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ABSTRACT 

 

Streambed Thermal Property Instrument 

by 

James Alwel Dayie, Master of Science 

Utah State University, 2012 

Major Professor: Dr. Heng Ban 

Department: Mechanical and Aerospace Engineering 

 

The purpose of this research, the Streambed thermal Property Instrument (SPI) is to 

determine the applicability of this instrument for in situ thermal (conductivity and diffusivity) and 

porous flow (magnitude and direction) measurements. Currently, no such thermal instrument 

exists for such in situ measurements and the reason for developing this unique instrument, the SPI 

to fill the technology gap in sediment thermal property measurement devices. Prior to testing the 

instrument under controlled laboratory conditions to determine its functionality through a series 

of static and flow tests, the instrument was designed and built. A lab-sized version of an actual 

river called a flow cell with a gravity-driven flow was also built, making it possible for testing the 

SPI under controlled lab conditions .The instrument was tested in the flow case by fixing the 

instrument in two orientations in the saturated porous media (glass particles). Results from the 

static tests indicated that these bulk thermal measurements (diffusivity and conductivity) can be 

off the expected value by as much as 15% while the porous flow measurements (magnitude and 

direction) displayed more variability in results for the two orientations of the probe for the flow 

rate range considered. This variability in flow measurements has been partly attributed to the 

movement of the offset probes during insertion and rotation and the large size of the center probe 

of the SPI. The findings from this research has made it possible for more advanced research in 

this field by using computer simulations to make possible, accurate porous flow measurements 

using a large scale thermal probe such as the SPI. 
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(45 pages) 

Key words: Porous Media (Glass beads), Bulk Thermal Conductivity, Bulk Thermal Diffusivity, 

Porous Flow, Streambed Thermal Property Instrument. 
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NOMENCLATURE 

 

T  Temperature, [K] 

Vx  Thermal advection velocity component in the x-direction, [ms
-1

] 

Vy  Thermal advection velocity component in the y-direction, [ms
-1

] 

V  Absolute value of the heat velocity, [ms
-1

] 

   Angle of flow with respect to the x-direction, [degrees]  

Jx  Water flux in the x-direction, [ms
-1

] 

Jy  Water flux in the y-direction, [ms
-1

] 

Cw  Volumetric heat capacity of water, [Jm
-3
K

-1
] 

C  Volumetric heat capacity of the system, [Jm
-3

K
-1

] 

x'  New coordinate value of  x after rotation through angle,  [m] 

y'  New coordinate value of  y after rotation through angle,  [m] 

to  Finite time of heat supply, [s]  

    Thermal conductivity of the porous media, [       ] 

     Heat input per unit length per unit time,        

   Thermal diffusivity, [m
2 
s

-1
] 

r  Spacing between the heater (center) and offset probes( temperature sensors),[m] 
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CHAPTER 1 

INTRODUCTION 

 

Thermal properties of soil and porous flow measurements are essential for acquiring in-

depth knowledge of water and heat transport phenomena in the vadose or unsaturated zone, 

determining infiltration rates, surface run-off and subsurface processes and also in engineering 

applications where temperatures and water fluxes are of prime interest. Temperature is an 

important component of aquatic systems due to its integral relationship with biological and 

chemical reaction rates. Current stream temperature models available to assist in managing heat 

load allocations are quite limited in their range of applicability as they do not include the effect of 

bed conduction, dead zone (surface) and the hyporheic zone (subsurface) storage. Apart from 

needing to characterize the soil’s physical properties, i.e. soil thermal conductivity and soil 

thermal diffusivity, knowledge of the soil thermal properties is required for accurate prediction of 

soil temperature and its influence on seed emergence and crop growth, soil water retention and 

unsaturated hydraulic, and soil water vapor flow in coupled water and heat transport. 

Earlier research findings prior to the development of the Streambed Thermal Property 

Instrument (SPI) have shown promising abilities of measuring bulk thermal properties and water 

flux of saturated porous media [7][8][9]. However, currently there exists no such instrument for 

accurately quantifying bulk streambed thermal properties and hence the need for the development 

of a modern day device to fill the technology gap in sediment thermal property measurement 

devices. 

