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ABSTRACT 

 
 

Genetic Diversity and Genetic Structuring at Multiple Spatial Scales across the Range of  
 

the Northern Leopard Frog, Rana pipiens 
 
 

by 
 
 

Ryan P. O’Donnell, Doctor of Philosophy 
 

Utah State University, 2012 
 
 

Major Professor: Karen E. Mock 
Department: Wildland Resources 
 
 

Despite a thorough understanding of the proximate mechanisms that drive genetic 

diversity, we are still very poor at predicting the genetic diversity of natural populations.  

Understanding patterns of genetic diversity is important for many reasons, including 

predicting species’ adaptation to climate change and predicting the spread of invasive 

species, but it is particularly important for species that are declining.  This dissertation 

attempts to explain patterns in genetic diversity at multiple spatial scales across the range 

of the Northern Leopard Frog, Rana pipiens, which is declining across large portions of 

its range.  

Genetic diversity is often lower in edge populations than in central populations.  

Genetic diversity may be reduced in edge populations per se, or populations that occur at 

the edge of the species’ range may have low diversity because they have recently 

expanded into new habitat and thus show signs of founder effects.  In Chapter 2, we 

tested several alternative hypotheses to explain genetic diversity across the species’ 
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range, and to explain why some edge populations may not show reduced genetic 

diversity.  We found that genetic diversity was reduced in edge populations relative to 

central populations, but was not reduced in populations in previously glaciated areas 

relative to previously unglaciated areas; therefore position at range edge had a stronger 

effect in reducing diversity than recent colonization of new habitat.  We found that 

genetic diversity declined linearly towards the range edge in one of two transects from 

range center to range edge.  We concluded that genetic diversity in this species is 

generally reduced by position at the range edge, but that this effect may differ among 

edges.   

In Chapter 3, we tested the hypothesis that eastern and western populations were 

genetically distinct.  We found two distinct clades that introgress in some markers but are 

distinct and defined by narrow boundaries in the eastern Great Lakes region in others.  

We concluded that genetic diversity in the Mississippi River region was elevated by the 

introgression of descendants from two Pleistocene refugia. 

In Chapter 4, we analyzed genetic diversity within populations throughout 

Arizona to assess potential source populations for reintroductions.  We also analyzed 

mitochondrial DNA to determine whether any populations contained genetic material not 

native to the region.  Populations in one area had high genetic diversity and high gene 

flow among populations, but also contained evidence of introduction of eastern frogs.  

We conclude that supplementing genetic diversity in other populations with 

translocations from this area is not recommended.  

 
 

(133 pages) 
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PUBLIC ABSTRACT 

 
 

Genetic Diversity and Genetic Structuring at Multiple Spatial Scales across the Range of  
 

the Northern Leopard Frog, Rana pipiens 
 

by 
 

Ryan P. O’Donnell 
 

 
Genetic diversity is the raw material for evolution: evolution cannot happen 

without genetic diversity, and the ability of a population to respond to a changing 

environment depends directly on how diverse its genes are.  Understanding the 

distribution of genetic diversity is important for many reasons, including predicting 

whether species will be able to adapt to climate change and predicting the spread of 

invasive species.  Information about the distribution of genetic diversity across the range 

of the Northern Leopard Frog, a declining species, will not only help us to ensure that the 

species can continue to evolve in response to changing environmental conditions, but it 

will also help us gain a better understanding of what factors drive genetic diversity in 

populations of other species.  In Chapter 2, we found that genetic diversity was reduced 

in edge populations relative to central populations, but was not reduced in populations in 

previously glaciated areas; therefore position at range edge had a stronger effect in 

reducing diversity than recent colonization of new habitat.  In Chapter 3, we found two 

distinct lineages within the species that mix in the eastern Great Lakes region, elevating 

genetic diversity in that area.  In Chapter 4, we found that populations in the Stoneman 

Lake area of Arizona had high genetic diversity, but also contained evidence of 
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introduction of eastern frogs, and we concluded that moving frogs from the Stoneman 

Lake area to restore diversity in other Arizona populations is not recommended.  
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CHAPTER 1 

 
INTRODUCTION 

 

Populations vary across species’ ranges in many ways.  Populations at the edge of 

the range may encounter competitors, parasites, or predators not encountered in the 

central part of the range, may be under greater physiological stress due to climatic 

conditions at the limit of the species’ tolerance, and may be smaller and more isolated 

from one another (reviewed in Holt and Keitt 2000; Gaston 2003).  When these 

differences result in reduced gene flow, increased genetic drift, or stronger selection in 

edge populations, as they often do, these effects may act to reduce genetic diversity in 

peripheral populations and to increase their divergence from one another (Gaston 2003). 

The prevailing paradigm is that genetic diversity is lower at species’ range edges, 

and higher at range centers (Gaston 2003; Eckert et al. 2008), predicted primarily from 

the metapopulation dynamics which often affect populations at range edges (Holt and 

Keitt 2000).  As populations become smaller, more isolated, and more ephemeral towards 

the edge of a species’ range, genetic diversity is expected to be reduced due to genetic 

drift.  However, many studies have found that this is not always the case.  A 2003 review 

found that 39% of 36 studies did not find reduced diversity in edge populations (Gaston 

2003).  A later review came to a nearly identical conclusion, finding that 36% of 134 

studies did not demonstrate reduced diversity in edge populations (Eckert et al. 2008).  

The difference in the number of studies included in these two reviews separated by only 

five years gives an accurate impression of the rate at which this body of literature is 

growing.  However, we still lack the ability to predict when genetic diversity will decline, 
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or not decline, towards the edge of a species’ range.  Despite a broad range of studies 

describing the pattern of genetic diversity across species’ ranges, there has been little 

effort to test alternative explanations for the patterns observed (Eckert et al. 2008).  

Understanding the patterns of genetic diversity across species’ ranges is important 

for many reasons.  For example, as our planet warms, species’ ranges are expected to 

shift up in elevation and towards the poles (e.g. Davis and Shaw 2001).  Knowing the 

patterns of genetic diversity across a range can help us to predict the ability of these 

species to adapt or shift their ranges in response to climate change (Pujol and Pannell 

2008; Pearson et al. 2009).  Second, modern epidemiology is often concerned with the 

spread of pathogen genotypes through a host population.  Knowing how genetic diversity 

varies across the ranges of hosts and pathogens is important for planning responses to 

emerging diseases and for predicting their spread and evolution (e.g. Levis et al. 1998; 

Biek et al. 2003).  Third, one of the greatest threats to biodiversity is the spread of 

invasive species (Wilcove et al. 1998).  Similarly to the case of spreading diseases, 

understanding patterns of genetic diversity at invasion fronts will likewise enhance our 

ability to anticipate and manage the spread of invasive species (Prentis et al. 2008; Kolbe 

et al. 2010; Lawson Handley et al. 2011).   

Understanding the factors driving genetic diversity across the range is important 

for many species, including the Northern Leopard Frog, Rana pipiens.  This species is 

found across much of North America, ranging from the Atlantic coast west to eastern 

Washington State and northeastern California, and from Arizona and New Mexico in the 

south, north to the Northwest Territories of Canada (Rorabaugh 2005).  It can be 

abundant where it is found, contributing significantly to the vertebrate biomass of some 



 3 
ecosystems and linking aquatic and terrestrial habitats (Merrell 1968; Harding 1997).  It 

is also an economically and culturally important species, used as fishing bait, kept as 

pets, used for dissections in education, and used for medical research (Gibbs et al. 1971).  

Perhaps in part because of the wide distribution and sometimes high local 

abundance of the Northern Leopard Frog, when population declines and range 

contractions were first noted in the species in the 1970s, they were unexpected (Gibbs et 

al. 1971).  Over the subsequent decades, population losses continued to be documented 

across the species’ range.  Local extinctions were noted, for example, in the mountains of 

Colorado in the 1970s and early 1980s (Corn and Fogleman 1984), in several areas of 

Wyoming in the late 1970s and early 1980s (Baxter and Stone 1985), and in Arizona in 

the mid-1980s (Clarkson and Rorabaugh 1989).  Losses of populations continue to be 

documented across the species’ range (e.g. Werner 2003; Germaine and Hays 2009; 

Desroches et al. 2010).   

Declines were noted not only in the number and distribution of populations, but 

also in abundance.  For example, in the central part of the species’ range in Wisconsin, 

declines in abundance were first noted in the 1970s (Hine et al. 1981) and have continued 

to at least the late 1990s (Mossman et al. 1998), and in Indiana a 45-year study 

documented significant reductions in numbers (Minton 1998).  In Iowa, it was estimated 

that total population numbers of Northern Leopard Frogs had declined by two to three 

orders of magnitude since the turn of the 20th century (Lannoo et al. 1994). 

In response to population declines throughout the Northern Leopard Frog’s range, 

but especially in the west, many agencies have begun to plan for and implement 

management actions intended to restore the species to previously occupied parts of its 
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range.  For example, Alberta has an active relocation program and is attempting to 

restore the species in areas where it was once found (Wilson et al. 2008).  Likewise, the 

Arizona Game and Fish Department has begun conducting some translocations and is 

planning more (S. MacVean, Arizona Game and Fish Department, pers. comm.).  These 

and other management actions will directly benefit from information about the 

distribution of genetic diversity within this species and from information about the 

relatedness of populations to one another.   

The applications of the findings presented in this dissertation are not limited to 

this species alone.  Many different kinds of management actions are motivated by the 

goal of maximizing the likelihood of population persistence (Brook et al. 2000; Morris et 

al. 2002; Reed et al. 2003), and population persistence depends on having adequate 

genetic diversity to allow adaptation in response to changing conditions and to avoid the 

negative effects of inbreeding depression.  Unfortunately, directly measuring genetic 

diversity is expensive, and our predictions of population genetic diversity are imperfect.  

Although it is clear that population genetic diversity is a function of the processes of 

mutation, selection, migration, and drift, integrating these processes into the prediction of 

current genetic diversity in any natural population remains quite difficult.  The general 

theme of this dissertation is to develop a greater understanding of the processes that drive 

genetic diversity in natural populations, with the dual goals of improving our ability to 

predict genetic diversity across species’ ranges generally and providing more insight into 

the phylogenetic history and genetic diversity of the Northern Leopard Frog specifically. 

 My dissertation will attempt to explain some of the patterns in genetic diversity 

across the range of the Northern Leopard Frog.  I will approach this broad issue in the 
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following three chapters.  In Chapter 2, I will test competing explanations for reduced 

genetic diversity at range edges.  Genetic diversity can be reduced in edge populations by 

position on the edge per se, or by founder effects in recent colonization of newly 

available habitat, but these two confounding explanations are rarely addressed.  I will 

study genetic diversity across the range of the Northern Leopard Frog first to test whether 

genetic diversity is predicted by position at range center or edge, and second to test 

whether diversity is predicted by the history of the population (position above or below 

the glacial maximum in the last ice age).  Most previous studies of genetic diversity used 

categorical approaches similar to what I use in this first part, but because of this, we have 

little understanding of how diversity changes between the center and edges of ranges.  

Accordingly, I will examine the pattern of genetic diversity continuously from range 

center to edge in two transects.  The change in genetic diversity along these two transects 

will help indicate whether reductions in genetic diversity are predominately influenced by 

decreasing connectivity of populations (creating a constant decrease in genetic diversity), 

or by positive feedback loops, which are expected to result in a dramatic loss of diversity 

at a threshold of connectivity as reduced diversity reduces fitness, which reduces 

population size, which results in further losses of diversity (Gilpin and Soulé 1986). 

 In Chapter 3, I will assess the range-wide mitochondrial and nuclear 

phylogeography of the Northern Leopard Frog.  Previous work has shown deep 

phylogenetic divergence between eastern and western Northern Leopard Frogs on the 

basis of mitochondrial DNA (Hoffman and Blouin 2004a), but mitochondrial DNA is 

only a very small part of the genome, and it is inherited differently from the rest of the 

genome, having an effective population size that is four times smaller than that of rest of 
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the genome and being inherited through females only.  I will analyze four nuclear 

sequences and seven nuclear microsatellites to test whether the differences between 

eastern and western frogs that were identified by mitochondrial sequencing are also 

evident in nuclear DNA.   

 In Chapter 4, I will examine a specific case study of an edge population with 

unexpectedly high genetic diversity.  Northern Leopard Frogs in the Stoneman Lake area 

of Arizona were shown in previous work to have relatively high genetic diversity 

(Kimberling et al. 1996), and they were considered as a potential source of frogs for 

translocations elsewhere in northern Arizona, where the species has dramatically declined 

in recent decades (Clarkson and Rorabaugh 1989).  Hoffman and Blouin (2004a) found 

one individual in their sample of ten from that population that had an eastern 

mitochondrial haplotype, far from the nearest eastern populations.  They speculated that 

they might have happened upon an eastern frog that was a recently released pet or 

laboratory animal.  I will investigate this population, in the context of others in the area, 

to determine whether the high diversity there may be explained by the successful 

establishment of eastern frogs in an area where western frogs are native.  
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CHAPTER 2 

WHEN AND HOW DOES GENETIC DIVERSITY DECLINE TOWARDS A RANGE 

EDGE?  TESTING ALTERNATIVE HYPOTHESES OF THE PROCESSES DRIVING 

GENETIC DIVERSITY IN POPULATIONS2 

 
Abstract 
 
 An understanding of the factors driving genetic diversity in populations is 

increasingly important in many areas of biology, including epidemiology, biological 

consequences of climate change, and the spread of invasive species.  However, despite 

hundreds of papers studying genetic diversity across species’ ranges, we lack a cohesive 

view of the factors driving that diversity.  Few papers have empirically addressed 

alternative explanations for genetic diversity, and even fewer have incorporated 

information on the history of populations or include assessments of diversity 

continuously, rather than categorically.  Genetic diversity can be reduced in edge 

populations by position on the edge per se (i.e. by factors inherent to range edges), or by 

founder effects in recent colonization of newly available habitat, but these two 

confounding explanations are rarely addressed.  We studied genetic diversity across the 

range of the Northern Leopard Frog, first to test whether genetic diversity is predicted by 

position at range center or edge, and second to test whether diversity is predicted by the 

history of the population (position above or below the glacial maximum in the last ice 

age).  A second shortcoming of many studies available on the distribution across species’ 

ranges is that they use only a categorical approach, as we did in the first part, and thus 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 This chapter is co-authored by Ryan P. O’Donnell and Karen E. Mock. 
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little is known about how diversity changes from range center to edge.  Accordingly, 

we examined the pattern of genetic diversity continuously from range center to edge in 

two transects.  In the first part, we found that genetic diversity was reduced in edge 

populations relative to central populations, but was not reduced in populations in 

glaciated areas versus unglaciated ones, providing evidence that position at range edge 

has a stronger effect in reducing diversity than recent colonization in this species.  In the 

second part, we found that genetic diversity declined linearly towards the range edge in 

one transect, but did not decline in the other.  These transects differed in the nature of the 

range edges they included: a transect with increasingly isolated populations showed a 

decline in diversity, and a transect through continuous habitat did not.  Taken together, 

these results provide evidence that genetic diversity in this species is reduced by position 

at the range edge, but that these effects may not be evident in all edges.   

