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ABSTRACT 
 
 

Reinforcer Magnitude and Resistance to Change of Forgetting Functions  
 

and Response Rates 
 
 

by 
 

 
Meredith S. Berry, Master of Science 

 
Utah State University, 2012 

 
 

Major Professor: Dr. Amy L. Odum 
Department: Psychology 
 
 

The present experiment was conducted to investigate the effects of 

reinforcer magnitude on resistance to disruption of remembering and response 

rates. Pigeons were exposed to a variable-interval (VI), delayed-matching-to-

sample procedure (DMTS) with two components (rich and lean). Specifically, 

completion of a VI 20 second (s) multiple schedule resulted in DMTS trials in 

both components. In a DMTS trial, a choice of one of two comparison stimuli 

(e.g., blue key) results in reinforcement if the choice matches some property of 

the sample stimulus presented previously. Sample and comparison stimuli are 

separated by a delay. Four delays (0.1, 4, 8, and 16 s) were used between the 

sample and comparison stimuli in the study. The difference between rich and 

lean components was the length of hopper duration following a correct response. 

The probability of reinforcement following a correct response in both components 
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was .5. Each pigeon was exposed to 50 sessions of initial baseline and then 30 

sessions of baseline between each disruptive condition (extinction, 

intercomponent interval [ICI] food, lighting the houselight during delays, and 

prefeeding). Separable aspects of the forgetting functions (initial discriminability 

and rate of forgetting) were examined by determining accuracy at each delay. 

During baseline, response rates were higher in the rich component relative to the 

lean. Accuracy decreased as delay increased in both rich and lean components, 

and accuracy was consistently higher in the rich relative to the lean component. 

During disruptive conditions, extinction, ICI food, and prefeeding disrupted 

response rates, but lighting the houselight during the delays had little effect. 

During the DMTS portion of the procedure, extinction and prefeeding decreased 

initial discriminability and lighting the houselight during the delay increased rate 

of forgetting. Intercomponent food had little effect on accuracy. Accuracy in the 

rich component was more resistant to disruption relative to the lean component 

during extinction. These results indicate that certain disruptors do not have the 

same disruptive effect across response rates and accuracy (e.g., ICI food). 

These data also suggest that when systematic differences in accuracy between 

rich and lean components are revealed, performance in the rich component 

tends to be more resistant to disruption.   

(67 pages) 
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PUBLIC ABSTRACT 
 
 

Reinforcer Magnitude and Resistance to Change of Forgetting  
 

Functions and Response Rates 
 
 

by 
 
 

Meredith S. Berry, Master of Science 
 

Utah State University, 2012 
 

 
Enhanced memory that is less susceptible to disruption has been 

demonstrated previously, by presenting more reinforcement for correct 

responses (e.g., a higher probability of reinforcement) in a conditional 

discrimination task. The purpose of the present experiment was to extend our 

current understanding of this phenomenon to a different dimension of 

reinforcement (i.e., magnitude). This would offer additional techniques for 

delivery of reinforcement within applied settings (e.g., a classroom) that could 

promote accurate and persistent memory. The present experiment, therefore, 

was conducted to investigate the effects of reinforcer magnitude on resistance to 

disruption of remembering and response rates. Pigeons were exposed to a 

variable-interval (VI), delayed-matching-to-sample procedure (DMTS) with two 

components (rich and lean). Specifically, completion of a VI 20-second (s) 

multiple schedule resulted in DMTS trials in both components. In a DMTS trial, a 

choice of one of two comparison stimuli (e.g., blue key) results in reinforcement if 
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the choice matches some property of the sample stimulus presented previously. 

The sample and comparison stimuli are separated by a delay. Four delays (0.1, 

4, 8, and 16 s) were used between the sample and comparison stimuli in the 

present study, and were presented equally across rich and lean components. 

The difference between rich and lean components was the length of hopper 

duration (either 4.5 s [rich component] or 0.75 s [lean component]) following a 

correct response. After baseline performance was established, memory was 

tested with disruptive conditions (extinction, ICI food, lighting the houselight 

during delays, and prefeeding). Results showed that during baseline, accuracy 

was higher in the component with more reinforcement access (4.5 s) relative to 

the component with less (0.75 s), and accuracy decreased as delays increased 

in both components. Remembering was also more resistant to disruption in the 

component with more reinforcement access. These results suggest that providing 

greater length of access to reinforcement in applied settings may be an effective 

way to increase accuracy and persistence in memory.  
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INTRODUCTION 
 
 

In general, memory tends to degrade with the passage of time. 

Reinforcement, however, can affect accuracy of remembering over time (Brown 

& White, 2009) and during disruption (Odum, Shahan, & Nevin, 2005). More 

reinforcement tends to increase accuracy of remembering, and also make 

remembering more resistant to disruption. Several theories have been proposed 

to explain the influence of reinforcement on remembering (e.g., Nevin, Davison, 

Odum, & Shahan, 2007; White & Wixted, 1985). One approach emphasizes 

concepts from behavioral momentum theory, highlighting the similarities between 

the effects of reinforcement on free operant behavior and conditional 

discrimination (e.g., Nevin, Davison, & Shahan, 2005).  

Behavioral momentum theory states that a learned behavior, once 

reinforced, will tend to persist (Nevin, Mandell, & Atak, 1983), despite some 

degree of disruption (e.g., extinction). The persistence of such a response has 

been metaphorically likened to an object set in motion, which slows, and 

eventually stops with friction (Nevin, 1995). In fact, constant velocity has been 

compared to stable rates of responding under baseline conditions (Nevin & 

Grace, 2000). Another productive comparison of momentum theory to 

responding under constant conditions is the dissociation of response rates and 

resistance to change as separate measures of behavior.  

A considerable amount of research has proven consistent with behavioral 

momentum theory and offers a useful conceptualization of understanding 
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reinforcement history and current behavior, including drug addiction and relapse 

(Quick & Shahan, 2009), resistance to change of behavior within rich and lean 

contexts (Podlesnik & Shahan, 2009), recovery of responding across training and 

extinction contexts (Bouton & Bolles, 1979) and resistance to change of 

discriminations by individuals with severe mental retardation (Dube & McIlvane, 

2001). Behavioral momentum has typically been used to describe and 

understand the rate and resistance to change of free operant behavior. Less 

often investigated, however, is the paradigm of behavioral momentum applied to 

performance accuracy, which can be useful for studying remembering (i.e., 

delayed stimulus control; Odum et al., 2005), and conditional discrimination 

(Nevin, Milo, Odum, & Shahan, 2003).  