The SPI, which has already been built and tested under controlled lab conditions, will be 

used for in situ measurement of bulk thermal properties of saturated streambeds as well as 

measurement of porous flow through the streambed.  Determination of water movement in porous 

media is critical for managing irrigation and drainage and characterizing chemical transport 
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processes. The instrument was designed with two Utah rivers in mind, namely Curtis Creek, east 

of Hyrum, UT, and the Virgin River in Hurricane, UT. 

The SPI measures the streambed's bulk thermal conductivity and bulk thermal diffusivity 

as well as the porous flow magnitude and direction of flow through the streambed. The SPI has 

considerably improved upon conventional methods of measuring these thermal properties by 

eliminating the need to remove soil samples from the streambed for laboratory processing to 

obtain desired results. This ensures a much faster and a more accurate means of measuring bulk 

thermal properties and porous flow parameters. Adding to the improvements that the SPI has 

brought to the field of sediment thermal measurements, it is more cost effective and also less 

labor-intensive to make these thermal measurements compared to the conventional method. It is 

an improvement upon the current and previous time consuming, mathematically complicated and 

the measurement-intensive approaches of measuring these quantities.  
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CHAPTER 2 

OBJECTIVES 

 

The objectives of this research were to: 

 design  

 build and 

 determine the functionality of the SPI through a series of bench tests under controlled 

laboratory conditions.  

Testing the instrument at environmentally controlled conditions will yield the instrument’s 

range of applicability from the measurement errors obtained. The consistency of these errors 

allow for calibration of the instrument for actual field testing.   

Determining the functionality of the instrument was achieved by conducting laboratory 

experiments using yellow sand (glass particles) as the porous media over a wide range of flow 

rates. Static tests were conducted to determine the bulk thermal conductivity and bulk thermal 

diffusivity of the porous media. Flow tests were also run while keeping the instrument in two 

orientations (90° and 120°) to measure the porous flow. The flow through the flow cell containing 

the porous media was gravity-driven.  
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CHAPTER 3 

LITERATURE REVIEW 

 

Transient methods of thermal property measurement have been gaining popularity over 

steady-state methods because transient methods require much less time to perform. It is very 

challenging to determine steady state conditions in fluids because of the occurrence of natural 

convection. Consequently, it is difficult to eliminate the effect of natural convection on heat flux. 

One particular method is the hot-wire method, which is quick, mathematically convenient, most 

accurate, reliable and above all a very robust technique (Hammerschmidt & Sabuga [10]), for 

evaluating the thermal conductivity of fluids (de Groot, Kestin and Sookiazian [11], Healy, de 

Groot and Kestin [12], Kestin and Wakeham [13]) and solids (Assael et al. [14]). The Hot Wire 

Method relies on a simple analytical formula derived from the solution of the heat conduction 

from a line heat source that is inserted into the saturated porous media of interest. Application of 

this method works very well with gases and solids, however, applying this method to electrically 

conducting liquids requires further research. Limitations of the method have been identified and 

discussed by Valdasz [15]. He concluded that it is incorrect to apply the method directly to two-

phase systems without corrections. The hot-wire method uses a wire to heat a fluid, and the 

thermal conductivity of the fluid or whatever sample is being heated by the wire may be derived 

from the wire’s temperature response. 

An adaption of the hot-wire method is the thermal probe as outlined in ASTM standard 

D5334 [1].  The thermal probe causes minimal intrusion and is easily inserted into saturated 

porous media and even into solids. The thermal probe is capable of measuring the effective (bulk) 

thermal conductivity. Commercial probes are available such as Decagon Device's KD2 series of 

probes capable of measuring bulk thermal conductivity, bulk thermal diffusivity, specific heat and 

thermal resistivity using the transient line heat source method. 
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By adding off-center probes around a thermal probe, the instrument is able to measure the 

effective (bulk) thermal diffusivity of the media.  This concept is also found commercially in 

Decagon Device's specialized dual needle probe (KD2-Pro).  Research at Utah State University 

was done using a thermal probe with four off-set probes called a penta-probe [2].  The penta-

probe was inserted into porous media and measured the bulk thermal properties as well as the 

porous flow magnitude and direction by using a pulse heat signal.  The SPI is essentially a large-

scale version of the penta-probe. 

