 

math model. The dynamic response was close to the predicted, calculated flight trajectory. There are many 

real world affects that are hard to account for and predict precisely. Since no wind tunnel testing was 

performed, many flow parameters were estimated, such as drag coefficients. The atmosphere model used in 

the simulation to predict the atmospheric temperature and air density is the 2001 United States Naval 

Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere. This model calculates 

the neutral atmosphere empirical model from the surface to lower exosphere (0 m to 1,000,000 m). 
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The GPS collected data is compared to the model prediction, and the altitude and velocity of the sphere 

is seen in Figure 27 and Figure 28below. 

 

Figure 27: Simulation vs. GPS results, Altitude [km] 
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Figure 28: Simulation vs. GPS results, Velocity [km/s] 

 

The high velocity of the sphere is more evident when looking at the Mach number. As seen in Figure 

29, the sphere is traveling at a Mach number close to 4.5 when ejected. For the duration of the flight, the 

sphere is traveling primarily at supersonic speeds, with transonic flight occurring at apogee. The sphere did 

not have the capability of measuring the outside temperature during flight; therefore, the speed of sound 

through the medium (air) was calculated from the model and used in the calculation of the Mach number 

for the GPS comparison. 
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Figure 29: Simulation vs. GPS results, Mach No. [*] 

 

B. Science Accelerometers 

The FSP science accelerometer requirements were that the sphere needed the capability of measuring in 

the acceleration range of 200 ng to 20 μg, with a 10 ng resolution. (The requirements come from a study 

performed by Clemson University). With the given requirements, the design requirements were set to 

measuring the acceleration range of 100 ng to 100 μg. The raw accelerometer range is ± 1 μg to ± 0.25 g, 

with a 0.1 μg resolution (see Appendix A, for accelerometer spec sheet). The absolute resolution of the 

system was defined by the analog to digital converter (ADC). With a range of 0.5 g on the accelerometer, 

and sampling 227 bits, the converter’s resolution is 3.725 ng/bit, which is approximately 0.1 μg. This 

resolution was verified with testing. The sampling rate of the accelerometers was approximately 4 kHz, 

with a 20 Hz filter. The filter was to eliminate noise on the signal outside the frequency range of interest. 

The initial design was for a spin rate of the sphere at 2 Hz. With that, the filter was set a decade above and 
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a decade below the target spin rate. The filter range was set as 0.2 Hz to 20 Hz. The over sampling allows 

post-processing to reach ± 100 ng with a 0.1 μg resolution. 

The MEMSense μIMU device was used primarily for determining the sphere’s precession rate with 

cone angle, and the spin rate about each axis. The science accelerometers were intended to track the neutral 

wind measurements. The measuring technique was to use six ultra-precision accelerometers in a 

configuration discussed and shown in §OVERALL DESIGN.A: Sensors. Each accelerometer is paired with 

another one pointing in the opposite direction and is AC coupled. Because they are AC coupled, during 

accelerometer saturation the signal output is zero (hard saturation, see Figure 31). 

The science accelerometer signal was saturated in flight and the data from these instruments, as a result, 

is not as good as was expected. Any neutral wind measurements taken were lost during saturation of these 

accelerometer measurements. The cause of saturation is believed to be due to excessive coning caused by 

not having a clean ejection of the FSP from the rocket. In addition to coning, the spin rate was much higher 

than anticipated and may also be a source of saturation on the science accelerometer signal. The spin rate 

was, on average, about 6.6 Hz, whereas the design spin rate was ≤ 4 Hz. The measured spin rates of the 

sphere are shown in Figure 30. The ADC board has a lower saturation limit than the science 

accelerometers, about 0.23 g’s, and when the signal is not saturated, any neutral wind measurements is 

masked by the excessive coning. Any neutral wind measurement data collected is deemed questionable. 
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Figure 30: Measured Spin Rate [Hz] of Sphere (μIMU) 

 

There were two kinds of saturations that occurred in flight. One is a hard saturation where the ADC and 

the science accelerometers go into saturation. The time constant for coming out of saturation was not 

characterized before the flight, but from the data it appears to be approximately 22 seconds. The second 

kind is a soft saturation, where the ADC is in saturation but not necessarily the accelerometers. Both the 

hard and soft saturation is seen in Figure 31 below. Further study is needed to verify the cause of saturation 

and how to best analyze and interpret the data.  
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Figure 31: Science Accelerometer signal: Hard Saturation & Soft Saturation 

(IMU Y axis ≡ Spin Axis) 
 

C. Flight Nutation & Precession 

A look into the gyro flight data will give some insight into the “wobble” of the sphere in flight. The 

nutation angle is calculated as described above in §BALANCING.B.3: Falling Sphere Probe Angle of 

Precession. The nutation angle varies from 0.46 degrees to 7.10 degrees. This is shown in Figure 32. The 

precession rate is also shown with a minimum rate at 0.54 Hz to a maximum of 0.76 Hz, see Figure 33. 