 
Introduction 
  

An often cited “rule” of population genetics is that genetic diversity tends to be 

higher in the interior of species’ ranges and lower at the periphery (e.g. Hutchison 2003; 

Gapare and Aitken 2005; Arnaud-Haond et al. 2006; Lind et al. 2007).  This may be 

directly related to the abundant center distribution (reviewed in Sagarin and Gaines 

2002): if populations are smaller at the periphery, they may be more susceptible to loss of 

alleles through genetic drift (Vucetich and Waite 2003) and to stochastic extinction and 

recolonization (Caughley 1994), reducing genetic diversity through repeated founder 

effects (Holt and Keitt 2000).  Edge populations may further have less gene flow to 

counteract the stochastic loss of alleles because they can only receive immigrants from 
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one direction (García-Ramos and Kirkpatrick 1997; Rowe and Beebee 2001).  

Populations at the edge of the range may also lose diversity through selection if they 

encounter unique selective pressures, such as competitors, parasites, or predators not 

present in the central part of the range, or climatic conditions at the limit of the species’ 

tolerance (Gorodkov 1986; Holt and Keitt 2000; Gaston 2003).  All of these varied 

processes may combine to reduce genetic diversity symmetrically within all peripheral 

populations around the edge of a species’ range (Fig. 2-1A). 

However, an additional explanation for reduced diversity at range edges may be at 

work, which would not usually affect all range edges equally (Fig. 2-1B).  If ranges shift 

in space, populations in the expanding part of the range may harbor reduced genetic 

diversity due to founder effects, a special case of reduced population size (e.g. Green et 

al. 1996; Austin et al. 2004a).  Founder effects could reduce genetic diversity in 

peripheral populations as well as populations that are currently geographically central, if 

both were part of a recent range expansion.  If founder effects are more prevalent than 

processes affecting peripheries per se, it may explain why more than one third of range 

peripheries do not have reduced genetic diversity relative to central parts of the range 

(Eckert et al. 2008) if those peripheries were not part of a recent range expansion.  

Most of the studies that have attempted to investigate causes of reduced diversity 

at the periphery of species’ ranges have been concerned with distinguishing between 

anthropogenic and prehistoric reductions of diversity (e.g. Matocq and Villablanca 2001; 

Hoffman and Blouin 2004b).  When reduced diversity in peripheral populations is found 

to be a result of prehistoric processes, either through comparison with reference 

populations or with museum specimens, there is often little further investigation into the 
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causes of reduced genetic diversity at the periphery.  In two exceptions, genetic 

diversity was found to follow a gradient declining from a presumed glacial refugium to 

the most recently established populations, supporting the idea that range expansion, not 

periphery per se, was responsible for reducing genetic diversity in peripheral populations 

(Garner et al. 2004; Gapare and Aitken 2005).  In two other cases, a similar pattern of 

reduced diversity in edge populations was explained by reduced population sizes in the 

marginal habitats inhabited by peripheral populations (Johansson et al. 2006; Lind et al. 

2007).  More studies are needed that test alternative hypotheses explaining diversity in 

edge populations (Gaston 2003). 

A further limit on many previous studies of the factors driving population genetic 

diversity is that most studies use only a categorical approach.  Over two thirds of studies 

in a recent review have considered only discrete categories of population types, “edge” 

vs. “center” (Eckert et al. 2008).  This approach reveals little about the manner in which 

diversity declines towards a range edge.  The gradual breakup of populations towards the 

range edge as depicted, for example, by Gorodkov (1986) suggests that a decline in 

diversity should occur gradually.  However, reduced genetic diversity can be part of a 

series of positive feedback loops which may result in an abrupt decline in diversity at a 

threshold of isolation among subpopulations (Gilpin and Soulé 1986).  For example, if 

populations are smaller and more isolated at the periphery, they may be more susceptible 

to genetic drift (Vucetich and Waite 2003) and to stochastic extinction and recolonization 

(Caughley 1994), reducing genetic diversity through repeated founder effects.  Reduced 

genetic diversity may in turn make a population more susceptible to extinction.  This 

positive feedback between extinction rate of isolated populations and reduced genetic 
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diversity is one way in which genetic diversity could decline abruptly at a threshold of 

population isolation.  However, more studies using a continuous sampling strategy (rather 

than categorical) are needed to test whether genetic diversity declines linearly or with a 

threshold towards range peripheries. 

An additional pattern in genetic diversity from range edge to range center has 

been described, where diversity peaks at an intermediate optimum level of isolation.  This 

pattern was found in one of very few other studies of genetic diversity along a transect 

(Kark et al. 2008).  Kark et al. speculated that the intermediate maximum in diversity 

they found might result from a balance between bottlenecks that reduce genetic diversity 

in small edge populations, and large effective population sizes in the range center that 

make the establishment of new, rare alleles unlikely.  This hypothesis of an intermediate 

optimum “goldilocks zone,” where populations are small and isolated enough to be likely 

to retain new mutations, but also connected enough to gain diversity through gene flow, 

likewise requires additional testing. 

 We investigated patterns of genetic diversity around the range of the Northern 

Leopard Frog, Rana pipiens, to test two hypotheses for predicting levels of genetic 

diversity across species’ ranges.  First, we tested the hypothesis that historic shifts in 

range have affected the current distribution of genetic diversity across the range of the 

species (Fig. 2-1B), against the alternative hypothesis that position at the edge of the 

range affects genetic diversity directly, without consideration of shifts in the species 

range through time (Fig. 2-1A).  Second we tested the hypothesis that genetic diversity 

declines linearly towards range edges, against the alternatives that it declines abruptly at a 

threshold or that it has an intermediate optimum.  We tested our first hypothesis by 
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sampling populations from around the range of the species, selecting populations that 

were at range edge or range center, and that were covered by ice at the most recent glacial 

maximum or colonized since that glacial maximum.  We tested our second hypothesis by 

sampling population genetic diversity across two transects in the range of the Northern 

Leopard Frog, to test whether genetic diversity declines linearly, as predicted by the 

gradually increasing isolation between populations, or in a threshold, as predicted by the 

positive feedback mechanisms of Gilpin and Soulé (1986), or an intermediate optimum 

(Kark et al. 2008). 

 The Northern Leopard Frog is particularly well suited for a study of the factors 

affecting population genetic diversity.  Its range covers much of North America 

(Rorabaugh 2005), so differences in diversity between interior and peripheral populations 

are expected to be more dramatic than for a species with a small range, where the entire 

range may have low levels of diversity.  Second, a range-wide molecular phylogeny 

based on mitochondrial (Hoffman and Blouin 2004a) and nuclear sequences (Chapter 3) 

is already available for this species, allowing confirmation of the history of populations 

around the range from two marker types with different modes of inheritance.  

Understanding the causes of reduced genetic diversity in peripheral populations requires 

knowledge of the history of those populations, but such knowledge has almost never been 

incorporated in studies of genetic diversity across species’ ranges (Eckert et al. 2008).  

Third, about half of the range of this species was covered by the last glacial maximum, 

providing a convenient distribution of population histories for testing the effects of range 

expansion on genetic diversity.  Finally, populations of this species are increasingly 
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isolated towards the range edge (Kimberling et al. 1996; Rorabaugh 2005), so they fit 

the predictions for a case where diversity might decline towards the range edge. 

 
Materials and methods 
 
 We collected genetic tissue from Northern Leopard Frogs around their range in 

the summers of 2008-2010, sampling across the range in both glaciated and unglaciated 

populations and in edge and central populations (Fig. 2-2), plus two transects from range 

center to edge (Fig. 2-3).  In addition, we acquired previously collected samples from 

additional populations, the oldest collections being from 2004.  Populations used for the 

two transects stretched from the edge of the species’ range in Arizona to the center in 

Montana, and from Montana to another edge in Nebraska (Fig. 2-3).   In total, we 

analyzed genetic data from 989 frogs from 42 populations (mean 23.5 frogs per 

population, range 14-34).  In the categorical analysis, we analyzed 567 samples from 24 

populations; in the transects, we analyzed 586 samples from 25 populations.  Samples 

from 164 individuals and seven populations were used in both analyses.  

Tissue samples were collected by clipping the tip of the third toe on the right hind 

foot directly into a microvial containing 95% ethanol.  When possible, we collected tissue 

samples from freshly road-killed specimens.  To minimize the risk of infection, we 

applied an antibiotic/anesthetic ointment to the cut toes of live sampled frogs before 

releasing them at their point of capture (Green 2001).  Surgical instruments were 

sterilized between each frog to eliminate the risk of sample contamination and to reduce 

the risk of spreading diseases among frogs.  Samples were frozen and stored at -80°C 

until DNA extraction.  DNA was extracted from toe tips using a standard chloroform 
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extraction (Müllenbach et al. 1989).  The purified DNA was resuspended in a Tris-

EDTA buffer (0.1M Tris, 0.1M EDTA, pH 9.0) and stored at -80° C until use.  

We amplified seven microsatellite loci: Rpi100, Rpi101, Rpi102, Rpi104, Rpi107, 

and Rpi108 (Hoffman et al. 2003); and RP193 (Hoffman and Blouin 2004b) in all 

samples.  Each 25 mL polymerase chain reaction (PCR) contained 0.4 µmol/L of each 

primer, 150 µmol/L dNTPs, 1× standard PCR buffer (including 1.5 mmol/L MgCl2), 2.5 

units of Taq polymerase, and ~50 ng of genomic DNA.  PCR conditions were 2 minutes 

of initial denaturation at 95° C, followed by 30 cycles of the following steps: 95° C for 30 

seconds, annealing temperature for 30 seconds, and 72° C for 1 minute; followed by a 10 

minute final extension at 72° C.  Locus-specific annealing temperatures were as follows: 

Rpi100: 52° C, Rpi101: 62° C, Rpi102: 50° C, Rpi103: 55°C, Rpi104: 56° C, Rpi107: 

52° C, Rpi108: 52° C, and RP193: 56° C.  The PCR product was visualized on a 0.7% 

agarose gel to check for product quantity and size.  PCR products were then analyzed on 

an ABI 3100 or 3730 sequencer. 

 Microsatellite data was used to calculate two estimates of neutral genetic 

diversity.  Allelic richness was calculated as the number of alleles present in each 

population per locus, rarified to adjust all sample sizes to the smallest population in our 

sample (14) using HP-RARE (Kalinowski 2005).  Gene diversity (mean expected 

heterozygosity) was calculated for each locus, using FSTAT (Goudet 1995), then 

averaged across loci.  

 To test whether glacial history or position on the range affected genetic diversity, 

gene diversity and allelic richness were used as response variables in separate t-tests.  

Because we had a priori expectations for the direction of the difference, with lower 
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measures of diversity expected in glaciated populations and edge populations, we 

report one-tailed p-values.  To help visualize genetic diversity across the range, we also 

produced a map of interpolated genetic diversity for each measure, gene diversity and 

allelic richness, using inverse distance weighting in ArcGIS 10.0. 

For the transect analysis, allelic richness and gene diversity were plotted as a 

function of geographic distance from the nearest range edge.  We used program SegReg 

(Oosterbaan 1994) to test whether diversity changed linearly or in a threshold fashion 

from range center to edge; we also tested the fit of a quadratic regression.  We predicted 

that if genetic diversity does not decline towards the range edge, then a regression of 

diversity on distance to range edge would have a slope that was not significantly different 

from zero.  If genetic diversity declined linearly towards the range edge, then a regression 

of diversity on distance to range edge would have a significant linear relationship.  If 

genetic diversity declined in a threshold function towards the range edge, then a 

regression of diversity on distance to range edge would have a relationship that was 

described significantly better by a two different linear regressions with zero slope than a 

linear regression.  If genetic diversity showed an intermediate optimum, a quadratic 

regression would fit the data better than any linear or threshold model.  Significance for 

improvement of fit between models was tested with Akaike’s Information Criterion 

(AIC).  
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Results 
 
Categorical analysis 
 
 Both gene diversity and allelic richness tended to be lower in edge populations 

than in center populations, although the difference was marginally nonsignificant (gene 

diversity: P = 0.07; allelic richness: P = 0.06; Fig. 2-4).  There was no significant 

difference in gene diversity or allelic richness between populations in glaciated versus 

unglaciated regions (gene diversity: P = 0.15; allelic richness, P = 0.36; Fig. 2-4).  A map 

of interpolated genetic diversity across the range showed lower diversity in both 

measures in the west, with a peak in genetic diversity in the center of the eastern portion 

of the range (Fig. 2-5). 

 
Transect 1 
 

Both measures of genetic diversity were lower in edge populations than in center 

populations for the first transect.  Gene diversity and allelic richness were each best 

explained by a single linear regression with no breakpoint (Fig. 2-6).  The distance of a 

population from the range edge was a good predictor of its gene diversity (R2 = 0.82, P < 

0.001) and its allelic richness (R2 = 0.86, P < 0.001).  Adding a breakpoint or a quadratic 

term did not improve the fit of the model.  

 
Transect 2 
 

Neither measure of genetic diversity was lower in edge populations than in center 

populations for the second transect.  Gene diversity and allelic richness were each best 

explained by a single linear regression with no slope (Fig 2-7).  The distance of a 

population from the range edge did not significantly correlate with its gene diversity (P = 
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0.22) or its allelic richness (P = 0.44).  For gene diversity, adding a breakpoint 

increased the fit of the model but not significantly so (F1,7 = 2.15, P = 0.19), and a 

quadratic term did not improve the fit.  For allelic richness, neither a breakpoint nor a 

quadratic term increased the fit of the model.  