Increasing the scale of the probe is not a trivial task. Large scale probes cannot fit the 

infinitely-thin assumption made by both the hot-wire method and thin thermal probes.  Multiple 

designs of large thermal probes have been researched, and the probe’s diameter and composition 

affect the thermal response, particularly during the initial heating time [3].  Large probes require 

correction factors, due to their distinction from the theory.  The correction factors are functions of 

the construction of the probe.  With proper correction factors selected, large thermal probes may 

effectively measure bulk thermal conductivity.  Attempts have been made to liken a large probe 

to a composite cylinder [4] allowing for a mathematical model of the thermal response. However 

such methods are less popular than the correction factor approach.   

Designs have varied over the years, but generally follow de Vries and Peck’s [5] advice 

for creating a cylindrical probe: the probe should have a low volumetric heat capacity compared 

to the media, and the thermal conductivity of the probe should be larger than the material.  Barrie 

W. Jones [6] gave insight into the valid time responses of larger probes.   

Further complications arise when large probes are used in conjunction with off-set probes 

for bulk thermal diffusivity measurement.  Conductivity escapes these complications by being 

largely a function of the probe’s temperature response after a long heating time.  The initial 

heating in a large-diameter probe is vastly different from one which fits an infinitely thin 
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assumption due to the probe's heat capacitance.  For this reason, pulsed heating is not appropriate 

for large probe.  The bulk thermal diffusivity measurement is largely a function of the probe 

response during the initial heating.  For accurate diffusivity measurements, the ratio of the probe's 

thermal diffusivity to the bulk media's diffusivity must be converted into an effective thermal 

radius.  With proper adjustment, a large thermal probe may be used with off-set probes for 

accurate bulk thermal diffusivity measurement. 

Finally, a large thermal probe greatly affects the flow measurement.  This is due to the 

large probe's obstruction of the flow path.  Flow slows down immediately upstream and 

downstream the probe, causing greater increase in temperature in these regions.  Similarly, flow 

speeds up as it moves around the probe, causing smaller temperature increase in regions normal 

to the flow vector.  These changes in temperature response result in a skewed measurement of 

flow magnitude and direction.  The disrupted flow path must be taken into account. 

Flow through a porous media was first fitted to an equation conforming to Darcy’s Law: 

                       (1) 

His law may be applied to give a flow vector field around a circular cylinder.  Such a 

vector field accurately describes the flow around a large diameter probe. 
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CHAPTER 4 

THEORY 

 

The theory of a SPI probe is taken from the heating portion of the penta-probe. The 

equation for combined heat conduction and convection in a two dimensional domain for uniform 

transport of water in an incompressible porous medium assuming an infinitely thin center probe 

and also that for conductive heat transfer dominant over convective effects is given by [14]. The 

heat equation (2) below assumes that at any point in the solid-fluid porous matrix the two 

temperatures are identical [15], 

  

  
   

   

   
 

   

   
    

  

  
   

  

  
                                                                                               (2) 

where T is the temperature in Kelvin (K), k is the bulk thermal diffusivity of the system (m
2
/s),    

and    are the components of the thermal advection velocity, defined as:  

             and                                                                                                       (3) 

where   is the angle of flow with respect to the x-direction as seen below in Fig. 1. 

The thermal advection velocity can be related to the water flux according to the equations 

below. 

     
  

 
                    

  

 
                          (4)                   

where    and    are the water fluxes (m/s) in the x and y directions respectively, C is bulk 

volumetric heat capacity (Jm
-3

K
-1

]) of the system,    is volumetric heat capacity of water. 

The analytical solution for Eq. 2 may be obtained by coordinate rotation to align so the 

x´-direction with the water flow direction by applying the following transformation, 

   
  

   
        
         

   
 
                                                                                                           (5) 
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where x´ and y´ are the new coordinates after rotation which are shown in Fig. 1, thus Eq. 2 can 

be rewritten as, 

   

  
   

   

    
 

   

    
     

  

   
                                                                                                     (6) 

Solution to Eq. 6 above for an infinite line source, heated over time, t, was given by [7], 

           
  

   
        

          
 
    

   
              

 

                                                         (7) 

where   is the thermal conductivity (       ),    is the heat input per unit length per unit time 

      , and t  is time in seconds. 