Since the sphere is not perfectly balanced the centripetal accelerations caused from the wobble in the 

sphere and the spin on the sphere are calculated using the equation, a=-ω2r .For worst case scenarios, the 
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range is 0.5 g peak – see Appendix 0). The total combined acceleration seen is 3.40 g’s (this takes into 

account the angular offset or mounting angle of approx. 45 degrees of the accelerometer). 

 

Figure 32: Flight Nutation Angle, Sphere 40.091 
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Figure 33: Flight Precession Rate, Sphere 40.091 
 

Assuming that the balance of the sphere was to remain the same, in order to not go into saturation, the 

spin rate of the sphere would have to be 1.54Hz or less. (For calculating the centripetal acceleration due to 

the wobble, rhorz was used for r. In calculating the centripetal acceleration due to the sphere’s spin rate, hvert 

was used for r. Refer to section § DYNAMICS.G: Accelerometer Response, for definition of distances). 

D. Further Processing of Flight Data 

An Extended Kalman filter is used to process the data measurements to estimate the attitude of a 

spacecraft during flight or post flight. The quaternion is used to represent the attitude because it has no 

singularities and the kinematics equation is bilinear. The filter will process magnetometer data and Inertial 

Measurement Unit (IMU) data using a discrete time method. Both the magnetometer and the IMU have the 

same sample rate of 50 Hz, so there is a measurement from each at every time step. For the full filter 

derivation of equations and process see ref [8]. A summary of the filter steps and equation can be found in 

Table 4. 
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Table 4: Discrete Extended Kalman Filter for Attitude Estimation 

Initialize ݍොሺݐ଴ሻ ൌ ,ො଴ݍ ଴ሻݐሺߚ ൌ ,଴ߚ ଴ሻݐሺࡼ ൌ  ଴ࡼ

Gain 

ܭ ൌ ௞ܲ
௞ܪି

்
௥ܲ௘௦௜ௗ௨௔௟

ିଵ, ௥ܲ௘௦௜ௗ௨௔௟ ൌ ሾܪ௞ ௞ܲ
௞ܪି

் ൅ ܴሿ 

ො௞ݔ௞ሺܪ
ିሻ ൌ ൥

ሾܣሺݍොିሻݎଵ ൈሿ 0ଷ௫ଷ
⋮ ⋮

ሾܣሺݍොିሻݎ௡ ൈሿ 0ଷ௫ଷ
൩ 

Update 

௞ܲ
ା ൌ ሾܫ଺௫଺ െ ௞ሿܪ௞ܭ ௞ܲ

ିሾܫ଺௫଺ െ ௞ሿ்ܪ௞ܭ ൅ ௞ܭ௞ܴܭ
்  (Joseph Form) 

෤෠௞ݔ∆
ା ൌ ෤௞ݕሾܭ െ ݄௞ሿ,				residual, ߳ ൌ ሾݕ෤௞ െ ݄௞ሿ 

෤෠௞ݔ∆
ା ൌ ො௞ߙߜൣ

ା்		∆ߚመ௞
ା்൧

்
 

݄௞ ൌ ൥
ଵݎොିሻݍሺܣ

⋮
௡ݎොିሻݍሺܣ

൩ 

ො௞ݍ
ା ൌ ො௞ݍ

ି ൅
1
2
Ξሺݍො௞

ିሻߙߜො௞
ା 

ොݍ ൌ ොݍ
ඥݍො்ݍො
൘   (Normalize the Quaternion) 