 
Discussion 
 

There are many alternative explanations for the factors that drive genetic 

diversity, and these explanations are not necessarily mutually exclusive.  In this paper, we 

used groups of populations to test two alternative explanations for driving genetic 

diversity.  We then tested for thresholds or intermediate optima in genetic diversity along 

two transects from range center to range edge. 

 Genetic diversity was reduced more by a population’s position at the edge of the 

range than it was by post-Pleistocene founder effects.  Using an alpha of 0.05, all of our 

tests are nonsignificant, but both measures of genetic diversity were lower in edge 

populations.  Contrary to our predictions, both measures of genetic diversity were 

actually higher in populations that were covered by the last glacial maximum, although 

these differences did not approach statistical significance.  Visual inspection of the maps 

of interpolated genetic diversity reveals that the higher diversity in glaciated areas results 

from high diversity generally in the eastern part of the range, which is primarily north of 

the glacial maximum.  From these results, we conclude that there is weak evidence that 

position at the range edge per se reduces genetic diversity in this species, and no evidence 

that post-Pleistocene founder effects persist in affecting modern genetic diversity in this 

species. 
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 Our tests for thresholds or intermediate optima in genetic diversity along two 

transects from range center to range edge gave results that differed between the two 

transects.  In the first transect, we found that genetic diversity declined linearly towards 

the range edge.  The results from this transect do not support a stepwise decline in 

diversity predicted from positive feeback loops reducing diversity, nor an intermediate 

optimum in diversity as described by Kark et al. (2008).   

In the second transect, diversity did not change significantly towards the range 

edge.  This lack of a significant change in genetic diversity could be due to at least two 

different mechanisms.  First, this second transect was shorter than the first, and may have 

simply failed to show a pattern in genetic diversity because sampling was not across a 

long enough transect for changes in diversity to be evident.  Second, and probably more 

importantly, the nature of the edges of the range differ between these two transects.  The 

first transect ends at the edge of a plateau, where populations are sparse and isolated 

(Chapter 4), and where suitable habitat largely ends.  In contrast, the end of the second 

transect is formed by parapatry with a congeneric species, Rana blairi.  Habitat suitable 

for leopard frogs is continuous throughout and beyond our transect, and is not 

increasingly fragmented as for the first transect.   

The differences between these two transects further emphasize the importance of 

historical and biological context in predicting the genetic diversity of edge populations.  

For example, Howes and Lougheed (2008) found that genetic diversity in a North 

American lizard was best predicted by local climate, but with distance from range edge 

and an interaction between history and edge also contributing significantly to their model.  

This interaction, they speculated, was the result of edge populations in the recently 
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colonized part of the range not yet reaching drift-gene flow equilibrium.  Thus position 

in the range interacted with population history to affect current levels of genetic diversity. 

 Understanding the patterns of genetic diversity at range edges has many important 

implications.  For example, as our planet warms, species’ ranges are expected to shift up 

in elevation and towards the poles (e.g. Davis and Shaw 2001).  Knowing the distribution 

of genetic diversity at range edges can help us predict the ability of these species to adapt 

or shift their ranges in response to climate change, although more studies are needed to 

test whether geographic trends in neutral markers accurately predict congruent trends in 

phenotypic trait variation (Westphal et al. 2011).  Second, modern approaches to 

epidemiology are often concerned with modeling the spread of pathogen genotypes 

through a host population (e.g. Levis et al. 1998; Biek et al. 2003).  Knowing how genetic 

diversity is distributed at the edges of a pathogen’s or host’s range is important for 

modeling and predicting the spread of emergent diseases.  Third, one of the greatest 

threats to biodiversity is the spread of invasive species (Wilcove et al. 1998).  Similar to 

spreading diseases, understanding patterns of genetic diversity at invasion fronts will 

likewise enhance our ability to predict and manage the spread of invasive species (Sexton 

et al. 2002; Kolbe et al. 2010).  Finally, being able to predict genetic diversity across 

species’ ranges can help direct management and conservation efforts at populations with 

lower than expected diversity.  For these and many other reasons, it is critical that more 

studies use continuous approaches and test alternative hypotheses to study the factors 

driving genetic diversity in populations. 
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Fig. 2-1: Two simplified explanations for reduced genetic diversity at range edges.  High 

diversity areas of the range are shown in black, and low diversity in gray.  A: Position at 

the edge of the range per se reduces genetic diversity, usually through reduced 

connectivity of populations and small population sizes in the periphery, resulting in 

generally symmetric reductions in diversity around the range.  B: Shifts in range cause 

reduced diversity, usually through founder effects (a special case of small population 

size) at the leading edge of the range expansion, leading in asymmetric reduction of 

genetic diversity.   
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Fig. 2-2: Map of populations used in the categorical comparison of population types.  

Squares represent unglaciated populations (areas not covered by the Wisconsonian 

Glacial Maximum, n = 14); triangles represent glaciated populations (colonized since the 

Wisconsonian Glacial Maximum, n = 10).  Gray symbols indicate edge populations (n = 

11); black symbols represent central populations (n = 13).  The dotted line marks the 

approximate extent of the Wisconsonian glacial maximum (Ehlers et al. 2011).  The solid 

line marks the current extent of the species’ range. 
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Fig. 2-3: Map of populations used in the transects in this study.  Solid line represents the 

edge of the species’ range.  Dotted line indicates the extent of the Wisconsonian Glacial 

Maximum.   
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Fig. 2-4: Effects of two categories of position in the range on two measures of genetic 

diversity.  Error bars indicate 95% confidence intervals of the mean (i.e., ± 2SE).  See 

Fig. 2-2 for location of populations and sample sizes.   
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Fig. 2-5: Heat map of genetic diversity measures interpolated across the species’ range, 

calculated using inverse distance weighting.  Top panel shows gene diversity, bottom 

panel shows allelic richness.  
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Fig. 2-6: Two measures of genetic diversity across the first transect from range edge (left) 

to center (right).  Each point represents the genetic diversity of a population.  Best fit 

lines (solid) and 95% confidence bands (dashed) were calculated in program SegReg. 
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Fig. 2-7: Two measures of genetic diversity across the second transect from range edge 

(left) to center (right).  Each point represents the genetic diversity of a population.  Best 

fit lines (solid) and 95% confidence bands (dashed) were calculated in program SegReg. 
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CHAPTER 3 

TWO FROG SPECIES OR ONE? A MULTI-MARKER APPROACH TO ASSESSING 

THE DISTINCTIVENESS OF GENETIC LINEAGES IN THE NORTHERN 

LEOPARD FROG, RANA PIPIENS3,4 

 
Abstract 
 

A genetic boundary at the Mississippi River, USA, has been suggested for the 

Northern Leopard Frog, Rana pipiens, which was recently proposed for listing as 

federally threatened in the western USA.  This suggestion was made on the basis of 

limited geographic sampling of a mitochondrial gene.  However, mitochondrial DNA 

represents a very small part of the genome and is not necessarily indicative of patterns in 

nuclear DNA.  We tested the hypothesis that eastern and western populations are 

separated by a distinct genetic boundary by sequencing mitochondrial DNA more 

extensively across the range, including focused sampling in the zone of hypothetical 

introgression, and by analyzing four nuclear sequences and seven microsatellite loci.  We 

confirmed previous results that eastern and western populations have unique 

mitochondrial sequences that are deeply divergent (3.8%) and which overlap only in a 

narrow region around the Mississippi River.  Nuclear sequences also show divergent 

eastern and western lineages in some cases but with a broader zone of geographic 

overlap.  Microsatellite data correspond closely to mitochondrial data, differing between 

east and west and changing abruptly near the Mississippi River. These data collectively 

demonstrate that eastern and western clades of this species introgress considerably in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This chapter is co-authored by Ryan P. O’Donnell and Karen E. Mock. 
4 This chapter has been accepted for publication and is in press at Conservation Genetics. 
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some markers but are distinct and defined by clear and narrow boundaries in others.  

We demonstrate that the Mississippi River forms an important, albeit somewhat 

permeable, boundary between genetic lineages in this species.  This genetic boundary 

coincides with previously described discontinuities in morphological features.   

 
Introduction 
 
 Despite the fact that leopard frogs, the “Rana pipiens group” (sensu Hillis and 

Wilcox 2005), have been a model organism for studies of physiology and phylogenetics 

for decades, species boundaries in this complex are still incompletely known.  For 

example, many species were only described in the 1970s and 1980s (e.g. Frost and 

Bagnara 1976; Platz and Mecham 1979; Platz and Frost 1984), and species boundaries in 

the Chiricahua Leopard Frog (Rana chiricahuensis) are still being resolved (e.g. 

Goldberg et al. 2004; Hekkala et al. 2011).  The most widespread member of the Rana 

pipiens group is no exception: for over a century it has been debated whether the taxon 

now known as the Northern Leopard Frog (Rana pipiens) is monomorphic or contains 

two species with a border between them around the Mississippi River (e.g. Cope 1889; 

Wright and Wright 1949; Dunlap and Platz 1981).  Early descriptions of Northern 

Leopard Frogs in the western part of the range described them as a separate subspecies 

(Rana pipiens brachycephala) having a shorter head and no distinct barring on anterior 

surface of the limbs, among other features (Cope 1889).  Several authors were unable to 

confirm Cope’s morphological features (reviewed in Dunlap and Platz 1981), and 

therefore Wright and Wright (1949) commented that most herpetologists of their time did 

not consider Cope’s brachycephala to be valid.  However, Wright and Wright (1949) 
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considered the matter unsettled and summarized the work of others in showing the 

range of brachycephala to include all of the western part of the range of pipiens to the 

middle of Minnesota and Iowa. No further attempts were made to assess the validity of R. 

p. brachycephala until Dunlap and Platz (1981) analyzed allozymes and calls and also 

found no consistent difference between eastern and western Northern Leopard Frogs.  By 

this time, R. p. brachycephala was widely regarded as invalid. 

 The issue of whether eastern and western Northern Leopard Frogs were distinct 

was revived by Hoffman and Blouin in 2004.  In a range-wide phylogeny of the Northern 

Leopard Frog, they detected two mitochondrial lineages that closely supported the 

distributions mapped 55 years earlier on the basis of morphology (Wright and Wright 

1949). Mitochondrial sequence divergence between eastern and western lineages 

averaged 3% and reached 4.3%, which is comparable to species-level divergences in 

some other members of the genus (Jaeger et al. 2001; Hoffman and Blouin 2004a).  

Hoffman and Blouin suggested that the deep divergences between eastern and western 

mitochondrial lineages may indicate that what is currently known as the Northern 

Leopard Frog in fact consists of two cryptic species, one in eastern North America and 

one in western North America.  However, they did not recommend recognizing eastern 

and western clades as separate species based on their results alone, citing examples of 

discordance between mitochondrial and nuclear phylogenies, morphology, and behavior.  

The possibility of significant substructuring within this species has been made even more 

pertinent because of conservation concerns in the western portion of the species’ range 

(e.g. Clarkson and Rorabaugh 1989; Werner 2003; McAllister 2005; Germaine and Hays 

2009; Moriarty 2009).  If Northern Leopard Frogs in the west are distinct from those in 
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the east, it will be important to begin management actions quickly to preserve this 

lineage.  However, three significant gaps in the understanding of this species preclude an 

informed decision on whether the western populations are indeed genetically distinct 

from those in the east.  First, it is not known where the geographic border or zone of 

intergradation between eastern and western mitochondrial clades lies.  Second, it is not 

known whether the nuclear genome shows similar phylogenetic patterns to the 

mitochondrial genome.  Third, it is not known whether eastern and western lineages are 

reproductively isolated. 

 The data currently available on the geographic distribution of eastern and western 

mitochondrial clades are limited to two analyses, one across the range of the species 

(Hoffman and Blouin 2004a) and one across western Canada (Wilson et al. 2008).  

Collectively, these analyses showed that most populations sampled were either entirely 

eastern or entirely western in their mitochondrial DNA.  One population was found where 

eastern and western lineages have come into secondary contact, at the west side of James 

Bay, Ontario (plus one recent introduction of an eastern frog in Arizona).  However, 

Hoffman and Blouin (2004a) had limited samples that were widely separated in the 

potential area of overlap between the eastern and western mitochondrial clades (Fig. 3-1).  

The mitochondrial haplotypes of frogs in most of Ontario and all of Iowa and Wisconsin 

are unknown.  Furthermore, and perhaps more importantly, the geographic extent of 

introgression between these lineages is unknown.  The two clades may be separated by a 

discrete boundary, or they may have a broad zone of introgression.  A very narrow zone 

of introgression would imply strong reproductive isolation between the clades.  If 

introgression is extremely limited or does not exist, the two clades should be considered 
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separate species.  To determine the geographic extent of the mitochondrial clades and 

to determine whether the clades meet in a gradual cline of intergradation or discrete 

parapatry, more sampling is needed at a finer geographic scale between the previously 

sampled localities.   

 Second, while the degree of introgression of mitochondrial genes is an excellent 

tool to begin to investigate introgression between these lineages, it is unknown to what 

degree mitochondrial phylogenies represent the phylogeny of this species.  Discordances 

between cytoplasmic DNA and nuclear DNA are well known from many other species 

(e.g. Oyler-McCance et al. 1999; Yang and Kenagy 2009; Fontenot et al. 2011; Jacobsen 

and Omland 2011).  Range-wide analysis of several unlinked nuclear markers is needed 

to determine whether the deep divergences in mitochondrial DNA indicate a significant 

level of genome-wide divergence, which would support the recognition of these clades as 

separate subspecies or even species.   

 Third, the extent to which the two lineages are reproductively isolated is not 

known.  Using only a mitochondrial marker, as Hoffman and Blouin (2004a) did, hybrids 

cannot be detected. Determining whether eastern and western clades can interbreed 

requires analysis of nuclear DNA from the area of overlap between eastern and western 

mitochondrial lineages.  Extensive interbreeding over a broad area would indicate a lack 

of reproductive barriers between the two lineages.  If nuclear and mitochondrial origins in 

the zone of overlap are strongly correlated, or if the zone of overlap is narrow, then the 

hypothesis that eastern and western lineages are reproductively isolated would be 

supported.   
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 Our objective was to address these three gaps in knowledge by testing three 

corresponding hypotheses.  First, we tested the hypothesis that eastern and western 

mitochondrial clades overlap over a narrow geographic distance.  Second, we tested the 

hypothesis that the distribution of nuclear markers is congruent with the previously 

described distribution of mitochondrial clades.  Third, we tested the hypothesis that the 

origin of mitochondrial DNA of individuals in the zone of overlap is significantly 

correlated with the population of assignment based on microsatellite data. 