Previous reports (e.g., Nevin et al., 2003) have indicated that accuracy is 

more persistent within a discrimination procedure with more reinforcement, just 

as the rate of responding within a free operant procedure. This finding suggests 

that the same principles that govern resistance to change with quantity of 

behavior (e.g., response rates), also determine how well a behavior is performed 

(e.g., accuracy). To extend the framework of behavioral momentum theory to 

remembering, Odum and colleagues (2005) arranged rich and lean contexts 

(using high and low probabilities) within a delayed-matching-to-sample (DMTS) 

task. Results showed that remembering was enhanced and less susceptible to 

disruption with additional reinforcement, suggesting better overall performance 

when accuracy is reinforced at higher rates. 
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Although enhanced remembering and resistance to disruption was 

observed in the research of Odum and colleagues (2005) using signaled 

probabilities of rich or lean reinforcement availability, these effects have not been 

tested across other dimensions of reinforcement (e.g., magnitude or quality), 

using the same disruptors. In order to establish generality of the effects observed 

in the research of Odum and colleagues, this study addressed the influence of 

magnitude of reinforcement using a similar procedure as Odum and colleagues. 

Magnitude in this case refers to the length of time that the reinforcer (i.e., food) 

was presented. Thus, we presented a stimulus during the retention interval that 

signaled the magnitude of available reinforcement upon a correct response. 

When the signaling stimulus was one color (e.g., center key red) during the 

retention interval, a correct response resulted in 4.5-second (s) access to food, 

whereas if the signaling stimulus was another color (e.g., center key green), a 

correct response resulted in 0.75-s access to food. Following baseline conditions, 

disruptors used previously (i.e., Nevin & Grosch, 1990; Odum et al., 2005) were 

presented to assess the relative resistance to disruption of remembering across 

the rich and lean components.  

Therefore, the purpose of the present study was to test signaled 

magnitude of reinforcement within a DMTS preparation to extend our current 

understanding of varying reinforcement dimensions and subsequent effects on 

initial discrimination, forgetting functions, and resistance to change of 

remembering. Increased accuracy during baseline within the rich component 
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(4.5-s access to food), relative to the lean component (0.75-s access to food), 

would show that greater magnitudes of reinforcement facilitate enhanced 

remembering in this specific DMTS procedure. Additionally, if enhanced 

remembering were more resistant to change in the rich component relative to the 

lean during phases of disruption, this would indicate initial conditions of training 

with greater magnitudes of reinforcement facilitate greater persistence of 

remembering.  
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LITERATURE REVIEW 
 
 

Behavioral momentum theory states that a learned behavior, once 

reinforced, will tend to persist (Nevin et al., 1983), despite some degree of 

disruption (e.g., extinction). Data from a number of studies suggest that 

reinforcement conditions prior to the presentation of a disruptor directly affect the 

persistence of responding (e.g., Nevin, 1974; Podlesnik & Shahan, 2009). 

Specifically, behavior that has been richly reinforced tends to be more resistant 

to disruption. Behavioral momentum theory offers a fruitful conceptualization of 

the persistence of human responding despite disruption (e.g., extinction, 

distraction) and has proven useful in understanding persistence of behavior 

despite negative consequences as in cases of drug addiction and relapse (Quick 

& Shahan, 2009; Shalev, Highfield, Yap, & Shaham, 2000). Additionally, greater 

persistence of behavior resulting from richer schedules of reinforcement has 

been demonstrated across many species and situations, using various disruptors 

(e.g., Dube & McIlvane, 2001; Harper, 1996; Mace et al., 1990).  

Behavioral momentum has typically been used to describe and 

understand the rate and resistance to change of free operant behavior. Less 

often investigated, however, is the paradigm of behavioral momentum applied to 

performance accuracy, which can be useful for studying remembering (i.e., 

delayed stimulus control; Odum et al., 2005), and conditional discrimination 

(Nevin et al., 2003). Previous reports (e.g., Nevin et al., 2003) have indicated that 

accuracy is higher and more persistent within a discrimination procedure using 
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richer schedules of reinforcement just as persistence in rates of responding is 

within a free operant procedure. This suggests that the same principles that 

govern resistance to change with quantity of behavior (e.g., response rates), also 

determine how well a behavior is performed (e.g., accuracy). Further developing 

these methods could offer additional techniques for delivery of reinforcement 

within applied settings (e.g., a classroom) as well as extend the utility of the 

theory of behavioral momentum.  

 
Behavioral Momentum 

 
 

Behavioral momentum theory states that behavior tends to repeat in the 

presence of the same antecedent stimuli in which it was learned, despite some 

disruption (Nevin et al., 1983). Nevin and Grace (2000) described response rate 

and persistence as separable aspects relating to the strength of a behavior. In 

fact, it is suggested by Nevin and colleagues (1983) that performance is 

characterized by response rates, but resistance to change could be an indicator 

of learning. Resistance to disruption of a behavior offers another measure of 

relative strength in addition to response rate, which is a conditionable aspect of 

behavior. That is, responding that is reinforced more richly in the presence of one 

stimulus (e.g., green key color), will tend to persist to a greater degree relative to 

baseline than responding that was less reinforced in the presence of another 

stimulus (e.g., red key color) upon disruption. 

Researchers investigating behavioral momentum generally employ a 
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multiple schedule paradigm of free-operant responding (e.g., key-pecking), using 

variable interval (VI) reinforcement schedules. A VI schedule of reinforcement 

requires a single response to collect the reinforcer, which becomes available 

after variable intervals, and engenders moderate steady rates of responding. In a 

multiple schedule, two VI schedules (e.g., VI 30-s, VI 120-s) alternate across a 

session, each with a distinctive stimulus (e.g., different key color). In the 

presence of one stimulus (e.g., red key light) a VI 30-s (rich) schedule is in place, 

in which key pecking results in access to food once every 30 s on average. 

Following the completion of that component, the other schedule, a VI 120-s 

(lean) schedule, occurs in the presence of a different stimulus (e.g., green key 

light), in which key pecking results in food once every 120 s on average. Thus, in 

the presence of one key color (i.e., the rich component) responding results in 

relatively more hopper deliveries and in the presence of the other key color (i.e., 

the lean component), key pecking results in relatively fewer hopper deliveries. 

Conventionally, researchers have used greater rates (e.g., Podlesnik & Shahan, 

2009), longer access (Harper & McLean, 1992), or higher probabilities of 

reinforcement delivery (e.g., Odum et al., 2005) to make one schedule of 

reinforcement richer than another. Once rates of responding become stable, the 

strength of performance in each component is tested with disruption (e.g., Nevin, 

1974; Nevin et al., 2003). 