Ξሺݍሻ ≡ ൤
ଷ௫ଷܫସݍ ൅ ሾ߷ ൈሿ

െ߷்
൨ ,				߷ ൌ ሾݍଵݍଶݍଷሿ் 

መ௞ߚ
ା ൌ መ௞ߚ

ି ൅ መ௞ߚ∆
ା 

Propagation 

ෝ߱௞
ା ൌ ෥߱௞ െ መ௞ߚ

ା 

መ௞ାଵߚ
ି ൌ መ௞ߚ

ା 

ො௞ାଵݍ
ି ൌ Ωഥሺ ෝ߱௞

ାሻݍො௞
ା 

Ωഥሺ ෝ߱௞
ାሻ ≡ ൦

cos ൬
1
2
‖ ෝ߱௞

ା‖Δt൰ ଷ୶ଷܫ െ ൣ ෠߰௞
ା ൈ൧ ෠߰

௞
ା

െ ෠߰
௞
ା் cos ൬

1
2
‖ ෝ߱௞

ା‖Δt൰
൪ 

෠߰
௞
ା ≡

sin ቀ
ଵ

ଶ
‖ ෝ߱௞

ା‖Δtቁ ෝ߱௞
ା

‖ ෝ߱௞
ା‖

 

௞ܲାଵ
ି ൌ Φ௞ ௞ܲ

ାΦ௞
் ൅ ௞ܩ௞ܳ௞ܩ

், ௞ܩ ൌ ൤
െܫଷ௫ଷ 0ଷ௫ଷ
0ଷ௫ଷ ଷ௫ଷܫ

൨ 
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ܳ௞ ൌ ൦
൬ߪజଶΔݐ ൅

1
3
ଷ൰ݐ௨ଶΔߪ ଷ௫ଷܫ െ ൬

1
2
ଶ൰ݐ௨ଶΔߪ ଷ௫ଷܫ

െ ൬
1
2
ଶ൰ݐ௨ଶΔߪ ଷ௫ଷܫ ሺߪ௨ଶΔݐሻܫଷ௫ଷ

൪ 

Φ ൌ ൤
Φଵଵ Φଵଶ
Φଶଵ Φଶଶ

൨ 

Φଵଵ ൌ ଷ௫ଷܫ െ ሾ ෝ߱ ൈሿ
sin ቀ

ଵ

ଶ
‖ ෝ߱‖Δtቁ

‖ ෝ߱‖
൅ ሾ ෝ߱ ൈሿଶ

ሼ1 െ cosሺ‖ ෝ߱‖Δtሻሽ
‖ ෝ߱‖ଶ

 

Φଵଶ ൌ ሾ ෝ߱ ൈሿ
ሼ1 െ cosሺ‖ ෝ߱‖Δtሻሽ

‖ ෝ߱‖ଶ
െ ݐଷ௫ଷΔܫ

െ ሾ ෝ߱ ൈሿଶ
ሼ‖ ෝ߱‖Δݐ െ sinሺ‖ ෝ߱‖Δtሻሽ

‖ ෝ߱‖ଷ
 

Φଶଵ ൌ ૙ଷ௫ଷ 

Φଶଶ ൌ  ଷ௫ଷܫ

 

whereሾݔറ ൈሿ is the cross product matrix, defined in Eq. (4.1.6) 

The filter is first initialized to a known state variable and error-covariance matrix. The filter state is the 

attitude angle error and the gyro bias. The attitude equations are linearized and the quaternion scalar part is 

approximately one, that is,q4 ≈ 1. Therefore, the state vector is reduced by one state and goes from a 7x1 to 

a 6x1. The error-covariance matrix is comprised of the variances on the attitude in the 1st three diagonal 

terms, and the gyro error variance in the last three diagonal terms. 

The initial quaternion is found from the known orientation of the launch vehicle on the launch pad. 

From the known initial position, a rotation matrix from Inertial to Body (sphere) coordinates can be 

determined. The rotation sequence will go from Earth Centered Inertial (ECI) to North East Down (NED) 

and then from NED to Body coordinates. Given the Azimuth, elevation, and rail orientation of the launch 

vehicle’s initial position, the orthogonal rotation matrix from ECI to Body is expressed as, 

ா஼ூࡾ 
஻ ൌ ோ஽ࡾ

஻ ா஼ூࡾ
ோ஽ ൌ ቎

ଓ̂௫்

ଓ̂௬்

ଓ̂௭்
቏ ቎
ଓ̂ே
்

ଓ̂ா
்

ଓ̂஽
்
቏ (10.4.1)

