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ABSTRACT 
 
 

Continental-scale Characterization of Molecular Variation in Quaking Aspen 
 
 

by 
 
 

Colin M. Callahan, Master of Science 

Utah State University, 2012 

 
Major Professor: Dr. Karen E. Mock 
Department: Wildland Resources 
 
 
 Quaking aspen (Populus tremuloides) has the largest natural distribution 

of any tree native to North America, ranging from Alaska through the breadth of 

Canada and south to mid-Mexico. The Laurentide ice sheet occupied most of the 

current range of P. tremuloides until the late Pleistocene epoch, so this species 

has undergone a significant, geologically recent range expansion. Surprisingly, 

range-wide patterns of genetic variation in P. tremuloides have never been 

described. Using a sample set representing the full longitudinal and latitudinal 

extent of the species distribution, I have conducted a phylogeographic analysis 

for P. tremuloides. Preliminary results comparing both nuclear and chloroplast 

DNA sequences revealed surprisingly low levels of divergence across the range. 

Because of this remarkably shallow genetic divergence among aspen 

populations, I used a set of rapidly-evolving molecular markers (microsatellites) 

to describe patterns of gene flow and diversity and to correlate those patterns 
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with landscape features and histories. I analyzed eight microsatellite loci in 794 

individuals from 30 sampling sites. From this multilocus data set, I identified 

pronounced genetic structuring across the range. Strikingly, sampling sites 

representing the southwestern portion of the range, the western United States 

and Mexico, form a distinct cluster. Sites within this southwestern cluster display 

dramatically reduced within-site genetic diversity but elevated regional genetic 

diversity, which suggests that populations in the southwestern portion of the 

range make up a stable edge persisting through multiple climate oscillations. 

Based on the uniqueness of the southwestern cluster and the climatic differences 

between the southwest and northern portions of the range, I propose that the 

southwestern cluster may represent a distinct ecotype. I also identified hotspots 

of diversity that correspond with potential refugia during the last glacial maximum 

but additional work is needed to refine these patterns. Further, my findings 

provide a solid foundation for a range of future studies on adaptive genetic and 

trait variation in this species. 

(61 pages) 
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PUBLIC ABSTRACT 
 
 

Continental-scale Characterization of Molecular Variation in Quaking Aspen 

by 

Colin Callahan 

Utah State University, 2012 

 
 Quaking aspen has the largest natural distribution of any tree native to 

North America, ranging from Alaska through the breadth of Canada and south to 

mid-Mexico. Recent studies suggest a general decline of aspen throughout much 

of the range since at least the mid-20th century, though these findings remain 

inconclusive. Regardless, factors such as climate change, periods of drought, 

soil nutrient deficiencies, pathogens, insects, and encroachment by other tree 

species all pose risks to the health and maintenance of aspen across the 

continent. This situation is exemplified in the western United States where 

climate change is forecasted to have an extreme impact on the availability of 

suitable habitat for aspen. Facing all of these potential challenges, it is important 

for aspen to be able to adapt to changes in order to persist on the landscape. A 

critical factor in aspen’s ability to adapt to change is genetic diversity. 

Surprisingly, range-wide patterns of genetic variation in aspen have never been 

described. Using a sample set representing the full longitudinal and latitudinal 

extent of aspen’s distribution, I have assessed levels and patterns of genetic 

diversity in the species. To do this, I used a set of highly variable molecular 
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markers, known as microsatellites, to identify individuals based on unique 

genotypes. I identified two genetically distinct clusters. One cluster is made up 

entirely of individuals from the western United States and Mexico, the 

southwestern portion of the range. This cluster also displays significantly less 

within-site genetic diversity than is seen in the rest of the range but an increase 

in regional diversity for the Southwest as a whole. This pattern of genetic 

diversity coupled with the detection of a distinct genetic cluster in the Southwest 

suggests that not only do southwestern populations represent a stable edge that 

has persisted through multiple climate oscillations, but also the presence of a 

distinct aspen ecotype. I was also able to identify “hot spots” of genetic diversity 

which, combined with knowledge of glacial history, sheds light on potential glacial 

refugia and routes of postglacial recolonization. This information will be important 

as we move toward understanding how aspen responded to dramatic climate 

fluctuations in the past, and to predict how the species will respond to climate 

change in the future.  

The results of this study are important in designing long-term conservation 

strategies for aspen. My results suggest that a high conservation value can be 

placed on the “hot spots” of diversity in order to preserve diversity for the range 

as a whole. Also, the finding of a stable edge and distinct ecotype in the 

Southwest highlights the need for unique conservation strategies for populations 

in this region.  
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INTRODUCTION 
 
 

Quaking aspen (Populus tremuloides) has the largest natural distribution 

of any tree native to North America, ranging from Alaska through the breadth of 

Canada and south to mid-Mexico (Little, 1971; Perala, 1990). Within this 

distribution, aspen persists in a broad range of ecosystems and elevations. This 

species is capable of reproducing both sexually, through seed and pollen 

adapted for long-distance wind dispersal, and asexually through root sprouts 

which form extensive clonal colonies (Kemperman & Barnes, 1976). Quaking 

aspen is prized not only for its aesthetic and cultural value but also for its 

importance to biodiversity as many species rely on aspen habitat. In the 

Intermountain West of North America, where aspen is frequently the dominant 

deciduous tree species, aspen stands are associated with high levels of 

biodiversity of many taxonomic groups including plants, birds, and butterflies 

(Stohlgren et al., 1997a; Stohlgren et al., 1997b; Mills et al., 2000; Rumble et al., 

2001; Simonson et al., 2001). Further, in the western United States, aspen also 

functions as a firebreak (Fechner & Barrows, 1976).    