Substituting Eq. 5 into Eq.7 gives the analytical solution to Eq. 2 as, 

            
  

   
        

                                    

   
         

 

                        (8) 

Eq. 8 is used to obtain the temperature response of each of the offset probes by 

substituting        
    

   into Eq. 8 to give, 

           
  

   
        

        
          

   
         

 

                                                         (9) 

 However, prior to determining the flow parameters shown in the derivation from 

equations 2 through 9, the thermal conductivity (λ) and the thermal diffusivity (α) were each 

computed using equations (10) and (11) respectively.  

   
 

   
                              (10) 

   
  

   
   

   

   
                  (11) 

  where r is the offset distance (m), q is the power input per unit length (    ) and Ei is 

the exponential integral expressed as, 

       
   

 

 

                
  

   

 
                (12) 
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Figure 1 - Probe coordinate system (X,Y) and rotated flow coordinate system (X',Y') related by 

the angle, φ.  

 

 

 

                                                                                               Location at plane 

        Offset probes 

                                                                                      x-coordinate                  y-coordinate 

     OC1                                               0                     r1=-5.15mm 

OC2                r2=-4.90mm        0 

OC3                 0                                r3=5.26mm 

OC4                 r4=5.13mm                0 

 

 

 

 

 

 

 

 

 

 

Table 1 - Coordinates of the four offset probes at a plane where r1 through r4 are the surface-to-center 
spacing between the heater and the offset probes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φ 
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CHAPTER 5 

MATERIALS AND METHODS 

 

The theory assumes that the soil around the SPI probe is homogeneous and isotropic and 

that the contact resistance between the porous media and the probes needles is negligible. 

Moreover, it is assumed that the offset probes have an infinitely small heat capacity and large 

thermal conductivity, so that the temperature measurements are instantaneous. The average 

distance between the centers of the heater and offset probes is about 6.90 mm, whereas the 

outside diameters of the offset probes are 2.44 mm and that of the heater (center probe) is 6.25 

mm. The center and the offset probes were each built from stainless steel tubing, thermal epoxy, 

thermocouple (TC) wire, rubber stopper and nichrome heating wire which was only used in the 

construction of the center probe . Figure 2 below shows a well dimensioned basic structure of the 

SPI probe. Figure 3 shows the physical dimensions of the simulated two dimensional porous 

media domain with the SPI probe. The SPI probe extends perpendicularly to the illustrated (x-y) 

plane of the porous media domain, so that the center and the offset probes are represented by their 

cross-sectional circular planes within the vertical plane.  

 

 

Figure 2 - A well-dimensioned basic structure of the SPI probe showing the lengths and diameters 
of the offset and center probes as well as the surface-to-surface distance between the center and 
the offset probes. 
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Figure 3 - The figure above shows a simulated soil domain showing the front view of the center 

and the offset probes with the water flow direction shown downwards. 
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CHAPTER 6 

EXPERIMENAL SETUP 

 

Two separate experimental setups were used to fulfill the research objective. One was for 

a no-flow arrangement for static tests and the other was for an arrangement of flow for flow tests. 

The two setups are comprised of same components. The only difference is in the elevation of the 

flow regulators.  

For the no-flow experimental setup, the two flow regulators in the setup are both elevated 

to the same height.  

                                                                                             
 

 

 

 

In the case of the flow experimental setup, the upstream flow regulator is maintained at a 

higher elevation with respect to the downstream flow regulator. This ensures that the flow 

through the flow cell is gravity-driven at all times. A submersible fountain water pump is used to 

feed degassed water to the upstream flow regulator establishing a condition of flow in the flow 

cell. The velocity of the water through the flow cell is varied using the white styrofoam shown in 

the picture below as well as an adjustable screw that keeps the ring holding the flow regulators 

(buckets) in place.   