 
Materials and methods 
 

We collected tissue samples from 17-30 individuals from each of 24 populations 

around the range of the Northern Leopard Frog, for a total of 567 individuals (Table 3-1 

and Fig. 3-2).  Most samples were collected in 2008-2010, but some were acquired from 

previous collections, with the oldest samples from 2004.  Populations were chosen to 

represent the majority of the species’ range, with additional sampling concentrated in the 

vicinity of the Mississippi River, an area where eastern and western mitochondrial 

haplotypes were thought to meet (Hoffman and Blouin 2004a).  Tissue samples were 

collected by clipping the tip of the third toe on the right hind foot directly into a microvial 

containing 95% ethanol.  To minimize the risk of infection, we applied an 

antibiotic/anesthetic solution to the cut toes before releasing each frog at its point of 

capture (Green 2001).  Surgical instruments were sterilized between each frog to 

eliminate the risk of sample contamination and to reduce the risk of spreading diseases 

among frogs.  When possible, we collected tissue samples from freshly road-killed 

specimens rather than live specimens.  Samples were then frozen and stored at -80°C.  
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DNA was extracted from toe clips using a standard chloroform extraction (Müllenbach 

et al. 1989).  The purified DNA was resuspended in a Tris-EDTA buffer (0.1M Tris, 

0.1M EDTA, pH 9.0) and stored at -80° C.  

We sequenced one mitochondrial gene, to assess the distribution of eastern and 

western haplotypes in the zone of potential overlap, and four nuclear sequences 

(including introns and exons) to compare distribution and phylogeny of nuclear genes to 

the mitochondrial gene.  These loci were sequenced for all sampled individuals from 

populations WAP, TIF, GWM, COP, and OGD, and at least five individuals from each of 

the remaining populations.  Sequence data was obtained for 786 base pairs of subunit 1 of 

the mitochondrial gene NADH dehydrogenase (ND1) using the primers RpND1F and 

RpND1R (Hoffman and Blouin 2004a; Wilson et al. 2008).  Each 25 mL polymerase 

chain reaction (PCR) contained 0.4 µmol/L of each primer, 150 µmol/L dNTPs, 1× 

standard PCR buffer (including 1.5 mmol/L MgCl2), 2.5 units of Taq polymerase, and 

~50 ng of genomic DNA.  PCR conditions consisted of 5 minutes of initial denaturation 

at 95° C; followed by 35 cycles of 94° C for 60 seconds, 54° C for 60 seconds, and 72° C 

for 90 seconds; followed by a 5 minute final extension at 72° C.  Nuclear sequences 

included segments of two different exons of the rhodopsin gene (283 bp of Rhod1 and 

137 bp of Rhod4), one 507 bp segment of the tyrosinase gene (Tyr), and one 199 bp 

segment of β-fibrinogen intron 7 (FIB; Prychitko and Moore 1997; Bossuyt and 

Milinkovitch 2000; Di Candia and Routman 2007).  PCR conditions were identical to 

those for amplifying ND1 sequences with the following exceptions.  Taq was reduced to 

1.25 units for all nuclear loci.  For FIB, final MgCl2 concentration was increased to 2.25 

mmol/L.  Temperature conditions were also identical to those used for ND1 except that 



 43 
Rhod1 and Rhod4 started with a 10-minute initial denaturation, and their extension 

times were 60 seconds.  Annealing temperatures were 59° C for Rhod1, 57° C for Rhod4, 

and 58° C for Tyr and FIB.  PCR products were visualized on a 0.7% agarose gel to 

check for product quantity and size.  PCR products were purified with QIAquick PCR 

purification kit (Qiagen) and sequenced with BigDye chemistry (Applied Biosystems) on 

an ABI 3730 sequencer.  Sequences were edited and aligned with SeqMan II software. 

Sequences were generated in the forward direction first and in the reverse direction if the 

sequence could not be confidently read throughout the entire amplicon in the forward 

direction alone.  

Heterozygotes could be identified directly from overlapping peaks in sequencing 

traces, but haplotypes could not be determined directly in individuals that were 

heterozygous at more than one base pair.  To assign phase (haplotypes association) for 

these heterozygous sites, we used the program PHASE (Stephens and Donnelly 2003; 

Flot 2010).   

TCS version 1.21 was used to identify unique haplotypes in the dataset and to 

examine the relationships among those haplotypes using statistical parsimony (Clement et 

al. 2000).  We also examined the relationships among haplotypes using maximum 

likelihood and Bayesian methods.  Maximum likelihood phylogenies were constructed 

with RAxML 7.2.8 (Stamatakis 2006; Stamatakis et al. 2008) as implemented in CIPRES 

with default settings (Miller et al. 2010).  Bayesian phylogenies were constructed using 

MrBayes, sampling at least 1,000,000 generations (or adding 1,000,000 additional 

generations until the standard deviation of split values was less than 0.01) at every 1000th 
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generation, with nst = 6 and rates with an inverse gamma distribution, and discarding 

the first 25% of samples as burn-in.   

 To further test for geographic patterns in nuclear DNA and to test for evidence of 

interbreeding in the zone of introgression, we amplified seven microsatellite loci: Rpi100, 

Rpi101, Rpi102, Rpi104, Rpi107, and Rpi108 (Hoffman et al. 2003), and RP193 

(Hoffman and Blouin 2004b).  PCR conditions were 2 minutes of initial denaturation at 

95° C, followed by 30 cycles of the following steps: 95° C for 30 seconds, annealing 

temperature for 30 seconds, and 72° C for 1 minute; followed by a 10 minute final 

extension at 72° C.  Locus-specific annealing temperatures were as follows: Rpi100: 52° 

C, Rpi101: 62° C, Rpi102: 50° C, Rpi103: 55°C, Rpi104: 56° C, Rpi107: 52° C, Rpi108: 

52° C, and RP193: 56° C.  The PCR product was visualized on a 0.7% agarose gel to 

check for product quantity and size.  PCR products were then analyzed on an ABI 3100 

or 3730 sequencer.  To search for clusters of similar individuals based on microsatellite 

allele frequencies, we used the program STRUCTURE version 2.3 (Pritchard et al. 2000), 

following the recommendations for interpreting results from Evanno et al. (2005).  After 

determining the optimum number of groups using STRUCTURE, we then plotted the 

spatial distribution of these groups using GENELAND (Guillot et al. 2005).  To test the 

significance of structuring both between populations and between larger groups identified 

by STRUCTURE, we used AMOVA, implemented in GENALEX version 6.4 (Peakall 

and Smouse 2006).  To test whether genetic distance between populations was 

significantly related to their geographic distance, we used a Mantel test, implemented in 

GENALEX (Peakall and Smouse 2006).  Finally, to test whether genetic differences were 

greater between groups than expected due to isolation by distance, we used a partial 
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Mantel test, implemented in ZT (Bonnet and Van de Peer 2002).  Specifically, we used 

the partial Mantel test to determine whether genetic distance differed between categories 

of population pairs (within east, within west, or across the east-west boundary), after 

controlling for geographic distance.  For this test, we excluded populations that were 

indicated by STRUCTURE to be in the zone of introgression (see results). We used these 

varied approaches to help overcome any inherent biases in each individual approach: it is 

common for various methods to give different results, and a broad perspective is 

necessary to draw correct inferences from analyses such as these, especially when 

isolation by distance is evident (Frantz et al. 2009). 

 To look for genetic evidence of reproductive barriers, we first selected 

populations where several individuals assigned to more than one group of populations 

(see results), and then we conducted two separate tests on these populations. First, we 

compared probability of assignment to one group among individuals with eastern or 

western mitochondrial haplotypes using a Wilcoxon rank-sum test.  Strong genetic 

isolation would cause the probability of microsatellite-based group assignment to be 

highly correlated with mitochondrial haplotype.  Second, we performed a Principal 

Coordinates Analysis (PCA) on microsatellite allele frequencies among individuals in 

these populations.  If reproductive isolation were complete, we would expect two discrete 

groups to be visible in the PCA.  If the two lineages can reproduce but produce infertile 

offspring, we would expect two discrete groups representing each lineage with a third 

discrete group between them, representing the F1 hybrids.  If no reproductive barriers 

exist, or if reproductive barriers are present but incomplete, we would expect to see all 

individuals in a single cluster in the PCA analysis. 
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Results 
 
Mitochondrial sequencing 
 
 ND1 sequencing revealed two groups of related haplotypes that differed from 

each other by 2.7% to 4.5% sequence divergence (mean = 3.8%, uncorrected).  These two 

groups did not connect in a 95% parsimony diagram with a connection limit of 12 steps 

(Fig. 3-3).  Within-group divergences ranged from 0.1% to 1% in the eastern group and 

0.1% to 0.9% in the western group.  These two haplogroups were strongly supported 

(98% bootstrap support), but had little resolution among haplotypes within each group.  

These haplogroups corresponded to the eastern and western groups described by 

Hoffman and Blouin (2004a).  Only two of the 24 populations we sampled had both 

eastern and western haplogroups.  These two populations were both on the Mississippi 

River: WAP on the west side of the river in Iowa (four eastern, 18 western) and TIF on 

the northeast side of the river in Wisconsin (two eastern, 22 western).  All other 

populations west of the Mississippi River consisted of 100% western haplotypes, and all 

other populations east of the Mississippi River consisted of 100% eastern haplotypes. 

 
Nuclear sequencing 
 

PHASE was able to assign haplotypes in heterozygotes with varying success.  For 

Rhod1, all haplotypes were assigned with 100% confidence except for one position in 

one individual that was ambiguous (50% confidence for each of two assignments).  For 

Rhod4, all haplotypes were assigned with 100% confidence.  For Tyr, some sites had 

confidence as low as 58%.  For this gene, we used two approaches for phylogeny 

reconstruction, one including all haplotypes as determined by majority (> 50%) support, 
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and one including only haplotypes determined with 100% confidence.  For FIB, all 

haplotypes were assigned with at least 98% confidence. 

For Rhod1, we found only three haplotypes (Fig 3-4).  One of these was very rare 

and differed by only one bp from a second haplotype that was widespread in the western 

part of the range; together these were considered a western group.  The third haplotype 

was found throughout the east, and we considered it an eastern form.  Eastern and 

western haplotypes differed by 1.1 to 1.4% sequence divergence (mean 1.2%).  The 

eastern haplotype was well supported (99% bootstrap support) as being separate from the 

western haplotypes.  Both eastern and western haplotypes were found at four of the 24 

populations we sampled.  WAP and GWM had mixed Rhod1 haplotypes (WAP: 3 

eastern, 37 western; GWM: 3 eastern, 45 western) and were in the area of overlap 

between eastern and western lineages according to our mitochondrial sequencing results.  

Two additional populations, LAR in eastern Ontario, and HIS in western New York, each 

had a single western haplotype (out of 10 for LAR and 12 for HIS).   

We detected four haplotypes for Rhod4 (Fig 3-5).  Three of these haplotypes were 

closely related and prevalent in the west.  We considered these a western haplogroup.  

The fourth haplotype was generally limited to the east and we considered this the only 

representative of the eastern haplogroup.  Western haplotypes differed by one to two bp 

(0.7 to 1.5%).  Western haplotypes differed from eastern haplotypes by 2.2 to 2.9% 

(mean 2.7%).  The distribution of Rhod4 haplotypes was very similar to that of Rhod1 

haplotypes.  This was not surprising given that Rhod4 is physically located very near 

Rhod1 and therefore low levels of recombination are expected between these sequences.  

About 1,700 base pairs separate these genes in the Western Clawed Frog (Xenopus 
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tropicalis; xenbase.org), and the distance is presumably similar in the Northern 

Leopard Frog.  The area of geographic overlap between eastern and western haplogroups 

was nearly identical to that described for Rhod1.  Only one individual had a Rhod4 

haplogroup that did not match its Rhod1 haplogroup (n = 312), as expected for two 

sequences that are physically very close in the genome.  The only difference from the 

distribution of Rhod1 was one individual at LAR that was homozygous at Rhod1 and 

heterozygous at Rhod4.  

Tyr was much more variable than any of the other sequences studied.  Haplotypes 

found in the east generally grouped together but with very weak bootstrap support (8–39 

%, depending on the haplotype), therefore we did not have the power required to detect a 

geographic difference had there been one. Because we could not assign haplotypes to 

groups with confidence, we were unable to spatially map their distribution. 

We used FIB because previous authors have shown it to be informative for 

phylogenetic questions in the same genus (Di Candia and Routman 2007). However, 

contrary to these authors’ results, we did not find that the variation in length of this gene 

was indicative of species. The insertion/deletion (indel) Di Candia and Routman (2007) 

described as being diagnostic of Plains Leopard Frogs (Rana blairi) also was widespread 

among western Northern Leopard Frogs, which greatly complicated the analysis of 

heterozygous individuals.  There were at least two different indels in the sequences we 

amplified from Northern Leopard Frogs.  Because PHASE is not well suited to 

determining phase in the presence of indels, we excluded the part of the gene with the 

indels, leaving a much shorter segment for analysis than previous authors have used (199 

bp versus up to 615 bp).  Despite this short read, we found 10 different haplotypes among 
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our FIB sequences (Fig 3-6).  These grouped into four haplogroups, but there was no 

clear distinction between east and west in this locus.  One haplogroup (blue in Fig. 3-6) 

was the only one present in the easternmost populations.  Defining this group as eastern 

and the remainder as western, there was as much variation among western haplotypes as 

there was between eastern and western (mean 1.6% divergence).  This eastern haplogroup 

was found as far west as central Nebraska, northern Minnesota, and western Ontario (Fig. 

3-6).  This was further west than the western limit of eastern haplotypes in ND1, Rhod1, 

and Rhod4.  Conversely, western FIB haplotypes were found as far east as eastern 

Ontario and central New York.  This finding is similar to the eastern limit of eastern 

haplotypes of Rhod1 and Rhod4.  