Populus species have long served as important models in genetic studies 

(Wullschleger et al., 2002). Populus trichocarpa, a closely related species, was 

the first tree genome sequenced (Tuskan et al., 2006), providing a springboard 

for the study of genetic variation in other Populus species. Due to the importance 

of P. tremuloides, both ecologically and economically (Mitton & Grant, 1996) in 
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much of its range, an enhanced understanding of its range-wide genetic variation 

is particularly critical. In the fragmented southwestern portion of aspen’s range, a 

study of ponderosa pine (P. ponderosa) identified two distinct gene pools 

(subsequently designated “varieties”) representing historically separated lineages 

(Latta & Mitton, 1999). Discovery of these distinct ponderosa pine varieties in the 

western United States suggests the potential for locally adapted lineages, and 

distinct varieties, in other species in this region. P. tremuloides is a particularly 

attractive candidate as a model system for molecular adaptation due to the 

geographic extent of its range. However, inferences about molecular adaptation 

are limited by a lack of information about range-wide neutral variation in this 

species. Surprisingly, a range-wide phylogeography of P. tremuloides has never 

been undertaken.  

Phylogeography is a relatively new field of science that integrates genetic 

and geographic information to study the distribution of genealogical lineages 

particularly within species (Avise, 2000). Surveys of geographic variation in 

mitochondrial DNA (mtDNA) taking place in the late 1970s and into the 80s led to 

the discovery of striking patterns in the spatial arrangement of mtDNA lineages 

and the coining of the term in 1987 (Avise et al., 1987). The study of 

phylogeography has since grown and expanded to new areas, including 

biodiversity conservation, microbiology, parasitology, and virology (Beheregaray, 

2008). There have been a multitude of phylogeographic assessments of both 

North American plants and trees (Marr et al., 2008; Tomimatsu et al., 2009; 
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Beatty & Provan, 2010; de Lafontaine et al., 2010; Rebernig et al., 2010). 

Phylogeographic patterns have also been described for other Populus species; 

P. alba and P. tremula in Europe (Brundu et al., 2008; Fussi et al., 2010) and P. 

balsamifera in North America (Keller et al., 2010). Phylogeography has proven 

especially effective in answering questions about postglacial recolonization 

patterns (Hewitt, 2000). These are of particular interest because a plethora of 

species now inhabit areas once covered by ice during the last glacial maximum 

(LGM) and because of the profound impact of postglacial history on 

contemporary genetic diversity, patterns of adaptation, and reproductive 

congruity (Hewitt, 2004). In P. tremuloides, post-glacial history could be 

particularly important, since the Laurentide ice sheet occupied most of its current 

range until the late Pleistocene epoch (Dyke et al., 2002). 

Dramatic climate fluctuations during the Pleistocene epoch (2.5 – 0.01 

MYA) were manifest as shifts between glacial and interglacial cycles.  The 

Cordilleran and Laurentide ice sheets covered much of North America during the 

Wisconsinan glacial episode (110 – 10 KYA), reaching their maximum extent 26 

– 19 KYA. Also during the LGM, sea levels dropped as much as 20 meters, 

exposing extended coastlines previously  and currently under water (Clark & Mix, 

2002). Phylogeographic surveys of several taxa in North America have revealed 

much about postglacial recolonization and the existence of multiple glacial 

refugia across the continent (Pielou, 1991). See Beatty and Provan (2010) for a 

review of putative glacial refugia for both plants and animals in North America.   
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The current distribution of P. tremuloides overlaps with multiple putative 

glacial refugia, both north and south of the ice sheets (Fig. 1). Based on 

examination of the fossil record, a likely precursor of P. tremuloides (P. 

pliotremuloides) is also known to have existed far south of the boundaries of the 

LGM prior to the Pleistocene, specifically as far south as southern California in 

the west during the Pliocene (Axelrod, 1941; Millar, 1996). The persistence of P. 

tremuloides in the unglaciated Beringia refugium of northern Alaska during the 

LGM has previously been investigated through mapped pollen data and fossil 

records (Brubaker et al., 2005) but remains uncertain due to poor preservation of 

pollen in peat and lake sediments and the difficulty distinguishing wood from that 

of P. balsamifera.   

As it remains unclear whether P. tremuloides persisted in northern and 

southern glacial refugia during the LGM, it also remains unclear whether the rear-

edge populations in the southern portion of the current range represent a stable 

or trailing edge (Hampe & Petit, 2005) throughout past climate oscillations. Under 

a stable edge scenario, southern populations will have persisted through multiple 

climate oscillations. Alternatively, under a trailing edge scenario, the whole 

species range will have shifted in response to climate oscillations, and present-

day southern populations may have disappeared during northward shifts and 

been re-established from northern populations during southward shifts. If the 

populations representing the southern portion of aspen’s range indeed represent 

a stable edge, one would expect to see reduced within-population genetic  
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Figure 1 Potential refugial sites for P. tremuloides during the LGM: 1 – Beringia 
(Holder et al., 1999; Tremblay & Schoen, 1999; Brubaker et al., 2005; Anderson 
et al., 2006; Loehr et al., 2006); 2 – Grand Banks (Holder et al., 1999); 3 – 
Northeastern United States (Tremblay & Schoen, 1999); 4 – “Driftless Area” 
(Rowe et al., 2004); 5 – “Ice-free Corridor” (Mandryk et al., 2001); 6 – Clearwater 
Refugium (Brunsfeld & Sullivan, 2005). Distribution of P. tremuloides is shown in 
green, outline of last glacial maximum shown in blue (Ray, 2001). The dashed 
arrow represents the uncertain extent of the ice-free corridor. Figure adapted 
from Beatty and Provan (2010).  
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diversity (Castric & Bernatchez, 2003; Petit et al., 2003; Chang et al., 2004) but 

increased regional genetic diversity due to markedly high levels of genetic 

differentiation among populations (Comps et al., 2001; Castric & Bernatchez, 

2003; Hampe et al., 2003; Petit et al., 2003; Martin & McKay, 2004). Conversely, 

if these populations represent a trailing edge, one would expect genetic diversity 

similar to that in the rest of the range or perhaps lower due to founder effects 

and/or increasing isolation and shrinking population sizes (Hampe & Petit, 2005). 