Which are essentially two rotations from a NED frame to a reference frame. From Body to NED, the unit 

vectors are 
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 ଓ̂௫ ൌ
ܷܲ ൈ ܴ஻௬
ฮܷܲ ൈ ܴ஻௬ฮ

 (10.4.2)

 ଓ̂௬ ൌ
െܴ஻௬
ฮܴ஻௬ฮ

 (10.4.3)

 ଓ̂௭ ൌ ଓ̂௫் ൈ ଓ̂௬் (10.4.4)

where  ܷܲis a unit vector in the “up” direction, or in the negative NED “down” vector. The vector ܴ஻௬is a 

vector in the direction of the spin axis of the sphere. This is simply the spherical coordinates to the origin of 

the Body coordinate axes represented in Cartesian coordinates. The elements of the spherical coordinates 

are the given Azimuth, elevation and range. This is clearly seen in Figure 34. The orientation of the sphere 

in the rocket with respect to the rail is the positive z-axis points towards the launch rail. 

The familiar unit vectors in NED are, 

 ଓ̂ே ൌ ଓ̂ா
் ൈ ଓ̂஽

்  (10.4.5)

 ଓ̂ா ൌ
߱ா ൈ ܴ௦௖
‖߱ா ൈ ܴ௦௖‖

 (10.4.6)

 ଓ̂஽ ൌ
െܴ௦௖
‖ܴ௦௖‖

 (10.4.7)

whereܴ is the position vector from the center of the earth to the cg of the spacecraft, and ߱ா is the rotation 

rate vector of the earth in rad/s. 

With a given DCM from ECI to Body, the initial quaternion can be calculated as [14], 

ସݍ  ൌ േ0.5ඥ1 ൅ ଵଵܣ ൅ ଶଶܣ ൅ ଷଷ (10.4.8)ܣ

ଵݍ  ൌ 0.25ሺܣଶଷ െ ସ (10.4.9)ݍ/ଷଶሻܣ

ଶݍ  ൌ 0.25ሺܣଷଵ െ ସ (10.4.10)ݍ/ଵଷሻܣ

ଷݍ  ൌ 0.25ሺܣଵଶ െ ସ (10.4.11)ݍ/ଶଵሻܣ

 

where A is the DCM calculated in Eq. (10.4.1), and q4 is the scalar part of the quaternion and q1, q2, and  q3 

is its vector part.  
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The initial bias input to the filter comes from the gyro calibration data. The bias is taken as the average 

on the 0 deg/s input on each of the 3 axes. From the gyro calibration data, the initial bias is (in SCF 

coordinates), 

଴ߚ  ൌ ሾ0.330,െ0.210,െ0.148ሿ் ሺ݀݁݃ ⁄ݏ ሻ (10.4.12)

From this data, the standard deviation is calculated across the sample and the variance is determined as 

the square of the standard deviation. The covariance on the gyro is (in SCF coordinates), 

௚௬௥௢ࡼ  ൌ ൦

௚,௫ଶߪ 0 0

0 ௚,௬ଶߪ 0

0 0 ௚,௭ଶߪ
൪ ൌ ൥

0.377ଶ 0 0
0 0.637ଶ 0
0 0 0.334ଶ

൩ ሺ݀݁݃ ⁄ݏ ሻଶ (10.4.13)

The initial error-covariance matrix is the combination of the attitude covariance matrix and the gyro 

covariance matrix. The attitude covariance matrix is taken from the launch conditions. It is assumed that 

the initial position of the launch vehicle is known to within ±15 degrees. Then the attitude covariance and 

 

Figure 34: Azimuth, Elevation & Range to NED 

 
 

initial error-covariance matrix are, 
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௔௧௧௜௧௨ௗ௘ࡼ  ൌ ቎

௔,௫ଶߪ 0 0
0 ௔,௬ଶߪ 0
0 0 ௔,௭ଶߪ

቏ ൌ ൥
15ଶ 0 0
0 15ଶ 0
0 0 15ଶ

൩ ሺ݀݁݃ሻଶ (10.4.14)

଴ࡼ  ൌ ൤
௔௧௧௜௧௨ௗ௘ࡼ ሺଷ௫ଷሻ ૙ሺଷ௫ଷሻ

૙ሺଷ௫ଷሻ ௚௬௥௢ࡼ ሺଷ௫ଷሻ
൨ (10.4.15)

To improve the performance of the filter a batch method, also known as a smoother, is used to 