 Some typical methods used to disrupt behavior in laboratory animals are 

extinction, prefeeding and intercomponent interval (ICI) food delivery. Extinction, 
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for example, involves discontinuing access to food and food-related stimuli for 

responses. With prefeeding, the subject is given a substantial amount of food in 

the home cage shortly before the experimental session. Free presentations of 

food between components, regardless of responding, occur during ICI food 

delivery. The presentation of disruption offers a measurement of persistence of 

the behavior, both compared to baseline levels of responding, and across rich 

and lean components. 

One classic example of greater resistance to change in a more richly 

reinforced context is offered by Nevin (1974). In this series of experiments using 

pigeons as subjects, Nevin tested resistance to disruption of key pecking 

reinforced by access to grain within rich and lean components of a multiple 

schedule. Specifically, resistance to disruption was tested using extinction and 

response-independent food delivery. As free food rates increased, rates of 

responding decreased and proportion of baseline responding was greater in the 

rich schedule (VI 1-min) relative to the leaner schedule (VI 3-min). Extinction 

produced similar results. Experiment 2 employed a similar multiple schedule 

(mult VI 2-min and VI 6-min) and similar results were obtained with tests of 

extinction. That is, responding in the presence of the key light previously 

associated with the VI 2-min schedule was more resistant to extinction than 

responding in the presence of the key light previously associated with the VI 6-

min schedule.  

Experiment 3 of Nevin (1974) investigated further resistance to change by 
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varying the magnitude of reinforcement rather than reinforcement rate and then 

challenging performance with response independent food in another third 

component. Results showed that response rates were reduced relative to 

baseline more in the leaner component (2.5 s access to grain) relative to the 

richer component (7.5 s access to grain), regardless of relative response rates 

observed during baseline. Thus, similar results were obtained when the 

magnitude was varied as compared to rate of reinforcement. That is, when 

responding was disrupted by response independent food, resistance to change 

was greater in the rich schedule relative to the lean.  

To summarize, these findings demonstrate that when previously 

reinforced at a greater rate or magnitude, responding will be more resistant to 

disruption than with relatively less reinforcement. This phenomenon tends to 

occur regardless of baseline response rates. This effect has been explicitly 

investigated with response independent food provided in the rich component of a 

multiple schedule, driving response rates in the rich component below response 

rates in the lean component (e.g., Nevin, Tota, Torquato, & Shull, 1990; 

Podlesnik & Shahan, 2009). Despite lower response rates during baseline, 

responding in the rich component is more persistent upon disruption than 

responding in the lean component. Thus, greater degrees of persistence in more 

richly reinforced contexts seem to be robust to different baseline preparations of 

free operant behavior.  

Greater resistance to change of behavior following greater rates of 
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reinforcement has been demonstrated across a number of species including rats 

(Quick & Shahan, 2009), pigeons (Podlesnik & Shahan, 2009) and humans with 

severe mental retardation (Dube & McIlvane, 2001), and has implications for 

human maladaptive behavior. Accordingly, the conceptualization of behavioral 

momentum can be useful in understanding the acquisition and persistence of 

adaptive and maladaptive behavior. For example, better understanding the 

conditions in which self-control is formed and sustained could lead to better 

techniques of developing and maintaining self-control. Relatedly, implications for 

clinical interventions and drug addiction could result from a more comprehensive 

understanding of the influence of histories of reinforcement as related to different 

environmental cues and persistence of maladaptive behavior (Nevin & Grace, 

2000). Although greater resistance to change with rich reinforcement has been 

frequently demonstrated in free operant preparations providing implications for 

human behavior, less often investigated is if similar baseline preparations and 

resistance to disruption of more complex cognitive tasks such as conditional 

discrimination (e.g., delayed-matching-to-sample) would also follow similar 

principles. 

 
Delayed-Matching-to-Sample 

 
 

DMTS procedures are commonly employed to study memory (e.g., 

Berryman, Cumming, & Nevin, 1963; Blough, 1959; White, 1985). In a standard 

DMTS paradigm the subject is presented with a sample stimulus (e.g., red center 
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key). Following an observing response the sample is terminated and a delay (i.e., 

the retention interval) is initiated, after which the subject chooses between two 

comparison stimuli, one that matches the physical properties of the sample 

stimulus, and one that does not. A response to the comparison stimulus which 

matches the sample (e.g., red key) results in access to food, and a response to 

the comparison that does not match the sample (e.g., green key) results in 

blackout. As retention intervals increase (e.g., from 1 s to 15 s) accuracy tends to 

decrease, producing a forgetting function with high discrimination at short delays 

(e.g., 0 s) and lower discrimination at longer delays (e.g., 15 s). One method that 

is often used to calculate discrimination in DMTS procedures is log d. Log d is 

calculated by taking the logarithm of the geometric mean of the ratio of correct to 

error responses following each sample (Davison & Tustin, 1978):  

  log d = 0.5 * log [(cr / er) * (cg / eg)],   (1) 

where cr, and ce denote correct and error responses to the red sample, and cg 

and eg denote correct and error responses to the green sample, respectively.  

White (1985, 2001) noted two separable aspects of forgetting functions: 

initial discriminability (accuracy at 0-s delay) and the rate of forgetting (slope of 

the function). Although some manipulations affect initial discriminability, other 

manipulations affect the slope of the function. For example, the number of 

observing responses (i.e., pecks to the sample stimulus) increases accuracy at 

0-s delay and therefore increases discriminability, but has no effect on rate of 

forgetting. Lighting the houselight during the retention interval, however, increase 
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the rate of forgetting (slope), but has little effect on initial accuracy (e.g., White, 

1985).  

One well established finding, known as the signaled magnitude effect, 

reveals that initial discriminability is higher (though slope is unchanged) when 

relatively greater within-session reinforcer magnitudes (Brown & White, 2009, 

2011; Jones, White, & Alsop, 1995; Nevin & Grosch, 1990), or higher 

probabilities (Brown & White, 2009; White & Wixted, 1985) of reinforcement are 

provided. That is, initial discriminability increases with relatively greater amounts 

of reinforcement, but the rate of forgetting (slope) remains unaffected by these 

conditions. Although the signaled magnitude effect occurs with both greater 

magnitudes and higher probabilities of reinforcement, the effect of frequency of 

reinforcement has been reported to be stronger than the effect of magnitude 

(e.g., Boldero, Davison, & McCarthy, 1985). There is a paucity of research, 

however, on the influence of such baseline conditions (i.e., magnitude) upon 

disruption of delayed-matching-to-sample performance.  