Identification of a stable versus trailing edge for P. tremuloides is critical as rear 

edge populations may be disproportionately valuable in terms of evolutionary 

potential and conservation value (Hampe & Petit, 2005). This issue is magnified 

for P. tremuloides in the western U.S., where the area currently occupied by 

aspen is projected to contract by up to 94% within a century, based on climate 

modeling (Rehfeldt et al., 2009). Here, I use a phylogeographic approach to 

assess range-wide genetic structure, characterize genetic diversity across the 

range, and elucidate patterns of postglacial recolonization by P. tremuloides. 
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MATERIALS AND METHODS 
 

 
 Samples were collected from 39 georeferenced sampling sites 

representing the full longitudinal and latitudinal extent of aspen’s range. A 

minimum of 10 ramets were sampled, by collecting whole leaves, from each site 

resulting in a total of 1221 individuals sampled across the 39 sampling sites. 

Samples from each site were collected in a dispersed fashion within a maximum 

area of 81 km2 to avoid resampling of clones as some clones have been shown 

to be quite large (Mock et al., 2008). Leaves from each individual were placed in 

separate envelopes which were then submerged in silica desiccant within air-

tight containers stored at ambient temperature. DNA was extracted from dried 

leaf tissue using a Qiagen DNEasy 96 Plant Kit following manufacturer’s 

protocol.  

In a preliminary pilot study, I compared nuclear and chloroplast sequences 

across individuals from four geographically dispersed sampling sites (BNF, MI, 

MXH, and NH) (Fig. 2). The purpose of this work was to identify loci which were 

variable across the species range and would therefore be useful for assessment 

of rangewide phylogeographic patterns.  Chloroplast loci to be sequenced were 

chosen based on previously demonstrated high levels of variation in other 

angiosperms; specific loci used in my study were psbD – trnT(GGU) and petL – 

psbE (Shaw et al., 2007). Four nuclear exon sequences were chosen based on 

results of a previous study in P. tremula that reported an excess of polymorphism  
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Figure 2 Map of sampling sites. Distribution of P. tremuloides is shown in green, 
outline of last glacial maximum shown in blue (Ray, 2001).  
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across samples from a larger set of nuclear loci (Ingvarsson, 2008). Results of 

my exploratory sequencing revealed surprisingly low levels of divergence across 

the four sampling sites, with strong evidence of unsorted lineages and shared 

alleles between sites. For the first chloroplast locus psbD – trnT(GGU), the total 

fragment length was 394bp which yielded no variable sites among the four 

sampling sites sampled. The second chloroplast locus, petL – psbE, resulted in a 

625bp fragment with four variable sites found among sampling sites (0.0064% 

divergence). The four nuclear coding regions resulted in a total alignment length 

of 2,975bp with only one variable site among sampling sites (0.00034%).  Due to 

the shallow divergence among sites and apparent lack of lineage sorting 

revealed by preliminary sequencing, I chose to use microsatellites to construct 

the range-wide phylogeography. These more rapidly evolving markers serve as 

powerful tools to describe patterns of gene flow and diversity. Eight microsatellite 

loci were amplified for all samples: WPMS14, WPMS15, WPMS 17,and 

WPMS20 (Smulders et al., 2001), and PMGC486, PMGC510, PMGC2571, 

PMGC2658 (http://www.ornl.gov/sci/ipgc/ssr_resources.htm); (Tuskan et al., 

2006). Reactions were prepared using 1.0 µL of template with final 

concentrations of 0.20 mM each dNTP, 1X PCR buffer, 0.25 µM each primer, 

and 0.01 U Taq polymerase for a final reaction volume of 10 µL. The following 

thermocycling conditions were used: 95° for 2 minutes followed by 30 cycles of 

94° for 35 seconds, primer-specific annealing temperature for 40 seconds, 72° 

for 45 seconds followed by a final 10 minute extension at 72°. Primer-specific 
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annealing temperatures were 60° (WPMS14, WPMS15, WPMS20), 57° 

(PMGC486), 56° (WPMS17, PMGC510), and 55° (PMGC2571, PMGC2658). 

Following PCR, products were analyzed on either an ABI 3100 or ABI 3730 

sequencer using a LIZ500 size standard. Microsatellite peaks were scored using 

ABI GeneMapper software.  

After scoring all microsatellite loci, samples that failed to amplify for at 

least seven of the eight loci were removed from the data set. Any samples with 

three alleles at any loci (putative triploids) were also removed from the data set to 

allow for downstream analysis. Finally, any samples from the same sampling 

area that were identical at all loci were identified using the “multilocus matches” 

function in GenAlEx software (Peakall & Smouse, 2006). Duplicates were 

removed, leaving one representative of each unique genotype. Following the 

removal of these samples, I was left with a data set comprised of 842 individuals 

from 39 sampling areas. From this, any sampling areas represented by fewer 

than 10 individuals were removed in order to maximize the statistical power in 

downstream analyses. The final data set included 794 individuals from 30 

sampling areas (Fig. 2; Table 1). Assessments of Hardy-Weinberg equilibrium 

(HWE) for all loci in all sampling sites and genotypic disequilibrium for all pairs of 

loci in all sampling sites were carried out in Arlequin version 3.5.1.3 (Excoffier & 

Lischer, 2010). 