“smooth” out the effects of measurement noise. The disadvantage to using a smoother is they cannot be 

used in real-time, which in this case is not a problem since all the data processing is done post flight. The 

advantage, however, is in providing the state estimates with a lower error-covariance than sequential 

methods. The batch method used in this model is a Fixed-Interval Smoothing type. This type uses the entire 

batch of measurements within an interval to estimate the states within in the interval. Smoothers use 

measurements made before and after a certain time t. The smoother uses two filters: a forward-time filter 

and a backward-time filter. This is seen in the illustration below in Figure 35for a fixed interval. The most 

common fixed-interval smoother, the Rauch, Tung, and Striebel (RTS) smoother will be used. This 

smoother combines the backward filter and smoother into one single backward recursion[8].  

 

 

Figure 35: Forward and Backward Filtering & Smoothing 

 
 

The full derivation of the RTS Smoother is given in [8], a summary of the smoother is given in Table 5. 

The Forward Kalman Filter is executed using the equations and steps outlined in Table 4 above. The 

propagated and updated states and covariance from the forward filter are used to compute the gain and 
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covariance of the smoother. The smoother estimate equation is executed backward in time. (Subscript f 

indicates a forward-time filter, and subscript b indicates a backward-time filter). 

 

Table 5: Discrete-Time RTS Smoother 

Model 
௞ାଵݔ ൌ Φ௞ݔ௞ ൅ Γ௞ݑ௞ ൅ ,௞ݓ௞ܩ ,௞~ܰሺ0ݓ ܳ௞ሻ 

ො௞ݕ ൌ H௞ݔ௞ ൅ ,௞ݒ ,௞~ܰሺ0ݒ ܴ௞ሻ 

Forward Filter Execute Forward Filter, See Table 4 

Smoother Initialize ݔො௕ ே ൌ ොݔ ௙ ே
ା , ௕ܲ ே ൌ ܲ௙ ே

ା  

Gain 
Κ௕ ௞ ൌ ௙ܲ ௞

ା Φ௞
்൫ ௙ܲ ௞ାଵ

ି ൯
ିଵ

 

Covariance 
௕ܲ ௞ ൌ ௙ܲ ௞

ା െ Κ௕ ௞ൣ ௙ܲ ௞ାଵ
ି െ ௕ܲ ௞ାଵ൧Κ௕ ௞

்  

Estimate ݔො௕ ௞ ൌ ො௙ݔ ௞
ା ൅ Κ௕ ௞ൣݔො௕ ௞ାଵ െ ො௙ݔ ௞ାଵ

ି ൧ 

 
 
To verify if the Extended Kalman Filter is running correctly, simulated data can be created from the 

dynamic prediction model (using the governing equations of motion, Eq. (4.1.3) and Eq. (4.1.4)). The 

magnetic field and all inputs need to be known. All inputs or specs to the would-be-sensors can come 

directly from either the MEMSense spec sheet or the calibration data, i.e. noise levels, sample frequency, 

etc…  

The results from a simulation were interesting. As seen in Figure 36, the Extended Kalman filter is not 

keeping up with the dynamics of the simulation. The error shown is much too high. The sampling rate is 

too small (50 Hz) for the spin of the spacecraft, which is spinning at approximately 6.6 Hz. At that spin 

rate, the sphere is rotating at 2376 deg/s (degrees per second)! Yet with a sampling rate of 50 Hz (∆t = 0.02 

s), it is only capturing data at every 47.52 degrees. That kind of resolution does not provide any useful 

attitude information. Generally, in order to capture the dynamics adequately it is desired to sample every 

0.1 degrees or less, with a maximum at 1.0 degrees. Even at capturing at a desired maximum resolution (1.0 

degrees), the sampling frequency of the µIMU (magnetometer & gyros) would need to be 2376 Hz, or 
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approx. 2.4 kHz. For a resolution to 0.1 degrees, the µIMU sampling frequency would need to be approx. 

24 kHz! A more realistic sampling rate of 4.8 kHz would give a 0.5 degree resolution. Even at that, the 

µIMU sampling rate is nowhere near the required rate. For comparison, at 4.8 kHz sampling rate the 

attitude can be estimated much more accurately as shown in Figure 37. 

 With only a magnetometer sensor on board and average gyros, the attitude is not determined at this 

sampling rate with this filter design. This is a time varying system and a magnetometer is NOT observable 

at an instant in time. However, for a finite length of time and with a changing magnetic field, the system 

can be observable.  