Figure 4 - Schematic and photograph the no-flow (static) experimental setup with the flow 

regulators elevated to the same height.  
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Figure 6 - Experimental setup with legend 

3 

11 
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SYSTEM  COMPONENTS 

 

1. Water reservoir    

2. Intake line from reservoir   

3. Return from flow regulator   

4. Flow regulator   

5. Bubble trap     

6. Flow cell        

7. SPI probe   

8. Return from flow cell 

9. Return line to sink 

10. Graduated measuring cylinder 

11. Constant-current supply unit 

12. Data acquisition device             

13. Computer / live monitoring system 

Figure 5 - Schematic and photograph the flow experimental setup with an elevation difference 

between upstream and downstream flow regulators. 
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Figure 7 - Photograph of the laboratory system 

 

6.1 Experimental setup components and their functions 

6.1.1 Storage tanks 

These are plastic tanks, each of volumetric storage capacity, 109.8 L. The tanks are filled 

with water and left overnight to degas and reach a steady temperature. Degassing the water is 

necessary to eliminate bubble formation during a flow test. This gives more consistent results as 

opposed to when bubbles form within the system. 
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Figure 8 - Photograph of the storage tank used for storing water for running both static and flow 

tests. 

 

6.1.2 Pump 

The 120V 60Hz 0.35A submersible fountain water pump provides a constant water 

supply to the upstream flow regulator ensuring constant volume flow rate through the flow cell 

during a flow test. The pump is also used to fill up the storage tanks with water and left overnight 

to degas before being used for both flow and static tests. 

 

 

Figure 9 - Photograph of the submersible water pump. 

 

6.1.3 Flow cell 

The flow cell contains a sieve to hold the porous media.  Water is gravity-driven through 

the cell and the media.  A sealed opening allows for the SPI probe to be inserted into the media.  

The flow cell is kept water and air-tight by means of o-ring seals and bolts. It is made from a 

transparent insulating material which allows for easy viewing of the activities taking place within 

it before, during and after a test. The effective volume of the flow cell is about 0.009775 m
3
.  
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Figure 10 - Photograph of the side view (left), uncovered aerial view (center) and the individual 
components (right) of the flow cell.  

 

6.1.4 Bubble trap 

This is the tubing section on top of the flow cell that ensures bubble removal from the 

path of the flow.  It is made from a 0.5588 m long, ½ inch diameter tube and fitted vertically to 

the top of the flow cell.  It also serves as a passage for the upstream TC to read the porous 

media’s temperature away from the probe. 

 

                         

Figure 11 - Photograph of the bubble trap 

 

6.1.5 Flow regulators 

The volumetric flow rate of the water through the flow cell is controlled by two open, 

elevated tanks.  These are made from two 800mL plastic cylinders.  Each tank has a spill way 

leading back into the storage tanks or into the sink. During a static test, the free-standing surfaces 
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of the water inside these flow regulators are each set to the same height to prevent any flow from 

occurring within the flow cell. However, during a flow test, the two flow regulators are separated 

by a distance using an adjustable screw along that vertical rod which serves as the main support 

for the flow regulators. 

 

                                             

Figure 12 - Photograph of the downstream (left) and upstream (right) flow regulators  

 

6.1.6 Large and small SPI’s 

These are each made up a center (heater) probe, four offset TCs and one upstream TC. 

The center probe contains a TC which is supplied with a constant current source of 3A during an 

actual test.  The heat dissipated from the center probe is picked up as signals from the offset TCs 

and from the TC embedded in the center probe. From the temperature response curves obtained 

from these TCs, the desired thermal properties are computed. The upstream probe determines the 

water temperature away from the probe which ensures that both the water inside the flow cell and 

the storage bins are all at the same temperature prior to starting any flow test. This steady state of 

the system is necessary as a temperature change of 1°C over 30 minutes can negatively affect the 

test results.  
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Figure 13 - Photograph of multiple views of the SPI with the offset probes held fixed using a 

plastic plate 

 

6.1.7 Graduated measuring cylinder 

This is used during flow tests to measure the actual volumetric flow rate through the flow 

cell and from which the porous flow velocity through the flow cell is determined. Recording 

approximately the same time for 3-4 consecutive times that the water takes to fill up to the 

2000mL mark on the graduated measuring cylinder is an indication that the flow through the flow 

cell is constant. At this time, a flow test is ready to be started. The measured porous flow velocity 

as determined by the SPI during a flow test is then compared with the actual computed flow 

velocity. 