To identify genetically distinct clusters from my multi-locus data set, I used 

a Bayesian algorithm and clustering model implemented in the software program  



11 
 

Table 1 List of sampling sites. Longitude and latitude given in decimal degrees 
represent a central point at each location. The number of individuals from each 
site (N) is the final number included in the data set following removal of triploids, 
identical matches, and any individuals that failed to amplify at a minimum of 
seven of eight microsatellite loci. Sample collectors: aEC Packee, Sr.; bML 
Fairweather; cR Daigle; dL Kennedy; eS Wilson; fRJ DeRose; gL Ballard; hE Hurd; 
iF Baker; jEF Martínez Hernández, J Higginson; kUSFS FIA Program; lB Pitman; 
mR Magelssen.  
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Structure version 2.3 (Pritchard et al., 2000). Because I know that P. tremuloides 

has undergone a recent and dramatic range expansion, and that both pollen and 

seed are capable of long distance wind dispersal, I chose the admixture ancestry 

model in Structure. In general, admixture models are considered favorable and 

more robust than models lacking admixture when local populations are likely to 

share migrants (Francois & Durand, 2010). I also chose the correlated allele 

frequencies model (F model) which assumes a unique rate of change in allele 

frequencies due to genetic drift, conversely related to effective population size, in 

subpopulations simultaneously diverging from a parental population (Falush et 

al., 2003). For all Structure runs, the length of the burnin period was set to 

20,000 with 50,000 MCMC iterations after burnin. Structure assigns each 

individual probabilistically to any number of clusters (K) where the range of K 

values to be tested is determined a priori. Each individual is assigned 

membership coefficients for each cluster which sum to 1 across the number of K 

clusters identified. The range of possible K values tested was 1 – 10 with 10 

iterations completed for each K value. The most likely K was determined by 

calculating ΔK following Evanno (2005). All calculations of ΔK were performed 

using the online version of Structure Harvester v0.6.91 (Earl & vonHoldt, 2012). I 

used CLUMPP version 1.1.2 (Jakobsson & Rosenberg, 2007) to account for 

problems with multimodality and label switching between iterations of Structure 

runs. All Structure results were plotted using Distruct version 1.1 (Rosenberg, 

2004).  
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Using clusters identified by Structure, an analysis of molecular variance 

(AMOVA) was carried out, implemented in Arlequin version 3.5.1.3 (Excoffier & 

Lischer, 2010). Mantel tests, implemented in GenAlEx (Peakall & Smouse, 

2006), were used to test for significant correlations between genetic (linearized 

ΦST) and geographic distances between sites within clusters identified by 

Structure. To describe genetic diversity within sampling areas across the range, 

average allelic richness values, across all eight loci, were calculated using 

FSTAT version 2.9.3.2 (Goudet, 2002). To visualize allelic richness across the 

range, the kriging interpolation tool was implemented in ArcGIS version 10 

(ESRI, Redlands, CA, USA) to construct an interpolated surface based on 

average allelic richness values input for each sampling area. Observed (H0) and 

expected (HE) heterozygosity values were calculated for each sampling site, 

averaged across all eight loci, in Arlequin. Inbreeding coefficients (FIS) were 

calculated using FSTAT.  
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RESULTS 
 

 
 From my multilocus data set of 794 individuals from 30 sampling sites, I 

identified K=2 clusters using the Bayesian algorithm implemented in Structure 

followed by calculation of ΔK (Fig. 3). One of the clusters (hereafter the 

‘southwestern cluster’) is represented by individuals from the nine sampling sites 

in the southwestern portion of aspen’s range (AZ, BNF, CANV, KFO, MXQ, NMT, 

NVW, USF, and WWA) (Fig. 3). The alternate cluster is represented by the rest 

of the sampling sites in the data set, all of which are north of the southwestern 

cluster and will hereafter be referred to as the ‘northern cluster’. Next, I tested for 

further structuring within each of these two clusters. I isolated the southwestern 

cluster, 164 individuals from nine sampling sites, and repeated the Structure 

analysis. Once again, following calculation of ΔK, K=2 optimal clusters were 

identified, referred to as the southwest-south (SWS) and southwest-north (SWN) 

clusters from here on (Fig. 4). When the same analysis was performed for the 

north cluster, 630 individuals from 21 sampling sites, K=2 clusters were again 

identified. This time, however, membership coefficients revealed weaker 

structuring as many individuals had strong probabilities of assigning to either one 

of the two clusters (Fig. 5).  

 Out of 240 locus/site combinations, and using Bonferroni-corrected 

significance levels, we found deviations from Hardy-Weinberg expected 

genotypic proportions at the AZ site (WPMS17 and PMGC2658), the MN site  
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Figure 3 Assignment of sampling sites to K=2 clusters identified by Structure 
based on microsatellite allele frequencies. Pie charts represent probability of 
each sampling site belonging to each of the two clusters, probability values 
normalized using CLUMPP. Pie chart sizes are relative sample size (N) at each 
sampling site. Individual membership coefficients are displayed in bar plot. Each 
individual is represented by a single bar, sampling site labels displayed below. 
Southwestern cluster shown in blue, northern cluster shown in orange. 
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Figure 4 Assignment of sampling sites from the southwestern cluster to K=2 
clusters identified by Structure based on microsatellite allele frequencies. Pie 
charts represent probability of each sampling site belonging to each of the two 
clusters, probability values normalized using CLUMPP. Pie chart sizes are 
relative to sample size (N) at each sampling site. Individual membership 
coefficients are displayed in bar plot. Each individual is represented by a single 
bar, sampling site labels displayed below. SWS cluster shown in dark purple, 
SWN cluster shown in light blue. 
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Figure 5 Assignment of sampling sites from the northern cluster to K=2 clusters 
identified by Structure based on microsatellite allele frequencies. Pie charts 
represent probability of each sampling site belonging to each of the two clusters, 
probability values normalized using CLUMPP. Pie chart sizes are relative to 
sample size (N) at each sampling site. Individual membership coefficients are 
displayed in bar plot. Each individual is represented by a single bar, sampling site 
labels displayed below.  
 