(The following data will be shown for illustrative purposes for the case of a sampling rate of 4.8 kHz, it 

is also representative of the data ran at 50 Hz. It is only run for 20 seconds of data). A quick look at the 

angular momentum will indicate if the simulation is working as it should. For a properly working 

simulation and filter estimation, the angular momentum should remain constant. With real data (or 

simulated “real” data) this should be fairly constant and is evident in Figure 38. As another check, the 

residuals should look like a zero mean Gaussian random white noise signal; this is seen in Figure 39. 

 

 

Figure 36: EKF Estimated Quaternion @ 50 Hz sampling rate 
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.  

Figure 37: EKF Estimated Quaternion @ 4800 Hz sampling rate 

 
 

 

Figure 38: EKF Angular Momentum of Simulated Data 
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Figure 39: EKF Residuals of Simulated Data 

 
 

The estimated rotation angles of the sphere to ECI coordinates are shown in Figure 40. It is clear that 

the yaw angle is the rotation angle (rotation ± 180o). The error of the rotation angles are shown in Figure 

41. It is apparent that the filter had trouble tracking the yaw angle, ψ, which is about the spin axis. The yaw 

angle rotates through a ± 180 degrees. As it approaches a roll-over, going from +180 deg to -180 deg, any 

deviation between the actual angle of rotation and the estimated angle will result in an extreme error. This 

is seen by the large data spikes in the yaw angle error (Figure 41). 

The Bias estimation and angular velocity estimation are shown in Figure 42 and Figure 43respectively. 

It is evident that the filter is converging to a solution within a relatively short time frame (less than 1 

minute). 
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Figure 40: EKF Euler Rotation Angles: Roll, Pitch, Yaw of Simulated Data 

 

 

Figure 41: EKF Roll, Pitch, & Yaw Estimation Errors on Simulated Data 
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Figure 42: EKF Bias Estimation of Simulated Data 

 
 

 

Figure 43: EKF Estimated Angular Velocity of Simulated Data 

0 5 10 15 20
-2

0

2

4

Gyro Bias Estimation
w

0
 = [0; 6.6;, 0] Hz

sampling rate of 4800 Hz

X
 B

ia
s,

 
x (

de
g/

s)

 

 

0 5 10 15 20
-5

0

5
Y

 B
ia

s,
 

y (
de

g/
s)

 

 

0 5 10 15 20
-2

0

2

Time (s)

Z
 B

ia
s,

 
z (

de
g/

s)

 

 

Actual Bias
Estimated Bias

+/- 3

0 5 10 15 20
-500

0

500

1000

1500

2000

2500

ESTIMATED Angular Velocity, 
w

0
 = [0; 6.6;, 0] Hz

sampling rate of 4800 Hz

A
ng

ul
ar

 V
el

oc
ity

, 


 (
de

g/
s)

Time (s)

 

 

Estimated x

Estimated y

Estimated z

Actual x

Actual y

Actual z



62 

ORGANIZATION 
 

The project was funded by the National Science Foundation (NSF) and there were many individuals and 

organizations involved. The management structure is illustrated in Figure 44. 

 

Figure 44: High Level Organizational Chart 

 

For some of the specific responsibilities of SDL see Figure 45. 

Mission PI

Rob Pfaff

NASA Goddard

Mission Co‐I

Miguel 
LarsenClemson 

University

Science Objective

Wallops Flight 
Facility

Integration & 
Launch

Falling Sphere PI

Chad Fish

SDL/USU

FS Instrument 
Development

Wayne Sanderson

Lead Engineer



63 

 

Figure 45: SDL Work Breakdown 
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For the individual roles and responsibilities of the author see Table 6. 

Table 6: Individual Roles & Responsibilities of Author 

Category Sub-category Role & Responsibilities 

Dynamic Simulation 

Flight Trajectory 

Finalized flight dynamics, including adding the 
effects of Mach flight, adding various types of 
drag on the sphere (pressure, skin friction, 
shockwave and drag due to excrescencies), and 
adding an atmospheric model for altitudes up to 
1,000 km. 

Verified rigid body dynamic equations of motion. 

Accelerometer Response 

Added various sources of errors to the 
accelerometer signals to simulate real life 
instruments (scale factor, bias, noise, sensitivity, 
etc…). 