Although delayed-matching-to-sample procedures are frequently used to 

assess environmental and pharmacological effects on remembering (Kangas, 

Berry, & Branch, 2011), less research has been conducted on how the effects of 

baseline conditions influence resistance to disruption of remembering (Odum et 

al., 2005). Nevin and colleagues (2003) investigated whether similar principles 

that govern resistance to change in the well-documented free-operant 

procedures also govern conditional discrimination performance. More explicitly, 
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Nevin and colleagues explored whether the conditions which make response 

rates in a free operant procedure more persistent also make conditional 

discrimination more persistent in a delayed-matching-to-sample procedure using 

prefeeding, intercomponent food delivery, introduction of a retention interval, and 

extinction as disruptors. To test this, Nevin and colleagues evaluated response 

rates and delayed-matching-to-sample performance using pigeons with one 

retention interval (0-s) and multiple components (each VI 30-s), signaling rich 

(0.8 probability of reinforcement) and lean (0.2 probability of reinforcement) 

components. Following baseline conditions, resistance tests were introduced. 

Again, prefeeding, intercomponent food delivery, introduction of delay between 

sample and comparison stimuli, and extinction were used to examine resistance 

to change. With few exceptions, response rates and matching accuracy in the 

rich component were more resistant to disruption than response rates and 

matching accuracy in the lean component.  

These data suggest that resistance to change of conditional discrimination 

performance may operate similarly to free operant responding. That is, the well-

established findings that greater rates of baseline reinforcement lead to higher 

response rates and greater resistance to change, also apply to resistance to 

change of conditional discrimination performance. Relatively higher baseline 

rates of reinforcement, therefore, produce not only more behavior that is more 

resistant to disruption, but also enhanced performance that is more resistant to 

disruption. Although Nevin and colleagues (2003) demonstrated that accuracy 
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was higher and more persistent with greater reinforcement probabilities, only one 

retention interval (0 s) was used.  

Odum and colleagues (2005) employed a similar procedure but with 

several retention intervals. This experiment was conducted to investigate how 

relatively rich and lean baseline conditions affect forgetting functions across a 

range of retention intervals upon disruption. Using different colored key lights to 

signal rich (0.9) and lean (0.1) probabilities of reinforcement following a correct 

match, Odum and colleagues used a similar VI-DMTS procedure as Nevin and 

colleagues (2003). That is, a VI schedule was in place on the center key and 

provided access to a DMTS trial. Intercomponent food delivery, prefeeding 30 

min prior to session, and extinction were used as disruptors following baseline, to 

test persistence of response rates and accuracy. Log d values (Equation 1) were 

calculated for each subject at each retention interval and for rich and lean 

components across baseline and disruptive phases.  

Results showed that baseline response rates and levels of accuracy as 

measured by log d were higher in the rich condition (with 0.9 probability of 

reinforcement) than the lean condition (with 0.1 probability of reinforcement). 

Disruption by ICI food and extinction reduced response rates more in the lean 

condition than the rich condition. Log d values revealed that ICI food increased 

the rate of forgetting (slope) but did not systematically affect initial 

discriminability. Extinction, however, reduced initial discriminability more in the 

lean component that the rich component, but did not affect the rate of forgetting. 
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Thus, these specific disruptors had different effects on the forgetting functions 

generated by this VI-DMTS procedure.  

Although enhanced and more persistent remembering was observed in 

the research of Odum and colleagues (2005) using signaled probabilities of more 

or less reinforcement availability, other dimensions of reinforcement (e.g., 

magnitude or quality) using similar procedures have not been tested in DMTS 

performance using the same disruptors. Effects of motivational disruptors (e.g., 

prefeeding) and distraction disruptors (e.g., Nevin & Grosch, 1990) have also not 

been effectively tested across a range of retention intervals in a VI-DMTS 

procedure. Therefore, testing signaled magnitude of reinforcement within a 

remembering task would extend our current understanding of dimensions of 

reinforcement and how these dimensions affect accuracy upon exposure to 

extinction, ICI food delivery, lighting the houselight during delays, and prefeeding.  

 
Theories of Delayed-Matching-to-Sample Performance 

 
 

One integrative theory that is able to account for some effects of 

reinforcement on DMTS performance is that proposed by White and Wixted 

(1985). This theory incorporates remembering in DMTS procedures with the 

matching law. The matching law states that behavior is allocated in proportion to 

rates of reinforcement associated with concurrent choice alternatives (Baum, 

1974; Herrnstein, 1961; Koffarnus & Woods, 2008). White and Wixted note that 

each stimulus in a DMTS task is associated with a ratio of reinforcers obtained 



16 
 

for correct choices (of the comparison stimuli). The ratio of reinforcers, which is 

based on the matching law and dictates choice, is established by experience with 

these stimuli for prior correct choices. This model predicts that biasing effects of 

the reinforcement ratio can occur. In other words, choice proportions will match 

the ratio of reinforcers. For example, if more reinforcement has been obtained 

previously for choices to the green comparison stimulus, a subject may be more 

likely to choose the green comparison stimulus in the future, whether or not it is 

the correct response. These biasing effects tend to be enhanced with longer 

delays and decreased discriminability. Choice behavior is therefore dictated by 

an individual's history of reinforcement. Delayed-matching-to-sample data are 

generally well described by this model.  

Although DMTS data generally conform to the model proposed by White 

and Wixted, the model fails to account for increased accuracy resulting from 

increased levels of reinforcement across contexts. Brown and White (2009) 

added reinforcement context in a later version of the model, which helps to 

account for this effect. Delayed-matching-to-sample performance during 

disruption, however, is not addressed by White and Wixted's model.  

One influential theory, postulated by Nevin and colleagues (2005), does 

account for the effects of different levels of reinforcement across contexts in 

conditional discrimination procedures with no delay between sample and 

comparison stimuli. This theory asserts that the probability of attending is 

influenced by reinforcement in the same way that free operant behavior is. In 
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other words, attending to sample and comparison stimuli, and resulting levels of 

accuracy and resistance to disruption, conform to predictions derived from 

behavioral momentum theory. The more reinforcement (e.g., greater probability 

of reinforcement) provided for a correct response the more accurate and 

persistent matching-to-sample performance will be.  

Nevin and colleagues (2007) expanded this theory to include the effects of 

reinforcement on remembering. Similar to the previous theory and following from 

concepts of behavioral momentum, the probability of attending to the sample and 

comparison stimuli independently, and the persistence of accuracy upon 

disruption, are influenced by levels of reinforcement. In other words, attention to 

stimuli is enhanced and more persistent in a context associated with relatively 

more reinforcement. This theory included working memory by accounting for 

disruption of attending that occurs as a result of the delay between sample and 

comparison stimuli in DMTS procedures. Taking into account the influence of 

varied reinforcement across contexts, and the disruption of delay between the 

sample and comparison stimulus on attending, this theory is able to account for 

DMTS data (e.g., higher accuracy with more reinforcement) better than some 

preceding theories. This theory also accounts for the effects of disruption (e.g., 

extinction) on DMTS performance.  