 

 

 

 

 

 

 



18 
 

(PMGC2571), and the USF site (WPMS20 and PMGC2658). No significant 

genotypic disequilibrium was detected following Bonferroni correction. I used 

AMOVA and FST to assess the degree of structuring among the two major 

clusters (southwestern and northern) and sampling sites within each of these 

clusters (Table 2a). AMOVA results revealed that 5.4% of the genetic variation 

was partitioned among the two major clusters, 3.2% among sampling sites within 

the two major clusters, and 91.4% within sampling sites with an FST of 0.086. The 

same AMOVA was run to assess the degree of structuring among the two 

subclusters identified within the southwestern cluster (SWN and SWS) and 

among sampling sites within each of these subclusters (Table 2b). AMOVA 

results revealed that 11.4% of the genetic variation in the southwestern cluster 

was partitioned among the two subclusters, 6.1% among sampling sites within 

the two subclusters, and 82.5% within sampling sites with an FST of 0.175.   

 Genetic distance was significantly correlated with geographic distance in 

the southwestern cluster (P<0.01) but not the northern cluster (P=0.311). Sites 

within the southwestern cluster displayed a much wider range of linearized 

pairwise ΦST than those within the northern cluster (Fig. 6). Allelic richness 

values, averaged across all eight loci for each of the two major clusters, did not 

differ significantly at 14.592 and 16.995 for the southwestern and northern 

clusters respectively (P=0.078) (Fig. 7a; Table 3). There was also no significant 

difference detected between each of the southwestern subclusters, with allelic 

richness values of 11.424 and 10.455 for the SWS and SWN clusters,  
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Table 2 Results of analysis of molecular variance (AMOVA) based on 
microsatellite allele frequencies for (a) southwestern and northern clusters and 
(b) subclusters within the southwestern cluster, SWS and SWN. 
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Figure 6 Geographic versus genetic distance for sites within the southwestern 
and northern clusters. Each point represents the genetic distance between two 
sites as a function of geographic distance. 
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respectively (P=0.373) (Table 3). Within sites, allelic richness across the range, 

varied from 3.337 (MXQ) to 6.832 (WNC) (Fig. 7b). Sampling sites within the 

southwestern cluster had an average allelic richness of 4.989, significantly less 

than sites within the northern cluster which had an average allelic richness of 

6.415 (P<0.001) (Fig. 7c). Average allelic richness of sampling sites within the 

two subclusters was 4.923 and 5.073 for the SWS and SWN subclusters 

respectively. Elevated levels of allelic richness among sampling sites, along with 

interpolation of allelic richness across the range, identified Alaska, the Great 

Lakes area, and the northeastern U.S./Canada as areas of elevated within-site 

diversity and the southwestern portion of the range as an area of decreased 

within-site diversity (Fig. 8).  

 Observed site-level heterozygosity (H0) values ranged from 0.572 (AZ) to 

0.850 (UME) and expected site-level heterozygosity (HE) values ranged from 

0.613 (MXQ) to 0.801 (WNC) (Table 3). Average H0 among sampling sites within 

the two major clusters was 0.677 and 0.773 for the southwestern and northern 

clusters respectively. Average HE among sampling sites within the two major 

clusters was 0.711 and 0.779 for the southwestern and northern clusters 

respectively. Average H0 among sampling sites was 0.670 and 0.685 for the 

SWS and SWN subclusters, respectively. Additionally, average HE among 

sampling sites within each of the subclusters was 0.715 and 0.707 for the SWS 

and SWN subclusters respectively. When sampling sites within major clusters 

were pooled and each cluster treated as a single group, cluster-level HE values  



22 
 

 
 
Figure 7 Measures of allelic richness. (a) Regional allelic richness values, 
averaged across all eight loci for each cluster. (b) Within-site allelic richness for 
each of the 30 sampling sites, colors represent cluster assignment. (c) Average 
within-site allelic richness for each cluster. 
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Figure 8 Interpolation of allelic richness across the range of P. tremuloides 
based on average allelic richness values at each sampling site. Allelic richness of 
sites across the range, varied from 3.337 (MXQ) to 6.832 (WNC). Red represents 
areas of higher allelic richness, yellow represents areas of lower allelic richness. 
Outline of last glacial maximum shown in blue (Ray, 2001).   
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Table 3 Summary statistics for each cluster and sampling site. Allelic richness 
(AR), observed heterozygosity (H0), expected heterozygosity (HE), inbreeding 
coefficients (FIS). Cluster-specific values were calculated regionally rather than 
within-site averages.  
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ranged from 0.789 (northern cluster) to 0.805 (southwestern cluster) (Table 3). 

Lastly, levels of inbreeding within sampling sites were low with an average FIS of 

0.019 (Table 3).   

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



26 
 

DISCUSSION 
 

 
Range-wide Population Structure 

 My results indicate the existence of two genetically and geographically 

distinct clusters across the range of aspen. The geographic division of the 

southwestern and northern clusters reveals the potential for two distinct 

ecoptypes on the landscape; the southwestern cluster locally adapted to the 

semiarid climate of the western United States and the northern cluster adapted to 

the mesic and largely continental climate of Canada and Alaska. Given the extent 

of the Laurentide and Cordilleran ice sheets during the LGM, much of the current 

range of P. tremuloides was glaciated until at least the end of the Pleistocene 

epoch. Consequently, the vast majority of aspen’s current distribution is the result 

of a geologically recent range expansion resulting from postglacial recolonization. 

The assignment of all of the previously glaciated sites to a single genetically 

diverse cluster suggests rapid post-glacial recolonization, potentially with 

widespread lineage mixing following the retreat of the ice sheets with populations 

in the Southwest contributing little, if at all, to recolonization. Also, the lack of 

clustering of sites near putative refugia reveals the possibility of recolonization 

from a single refugium.   