 
Microsatellite loci 
 
 Seven microsatellite loci were used to assess the phylogeography of the nuclear 

genome by simultaneously using a greater number of loci.  Using a Bayesian clustering 

algorithm, STRUCTURE, individuals optimally divided into two groups (Fig. 3-7). These 

groups corresponded well with the eastern and western clades identified by mitochondrial 

sequencing.  Only two populations (WAP and TIF, both on the Mississippi River) 

showed mixed assignments of eastern and western individuals. These are the same two 

populations that contained eastern and western mitochondrial haplotypes.  Ninety-one 

percent of the remaining individuals assigned to eastern or western groups with >90% 

confidence.  Assignment of individuals to two groups by GENELAND aligned very 

closely with results from mitochondrial, Rhod1, and Rhod4 sequences (Fig 3-8). 
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We used AMOVA as a secondary method to test the significance of genetic 

differences between the two groups that were indicated by STRUCTURE and to test for 

differences between the pre-defined populations from which we sampled.  There were 

significant differences in allele frequencies among populations (P = 0.001).  All pairwise 

p-values (not corrected for multiple tests) were less than 0.001, the limit of precision for 

this test.  AMOVA also confirmed the presence of a significant difference between the 

eastern and western groups that had been identified by STRUCTURE (P = 0.001).   

Isolation by distance was significant across the range (Fig 3-9).  Genetic distance (ΦPTP) 

between population pairs was significantly related to geographic distance (Mantel test, R2 

= 0.263, P < 0.001).  Genetic distance between populations was greater within the west 

than between west and east (partial Mantel test, r = -0.26, P = 0.001) or within the east 

(partial Mantel test, r = 0.62, P = 0.0001).  PCA supported the hypothesis that 

populations close in geographic distance are also generally close in genetic distance.  

PCA showed a horseshoe shape, which is a common pattern when displaying data across 

a linear gradient (Fig 3-10).  In this case, the linear gradient was from eastern to western 

populations, which formed distinct clusters but which were not widely separated from 

one another, and which were joined in principal coordinate space by populations with 

mixed assignments (WAP and TIF, on the Mississippi River). 

 
Hybridization within individuals 
 
 To test for genetic evidence of robust reproductive isolation between eastern and 

western lineages in these two populations, we compared the probability of assignment to 

the eastern group, as computed by STRUCTURE, between two groups of individuals 



 51 
from the area of overlap (TIF and WAP), with eastern versus western mitochondrial 

haplotypes.  Probability of assignment to eastern or western groups on the basis of 

microsatellite alleles was not related to mitochondrial haplotype (Wilcoxon Rank-Sum 

Test, Z = 0.19, one-tailed P = 0.43), indicating that individuals in these populations had a 

mix of eastern and western ancestry.  Secondly, we conducted a PCA of microsatellite 

alleles from individuals in these two populations.  PCA showed a single cluster of 

individuals, which is expected in the absence of a robust reproductive barrier (Fig. 3-11). 

 
Discussion 
 
 Previous conclusions about subspecific differentiation in Northern Leopard Frogs 

have ranged from supporting a phylogenetic split within the species on the basis of 

mitochondrial DNA (Hoffman and Blouin 2004a), to showing no difference between 

putative subspecies on the basis of allozymes and call characters (Dunlap and Platz 

1981).  The results presented here provide evidence that Northern Leopard Frogs include 

two lineages with significant genetic differences, evident in both mitochondrial and 

nuclear genomes, although the strength of this signal varies among markers used.  

Nuclear sequencing showed some deep divergences with limited introgression between 

them, but some loci (FIB and Tyr) lacked evidence of genetic differentiation associated 

with geography.  In contrast, mitochondrial sequencing showed deep divergence between 

eastern and western clades with very little geographic overlap between them.  Significant 

differentiation was also shown by the combination of seven microsatellite loci, with a 

narrow range of overlap that coincided closely with the patterns shown by mitochondrial 

sequencing.  
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For two cryptic species that are completely reproductively isolated, a pattern 

that looks like introgression can be the result of partial geographic overlap between the 

species.  Our individual-level analysis of populations WAP and TIF confirm that a robust 

barrier to reproduction does not exist between these two lineages, because PCA did not 

identify two isolated groups within these populations and because mitochondrial 

haplotype was not significantly correlated with group assignment based on 

microsatellites.  This does not exclude the possibility of reduced hybrid fitness or partial 

reproductive isolation—experimental matings would be required to address these 

possibilities—but we can conclude from these data that any reproductive barriers are at 

least somewhat permeable.   

 Because our results differ between loci and marker types (sequencing vs. 

microsatellite), it is important to take a holistic approach to assessing what these data 

reveal about subdivision within this species (Sites and Marshall 2003, 2004).  The extent 

of introgression that we found ranged from very narrow for mitochondrial sequences and 

microsatellite allele frequencies, to more extensive for nuclear sequences.  There are at 

least four possible explanations for this apparent discordance.  First, our microsatellite 

analyses simultaneously incorporate data from seven different loci, whereas sequencing 

analyses are done on a locus-by-locus basis, and are more susceptible to locus-specific 

stochastic effects of gene flow and genetic drift.  Gene trees are not equivalent to species 

trees, and any one gene is likely to have a phylogeny that does not precisely match the 

phylogeny of the organism that contains it, due to these stochastic factors.  

Second, our nuclear and mitochondrial sequences are also more likely to be 

subject to the effects of selection than microsatellite loci, because of their location in or 
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proximity to coding regions.  Selection acting on genes can affect the geographic 

distribution of alleles in ways that are not typical of the rest of the genome.  For example, 

in intergrading subspecies of house mice, the extent to which alleles are exchanged 

between subspecies depends on the selective advantage of the allele being exchanged 

(Selander et al. 1969).  This potential may explain our results for fibrinogen, which 

showed the broadest introgression of all nuclear loci we sequenced.  Fibrinogen is 

important in the clotting of blood after an injury.  A significant heterozygote advantage 

can promote the spread of genes across a hybrid zone (e.g. Fitzpatrick and Shaffer 2007).  

Significant heterosis has been demonstrated for the fibrinogen gene in cattle, where 

heterozygotes have higher plasma levels of fibrinogen than inbred cattle (Qiu et al. 2007).  

If a similar heterozygote advantage exists in frogs, this could explain the greater spread 

of fibrinogen genes across the zone of contact than expected on the basis of microsatellite 

and mitochondrial data.  

A third possible explanation for the wide distribution of some of our nuclear 

sequences across the zone of contact is that it results from incomplete lineage sorting 

rather than introgression.  Because each individual has two copies of nuclear DNA, and 

mitochondrial DNA is generally single-copy and maternally inherited, the effective 

population size for mitochondrial DNA is only one-fourth that of nuclear DNA.  This 

smaller effective population size means that mitochondrial alleles from pre-Pleistocene 

contact are more likely to be lost due to drift than nuclear alleles.  Compounding this 

effect is the fact that substitution rate for mitochondrial DNA is approximately four to six 

times faster than for nuclear DNA (Johnson and Clayton 2000; Weibel and Moore 2002), 

so new mitochondrial haplotypes are more likely to emerge in a period of isolation.  The 
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strongest evidence for introgression is the geographic distribution of haplogroups.  If 

two lineages were present in a geographic area because they had not completely sorted, 

both lineages would be expected to be randomly distributed within the range of the clade.  

Strong geographic trends in allele frequency are evidence of introgression, and can be 

discerned in our results for ND1, Rhod1, Rhod4, and the seven microsatellites.  In 

contrast, FIB and Tyr do not show distinct clades associated with geography, and are 

more likely to be explained by selection or incomplete lineage sorting between recently 

diverged lineages.  

Finally, evidence from a well-studied hybrid zone in mice (Mus musculus and M. 

domesticus) indicates that mitochondrial genes are less likely than nuclear genes to 

introgress because of the lack of recombination in the mitochondrial genome (reviewed in 

Sage et al. 1993).  Individual nuclear genes are more likely to introgress across a hybrid 

zone because they have only a small effect on coadapted gene complexes, but because 

mitochondrial DNA is inherited as an entire cytoplasmic genome, the negative effects of 

a mitochondrial genome mismatching with a nuclear genome are more dramatic and 

detrimental.  Thus, cytoplasmic DNA typically shows a steeper differentiation across a 

hybrid zone than does nuclear DNA.  

Together these factors make it apparent that, despite introgression or incomplete 

sorting in some nuclear sequences, there are significant genetic differences between 

eastern and western Northern Leopard Frogs.  In light of these genetic differences, it may 

be worth reevaluating whether there are also phenotypic (morphological, immunologic, 

metabolic, or behavioral) differences between the east and west in this species.  Western 

populations (eastern Great Plains to Sierra Nevada) were initially considered a 
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subspecies, Rana pipiens brachycephala, separate from nominate Rana pipiens pipiens 

on the basis of a variety of morphological features (Cope 1889).  The western subspecies 

was elevated to species status by Kauffeld (1937) on the basis of Cope’s morphological 

features and a few additional features.  Kauffeld (1937) extended the range of 

brachycephala as far as the eastern coast of North America, south to parts of 

Pennsylvania.  Using this definition, Moore (1944) failed to find any consistent 

morphological differences between the species of leopard frogs.  He thus considered 

brachycephala to be a synonym of pipiens.  Wright and Wright (1949) agreed with Cope 

in considering brachycephala to be a valid subspecies and argued that its distribution was 

limited to the west; they considered populations in the northeastern United States and 

southeastern Canada to be Rana p. pipiens.  They mapped the ranges of Rana p. pipiens 

and Rana p. brachycephala with parapatric distributions that coincide very closely with 

the genetic discontinuities noted here.  Dunlap and Platz (1981) attempted to address 

reported differences between R. p. pipiens and R. p. brachycephala by studying allozyme 

variation and two acoustic properties of calls across a transect from Idaho to Wisconsin.  

They found no consistent differences in allozymes (n = 85) or calls (n = 10) and 

concluded that Rana pipiens should be considered monotypic.  However, calls of this 

species are among the most complex of any temperate anuran (Larson 2004), and analysis 

of only two acoustic parameters from ten individuals may be insufficient to detect 

regional differences in calling behavior.  Furthermore, allozyme analyses may be 

insufficient because there are several cases in other species where analysis of allozymes 

failed to detect genetic structuring that was later revealed by analysis of DNA sequences 

(Avise 2000).  For example, allozymes did not significantly differ between Japanese and 
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Korean Pond Frogs (Rana nigromaculata), but mitochondrial DNA showed that 

Japanese R. nigromaculata are more closely related to R. plancyi chosenica than to 

Korean R. nigromaculata (Kim et al. 2004).  For this reason, we are not surprised to see 

that our analysis, based on a combination of mitochondrial sequencing, nuclear 

sequencing, and nuclear microsatellites, revealed more significant substructuring than 

previous work with this species based on allozymes.  Perhaps because of the lack of 

differentiation in allozyme frequencies, the morphological features of Cope and Kauffeld 

have not been critically evaluated in the context of a strictly western R. p. brachycephala.  

Changes in morphology have been noted across the zone of introgression in northern 

Canada (Schueler 1973), and an analysis of morphological features generally separated 

eastern and western frogs, with frogs from the Great Lakes region intermediate (Fig. 10 

in Schueler 1982).  Given the genetic differences reported here and by Hoffman and 

Blouin (2004a), and their correlation with previous mapped distributions (Wright and 

Wright 1949) and, roughly, with spotting patterns (Schueler 1982), additional analysis of 

phenotypes is warranted.  It seems likely that such work will reveal morphological or 

acoustic traits helpful in distinguishing these two genetic lineages, perhaps justifying the 

resurrection of Rana pipiens brachycephala. 

These findings contribute to the growing understanding of phylogeography of 

North American anurans, and of North American species in general.  The Mississippi 

River occurs as a recurring biogeographical barrier among clades in anurans.  For 

example, both American Bullfrogs (Ranidae: Rana catesbeiana) and Spring Peepers 

(Hylidae: Pseudacris crucifer) show evidence of intraspecific clades having secondary 

contact after the Pleistocene around the Mississippi River (Austin et al. 2004b).  Species-
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level differentiation among the chorus frogs (Pseudacris spp.) also shows east-west 

divergences, separated by the Mississippi River (Moriarty and Cannatella 2004).  Indeed, 

the Mississippi is an important barrier in many taxa (reviewed in Soltis et al. 2006), for 

example, turtles (Walker et al. 1998), shrews (Brant and Ortí 2003), and trees (Al-

Rabab'ah and Williams 2002).  It appears that the same barrier is important, albeit 

partially permeable, in the Northern Leopard Frog, separating two unique genetic 

lineages with independent evolutionary histories. 
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Table 3-1:  Sources of samples.  Some location names reference nearby (< 5 km) 

locations.  Longitude and Latitude are means of all samples, given in decimal degrees, 

WGS84 projection.  NF = National Forest, NWR = National Wildlife Reserve, RM = 

Rural Municipality, SF = State Forest, SRA = State Recreation Area, SWA = State 

Wildlife Area, WMA = Wildlife Management Area.  Populations are arranged from west 

to east. 