Sphere Balance 

Center of Mass 

*Involved in the concept and design of the weight 
system to balance the sphere. 

Refined technique and process of the multiple 
point weighing method used in SDL’s NOVA lab. 

Performed Balancing technique described in 
section § BALANCING.A: Center of Mass (CM) 

Moments of Inertia 

*Designed component (blue nylon ring) key in 
stabilizing the sphere as a major axis spinner, or 
oblate spinner. 
*Key individual in concept of performing the 
MOI measuring technique discussed in section § 
BALANCING.B: Moments of Inertia (MOI) 
*Performed the MOI measurement technique. 

Calculated nutation angle and precession rate 
from the inertia tensor. 

Component Layout 
Design 

None 

Designed the layout of each component that goes 
into the sphere. There are physical constraints to 
each component as well as an effect on the MOI 
of the sphere. 

Attitude Estimation None 
Developed the Kalman filter and smoother that 
estimates the orientation of the sphere throughout 
flight (based on ref [8]).  

Accelerometer 
Calibration 

None 

Developed and wrote procedure for a vibe shake 
for the science accelerometer calibration. 
*Designed sphere to vibe table interface fixture. 

*Assisted in task by Phillip Anderson, Grad Student Utah State University 
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CONCLUSIONS 

 

The desire of accurately modeling and understanding the atmospheric winds at a lower cost than current 

methods created the need for this particular project. The intent is to find a cheaper more robust way of 

measuring the winds in the Ionosphere than the chemical release method. This project, although not a 

complete success, shows that this objective can be accomplished. The sensors and equipment used are 

mostly commercial, off the shelf products. Even though the electronics were saturated due to undesired 

conditions, the rigid sphere can be a robust system, not needing the clear sky conditions or near dusk timing 

that is required by the chemical method. With a little better understanding of the electronics involved to 

improve the sphere, this method can be a superb one. For the current design, the flight spin rate must be 

1.54 Hz or less to maintain a non-saturated state with the science accelerometers. 

A. Lessons Learned 

There were many lessons learned and many more yet to be learned. There are many lessons that are 

naturally learned in a project like this. They are the things like how to manage a schedule, keeping on track 

with that schedule. Other things include how to better setup and conduct tests, and record processes and 

procedures, as well as communication between involved parties. However, there are a few lessons learned 

that are unique to this project. 

a) The flight was intended to be in a certain environment, with expected conditions (i.e. spin rate). 

However, those conditions did not exist and the environment was a rather radical one that far exceeded 

the initial expectations. The capability of the sphere must be adjusted to compensate for more extreme 

conditions and/or environment. From this, however, came the better understanding of how the FS 

sensors responded to this extreme environment and some characterization was made, i.e. time constants, 

giving response time. 

b) The deployment mechanism needed to be better understood. The Wallops Flight Facility was over 

the design, fabrication and integration of the deployment system of the sphere ejecting from the rocket. 

There were no set requirements on the deployment mechanisms other than ejection velocity. In order to 

facilitate a successful launch, hard test numbers should have been required. 
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c) A setup to analyze the post flight data needed to be in place before the actual flight. There were 3 

out of 4 flight data samples lost during flight from the recording. The cause and the solution still remain 

unknown. Had all the tools and/or programs needed for looking at the recorded data been in place 

throughout all the calibration and characterization tests, this problem may have been detected before 

flight. 

d) Since several people and organizations were a part of this project, it is essential to leave a paper 

trail of work performed. It became extremely difficult to pick up on a task where someone had left off 

where there was little to no understanding as to what the previous individual did or the direction in 

which he or she was heading in with the work.  

e) Lastly, the importance the center of mass and MOI have on the balance of the sphere. The ability to 

change the center of mass (which also affects the moments of inertia) without opening the sphere or 

exposing the final assembly of electrical components was essential. This capability was designed, 

refined, and tested at SDL. Through the balancing of the sphere and with the blue nylon ring at the 

equator of the hemispheres, the sphere was spin stabilized and was changed from a minor axis spinner 

to a major axis spinner. 