 Although the major genetic clusters also represented geographic clusters, 

the POTR sampling site within the greater Yellowstone area (POTR) was an 

anomaly. This site was consistently assigned to, and strongly affiliated with, the 

northern cluster in the individual-based assignment testing, contrary to my 
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expectations based on the geographical location of this site. Average allelic 

richness was also higher at this site in comparison to the rest of the southwestern 

sites, and more similar to those observed in northern cluster sites. I speculate 

that the affiliation of POTR with the northern cluster may seem geographically 

anomalous because I lack sampling sites throughout Montana and North Dakota 

that could serve as a logical connection to the northern cluster populations. The 

affiliation of POTR with the northern cluster is consistent with the finding that the 

northern and southwestern clusters are separated by the continental divide, at 

least in the U.S.  

 My results suggest that the southwestern cluster sites are more isolated  
 
than the northern cluster sites (Fig. 6). This finding is consistent with the general  
 
pattern of pronounced habitat fragmentation in the southwestern portion of the  
 
species range, and may reflect post-glacial habitat contraction. It appears that  
 
the northern cluster was established from glacial refugia both north and south of  
 
the ice sheets, or potentially a single refugium, but not from a northward  
 
expansion of the southwestern cluster. This lack of evidence of northward  
 
expansion of the southwestern cluster is also consistent with the finding that  
 
relictual populations may not significantly contribute to postglacial  
 
recolonizations, which acts to preserve their genetic distinctiveness (Bilton et al., 

1998; Petit et al., 2003; Hampe & Petit, 2005). The lack of further structuring  

within the northern cluster, i.e. clustering of sites near putative glacial refugia, is  
 
likely due to the recentness of recolonization coupled with widespread lineage  
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mixing due to the largely continuous nature of the habitat following retreat of the  
 
ice sheets (Petit et al., 2003).    
 
 
Stable vs. Trailing Edge Dynamics 
 
 Species distributions expand, contract, and shift in response to changes in 

climate and other variables. A warming climate, for example, may result in the 

shift of a species distribution to higher latitudes, exemplified by some boreal 

species of North America (Williams et al., 2004). This shifting distribution has 

both a leading edge, expanding to new territory, and a rear edge (Hampe & Petit, 

2005). Two scenarios exist to describe populations at the rear edge of a 

distribution; these populations may be characterized as “stable” or “trailing” 

edges. Under the stable edge scenario, these rear edge populations persist 

throughout climate oscillations, usually in areas of disparate topography which 

increases the chances of matching suitable climatic profiles through slight 

altitudinal shifts (Comps et al., 2001; Tzedakis et al., 2002). As mentioned 

previously, stable edge populations are expected to have low levels of within-

population genetic diversity (Castric & Bernatchez, 2003; Petit et al., 2003; 

Chang et al., 2004) but increased regional genetic diversity (Comps et al., 2001; 

Castric & Bernatchez, 2003; Hampe et al., 2003; Petit et al., 2003; Martin & 

McKay, 2004). Conversely, under a trailing edge scenario, rear edge populations 

are remnants of the previous distribution left behind as the entire range shifts to 

more favorable conditions. In this case, rear edge populations are at risk of 

complete extirpation as conditions become less favorable through time and the 



29 
 

entire distribution shifts; examples in North America include certain spruce 

species as well as Pinus banksiana  and Pinus resinosa (Jackson et al., 1997; 

Jackson et al., 2000; Williams et al., 2004). Trailing edge populations are 

expected to have within-population genetic diversity similar to that observed in 

the rest of the range, or perhaps markedly lower due to founder effects and/or 

increasing isolation and shrinking population size.  Additionally, trailing-edge 

populations are expected to lack deep divergence among populations due to 

these populations being only slightly older than those in the rest of the range 

(Hampe & Petit, 2005).  A high conservation value would be placed on stable 

edge populations to preserve the elevated levels of genetic diversity and 

divergent lineages present (Petit et al., 1998). Alternatively, trailing edge 

populations should be conserved for their inherent value on the landscape. In the 

case of P. tremuloides, such populations should be preserved for the biodiversity 

harbored in western aspen habitat (Stohlgren et al., 1997a; Stohlgren et al., 

1997b; Mills et al., 2000; Rumble et al., 2001; Simonson et al., 2001) as well as 

the cultural and aesthetic value placed on western aspen.  

My results indicate that the southwestern cluster represents a distinct 

lineage, and a potentially distinct ecotype, which is consistent with these 

populations being part of a stable edge throughout multiple climate oscillations. 

This southwestern portion of the range is home to multiple mountain ranges and 

basins which would have provided ample opportunity for altitudinal shifts in 

response to changes in climate throughout past glacial and interglacial episodes. 
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Allelic richness within sites in the southwestern cluster were lower than within-

site levels in the rest of the range but allelic richness of the southwestern cluster, 

as a whole, was near that of the northern cluster which reveals the low within-site 

genetic diversity and increased regional genetic diversity characteristic of a 

stable edge. I also found no evidence of northward expansion of the 

southwestern cluster which is common of relict stable edge populations (Bilton et 

al., 1998; Petit et al., 2003).  