 

 

Figure 14 - Photograph of the 2000mL graduated measuring cylinder 
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6.1.8 Agilent data acquisition device  

The agilent 34970A is used as a data acquisition device with a 34901A 20-channel 

multiplexer card.  The 34901A was selected as it does not require a shunt calibration for TCs. The 

data acquisition device allows online monitoring of the offset and center probes during either a 

static or a flow test. This live monitoring is necessary for ensuring a steady state system is 

achieved prior to starting an actual test. 

 

 

Figure 15 - Photograph of the data acquisition device 

 

6.1.9 Power supply unit  

The constant-current power supply unit supplies the heating wire embedded in the center 

probe with 3A of constant current. Higher power results in a better signal-to-noise ratio, but the 

portion of the heating wire extended outside the flow cell tends to burn above a constant current 

of 3A. Due to this, all static and flow test were performed with a constant current of 3A. 

 

 

Figure 16 - Photograph of the constant-current power supply unit 
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6.2 The two orientations of the SPI probe  

For testing the SPI in the lab, two orientations were considered which are 90° and 120° 

respectively as shown below: 

 

                                                    

Figure 17 - a) Diagram of probe in 90-degree orientation, and of the b) 120-degree orientations.  

The flow is vertical and downward. 

 

6.3 Inserting the SPI probe into the porous media 

The instrument (SPI) is first mounted onto the flow cell using six screws. The flow cell is 

then filled with degassed water to about half the height of the flow cell and then the porous media 

is sprinkled around it in order to minimize the effect of the weight of the porous media on the 

instrument. After all the porous media has been deposited into the flow cell such that the 

instrument is covered entirely by the porous media, the flow cell is then covered with its lid and 

the remaining volume is then filled with degassed water. While filling up the flow cell, bubbles 

are eliminated from the system concurrently by capping and uncapping the bubble trap 

intermittently. 

  

a) b) 
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   a)  b) 

Figure 18 - Photograph showing the a) 120-degree and b) 90-degree orientations of the actual SPI 

probe when inserted into the porous media. 

 

6.4 The live monitoring system of the experimental process 

The live monitoring process is done with a desktop computer. This process helps ensure 

that the temperature in the saturated porous media system is uniform before the start of any 

experiment. Temperatures are monitored upstream the SPI probe, within the center probe, and at 

the downstream offset TC.  When the temperature difference between upstream and downstream 

is approximately zero, the entire system has reached a steady temperature, and a test can be 

started by supplying a 3A constant-current to the center probe for a time period of 30 minutes. 

During a test the live monitoring displays the temperature response of each TC ensuring 

that their temperatures climb steadily.  This steady growth verifies that the temperature responses 

were not affected externally during the actual test.  

 

                                     
Figure 19 - Photograph of the live monitoring unit showing the temperature responses of the 

offset and heater probes just before (left) and during (right) an actual test. 
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6.5 Data processing 

Processing the data retrieved from the agilent data acquisition unit via the desktop 

computer is a two-stage process. The data is first processed with Microsoft Excel and saved as a 

.txt file. This .txt file is then imported to Mathlab where the conductivity is calculated by creating 

a line of best fit through the log-linear region. Nonlinear curve-fitting is required to fit the 

diffusivity and flow vector. 

6.5.1 The static case 

The raw data is imported into Matlab, and the constant-current of 3A is entered in the 

Mathlab command window.  A custom function called “Static_Grapher” is used to plot the 

temperature-time response from the TC inside the center probe.  From the plot, two time points 

are selected, which outlines the log-linear region (the conductivity is most sensitive to this 

region).  

To compute for the bulk thermal conductivity value, a second custom function called 

“Static_Analyzer” is used.  This function takes evenly log-spaced sample points within the log-

linear region, and computes a line of best fit through them.  The bulk thermal conductivity is 

proportional to the slope of this line.  The measured bulk thermal conductivity is quite sensitive to 

the times selected which frame the log-linear region.   