___________________________________________________________________ 

Abbr. Location     Longitude Latitude N 

POT Potholes Lakes, Grant Co., WA  -119.371 47.088  24 

TRU Truxton Wash, Mojave Co., AZ  -113.640 35.424  28 

CHO Chocolate Pond, Bow City, AB  -112.268 50.432  17 

OUR Ouray NWR, Uintah Co., UT   -109.626 40.144  24 

WCO West Coyote Wash, San Juan Co., UT -109.296 38.289  22 

SWE Sweetwater River, Carbon Co., WY  -107.289 42.419  24 

CUS Custer NF, Carter Co., MT   -104.210 45.702  24 

HOR Horsehead Creek, Fall River Co., SD  -103.299 43.121  20 

NPL North Platte River, Keystone, Keith Co., NE -101.631 41.219  24 

WSL West Shoal Lake, Shoal Lake RM, MB -97.595 50.456  30 

TWO Two Rivers SRA, Douglas Co., NE  -96.343 41.215  24 

OGD Harrier Marsh WMA, Boone Co., IA  -94.017 42.023  20 

MOO Moose-Willow WMA, Aitkin Co., MN -93.537 46.952  24 

SLA Sandy Lake First Nation, ON   -93.357 53.065  24 

TIF Tiffany SWA, Buffalo Co., WI   -92.018 44.576  24 
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WAP Mill Race Flats WMA, Louisa Co., IA  -91.189 41.192  22 

GWM Mead WMA, Marathon Co., WI  -89.858 44.700  24 

COP Copper Country SF, Houghton Co., MI -88.525 46.921  24 

KRW Kentucky River WMA, Henry Co., KY -84.914 38.426  24 

OPI Opinaca River, Route-du-Baie-James, QC  -77.243 52.395  24 

HIS Howland's Island WMA, Cayuga Co., NY -76.697 43.078  24 

LAR Larose Forest, Co. Prescott and Russell, ON  -75.204 45.396  24 

SCO Scovil, St. John River, NB    -66.104 45.775  24 

JON Jones Pond, Cape Tormentine, NB  -63.822 46.130  24 
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Fig. 3-1: Mitochondrial haplotype groups from Hoffman and Blouin (2004a).  Two major 

haplotype groups are indicated by two colors, red and blue.  Populations indicated in 

purple contained both haplotype groups.  The population in Arizona was reported to 

contain the eastern group as a result of recent introduction.  Sample sizes range from 5 to 

15 individuals per population.   
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Fig. 3-2: Map of populations sampled in this study.  See Table 3-1 for sample sizes, 

geographic coordinates, and descriptions of localities. 
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Fig. 3-3: ND1 haplogroups and their distribution.  Two parsimony diagrams did not join 

(95%, connection limit 12).  One of these haplogroups was limited to the east, and the 

other to the west.  Black line marks approximate range of the Northern Leopard Frog. 
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Fig. 3-4: Rhod1 haplogroups and their distribution. 
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Fig. 3-5: Rhod4 haplogroups and their distribution. 
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Fig. 3-6: FIB haplogroups and their distribution.  Five samples at WCO did not amplify. 

 

 

  



 72 

 

Fig. 3-7: Probability of assignment of individuals, represented by colors of vertical bars, 

to two groups by STRUCTURE.  Populations are arranged by geographic proximity, 

generally from west (left) to east (right).  Top bar is a single run of all individuals; Lower 

bars represent additional runs on subsets of the whole dataset.  Individuals tend to assign 

to eastern or western groups, with mixed assignments in the two populations on the 

Mississippi River, WAP and TIF.  Within the western group, populations sort into a 

northeast and southwest group.  Within the eastern group, two populations from New 

Brunswick, SCO and JON, are distinct from the others.  See Fig. 3-2 for geographic 

distribution of populations. 
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Fig. 3-8: Posterior probability of assignment of microsatellite allele frequencies to an 

eastern group, calculated by GENELAND.  Black dots represent sampled populations.  

Probability of assignment to a western group is (1-probability of assignment to eastern 

group). 

 

  



 74 

 

Fig. 3-9: Isolation by distance.  Each point shows the genetic distance (ΦPTP) between 

two populations as a function of straight-line geographic distance (km), calculated by 

GENALEX.  Populations were defined as east or west according to Fig. 3-7, any pair 

including the intermediate populations was considered “other”.  Across categories, 

genetic distance is significantly related to geographic distance. 
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Fig. 3-10: Principal coordinates analysis of 24 populations.  Populations are color coded 

according to assignments from Fig. 3-7. 
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Fig. 3-11: Principal coordinates analysis of microsatellite data from 46 individuals in the 

intermediate populations, TIF and WAP, on the Mississippi River.  Circles are 

individuals from TIF and squares are individuals from WAP.  The lack of two distinct 

groups is evidence that in the area of overlap between eastern and western clades, at least 

some introgression has occurred. 
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CHAPTER 4 

GENETIC FORENSICS REVEAL TRANSLOCATION OF NORTHERN LEOPARD 

FROGS (RANA PIPIENS) ACROSS PHYLOGEOGRAPHIC BOUNDARIES5,6 

 
Abstract 
	  

Isolation of populations by habitat fragmentation threatens the persistence of 

many species.  In the southwest United States, amphibian habitat is naturally fragmented 

by broad stretches of dry inhospitable habitat.  Northern Leopard Frogs have experienced 

dramatic population declines in this region, and these recent declines are suspected to 

have exacerbated the isolation of the remaining populations.  We analyzed genetic 

diversity within and genetic divergence among populations of Northern Leopard Frog 

throughout Arizona to assess the current levels of isolation among these populations.  We 

also analyzed mitochondrial DNA to place these populations into a larger phylogenetic 

framework and to determine whether any populations contained genetic material not 

native to the region.  In general, we found a high level of genetic divergence between 

populations, and low genetic diversity in the isolated populations; however, one complex 

of populations around the Stoneman Lake area had high genetic diversity and relatively 

high gene flow among populations.  This complex of populations also contained a 

mitochondrial haplotype that was from eastern frogs, probably representing the 

introduction of released pets or laboratory animals.  These eastern haplotypes were well 

integrated into this complex of ponds, and probably contributed to the high genetic 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 This chapter is co-authored by Ryan P. O’Donnell, Charles Drost, and Karen E. Mock. 
6 This chapter was included as part of a peer-reviewed U.S. Geological Survey Open-File 
Report, number 2011-1186. 
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diversity in this area.  Genetic diversity in the outlying populations is low and shows 

signs of recent bottlenecks, but supplementing genetic diversity in these native 

populations with artificial gene flow from the Stoneman Lake area would only be 

recommended in extreme situations where no alternatives exist, as it would be ideal to 

retain as much genetic integrity of these remaining populations as possible.  

 
Introduction 
 

The loss of connectivity among habitat patches and the resulting fragmentation of 

natural populations are important concerns for the long-term preservation of natural 

populations.  Metapopulation studies of some anuran amphibians have demonstrated a 

loss of connectivity among formerly extensive populations and have noted the potential 

contributing role of such fragmentation to amphibian declines (Mann et al. 1991; Sjögren 

1991; Lehtinen et al. 1999).  A variety of causes have been implicated in fragmentation 

of amphibian habitat, including clearing of forest lands (Gibbs 1998), road-building (Vos 

and Chardon 1998), and introduction of non-native species, particularly predatory fishes 

(Bradford et al. 1993).  Isolation of subpopulations within habitat fragments, and gradual 

loss of these subpopulations over time, may be an important reason for regional declines 

(e.g. in Rana muscosa; Bradford et al. 1993). 

In the southwestern United States, there is considerable natural fragmentation of 

amphibian populations by broad stretches of hot, dry, inhospitable habitat separating 

seasonal and permanent wetlands.  For this reason, the riparian areas along rivers and 

streams are vital habitat for many amphibians in this arid country, and provide extensive 

corridors linking populations.  Over the last 150 years, however, there has been 
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considerable degradation and loss of such habitats (Dahl 1990; Bogan et al. 1998), 

with consequent declines of species that depend on them.  Some studies have assessed 

direct effects of such habitat loss and degradation on species persistence (e.g. Krueper 

1993), but few have considered secondary effects such as isolation of tributary streams, 

side canyons, and headwater springs, and the resulting population fragmentation this may 

cause.  Because of limited dispersal abilities and susceptibility to desiccation in arid 

habitats away from water, amphibians appear to be particularly vulnerable to this kind of 

population fragmentation. 

Northern Leopard Frogs (Rana pipiens) formerly occurred in a variety of stream, 

pond, and marsh habitats throughout the highland areas of northern Arizona and 

neighboring states.  Over the last 40 years, however, leopard frogs have experienced 

marked declines throughout the southwestern United States (Corn and Fogleman 1984; 

Clarkson and Rorabaugh 1989; Sredl 1998).  Northern Leopard Frogs are currently listed 

as species of conservation concern by a variety of state and federal agencies, including 

the Arizona Game and Fish Department (“Species of Special Concern”), the State of 

Colorado (“Special Concern Species”), the U.S, Forest Service (“Sensitive,” Regions 2 

and 3 (Colorado, New Mexico, and Arizona), and the Navajo Nation (“Threatened”).  

Northern Leopard Frogs were recently considered for listing as a federally threatened 

species in the western portion of their range in the United States (Moriarty 2009). 

Extant Northern Leopard Frog populations in Arizona are limited to a few isolated 

areas in the northern part of the state.  There are likely to be multiple levels of genetic 

differentiation and isolation among populations within these different areas, which will 

be important in assessing conservation and management needs.  For these populations, a 
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major concern is that most or all of them are now effectively isolated from each other.  

Analysis of genetic data from the extant populations in Arizona will allow assessment of 

patterns of genetic diversity, isolation, and recent population bottlenecks in many of the 

populations of Northern Leopard Frogs in Arizona.  This analysis may be crucial in 

understanding likely population trends and long-term viability of populations throughout 

the region as well as informing management decisions about translocations and habitat 

restoration efforts.   

A primary concern in the management of Northern Leopard Frogs in Arizona is 

the planning of translocations to reestablish the species where it has been recently 

extirpated.  The objective of this study is to determine which populations would be 

suitable sources for translocations.  Because of its relatively high genetic diversity and 

large population sizes (Kimberling et al. 1996), the Stoneman Lake area is a likely source 

of individuals for translocations.  However, a recent range-wide genetic study on the 

Northern Leopard Frog revealed at least one individual from an eastern clade of the 

species present in this area (Hoffman and Blouin 2004a).  Because of deep divergences 

between eastern and western clades, and the potential for outbreeding depression 

resulting from introgression between the two clades, we sought to assess the prevalence 

and distribution of the eastern mitochondrial haplotype across Arizona before 

recommending a source for translocations.  Accordingly, our objectives were to: 

1)  assess the degree and pattern of geographic separation and genetic 

divergence among populations of the Northern Leopard Frog in Arizona;  

2)  identify isolated, relict populations that may require direct management 

intervention for persistence; 
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3)  test for the extent of distribution of introduced eastern genotypes in 

Arizona populations; and  

4)  discuss management strategies and conservation priorities for populations 

in the region.  

 
Materials and methods 
 

Visual surveys for leopard frogs were conducted at all localities known or 

suspected to harbor Northern Leopard Frog populations in Arizona (sample collection 

sites presented in Fig. 4-1).  Tissue samples were collected by clipping the tip of the third 

hind toe directly into a microvial containing 95% ethanol.  To minimize the risk of 

infection, we applied an antibiotic/anesthetic ointment to the cut toes of sampled frogs 

before releasing them at their point of capture (Green 2001).  Surgical instruments were 

sterilized between each frog to eliminate the risk of sample contamination and to reduce 

the risk of spreading diseases among frogs.  These protocols were approved by the 

Northern Arizona University IACUC (permit # 07-003) and the Utah State University 

IACUC (permit # 1138).  We targeted collection of a minimum of 20 samples per 

population.  DNA was extracted from toe clips using either a standard chloroform 

extraction (Müllenbach et al. 1989) or a salting-out extraction method (Sunnucks and 

Hales 1996).  The purified DNA was resuspended in a Tris-EDTA buffer (0.1M Tris, 

0.1M EDTA, pH 9.0) and stored until use at –80° C.  

Sequence data for 786 base pairs of the mitochondrial ND1 gene (Hoffman and 

Blouin 2004a) were obtained for 1 to 15 individuals from each of the populations 

sampled, using the primers RpND1F and RpND1R (Wilson et al. 2008).  These 
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sequences allowed the detection of eastern haplotypes, one of which had been 

previously detected in one Arizona population (Hoffman and Blouin 2004a).  Each 25 

mL reaction contained 0.4 mmol/L of each primer, 160 mmol/L dNTPs, 1× polymerase 

chain reaction (PCR) buffer, 2.5 mmol/L MgCl2, 1 unit of Taq polymerase, and ~50 ng of 

genomic DNA.  PCR conditions consisted of 5 minutes of initial denaturation at 95° C; 

followed by 35 cycles of 94° C for 60 seconds, 54° C for 60 seconds, and 72° C for 90 

seconds; followed by a 5 minute final extension at 72° C.  The PCR product was 

visualized on a 0.7% agarose gel to check for product quantity and size.  PCR products 

were purified with QIAquick PCR purification kit (Qiagen) and sequenced with BigDye 

chemistry (Applied Biosystems) on an ABI 3730 sequencer.  Sequences were edited and 

aligned with SeqMan II software. Sequences were generated in the forward direction first 

and in the reverse direction if the sequence could not be confidently read throughout the 

entire 786 base pair amplicon in the forward direction alone.  TCS version 1.21 was used 

to search for unique mitochondrial haplotypes and to examine the relationships among 

those haplotypes using statistical parsimony (Clement et al. 2000).  

To further screen the sampled frogs for eastern haplotypes, we developed an 

economical restriction assay that could distinguish eastern and western haplotypes 

without sequencing each individual.  An ~800 base pair region of the ND1 gene was 

amplified as described above for the sequencing.  This amplified fragment was then 

digested for 6 hours at 37° C using the restriction enzyme StyI.  This enzyme digests 

eastern fragments but not western fragments at a site that has been shown to be diagnostic 

for the eastern and western clades in over 500 hundred samples collected from 

throughout the range of the species (Chapter 3; Hoffman and Blouin 2004a).  Digestion 
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was arrested by incubating at 70° C for 20 minutes and digested fragments were then 

visualized on a 1.0% agarose gel. 

Microsatellite markers developed by Hoffman et al. (2003) (Rpi100, Rpi101, 

Rpi102, Rpi103, Rpi104, Rpi107, and Rpi108) and Hoffman and Blouin (2004b) 

(RP193) were used to amplify eight microsatellite loci.  PCR conditions were 2 minutes 

of initial denaturation at 95° C, followed by 30 cycles of the following steps: 95° C for 30 

seconds, annealing temperature for 30 seconds, and 72° C for 1 minute; followed by a 10 

minute final extension at 72° C.  Locus-specific annealing temperatures were as follows: 

Rpi100: 52° C, Rpi101: 62° C, Rpi102: 50° C, Rpi103: 55°C, Rpi104: 56° C, Rpi107: 

52° C, Rpi108: 52° C, and RP193: 56° C.  The PCR product was visualized on a 0.7% 

agarose gel to check for product quantity and size.  PCR products were then analyzed on 

an ABI 3100 or 3730 sequencer.  Population-level analyses using microsatellite data were 

conducted only on populations with 9 or more individuals sampled. 

We used GENEPOP software (Raymond and Rousset 1995) to test whether 

population genotypic proportions deviated from expectations under assumptions of 

Hardy-Weinberg equilibrium (HWE), given observed allele frequencies.  An exact test 

over all loci was performed using the Markov Chain method with 1000 dememorization 

steps, 100 batches per locus, and 1000 iterations per batch.  We also used GENEPOP to 

determine whether deviations could be attributed to heterozygote excesses or deficits.  