The idea that southwestern aspen may represent a distinct ecotype is not  
 
new.  Axelrod (1941) compared leaf fossil morphology and habitat types of two  
 
potential precursor species of P. tremuloides existing during the Miocene and  
 
Pliocene, P. lindgreni and P. pliotremuloides. He suggested that, when compared  
 
to modern P. tremuloides, these two taxa should be recognized as distinct  
 
ecotypes.  Leaves of P. lindgreni more closely resemble leaves of modern aspen  
 
growing in more mesic environments and leaves of P. pliotremuloides are  
 
indistinguishable from leaves of modern aspen growing in the more arid portion  
 
of the range (southwestern). From this comparison of leaf morphology and  
 
habitat types between these two pre-historic species, Axelrod (1941) concluded  
 
that, given the enormous and varied distribution of contemporary P. tremuloides,  
 
it seems “highly probable” that multiple ecotypes be present. Further, Barnes  
 
(1975) described clinal variation in aspen leaf morphology from south to north in  
 
the western United States and Canada. Throughout long-term persistence in the  
 
western United States and Mexico, selection would be expected to favor  
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adaptation to local conditions in these populations rather than increased  
 
dispersal and generalism (Dynesius & Jansson, 2000). This expectation of local  
 
adaptation, coupled with reduced gene flow due to isolation in the Southwest,  
 
can lead to the development of exceptionally well-defined ecotypes (Hampe & 

Bairlein, 2000; Castric & Bernatchez, 2003; Perez-Tris et al., 2004; Hampe & 

Petit, 2005). Given that the populations that make up the southwestern cluster  

likely persisted throughout multiple climate oscillations in the western United  
 
States and Mexico, the more arid environment of this southwestern portion of the  
 
range, and the greater degree of isolation among populations in this cluster, I find  
 
it improbable that these populations do not represent a distinct ecotype. 

 
        
Sub-structuring Within the Southwestern Cluster 
 

 Geographic and genetic subdivision within the southwestern cluster  
 
closely resembles that demonstrated for ponderosa pine (Pinus ponderosa Laws  
 
Pinaceae) (Latta & Mitton, 1999). Latta and Mitton (1999) describe two  
 
historically separate groups of ponderosa pine east and west of the Great Basin,  
 
currently meeting in a transition zone in west-central Montana, and further  
 
classify these two groups as distinct varieties of ponderosa pine (P. p. ponderosa  
 
and P. p. scopulorum). They hypothesized that these two groups were separated  
 
during the LGM and the current transition zone represents a point of secondary  
 
contact in which case unique haplotypes would be expected on either side of the  
 
transition zone with a potential mixture of haplotypes within the transition zone.  
 
These researchers demonstrated the existence of primarily east and west  
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haplotypes using length variation in mtDNA and cpDNA markers, with a mixture  
 
of haplotypes in the transition zone. My structuring results, based on  
 
microsatellite allele frequencies, show a similar result for P. tremuloides (Fig. 4).  
 
Due to a lower number of sampling sites in this area, though, it is difficult to  
 
clearly delineate a transition zone between the SWS and SWN clusters. The USF  
 
site does show a greater level of mixed assignment between the two subclusters  
 
than the other sites and is nearly longitudinally identical in location to the  
 
transition zone in west-central Montana for ponderosa pine. I propose that the  
 
SWS and SWN clusters represent unique gene pools but are of the same  
 
ecotype described above (southwestern cluster). These gene pools may have  
 
been separated and reunited, through a transition zone, multiple times through  
 
multiple glacial cycles. The varied topography that these populations inhabit  
 
could lead to subdivision, with gene flow between the two subclusters only  
 
occurring during glaciation or warming events that would open new habitable  
 
areas (Hewitt, 2000).  

 
 
Centers for Diversity and Potential Glacial Refugia 
 
 Based on the current distribution of P. tremuloides, there are several 

potential refugial sites which may have harbored aspen during the LGM and 

served as points of origin for postglacial recolonization (Fig. 1). One would 

expect relatively higher levels of allelic richness at such refugial sites since they 

are sources for recolonization of the surrounding region following retreat of the 

ice sheets. One would also expect that populations near glacial refugia will form 
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clusters due to the presence of unique alleles representing divergent lineages. 

Due to the survival of P. balsamifera in the Beringia refugium during the LGM 

(Brubaker et al., 2005), I identified this site as a likely refugium for P. tremuloides. 

I also expected to find an area of high diversity near the Great Lakes as this area 

is close to a putative refugium, the “driftless area” (Rowe et al., 2004), at the 

southern edge of the range.  

Assessment of allelic richness across the range provided insight into 

potential glacial refugia for P. tremuloides and allows inference of postglacial 

recolonization patterns. The ten sites with the highest average allelic richness 

values (WNC, WII, UME, MNSL, MNL, WIMI, AKK, MI, MN, and HSPQ) lie in 

close proximity to proposed glacial refugia. Three of these sites (WNC, UME, and 

HSPQ) are in the northeastern United States and Canada near the proposed 

Grand Banks refugium (Holder et al., 1999), an area off of the present day coast 

of Newfoundland which remained ice free and above sea level during the LGM. 

Interestingly, however, our Newfoundland sampling site (DLN) displayed below 

average allelic richness. A possible explanation for this may be shrinking 

population size coupled with a lack of gene flow due to isolation through time. 

Currently, Newfoundland is separated from the Labrador Peninsula by the Gulf of 

St. Lawrence and the Straight of Belle Isle which together may act as a barrier to 

gene flow, effectively isolating aspen populations on the island from those on the 

mainland. Another six sites (WII, MNSL, MNL, WIMI, MI, and MN) from the ten 

most diverse sites are from the Great Lakes area, near an area known as the 
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“driftless area” (Rowe et al., 2004). The term “driftless area” comes from the lack 

of glacial drift and evidence of glaciation. This was a large area that remained ice 

free during the LGM despite the advancement of the Laurentide ice sheet. The 

only remaining site I have yet to mention from our ten most diverse sites is 

located in Kenai, Alaska (AKK), a peninsula on the southern portion of the state. 

This sampling site lies near the putative Beringia refugium, which has not only 

been shown to harbor other Populus species during the LGM (Brubaker et al., 

2005), but other taxa as well (Holder et al., 1999; Tremblay & Schoen, 1999; 

Anderson et al., 2006; Loehr et al., 2006). Our other sampling site in Alaska 

(AKCF) displayed only slightly elevated allelic richness relative to other sites near 

refugia. I expected a higher level of allelic richness at this site due to its location 

near the Beringia refugium. This site lies at the northern limit of aspen’s current 

range though, which may explain the slightly lower allelic richness versus the 

AKK site (i.e. possible founder effects at an expanding edge) (Hewitt, 2000).  