The second step of static computing is to obtain the bulk thermal diffusivity. Similar to 

the “Static_Grapher” code, “Static_OC_Grapher” plots the temperature responses from the four  

(4) offset TCs. These four responses should be nearly identical when there is no flow. The 

“Static_OC_Analyzer” then computes the bulk thermal diffusivity for each of the four offset 

responses by means of nonlinear regression. The average of the four values is reported as the 

porous media’s saturated bulk thermal diffusivity.  Each of the four values may vary slightly due 

to the porous media inhomogeneities, and each value is dependent on the individual spacing of 
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the offset TCs. The equation used in the regression contains conductivity, which makes the bulk 

thermal diffusivity sensitive to the two time points selected as well.  

6.5.2 The flow case 

The bulk thermal conductivity and the bulk thermal diffusivity values computed in the 

static case are programmed into the flow solver by manually entering their values into the Matlab 

code as well as the new data file containing the temperature responses during flow. The distances 

of the offset TCs from the center probe need to be entered into the solver before any processing 

begins. These offset distances do not vary between flow tests since they have been held in a fixed 

position by a plastic plate. Values of these offset distances are given in Table 1.  

After entering in the constant current and rotation angle of the SPI probe, the offset TC 

temperature responses are again plotted.  The flow magnitude and angle are then fitted 

nonlinearly using “Flow_SV”.  The “ Flow _SV” function first approximates a flow magnitude 

using the most downstream (highest response) TC, then approximates an angle using a numerical 

gradient, and finally it solves for the flow by fitting all four offset TC responses simultaneously 

with the two approximations as initial guesses.  The solution usually takes between 3-5 minutes. 

A fitting plot is recorded as a .jpg for residual future reference.  

With this Flow_SV solver, the results may be affected by a single TC. This is due to the 

curve fitting simultaneously fitting all four offset TCs. Thus if one has great error, particularly the 

downstream and hottest TC, then the flow magnitude and angle will be biased to accommodate 

the curve fitting of that particular response.   
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CHAPTER 7 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

7.1 Static results 

 

 

Figure 20 – Conductivity measurement sensitivity.  The temperature response curve shows three 

possible slopes used to calculate the bulk thermal conductivity.   

 

Bulk thermal conductivity is proportional to the slope of the log-linear region.  Two 

points are typically selected to identify the slope. Figure 20 shows that the response never goes 

completely log-linear.  Depending on where the two points are selected, resulting slopes may 

vary.  It is suggested that a material’s static response be observed, and two standard times picked 

out to calculate the slope for all subsequent tests using that material.  
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Figure 21 – Effect of varying slopes used to calculate thermal conductivity. Both the conductivity 

and diffusivity are calculated using the slope of the log-linear region. 

 

             Figure 21 shows how the varying slopes affect the measured values of bulk thermal 

conductivity and bulk thermal diffusivity.  If a non-standardized selection is used, the 

corresponding measured thermal properties may vary as much as 15%.   

7.1.1 Summary of static tests results 

The static bulk thermal properties are affected by the selection of the log-linear region.  

To reduce this effect, we choose to select consistent times of 1000s and 1500s.  The f irst time 

must be late enough to escape the initial transient region, and the second is selected using advice 

from B.W. Jones’ work to avoid effects from the infinite media assumption.  

The variation of the bulk thermal diffusivity measurements across the offset TCs has 

been corrected by using a thin plastic plate to hold the offset TCs in the right place thereby 

ensuring the same offset distances for each of the offset probes after each test run.  The use of this 

plate has made the offset distances consistent enough to use an effective radii to account for the 

probe diameter’s contribution to the overall radii.  
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7.2 Flow results 

 

 

Figure 22 – Flow magnitude measurement error for increasing flow given a probe rotation of 90°.  

The overall trend is linear and converges to less variability with higher flow. 

 

A trend can be seen from Fig. 22.  The measured flow under-predicts the actual flow 

magnitude for higher flow rates.  The measurement may under-predict as much as 40%, however, 

the overall trend is linear, and a correction factor can easily be developed.  Note that this pattern 

exists when the probe angle is 90°.  Another interesting thing to note, is that the variability of the 

flow measurement decreases as the flow accelerates. 