Probabilities were interpreted using a Bonferroni correction for multiple population by 

locus combinations for all such combinations that were polymorphic (n = 85). 

Relationships among populations, based on allele frequency differences as 

measured by Nei’s (1972) genetic distance, were summarized by construction of a 
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UPGMA dendrogram using Tools for Population Genetic Analysis (TFPGA) software 

and nodal strength assessed via bootstrapping over loci using 1000 replicates.  Pairwise 

population differentiation was assessed using an exact test of each population with a 

sample size of at least 15 individuals using TFPGA software with 1000 dememorization 

steps and ten batches of 2000 permutations per batch.  Overall genetic structuring among 

populations was assessed using Wier and Cockerham’s θST (Wier and Cockerham 1984; 

Wier 1996), an estimator of FST, using TFPGA software, version 1.3 (Miller 1997).  

Inbreeding within populations was assessed in TFPGA by calculating f, an estimate of 

Wright’s FIS (Wier and Cockerham 1984; Wier 1996).  The 95% confidence intervals for 

the estimates of θST and f were estimated by bootstrapping over loci with 1000 replicates.  

Within-population genetic diversity was measured in three ways: average gene 

diversity per locus, mean number of observed alleles per locus, and allelic richness (with 

sample size rarified to n = 9 to allow comparison among populations with different 

sample sizes).  All diversity analyses were performed using FSTAT software (Goudet 

1995). 

We determined whether our populations bore the signature of a recent bottleneck 

by employing the mode shift test of Luikart et al. (1998) and the sign test in 

BOTTLENECK version 1.2.02 (Cornuet and Luikart 1997).  In stable populations at 

mutation-drift equilibrium, most alleles are expected to be at low frequencies.  When a 

population experiences a demographic bottleneck, low frequency alleles are preferentially 

lost and the most common (modal) allele frequency categories are expected to shift such 

that the lowest frequency category is no longer the most commonly observed category.  

The mode shift test is a qualitative assessment of this distribution of allele frequencies. 
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The sign test is a quantitative analysis of the number of loci that have either an excess 

or a deficiency of genetic diversity compared to the predicted level of diversity based on 

the number of alleles detected.  A population bottleneck typically results in an excess of 

diversity for a given number of alleles.  Only populations with sample sizes greater than 

11 were used for this analysis.  

In the Stoneman Lake area populations (Fig. 4-2), additional analyses were 

performed to assess genetic structuring and to look for genetic signatures of introduced 

eastern Northern Leopard Frogs. We used STRUCTURE software version 2.2 (Pritchard 

et al. 2000) to assess these patterns.  STRUCTURE uses a Bayesian approach to 

determine the likelihood that each individual is a member of particular groups.  We 

defined two groups of hypothesized common ancestry using mitochondrial haplotype 

(eastern vs. western, see results).  Haplotypes were determined by sequencing or 

restriction assay.   We thus assigned the number of potential subpopulations sharing 

coancestry as two, one each for eastern and western mitochondrial haplotypes.  Five 

individuals whose mitochondrial haplotype was not known due to failure of the 

mitochondrial sequence to amplify in PCR were designated as being of unknown 

population origin.  If assignment of nuclear microsatellites is consistent with 

mitochondrial genes, we can infer that the frogs of eastern and western origins are not 

interbreeding.  Alternatively, if nuclear microsatellites within individuals is not consistent 

with mitochondrial genes, we can infer that interbreeding is occurring between 

individuals with eastern and western origins.  STRUCTURE software was also used to 

determine the most likely number of clusters (k) in the Stoneman Lake area populations, 

without pre-assignment to mitochondrial groups or populations.  If interbreeding between 
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mitochondrial groups is not extensive, one would expect the optimal value of k to be 2, 

representing nuclear affiliation with two major ancestral groups.  An optimal k of 6 or 

more would infer that population geographic structure and gene flow patterns are 

influencing assignment to ancestral groups.   

 
Results 
 
 Samples were collected from 258 frogs from 21 populations in this region (Table 

4-1).  Sample sizes ranged from 1 to 31 per population.  Populations were distributed 

across northern Arizona, but were clustered in five general areas (Fig. 4-1).  The Truxton 

Wash population was isolated from the others in western Arizona.  The -9 Mile Draw 

population was located along the Colorado River near the northern border of Arizona.  

The Lyman Lake population was isolated near the eastern border of Arizona.  Also 

isolated in eastern Arizona were the Hess Tank and Buckskin Tank populations, which 

were very near each other.  The remaining 16 populations were spatially clustered in the 

Stoneman Lake area (Fig. 4-2).  

 Three mitochondrial haplotypes were found in this study.  Two haplotypes were 

closely related and nested with Hoffman and Blouin’s (2004a) western clade.  One of 

these western haplotypes was found in all five population groups in our study.  The 

second western haplotype was restricted only to the Stoneman Lake area populations, but 

was widespread among these populations south of and including 91-91C Tank.  The third 

haplotype was included in Hoffman and Blouin’s (2004a) eastern clade, a clade otherwise 

limited to populations in the eastern U.S.  The eastern haplotype was limited to the 
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Stoneman Lake area populations, and was most common in the northern populations 

(Fig. 4-3A).  Restriction assays revealed similar patterns of mitochondrial haplotypes.   

Most of the microsatellite loci we analyzed were highly polymorphic, ranging 

from 5 to 11 alleles total across our samples (Table 4-2).  Genetic diversity was high 

across the populations in the Stoneman Lake area, intermediate at -9 Mile Draw and low 

in the Truxton Wash population and in the Hess Tank/Buckskin Tank area by all three 

measures of diversity (Table 4-3).  Deviations from genotypic frequencies expected under 

Hardy-Weinberg equilibrium were found in only two of the population-by-locus 

combinations: Rarick Tank loci Rpi101 and Rpi107, using a Bonferroni correction for 

multiple tests.  The disequilibrium at Rpi101 was due to an excess of heterozygotes (P = 

0.0022). 

Clustering of populations based on microsatellite-based genetic distances 

generally reflected broad spatial relationships (Fig. 4-4).  Buckskin and Hess Tank were 

very similar, but were collectively very distinct from the other populations.  Truxton 

Wash and -9 Mile Draw were likewise unique when compared to the other populations, 

although they tended to cluster more closely with the Stoneman Lake populations than 

the Buckskin and Hess Tank cluster, contrary to geographic expectations.  The Stoneman 

Lake populations formed a well supported cluster, as would be expected given their 

hydrologic connectivity and geographic proximity.   

Across all populations in this study, population-level structuring was very 

pronounced (θST = 0.315; 95% c.i. = 0.261 - 0.374).  Consistent with the θST results, 

pairwise exact testing of all 11 populations where at least 15 individuals were sampled 

A	  
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indicated that each population was distinct from every other (P < 0.05) except for 

Buckskin and Hess Tanks (P = 0.32).   

 Seven populations (-9 Mile Draw, Buckskin Tank, Hess Tank, Rarick Tank, 

Roundup Park Tank, T-Bar Tank #2, and Truxton Wash) showed a modal shift towards 

higher allele frequency categories, suggesting past population bottlenecks (potentially 

including recent founder events) (Fig. 4-5).  Sign tests performed using BOTTLENECK 

version 1.2.02 indicated that -9 Mile Draw, Butch Tank, Little Mormon Lake, North of 

Pratt Park, Rarick Tank, Roundup Park Tank, and T-Bar Tank #2 showed significant 

heterozygote excess under the infinite alleles mutation model, but only T-Bar Tank #2 

showed excesses under the stepwise alleles model, both indications of significant recent 

bottlenecks.  Under the two-phase model of mutation, generally considered the most 

accurate for use with microsatellites (Di Rienzo et al. 1994), Little Mormon Lake, Rarick 

Tank, and T-Bar Tank #2 showed indications of significant recent bottlenecks in the form 

of heterozygote excesses.  

Among the Stoneman Lake populations, assignment of individuals to two groups 

on the basis of microsatellite allele frequencies did not correspond well with eastern vs. 

western mitochondrial haplotypes (Figs. 4-3 and 4-6).  The distinct origins and current 

separation of eastern and western frogs were indicated by a microsatellite-based θST of 

0.273 between frogs with eastern and western mitochondrial haplotypes.  However, 

program STRUCTURE assigned many individual frogs to two groups inconsistent with 

their mitochondrial haplotypes (Fig. 4-6), suggesting that gene flow has occurred 

between these two groups and mitochondrial haplotypes are not a reliable indicator of the 

majority of the genetic heritage of any given frog in this region.  STRUCTURE analysis 
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for k optimality indicated that k > 6, further indicating that mitochondrial grouping 

was not the only driver of genetic affiliations among individuals.  STRUCTURE analysis 

when k = 2 (without mitochondrial group pre-assignment) indicated a gradient of group 

membership (Fig. 4-3B) generally concordant with the gradient of mitochondrial types 

(eastern vs. western) (Fig. 4-3A). 

Hoffman and Blouin (2004a) originally identified one eastern individual among a 

sample of ten frogs collected from the Roundup Park Tank area in 2001 (these samples 

were collected by S. MacVean, Arizona Game and Fish Department, pers. comm.).  We 

intensively sampled Roundup Park Tank in 2007 and 2008, and collected tissue from 31 

adult and subadult frogs.  Of these 31 frogs, 17 had the eastern haplotype.  This is a 

statistically significant increase in the proportion of frogs with eastern mitochondrial 

haplotypes in this area, the only site for which we have data from two samples separated 

in time (Fisher’s Exact Test, P = 0.025).  

 
Discussion 
 
Broad patterns of genetic divergence among populations 
 

Throughout the study area, genetic divergence among populations is generally 

high.  This is not surprising given the great distances that separate most of the remaining 

populations.  Several populations, especially Truxton Wash, Hess Tank, Buckskin Tank, 

and -9 Mile Draw, showed both reduced genetic diversity and loss of rare alleles, 

indicating persistently small population sizes and recent population bottlenecks.  

Hoffman and Blouin (2004b) measured genetic diversity in peripheral and central 

populations of the Northern Leopard Frog.  Although the loci we used did not match 
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precisely with the loci they used, there is sufficient overlap that we can compare levels 

of genetic diversity at a coarse level.  Some of the populations in the Stoneman Lake area 

had levels of diversity that were approximately equal to those of Hoffman and Blouin’s 

“interior” populations.  Populations outside of the Stoneman Lake area all had genetic 

diversity that was roughly equivalent to or below Hoffman and Blouin’s “peripheral” 

populations.   

Most of the populations with sample sizes greater than 11 showed molecular 

signatures of recent demographic bottlenecks, despite the low statistical power associated 

with our relatively small sample sizes.  Such signatures were somewhat inconsistent 

across methodological approaches, but were generally congruent with low allelic richness 

(Table 4-3).  This pattern is perhaps not unexpected given the dramatic impacts on 

riparian areas and springs during the last century, but it suggests a need for urgent 

management attention to avoid the potentially negative synergistic effects of small 

population sizes, population isolation, and inbreeding depression.   

Buckskin Tank and Hess Tank were very similar to one another and very different 

from the other populations in terms of microsatellite allele frequencies (Fig. 4-4).  Both 

may have become established by anthropogenic introduction from nearby populations in 

the 1990s (Kimberling et al. 1996; Miller et al. 1999).  Mitochondrial haplotypes from 

these populations match those native to the region, so if these populations are the result of 

a recent introduction then they were probably introduced from a source population in the 

same region.  Microsatellite allele frequencies have diverged from those of other native 

populations in the region, perhaps due to founder effects or drift (exacerbated by small 

population size and isolation).  Inbreeding in these populations is so extreme that four 
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pairs of individuals and one triplet of individuals were identical at all eight 

microsatellite loci, indicating that this population was either founded by very few 

individuals from another source or had recently gone through an extreme population 

bottleneck.   

 
Stoneman Lake area and possible hybridization 
 

In contrast to other population groups in Arizona, the Stoneman Lake area has 

relatively low genetic divergence among populations and high genetic diversity within 

populations.  In part, this reflects the large effective population size in this area, which is 

characterized by a complex of many ponds that are connected by some gene flow.  

However, the elevated genetic diversity in the Stoneman Lake complex has likely been 

augmented by introductions of eastern frogs.  In samples collected between 1997 and 

2001, Hoffman and Blouin (2004a) detected one individual frog that contained an eastern 

mitochondrial haplotype, out of ten frogs sampled from Roundup Park Tank.  They 

suggested that this eastern individual might have been a liberated laboratory animal or 

pet.  Our data suggest that eastern haplotypes were present in the region at least as early 

as 1994, and that they are currently well established.  We reexamined samples collected 

in 1994 by Kimberling et al. (1996) from Butch Tank: of 15 samples, two were the 

eastern haplotype.   

The eastern haplotype detected in the Stoneman Lake area is a haplotype found in 

New York, New England, and adjacent areas of Canada in Quebec and Ontario.  This is 

an area that was historically (Gibbs et al. 1971) and is presently (Angela White, 

Biologist/Product Developer, Carolina Biological Supply, pers. comm.) a source of 
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Northern Leopard Frogs for the commercial trade.  Determining the exact timing of the 

introduction of these eastern genotypes is problematic with the data that are presently 

available.  However, our data do show that eastern mitochondrial haplotypes are 

widespread in the Stoneman Lake area, and microsatellite data indicate that eastern and 

western genetic lineages are broadly introgressed in this area.   

An alternative explanation for the presence of eastern mitochondrial haplotypes in 

the Stoneman Lake Area is that they are a relict haplotype from the Pliocene when 

eastern and western haplotype frogs interbred south of their current range.  We feel this 

explanation is very unlikely for two reasons.  First, FST values between frogs with eastern 

and western mitochondrial haplotypes indicate that although some introgression has 

occurred, microsatellite alleles are not randomly assorted among eastern and western 

mitochondrial haplotypes as would be expected if these haplotypes had been present and 

interbreeding since the Pliocene.  Second, the eastern haplotype that is present in Arizona 

is from a remote group of populations that is not likely to have been interbreeding 

naturally with Arizona frogs.   