Although this experiment was not designed to test these theories, the data 

were expected to generally conform to predictions of the theory proposed by 

Nevin and colleagues (2007) within a VI-DMTS procedure. That is, performance 
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was expected to be more accurate during baseline and persistent during 

disruption in the rich component relative to the lean. Additionally, the majority of 

the predictions proposed by Nevin and colleagues in the 2007 model were made 

on the basis of differing reinforcement probabilities to establish rich and lean 

contexts, rather than differing magnitudes. Examining the effects of magnitude 

within a VI-DMTS procedure across rich and lean components may offer new 

insight into the generality of the model.  

 
Divergent Findings 

 
 

Previous researchers have investigated the effects of differing magnitudes 

on DMTS performance, but have used a different procedure than the one 

proposed for this study (i.e., signaled DMTS as opposed to VI DMTS). Nevin and 

Grosch (1990) investigated the effects of differing magnitudes of reinforcement 

on resistance to change of forgetting functions using pigeons, but used different 

disruptors than those described previously. Specifically, Nevin and Grosch used 

houselight and sample alterations, and drug administration as disruptors. Distinct 

sounds signaled either large or small reinforcer magnitudes (4.5- or 1.5-s access 

to grain). Performance was disrupted by presenting the houselight during the 

retention interval, injections of sodium pentobarbital, and sample duration 

reduction. Although baseline accuracy was higher with larger magnitudes (i.e., 

longer hopper duration), no difference was found between the large and small 

signaled magnitude forgetting functions upon disruption when analyzed relative 
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to baseline performance (logit p in disruption tests over logit p in baseline). These 

results were not consistent with the typical results found when investigating 

persistence of behavior in free-operant preparations. Although it is possible that 

the divergent findings of Nevin and Grosch were due to the different disruptors 

used, it is also possible that using magnitudes of reinforcement, instead of 

probabilities of reinforcement, could have different effects on resistance to 

change of forgetting functions. A third possibility is that the use of sound (i.e., 

tone and white noise) to signal the difference in magnitudes across components, 

contributed to the divergent findings. Specifically, the disruptors may have 

diminished control by the auditory component stimuli, which are not often used 

with pigeons, and thus diminished the influence of reinforcer magnitude on 

persistence. 

Another potential reason results of Odum and colleagues (2005) differed 

from those of Nevin and Grosch (1990) could be related to the difference in trial 

structure across procedures (Nevin, Shahan, Odum & Ward, 2011). In the VI-

DMTS procedure used in the Odum and colleagues, multiple VI schedules 

across rich and lean components led to DMTS trials. The reinforcer probabilities 

were signaled throughout the component (before the sample presentation, during 

the delay), which consisted of four trials. Alternatively, in the signaled-DMTS-

trials procedure employed by Nevin and Grosch, the reinforcer magnitude was 

signaled at sample onset and through the retention interval, and small and large 

magnitude trials alternated irregularly. The differences across procedures (e.g., 
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delays, disruptors, probability versus magnitude, trial structure), however, create 

difficulties in isolating the causes of these discrepant results.  

To address these issues, Nevin and colleagues (2011) standardized the 

different but related DMTS tasks using the same delays and disruptors, and 

similar probabilities to establish rich and lean contexts across experiments. 

Results showed that the proportion of baseline log d values for rich probability 

trials in the VI-DMTS procedure (similar to Odum et al., 2005) were more 

resistant to disruption during extinction and prefeeding. Proportion of baseline log 

d values for lean probability trials in the signaled-DMTS-trials procedure (similar 

to Nevin & Grosh, 1990), however, were more resistant to these disruptors. 

Therefore, opposite results were obtained across these standardized procedures, 

generally replicating previous findings.  

The differences in resistance to disruption across rich and lean contexts in 

the VI-DMTS and the signaled-DMTS procedures can be explained by the 

aforementioned theory proposed by Nevin and colleagues (2007). In the VI-

DMTS procedure, the reinforcer probabilities across rich and lean components 

are signaled throughout the DMTS portion of the procedure, as well as the VI 

portion. In contrast, in the signaled DMTS procedure, the reinforcer probabilities 

are only signaled during DMTS trials. As proposed by Nevin and colleagues, 

attention to the sample is influenced by signaling rich or lean probabilities. 

Therefore, if rich and lean probabilities are signaled more during the VI-DMTS 

procedure, then attention to the sample across rich and lean trials is 
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differentiated more in the VI-DMTS than signaled DMTS procedure. On the other 

hand, the probability of attending to the comparison stimuli (a separate process) 

is differentiated more in the signaled-DMTS than VI-DMTS procedure (see Nevin 

et al., 2011, for exact calculations of each parameter and probabilities of 

attending to sample and comparison stimuli). These reasons may also help 

explain the differences in proportion baseline log d values during disruption found 

between VI-DMTS and signaled-DMTS procedures.  

The present experiment was designed to test the effects of magnitude of 

hopper duration (i.e., longer versus shorter hopper durations) on forgetting 

functions within a similar VI-DMTS procedure as used in Odum and colleagues 

(2005). The disruptors used were expected to influence performance in a number 

of different ways. For example, some were expected to affect motivational factors 

(e.g., ICI food), and others were expected to distract from the DMTS task (e.g., 

houselight alterations). Additionally, some disruptors were directly related to the 

contingencies of reinforcement (e.g., extinction), which may differentially impact 

resistance to change of the forgetting functions. Thus, various disruptors were 

selected for the present experiment, in order to test different effects on resistance 

to change of DMTS performance when magnitude is used to establish rich and 

lean contexts.  
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STATEMENT OF THE PROBLEM 
 
 

Numerous studies have documented greater resistance to disruption of 

behavior in a free-operant procedure as a result of richer reinforcement delivery 

during baseline (e.g., Nevin, 1974; Podlesnik & Shahan, 2009). This 

phenomenon has implications for the persistence of adaptive as well as 

maladaptive behavior (Nevin & Grace, 2000). Although a great deal of inquiry 

has been devoted to baseline conditions and the persistence of free operant 

behavior, few studies have explicitly investigated the resistance to change of 

conditional discrimination (Odum et al., 2005) or more complex patterns of 

responding (Berryman et al., 1963).  

Odum and colleagues (2005) extended research on resistance to change 

of rich and lean baseline reinforcer delivery to delayed-matching-to-sample 

performance across a range of retention intervals. Specifically, Odum and 

colleagues investigated response rates and forgetting functions resulting from 

relatively high and low baseline reinforcer probabilities within a VI-DMTS 

procedure. Subsequent effects of disruption on response rates and forgetting 

functions were assessed. Similar to the effects observed using free operant 

procedures, accuracy tended to be more persistent in the rich conditions relative 

to the lean upon disruption. It has not currently been tested, however, if the same 

effect would occur across other dimensions of reinforcement (e.g., magnitude or 

quality) within a VI-DMTS procedure. Therefore, we established rich and lean 

schedules by varying magnitude, and disrupted performance by using the same 
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methods of Odum and colleagues. That is, extinction and ICI food were used. 