B. Future Work 

Complete analysis of the data is beyond the scope of this project and text. Further work and analysis is 

required to better understand the results of the flight data. Key to estimating the attitude would be to adjust 

the Kalman filter to accommodate the small sampling rate. With a fast enough CPU, the propagation step 

size could be set to a small enough step size to capture the dynamics between measurements to propagate 

the state and state covariance. Also, the attitude estimation could be further improved by having 12 states in 

the Kalman filter to include the 6-DOF in addition to the attitude error and gyro bias. The filter could also 

be improved by including measurement data from the gyros, accelerometers, magnetometer and GPS. The 

integration of the GPS data and the Inertial measurement data into the filter for attitude estimation is 

discussed in more detail in Refs [18], and [19].  
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Further process and analysis could be performed to determine if any neutral wind measurements could 

be determined from the flight data. Calculating the neutral winds is simply done by running the math 

prediction model (§ DYNAMICS) backwards.  

From the information collected on the flight data from the first sphere, improvements or design changes 

should be noted and implemented into second sphere 41.090. Possible changes could include, but are not 

limited to, having a more precise IMU device with a sampling rate of 4.8 kHz or higher, different gains and 

settings for the science board to accommodate higher signals, different science accelerometers with a larger 

range of operating conditions, and possibly a different configuration for the science accelerometers to 

mitigate the effects of the accelerations see from spinning. 
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APPENDIX 

 

A. Flight Environment 

The predicted stagnation temperature and pressure of the sphere as well as predicted ambient 

temperature and pressure where calculated and compared to published results. Since the sphere had no pitot 

tube to measure the stagnation pressure, nor did it have any thermal sensors on the outer shell, there are no 

results to compare to.  The predicted values are shown below in Figure 46 and Figure 47. 

Although the calculated results indicate that the sphere would see temperatures higher than the material’s 

melting point, with the sphere nutating as it was and given the short flight duration, the sphere did not see 

any adverse effects. This is verified in collecting data until very low altitudes (approximately 30 km or 

lower), indicating that the system was completely functional until then.  

The ambient pressures and temperatures agree with the data presented in ref [20]. These results give an 

indication that the stagnation temperatures and pressures are at least on the right track as far as having the 

correct inputs to the calculations. These ambient conditions are shown in Figure 48 and Figure 49. 

 

Figure 46: Predicted Stagnation Pressure on the Sphere [kPa] 
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Figure 47: Predicted Stagnation Temperature on the Sphere [K] 

 
 

 

Figure 48: Predicted Ambient Pressure as a function of altitude 
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Figure 49: Predicted Ambient Temperature as a function of altitude 
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B. Spec Sheets 

Instrumentation specifications 

Science Accelerometers, by Wilcoxon Research: 

Model 731-207: Ultra low frequency seismic accelerometer 
Dynamic  
Sensitivity, ±10%, 25°C.................................................................10 V/g 

Acceleration range.......................................................................0.5 g peak 

Amplitude nonlinearity.................................................................1% 

Frequency response, nominal: 

±5%......................................................................................0.6 - 650 Hz 

±10%.....................................................................................0.5 - 850 Hz 

±3 dB....................................................................................0.2 - 1,300 Hz 

Resonance frequency, mounted, nominal....................................2.4 kHz 

Transverse sensitivity, max..........................................................1% of axial 

Temperature response: 

–0°C......................................................................................–18% 

+80°C....................................................................................+8% 

Electrical 
Power requirement: voltage source.............................................18 - 30 VDC 

current regulating diode.............................2 - 10 mA 

Electrical noise, equiv. g, nominal: 

Broadband   2.5 Hz to 25 kHz..............................................2 μg 

Spectral    2 Hz................................................................0.28 μg/√Hz 

10 Hz..............................................................0.09 μg/√Hz 

100 Hz............................................................0.03 μg/√Hz 

Output impedance, max...............................................................500 Ω 

Bias output voltage, nominal.......................................................10 VDC 

Grounding.....................................................................................case grounded 

Environmental 
Temperature range......................................................................0 to 80°C 

Vibration limit...............................................................................50 g peak 

Shock limit...................................................................................250 g peak 

Electromagnetic sensitivity @ 60 Hz.............................................20 μg/gauss 

Base strain sensitivity..................................................................0.0005 g/μstrain 

sealing..........................................................................................hermetic design 

Physical 
Weight..........................................................................................50 grams 

Case material...............................................................................316L stainless steel 

Mounting......................................................................................10-32 UNF 

Output connector..........................................................................10-32 coaxial 
98069 Rev.C.2 1/01 

(Courtesy Wicoxon Research Inc. and MEGGITT, www.meggitt.com)  
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µIMU sensors: 
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