This scenario of recent anthropogenic introduction is based on some assumptions 

and does not entirely eliminate the possibility that eastern genotypes in the Stoneman 

Lake area are relicts of a pre-Pleistocene contact between eastern and western lineages in 

this area.  To more rigorously test this hypothesis, it would be necessary to sequence 

several nuclear genes in addition to the mitochondrial genes already sequenced.  By 

comparing coalescence times among DNA sequences, estimates of the timing of 

introduction could be generated and hypotheses of the timing of introduction, i.e. pre-

Pleistocene or Holocene, could be tested. 
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Assessing the degree of introgression on the basis of allele frequencies, such as 

in the assignment test displayed in Fig. 4-6, would be a powerful approach to evaluate 

introgression between eastern and western frogs in the Stoneman Lake area if allele 

frequencies for native frogs and those of introduced frogs were very different.  However, 

we have no reference data on allele frequencies in putatively introduced “eastern” frogs, 

and this method may not have much power to detect introgression if eastern frogs had 

allele frequencies that were similar to the native western frogs.   

 
Management Implications 
 

It appears very likely that Northern Leopard Frogs in the Stoneman Lake area 

have significant eastern genetic influence from frogs introduced in the recent past.  This 

potentially complicates the management of the species in Arizona, and raises some 

difficult questions.  The remote and isolated populations such as Truxton Wash and Hess 

Tank/Buckskin Tank have low genetic diversity and might benefit from the addition of 

genetic diversity from other populations.  All other factors being equal, the obvious 

choice for a source population of genetic diversity would be populations in the Stoneman 

Lake area.  Populations in this area have the highest genetic diversity of any populations 

in Arizona, and because this is a complex with gene flow among populations, this area is 

most likely to tolerate the export of individuals for relocation or genetic exchange 

programs.  However, the elevated genetic diversity of this area is likely due to 

interbreeding with non-native individuals, evidently introduced from the northeastern 

United States or southeastern Canada.  Spreading individuals from this healthy 

population to other areas would mix non-native genotypes into pure native populations, 
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potentially leading to outbreeding depression and the swamping of locally adapted 

genotypes.  If such introductions were successful, they would be irreversible.   

Maintenance of local adaptation is not and perhaps should not always be the only 

concern in the management of endangered and threatened species.  If remote localized 

populations are threatened with extinction because of small population sizes and the lack 

of genetic diversity, it may be more important to maintain some form of the species in 

question than to try to preserve genetic integrity at the peril of the population (Allendorf 

et al. 2001).  This was the reasoning for hotly contested translocation of cougars (Puma 

concolor stanleyana) from Texas to the range of the Florida Panther (Puma concolor 

coryi), an action that was later judged to be critical to the recovery of the subspecies in 

Florida (Pimm et al. 2006).  However, mixing of native genomes with nonnative genomes 

is a serious concern in the management of endangered species.  Given the deep genetic 

divergences between eastern and western Northern Leopard Frogs, it is likely that they 

will one day again be recognized as distinct subspecies, or perhaps even distinct species, 

as they once were in the past (Chapter 3).  The translocation of individuals within a 

species, but between ranges of subspecies, has caused significant conservation concerns 

for species before (Metcalf et al. 2007), and it would be wise to avoid spreading 

nonnative haplotypes unless absolutely necessary.  Given the opportunity to avoid the 

risk of outbreeding depression in these already tenuous populations, it is apparent that a 

preferred alternative would be to translocate individuals from other populations in the 

vicinity, such as those in Utah and Colorado (Chapter 3).   
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Table 4-1: Rana pipiens sample sizes included in this study.  All samples were also 

genotyped using microsatellite loci (except 13 individuals from Stoneman Lake), and all 

samples not sequenced were subject to a diagnostic restriction assay to identify 

haplotypes from the eastern U.S.  “Samples sequenced” refers to the number of samples 

for which 786 bp of sequence data from the mitochondrial ND1 gene was obtained 

(Hoffman and Blouin 2004a). “Percent eastern” refers to the percentage of samples that 

matched the eastern U.S. mitochondrial haplotypes (Hoffman and Blouin 2004a), as 

assessed either by sequencing or restriction assay. 

______________________________________________________________________ 

Locality Name and Location Total 
Samples  

Samples 
Sequenced 
mtDNA 

Percent 
eastern 
haplotype 

Colorado River; northern AZ    

 -9 Mile Draw  14 5 0 

Southeast of Stoneman Lake    

   Buckskin Tank 15 6 0 

   Hess Tank 15 5 0 

Eastern AZ    

   Lyman Lake 2 2 0 

Northwestern AZ    

   Truxton (Spring and Wash) 25 5 0 

Stoneman Lake Area    

   1) 91-91C Tank 1 1 100 

   2) Brady Tank 2 2 0 



 101 
   3) Brolliar Park Tank 2 2 100 

   4) Burn Tank 4 4 75 

   5) Butch Tank 16 6 13 

   6) Camp Tank 3 3 67 

   7) Little Mormon Lake 23 9 83 

   8) Mulholland Tank 1 1 0 

   9) New Tank 3 3 100 

   10) North of Pratt Park 19 5 11 

   11) Pratt Park 9 5 0 

   12) Rarick Tank 23 5 0 

   13) Roundup Park Tank 31 15 55 

   14) Stoneman Lake 24            5 4 

   15) T-Bar Tank #2 25 10 43 

   16) Tie Park Tank 2 2 0 

_______________________________________________________________________ 
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Table 4-2: Total number of alleles found for each microsatellite locus across 

populations.   

____________________________ 

Microsatellite Locus Total Alleles 

Rpi100    8 

Rpi101    8 

Rpi102    8 

Rpi103    11 

Rpi104    5 

Rpi107    11 

Rpi108    6 

RP193    9 

____________________________ 
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Table 4-3:  Estimates of genetic diversity for each population based on 

microsatellite analyses.  Number of samples genotyped at microsatellite loci (n), 

average gene diversity per locus (gene diversity), total number of observed alleles 

(# Alleles), and allelic richness, rarified to n = 9, are provided.  Populations with 

sample sizes under 9 are not shown. 

_____________________________________________________________________ 

 
Population 

 
n 

Gene 
Diversity  

# Alleles  Allelic 
Richness  

-9 Mile Draw 14 0.508 23 21.7 

Buckskin Tank 15 0.219 15 14.5 

Hess Tank 15 0.194 12 11.8 

Truxton Wash 25 0.298 14 13.4 

Stoneman Lake Populations     

Butch Tank 16 0.643 38 34.3 

Little Mormon Lake 22 0.570 28 24.4 

North of Pratt Park 19 0.619 33 29.1 

Pratt Park 9 0.586 29 29.0 

Rarick Tank 23 0.551 28 25.2 

Roundup Park Tank 31 0.613 33 29.2 

Stoneman Lake 11 0.603 37 35.0 

T-Bar Tank #2 25 0.587 24 23.2 

_____________________________________________________________________ 
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Fig. 4-1: Location of sampled populations included in this study.  Distance from Truxton 

Wash to Lyman Lake is 405 km. The cluster of populations in the Stoneman Lake area at 

the center of the map is enlarged in Fig. 4-2.  
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Fig. 4-2: Populations sampled in the Stoneman Lake area (the central cluster of 

populations in Fig. 4-1).  
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Fig. 4-3: A) Distribution of eastern and western mitochondrial haplotypes in the 

Stoneman Lake area.  Black indicates relative proportion of individuals with the eastern 

haplotype, and white indicates proportion of western haplotypes.  Results of sequencing 

and restriction assays are combined here. B) Distribution of microsatellite group 

membership based on STRUCTURE analysis using k = 2 without mitochondrial group 

pre-assignment.  Blue represents proportion of STRUCTURE group 1 membership, and 

red represents STRUCTURE group 2 membership, averaged across individuals.  In both 

A and B, circles represent sampled populations with size of circle proportional to sample 

sizes of populations (n = 1 to 31).  See Fig. 4-2 for other site names. 
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Fig. 4-4: UPGMA dendrogram of Nei’s (1972) distances based on microsatellite allele 

frequencies.  Proportion of bootstrap replicates regenerating each node with greater than 

30% frequency is provided.  Bootstrap values less than 50% should be interpreted with 

caution. 
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Fig. 4-5: Allele frequency histograms for 11 populations with at least 15 individuals 

sampled.  Distributions skewed to the left (i.e. with a modal allele frequency of 0.01-0.1) 

indicate populations without a significant recent bottleneck.  Distributions where the 

mode is not 0.01-0.1 indicate populations that have likely gone through recent 

bottlenecks. 
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Fig. 4-6: Probability of individual membership in one of two clusters detected by 

STRUCTURE analysis (k = 2), based on microsatellite allele frequencies.  Individuals are 

represented as vertical bars.  The two clusters defined by STRUCTURE analysis are 

presented as light or dark gray. An individual with a 90% dark gray bar, for example, has 

a 90% probability of being derived from the ‘dark gray’ STRUCTURE cluster and a 10% 

probability of being derived from the ‘light gray’ STRUCTURE cluster. Individuals are 

divided into those with western mitochondrial haplotypes (left) and those with eastern 

mitochondrial haplotypes (right). Five frogs whose mitochondrial DNA failed to amplify 

in the PCR are grouped together at the far left.  If individuals with a particular haplotype 

(eastern or western) also represented a distinct group with respect to nuclear alleles, we 

would expect very high assignment fidelity within mitochondrial groups (i.e. individuals 

with western mitochondrial haplotypes would appear as mostly light gray lines and 

individuals with eastern mitochondrial haplotypes would appear as mostly dark gray 

lines.)  
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      CHAPTER 5 

CONCLUSIONS 
 

 Current predictions of genetic diversity across species’ ranges are coarse, usually 

simply assuming lower diversity in edge populations and higher diversity in central 

populations as a consequence of the abundant-center distribution and the known 

consequences of population size and connectivity on genetic diversity (Gaston 2003; 

Eckert et al. 2008).  In natural populations, however, the distribution of genetic diversity 

is rarely so simple.  At the mechanistic level, population genetic diversity is driven by the 

four forces of mutation, migration, selection, and drift.  However, integrating these four 

factors into an understanding of the demographic history of a population is a complicated 

task, and thus our ability to predict genetic diversity across species’ ranges is, and will 

probably remain, imperfect. 

A first step in improving our ability to predict genetic diversity in populations is 

to compare alternative hypotheses in explaining current levels of genetic diversity (Eckert 

et al. 2008). In Chapter 2, we tested several alternative hypotheses to explain genetic 

diversity across the range of the Northern Leopard Frog, and to explain why some edge 

populations may not show reduced genetic diversity.  We also examined the pattern of 

genetic diversity continuously from range center to edge in two transects that differed in 

the nature of their edges.  We found that genetic diversity was reduced in edge 

populations relative to central populations, but was not reduced in populations in 

glaciated areas versus unglaciated ones.  Position at range edge had a stronger effect in 

reducing diversity than recent colonization in this species.  Further, we found that genetic 
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diversity declined towards the range edge in a transect into increasingly fragmented 

habitat, but not in the edge characterized by more continuous habitat.  Taken together, 

these results provide evidence that genetic diversity in this species is reduced by position 

at the range edge, but that this effect can vary among individual transects, depending on 

the nature of the habitat at a particular edge.   

In Chapter 3, we tested whether the phylogeography of this species that was 

known from mitochondrial DNA was congruent with the phylogeography shown by 

nuclear DNA.  A genetic boundary at the Mississippi River, USA, had been suggested for 

the Northern Leopard Frog on the basis of limited geographic sampling of a 

mitochondrial gene (Hoffman and Blouin 2004a).  However, mitochondrial DNA 

represents a very small part of the genome and is not necessarily indicative of patterns in 

nuclear DNA.  We tested the hypothesis that eastern and western populations were 

separated by a distinct genetic boundary by sequencing mitochondrial DNA more 

extensively across the range, including focused sampling in the zone of hypothetical 

introgression, and by analyzing four nuclear sequences and seven microsatellite loci.  We 

confirmed previous results that eastern and western populations have unique 

mitochondrial sequences that are deeply divergent and which overlap only in a narrow 

region around the Mississippi River.  Nuclear sequences also showed divergent eastern 

and western lineages in some cases but with a broader zone of geographic overlap.  

Microsatellite data corresponded closely to mitochondrial data, differing between east 

and west and changing abruptly near the Mississippi River.  These data collectively 

demonstrate that eastern and western clades of this species introgress in some markers 

but are distinct and defined by clear and narrow boundaries in others.  We demonstrate 
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that the Mississippi River forms an important, albeit somewhat permeable, boundary 

between genetic lineages in this species in the United States.  These results help clarify 

some of our findings in Chapter 2, where we found a peak of genetic diversity in the 

vicinity of the Mississippi River.  In this species, genetic diversity in that region is 

elevated by the convergence of two populations that were isolated from one another in 

the Pleistocene. 

In Chapter 4, we narrowed the geographic focus to northern Arizona, where a 

previous study had indicated the presence of at least one individual from the eastern part 

of the range.  We analyzed genetic diversity within and genetic divergence among 

populations of Northern Leopard Frog throughout Arizona to assess the current levels of 

isolation among these populations.  We also analyzed mitochondrial DNA to place these 

populations into a larger phylogenetic framework and to determine whether any 

populations contained genetic material not native to the region.  We found a high level of 

genetic divergence between populations, and low genetic diversity in the isolated 

populations.  Populations in the Stoneman Lake area had unusually high genetic diversity 

and relatively high gene flow among populations.  However, this complex of populations 

also contained a mitochondrial haplotype that was from eastern frogs, probably 

representing the introduction of released pets or laboratory animals.  These eastern 

haplotypes were well integrated into this complex of ponds, and probably contributed to 

the high genetic diversity in this area.  Genetic diversity in the outlying populations was 

low and showed signs of recent bottlenecks, and could probably benefit from additional 

genetic diversity.  On the surface, Stoneman Lake would appear to be an ideal source of 

frogs for translocations into the genetically depauperate populations elsewhere in 
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Arizona.  However, in light of the large differences between the genetics of the 

eastern and western clades within this species (Chapter 3), and the unpredictable 

consequences outbreeding, supplementing genetic diversity in these native populations 

with artificial gene flow from the Stoneman Lake area would only be recommended if no 

alternatives exist.   

 In conclusion, each of the studies presented here were conducted with the goal of 

illuminating the process driving genetic diversity in natural populations.  It is hoped that 

this work will not only inform the management of Northern Leopard Frogs, but also to 

provide some insight into the mechanisms that drive genetic diversity generally in natural 

populations. 
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