This allowed a comparison of the effects of disruption on behavior maintained by 

rich and lean schedules established by reinforcer probability (e.g., Odum et al., 

2005) and by reinforcer magnitude (present experiment). In addition to testing the 

disruptors used previously in the work of Odum and colleagues, prefeeding and 

houselight alterations (Nevin & Grosch, 1990) were also used to disrupt 

performance. Nevin and Grosch used houselight manipulations as one disruptor 

and found no consistent differences between behavior maintained by rich and 

lean schedules established by magnitude. Thus, testing the same disruptor within 

the VI-DMTS procedure may provide insight into these results. Therefore, the 

purpose of the present experiment was to investigate the effects of signaled large 

and small magnitudes of reinforcement on forgetting functions both in baseline 

and during disruptive phases, using a variety of disruptors.  
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METHOD 
 
 

Subjects 
 

 
 Four homing pigeons with previous experimental history were used in the 

present experiment. Each pigeon had previous experience with VI schedules of 

food delivery and extinction. The pigeons were maintained at 80% of their free-

feeding weights by post-session feeding as needed. Pigeons were housed in 

individual cages in an AAALAC-accredited facility, in a temperature- and 

humidity-controlled colony room, with exposure to a 12:12-hr light/dark cycle. 

Water was available continuously in their home cages. 

 
Apparatus 

 
 
 Four BRS/LVE operant chambers within sound-attenuating enclosures 

were used. Each chamber was 30.7-cm long, 35-cm wide, and 35.8-cm high. 

Three translucent keys were located on the front panel (intelligence panel), each 

measuring 2.6 cm in diameter and 24.6 cm from the floor. Each key could be lit 

red, green, yellow or blue. Keys required a minimum force of 0.10 N to operate. 

The houselight was centered at the top of the front wall, 4.4 cm above the center 

key. Located 9 cm below the center key light was the hopper where pigeon chow 

was presented with a white light. Med-Associates interfacing and an IBM 

computer recorded experimental events in an adjacent room.  
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Procedure 
 
 
 Due to their prior experimental history with VI schedules, the pigeons were 

exposed directly to the VI-DMTS procedure. Figure 1 presents a schematic 

diagram of the procedure. This procedure was designed to study DMTS 

performance across rich and lean schedules within a VI multiple schedule. 

Specifically, a two component multiple schedule was signaled by the center key 

color (red or green; Red is used in Figure 1 as an example). Pecks to the lit 

center key produced DMTS trials on a VI 20 s schedule. A DMTS trial began with 

a lit yellow or blue center key. The yellow or blue sample terminated after 6 s or 

on the first peck after 3 s. The center key was then lit the same color (red or 

green) present during the VI portion of the procedure. The center key remained lit 

during a delay of 0.1, 4, 8 or 16 s (similar to the range of retention intervals used 

in Kangas et al., 2011; White, 1985). Each delay was presented 8 times per 

session in each component of the multiple schedule.  

 Following the delay, the center key was darkened and the comparison 

keys were lit (yellow or blue). The configuration of the comparison stimuli varied 

randomly across trials. A response to the comparison key that matched the 

sample produced food or blackout with a probability of .5 in both components of 

the multiple schedule. The components differed by length of hopper presentation 

(magnitude). The red or green light represented the relatively rich component 

(4.5 s access to grain) or the relatively lean component (0.75 s access to grain) 

at the beginning of each trial and during the delays. This six-fold difference in  



 

 
F
u
c
o
tr
st
d
c
y
p
le
h
s
T
fo
 

Figure 1. Sc
sed to repr
ould also b
r green cen
rial began w
timulus, or 
elay, the ce
omplete, th
ellow and b
roduced 4.

ean compon
opper or bl
ide key and

The center k
ood or black

chematic dia
resent the V
e green (de
nter key pro
with a yellow
6-s had ela
enter key w
he center ke
blue. In the 
5 s access 
nent, a pec
ackout with
d all pecks 
key was lit (
kout. See te

agram of th
VI portion o
epending o
oduced a D
w or blue sa
apsed, a de
was illumina
ey darkened
rich compo
to the hopp

ck on the ma
h a probabi
to the nonm
(red or gree
ext for deta

he VI-DMTS
f the proced
n the rich o
MTS trial o
ample key. 

elay of 0.1, 
ated (red or 
d, and the c
onent, a pec
per or black
atching side
lity of .5. No

matching sid
en) for the V
ails.  

S procedure
dure in this

or lean com
on a VI 20-s

After 3-s a
4, 8 or 16 s

r green). Wh
comparison
ck on the m
kout with a 
e key produ
onreinforce
de key prod
VI portion o

e. A key lab
s diagram, b

mponent). P
s schedule.
and a peck 
s was initiat
hen the del
n keys were
matching sid

probability 
uced 0.75 s
ed pecks to 
duced a bla
of the proce

 

beled red is
but the key 
ecks to the
 The DMTS
to the samp
ted. During
lay was 
e illuminate
de key 
of .5. In the

s access to
the matchi

ackout perio
edure follow

26 

s 

e red 
S 
ple 
 this 

ed 

e 
o the 
ing 
od. 

wing 



27 
 

magnitude was slightly greater than used in some previous reports (e.g., Brown 

& White, 2009; Harper & McLean, 1992; Nevin & Grosch, 1990), and was 

selected to establish a distinct disparity between hopper presentation durations 

across rich and lean contexts. Signaling the magnitude of reinforcement during 

the retention interval was expected to produce elevated accuracy in the condition 

with longer reinforcer access. The key light (red or green) and the component 

association (rich or lean) was counterbalanced across birds. 

 In order to equate time across the two components, 5 s elapsed until the 

next trial, regardless of component. A correct response in the rich component 

resulted in 4.5 s hopper access followed by 0.5 s blackout period before the next 

trial was initiated, and in the lean component, a correct response resulted in 0.75 

s hopper access followed by a 4.25 s blackout period before the next trial was 

initiated. In both components, a correct response resulted in reinforcement 50% 

of the time. A blackout period of 5 s occurred in both components after an 

incorrect or nonreinforced response. 

 The component (rich or lean) was randomly selected at the onset of each 

session, and alternated for the remainder of the session. Each component was 

separated by a 15 s ICI in which the keys were dark and the houselight was lit. 