90° Probe Orientation – Flow Magnitude                                      

Error vs. Measured Bulk Velocity 
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Figure 23 – Flow angle measurement error for increasing flow given a probe rotation of 90°.  The 

error is consistently near 22% high. 

 

Figure 23 gives the corresponding flow angle measurement error.  The flow angle follows 

a different trend than the flow magnitude error.  It is consistently high by roughly 20%, and 

shows very little change with respect to flow velocity.  Again, a calibration can be easily 

determined from the data. 

 

 

Figure 24 – Flow magnitude measurement error for increasing flow given a probe angle of 120°.  

An overall linear trend appears similar to the 90° orientation (Fig. 22). 
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Figure 24 gives the flow magnitude measurement error for increasing flow, just as Fig. 

22.  However, now the probe is in a different orientation, and does not have an off-set TC directly 

downstream.  The effect on the flow magnitude measurement can be seen by greater variability, 

and a steeper slope as the flow increases. 

 

Figure 25 - Flow angle measurement error for increasing flow given a 120° probe angle.   The 
lower flow rates exhibit less certainty, and the faster flow rates all under-predict the angle by 

approximately 30%.   

 

Comparison of Fig. 25 with Fig. 23 shows a rather dramatic jump from over-predicting 

the angle to under predicting the angle.  This could be due to the center probe’s effect on the 

porous flow.  When the diameter is large, porous flow has to curve around the probe diameter, 

and the off-set TCs experience a different response.  The rotation of these off-set TCs inside the 

disrupted flow requires a calibration curve as a function of the flow angle.   

While the thermal probe theory assumes a uniform flow field, Fig. 26 demonstrates that a 

porous flow field around a cylinder is clearly not uniform:  
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Figure 26 - Obstructed Darcy (porous media) flow.  The changing flow velocity affects the 

temperature responses of the off-set TCs.  

 

7.2.1 Summary of flow tests results 

As made evident by the changing trends during flow tests of different orientations, the 

obstructed flow path must be accounted for. This disrupted flow may be solved for using Darcy’s 

law (Eq. 1), resulting in a vector field shown in Fig. 26.  Obstructed flow altered the responses of 

the off-set TCs enough to cause the flow angle measurement error to jump from 22% over-

predicting to 30% under-predicting when the probe angle was rotated from 90° to 120°. 

This change in the velocity vector may be used in Eq. (2) to stabilize the Matlab solvers.   
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

 

Prior to this work, no large-diameter thermal flow probe was documented.  Such a probe 

has great implications for stream bed thermal properties, which are key to creating accurate 

stream bed heat models.  

The keynotes of this research can therefore be summarized as: 

 A large-diameter thermal flow probe (SPI) was designed, built and the functionality of 

the probe was determined under static and flow conditions.  

 The SPI probe can be calibrated to measure the bulk thermal conductivity and bulk 

thermal diffusivity of any porous media. 

 A flow cell was built to test the probe’s ability to measure 2D porous flow. 

 A plastic plate was used to secure the off-set TC, as the flexibility of the off-set TCs 

cause inconsistent measurement error in porous flow. 

The main conclusions of this report are as follows: 

 It was discovered that as high as a 15% thermal property measurement error can occur if 

a standard is not used in selecting the times that defines the log-linear region. 

 Flow magnitude error followed a linear relationship with porous flow rate, sloping from 

no error at slow flow rates to under-predicting by 20% for a  probe rotation of 90°. Flow 

magnitude error in that rotation was consistently high at approximately 22% 

 The flow magnitude measurement error sloped more drastically from 50% over to 20% 

under with slow flow rates being too uncertain for a probe rotation of 120°. This change 

in the measurement error when rotating the probe is likely due to the flow interference of 

the off-set needles.   
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Future studies of large-diameter porous flow probes may include variations of porous 

flow properties, as well as a more comprehensive investigation of flow measurement error as a 

function of probe rotation.   Future probe designs should attempt to address the issue of off-set 

needle movement during insertion.  
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