It is also worth noting that another site displaying an elevated level of 

allelic richness (HIN) is in Alberta, Canada in close proximity to the controversial 

“ice-free corridor” (Mandryk et al., 2001). It is currently generally accepted that 

the corridor did not extend to the southern glacial limit during the LGM due to 

coalescence of the ice sheets in southern Alberta but geological evidence lends 

support to an ice-free area north of southern glacial limit. There is also evidence 

of this area serving as a refugium for mountain sheep based on mtDNA (Loehr et 

al., 2006). Increased diversity in this area lends support to the persistence of 
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aspen during the LGM but may also be explained by mixing of lineages during 

postglacial recolonization (Petit et al., 2003). As the range expanded north from 

south of the glacial margins following retreat of the ice sheets, it is possible these 

southern groups coalesced with groups expanding southward from Beringia as 

the corridor opened and widened. 

Interestingly, sites that are indicated as glacial refugia for P. tremuloides  
 
during the LGM, by elevated levels of allelic richness, did not form distinct  
 
clusters based on allele frequencies. A possible explanation for this may be the  
 
lack of divergent local adaptive differentiation among populations that survived  
 
the LGM in refugia both north and south of the ice sheets, followed by rapid  
 
recolonization and lineage mixing among several glacial refugial sources. If P.  
 
tremuloides expanded to areas of suitable climate and habitat following retreat of  
 
the ice sheets, populations that persisted in refugia would have been pre- 
 
adapted for such conditions (Davis & Shaw, 2001). Furthermore, Petit (2003)  
 
explains that populations near glacial refugia should be highly divergent due to  
 
prolonged periods of isolation, particularly in those populations that did not  
 
contribute to postglacial recolonization. In the case of P. tremuloides, the lack of  
 
evidence of deep divergence at refugial sites outside of the southwestern portion  
 
of the range may be explained by the rapid, multi-directional nature of the  
 
expansion and widespread lineage mixing. Finally, my sparse sampling strategy  
 
made it difficult to distinguish between hypotheses about various glacial refugia.  
 
A more powerful way to identify refugia and elucidate patterns of postglacial  
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recolonization would be to sample the entire range in a more dispersed fashion,  
 
rather than within pre-defined populations, in a way that includes the various  
 
scales being investigated (Guillot et al., 2009; Schwartz & McKelvey, 2009).   
 
 
Conclusions 
 
 From my multilocus data set of 794 individuals from 30 sampling sites 

across the range of P. tremuloides, I identified distinct population structuring at 

the continental scale. Two major clusters were discovered: a northern cluster 

composed almost entirely of sites within the boundaries of the LGM and a 

southwestern cluster composed of sites representing the fragmented 

southwestern portion of the range. Within this southwestern cluster, there is 

further population structure with two more subclusters identified, potentially 

representing two distinct gene pools within the southwestern cluster.  

I identified the southwestern portion of aspen’s range as a stable edge of 

genetic diversity with low levels of within-site genetic diversity but increased 

regional genetic diversity. I suggest that these southwestern populations 

represent a distinct ecotype based on the potential for local adaptation to 

different climatic regimes and minimal gene flow between the southwestern and 

northern clusters through time. The populations of this stable edge likely 

persisted through multiple climate oscillations by utilizing the varied topography 

of the southwestern portion of the range to match suitable climate through 

altitudinal shifts. With sudden dieback affecting stands throughout much of the 

species range (Frey et al., 2004), aspen in the western United States may be 
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particularly vulnerable, with significant decline over a 48-year period documented 

(Di Orio et al., 2005) along with the projected loss of up to 94% of area occupied 

by its contemporary climate profile within this century (Rehfeldt et al., 2009). 

Although populations of the Southwest have survived past climate shifts, current 

rates of change may exceed the adaptive and migratory capacity of many 

species (Tett et al., 1999). It is important to monitor these rear-edge populations 

as environmental conditions change to distinguish climate effects from other 

factors such as increasing fragmentation and competition with other species 

(Hampe & Petit, 2005). Also, though within-site genetic diversity is low in the 

Southwest, it is important to identify and preserve as many local populations as 

possible in order to maintain the divergent lineages that contribute to the regional 

genetic diversity (Petit et al., 1998; Hampe & Petit, 2005). Restoration efforts 

such as controlled burning and management to limit ungulate browsing should be 

employed where necessary to maintain the health of these populations. Though 

assisted migration may represent a powerful conservation effort for aspen in the 

northern portion of  the range in the face of a warming climate (Gray et al., 2011), 

southwestern aspen are at the southern extent of the range with no “preadapted” 

populations to draw from (Davis & Shaw, 2001).  

 The identification of genetic diversity hot spots sheds light on potential 

glacial refugia as well as postglacial recolonization patterns. I identified three 

potential refugia as sources of postglacial recolonization for the northern clade, 

with a fourth area representing either a refugium or a postglacial mixing of 
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lineages, although my inferences about the geography of these potential refugia 

were limited by my sampling design. The three likely refugial sites are Beringia in 

Alaska, the “driftless region” near the Great Lakes, and the Grand Banks 

refugium off the present day coast of Newfoundland. The fourth area, in Alberta, 

Canada, may represent a site where P. tremuloides persisted during the LGM or 

a mixing of lineages from southern glacial margins moving north with lineages 

from Beringia moving south. In any case, these diversity hot spots are of high 

conservation value, because by concentrating on these sites it may be possible 

to conserve a large portion of the genetic diversity present throughout much of 

the range.  
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