Components changed after four trials and were in effect for a minimum of 

approximately 90 seconds (although this time could vary substantially depending 

on the length of the VI portion). Each session consisted of 64 trials (half rich and 

half lean). Each pigeon was exposed to 50 sessions of initial baseline and 30 
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baseline sessions between each disruptive condition (similar to Odum et al., 

2005). Data from the last 10 sessions of baselines were used for data analyses.  

 
Resistance Tests 

 
 
 To examine resistance to change of accuracy and response rates, the 

following disruptors were presented in this order for each subject: extinction, ICI 

food, a lit houselight during the delays, and prefeeding (e.g., Nevin, 1974; Nevin 

& Grosch 1990; Nevin et al., 2003). Each disruptor was presented for 10 

consecutive sessions, with separation of 30 baseline sessions between each 

disruptor (similar to Odum et al., 2005).  

 During extinction, correct pecks to the comparison stimulus did not result 

in access to the hopper, but instead in a blackout period (5 s for each 

component). If a comparison was not chosen within 15 seconds of presentation, 

a blackout period ensued, followed by the next trial. During extinction, not all 64 

trials were completed by each subject. Subject 353 completed at least 40 trials 

during the first three sessions of extinction, and at least 15 trials during all 

subsequent extinction sessions. Subject 284 completed at least 60 trials during 

the first five sessions of extinction, and at least 33 trials during the last five 

sessions of extinction. Subject 232 completed at least 30 trials during the first five 

sessions of extinction, and at least 14 trials during the last five sessions of 

extinction. Subject 222 completed at least 63 trials during the first six sessions of 

extinction, and at least 17 trials during the last four sessions of extinction.  
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 During the next disruptive condition (ICI food), food was presented during 

the ICI on a random time (RT) 5-s schedule (food was presented every 5 

seconds, on average). During this disruptor, most or all trials were completed by 

each subject. Subjects 353, 284, and 222 completed all trials during all sessions 

of ICI food. Subject 232 completed at least 63 trials during all sessions.  

 During the following disruptive condition (lit houselight during delays), the 

houselight was lit during the retention interval. During this disruptor, most or all 

trials were completed by each subject. Subjects 284, 232, and 222 completed all 

trials during all sessions of the lit houselight during delays. Subject 353 

completed at least 62 trials during all sessions.  

  During the next disruptive condition (prefeeding) each subject was fed 30 

grams of food 30 min prior to session. During this disruptor, not all trials were 

completed by each subject. Subject 284 completed all trials during all sessions. 

Subject 222 completed at least 62 trials during all sessions. Subject 353 

completed at least 20 trials during all prefeeding sessions. Subject 232 

completed at least 63 trials during the first 6 sessions, and at least 16 during the 

final 4 sessions. To ensure that including all sessions (even those with fewer 

trials completed) did not impact data analyses, a criterion was selected for 

session omission. The criterion was that if less than 30% of trials were completed 

during a session that session was excluded from analysis. Across all subjects 

and disruptive conditions, this resulted in only seven sessions omitted from 

analysis. Because results were similar whether these sessions were omitted or 
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not, data for all subjects and sessions for each disruptive condition were used in 

the data analysis presented here. 

 
Data Analysis 

 
 
 The primary dependent measures of interest in the present study were 

response rates during the VI portion of the schedule and accuracy at each delay 

(log d) during the DMTS portion of the schedule. Response rates were calculated 

as the number of responses per minute during the rich and lean VI components 

separately. Response rates were averaged over the last 10 days of each 

baseline condition. To examine if response rates were different across rich and 

lean components, and across successive baseline conditions, a two-way 

(component x condition) repeated measures analysis of variance (ANOVA) was 

performed.  

 To examine the effects of each disruptor, response rates in the rich and 

lean components were compared across baseline conditions and during each 

disruptive phase (extinction, ICI food, lit houselight during delays, and 

prefeeding) for each individual subject. More specifically, response rates were 

averaged over the last 10 days of baseline for rich and lean components 

separately. This was also done for the last 10 days of each disruptor. A paired t 

test was then used to test whether the proportion of baseline response rates 

during each disruptive phase was significantly different across rich and lean 

components. This offered a detailed account of potential differences in disruptive 
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effects across rich and lean components.  

 In addition to response rates, forgetting functions were also examined. In 

order to examine disruptive effects, forgetting functions across baseline and 

disruptive phases were compared. To do this, accuracy measures (log d) at each 

delay were pooled for rich and lean components separately for each subject over 

the last 10 sessions of each baseline condition. The same was done for the last 

10 sessions of each disruptive condition. To examine initial discriminability (a) 

and rate of forgetting (b) across baseline and disruptive conditions, parameter 

values were generated using the exponential decay model (White, 2001) using 

nonlinear regression: 

 log d = a * exp (- b * √ t) (2) 

where a is initial discriminability at 0 s delay, b is the rate of forgetting, and t is 

the length of the retention interval. We were also interested in the specific effects 

of each disruptor on the forgetting functions, and whether initial discriminability 

and/or slope would be disrupted. To examine these disruptive effects, data 

during each disruptor were compared to the baseline data immediately prior. 

Paired t-tests were used to assess whether the proportion of baseline 

performance for parameters a and b (initial discriminability and rate of forgetting) 

during each disruptor were significantly different across rich and lean 

components.  
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RESULTS 
 
 

 Figures 2 and 3 present response rate data during the VI portion of the 

schedule. Figure 2 displays the average of response rates for the last 10 

sessions of each successive baseline condition prior to the disruptive tests for 

each individual subject. Response rates in the rich condition were consistently 

above those in the lean condition for all subjects. Response rates were similar 

across successive baseline conditions. A two way (component x condition) 

repeated measures analysis of variance (ANOVA) confirmed these impressions, 

and revealed a significant effect of component, F(1, 3) = 15.78, p < .001, but not 

of baseline condition F(1, 3) = 1.14, p = .98, with no interaction F(1, 3) = 0.3, p = 

.91.  

 

 
Figure 2. Average response rates for each subject for the last 10 sessions of 
each successive baseline condition prior to the disruptive tests. 
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Figure 3. Proportion of baseline response rates for rich and lean components for 
each disruptive phase.  
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Figure 3 presents the proportion of baseline response rates for each 

subject during each disruptive test. Response rates during each disruptive test 

were compared to response rates during the 10 sessions of baseline immediately 

prior to that test. By visual inspection, extinction decreased response rates in 

both the rich and lean components. During the first five sessions of extinction this 

decrease was greater in the lean relative to the rich for each subject. A paired t 

test determined, however, that this difference was not statistically significant, t(3) 

= 2.07, p = .13 for the first five days, or the last five days of extinction, t(3) = 

0.923, p = .42. During ICI food presentation, proportion of baseline responding 

also decreased for both rich and lean components, but the difference was not 

statistically significant; paired t test, t(3) = 0.479, p = .66. In the houselight 

presentation during the delays condition, little change was observed and the 

proportion of baseline response rates across rich and lean components were not 

significantly different, t(3) = 1.13, p = .34. During prefeeding, the proportion of 

baseline responding decreased in both rich and lean conditions. The decrease 

was greater in the lean condition than the rich condition for three out of four 

subjects (the exception was S353), but a paired t test revealed that this 

difference was not statistically significant, t(3) = 1.05, p = .37. 

Figures 4 through 11 (each discussed and shown separately below) 

present data from the DMTS portion of the procedure for baseline and disruptive 

conditions. Figure 4 displays the forgetting functions for baseline and extinction 

exposure. The log d values were pooled over the last 10 sessions of baseline in  
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Figure 4. Forgetting functions for rich and lean components for the last 10 
sessions of baseline (left column) and extinction (right column). Functions fit to 
the log d values using Equation 2. 
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rich and lean components separately for each subject. Log d values were also 

pooled over the 10 days of extinction in the rich and lean components separately 

for each subject. The curves in each panel represent the fit of the log d values by 

Equation 2. Curve fits were performed using nonlinear regression in GraphPad 

Prism®. Across baseline and disruptive conditions log d values decreased as 

delays increased. Accuracy decreased in rich and lean components with the 

introduction of extinction from baseline. Table 1 presents parameters a (initial 

discriminatbility) and b (rate of forgetting), and the variance accounted for (VAC) 

by Equation 2 for baseline and extinction, as well as all subsequent baselines 

and disruptive conditions (ICI food, houselight during delay, and prefeeding). 

Median VAC for the rich and lean components during baseline and extinction 

was 0.96 and 0.88, and 0.88 and 0.73, respectively. 

Figure 5 displays the parameters a (top panel) and b (bottom panel) of the 

forgetting functions fit by Equation 2 during extinction as a proportion of baseline 

performance. Parameter a (initial discrimination) decreased in both components, 

but the decrease was more drastic in the lean component for all subjects. The 

proportion of baseline performance for initial discrimination across rich and lean 

components was significantly different; paired t test, t(3) = 3.5, p = .04. Different 

results were found for parameter b (rate of forgetting). A larger b value signifies 

more rapid forgetting. For this reason the inverse of b (i.e., 1/b) was computed for 

the proportion baseline graphs, so that larger values indicated less disruption, 

which is consistent with response rate analyses (e.g., Odum et al., 2005). For 
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Table 1 
 
Parameter Values for “a” (Initial Discriminability) and “b” (Rate of Forgetting) and 
Variance Accounted for (VAC) for Each Baseline and Disruptive Condition  
 

 
Note. Parameter values were derived from fitting Equation 2 to the log d values.  

Subject Rich Lean Rich Lean Rich Lean Rich Lean
a

S353 1.43 1.11 1.13 NC 1.79 1.04 1.57 1.86
S284 1.67 1.29 0.90 0.47 2.15 1.71 1.67 1.06
S232 1.92 1.17 1.30 0.17 1.93 1.13 1.14 1.79
S222 1.06 1.71 1.02 1.04 0.87 1.41 1.44 1.30

b
S353 0.26 0.30 0.74 NC 0.31 0.46 0.23 0.36
S284 0.23 0.32 0.24 0.19 0.19 0.30 0.19 0.14
S232 0.30 0.37 0.36 -0.35 0.30 0.35 0.19 0.62
S222 0.41 0.71 0.73 0.56 0.48 0.37 0.64 0.39

VAC
S353 0.96 0.81 0.99 NC 0.85 0.97 0.95 1.00
S284 0.96 0.90 0.75 0.73 0.80 1.00 0.75 0.79
S232 0.81 0.87 0.93 0.36 0.78 0.85 0.67 0.98
S222 0.98 0.99 0.83 0.84 0.98 0.96 0.98 0.93

Subject Rich Lean Rich Lean Rich Lean Rich Lean
a

S353 1.12 0.82 1.72 1.74 1.43 1.21 1.10 0.49
S284 1.15 1.23 1.68 1.85 2.13 1.76 1.89 1.19
S232 1.19 1.13 1.55 1.17 1.97 1.90 0.85 0.61
S222 0.95 0.94 1.18 1.11 1.48 1.11 0.47 0.48

b
S353 0.16 0.23 0.36 0.56 0.28 0.39 0.14 0.43
S284 0.18 0.28 0.21 0.55 0.33 0.30 0.46 0.31
S232 0.18 0.37 0.31 0.35 0.21 0.43 0.18 0.44
S222 0.39 0.32 0.55 0.39 0.57 0.38 0.15 0.12

VAC
S353 0.86 0.95 0.89 1.00 0.90 0.87 0.79 0.90
S284 0.63 0.91 0.97 0.98 0.99 0.89 0.95 0.94
S232 0.74 1.00 0.95 0.95 0.67 0.97 0.91 0.97
S222 0.87 0.86 0.99 0.95 0.99 0.89 0.78 0.95

Baseline Extinction Baseline ICI Food

Condition
Baseline HL Baseline Prefeed
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Figure 5. The proportion of baseline performance during extinction for rich and 
lean components for parameters a (top panel) and b (bottom panel) of the 
forgetting functions (fit by Equation 2). 
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Figure 6 displays the forgetting functions for baseline and ICI food 

presentation. Baseline log d values show a decrease in accuracy as delays 

increased in both the rich and lean components. Accuracy in the rich component 

during baseline was above the lean for three of the four subjects (with the 

exception of S222). During ICI food, accuracy did not always decrease, and in 

fact, it tended to increase in some cases at shorter delays (see S353, Figure 6 

and Table 1). Median VAC (Table 1) for the rich and lean components during 

baseline was 0.82 and 0.97, respectively. Median VAC for rich and lean 

components during ICI food was 0.85 and 0.96, respectively.  

 Figure 7 displays parameters a (top panel) and b (bottom panel) of the 

forgetting functions fit by Equation 2 during ICI food as a proportion of baseline 

performance. Parameter a (initial discrimination) decreased in some cases (e.g., 

S284 rich), and increased in others (e.g., S222, rich). That is, initial discrimination 

(parameter a) across rich and lean components was not systematically affected 

by ICI food. The proportion of baseline performance for initial discrimination 

across rich and lean components was not significantly different; paired t test, t(3) 

= 0.91, p = .39. The proportion of baseline performance for b (rate of forgetting) 

was not systematically affected by ICI food presentation. For two subjects (S284 

and S222), the rate of forgetting was disrupted less in the lean component than 

the rich, while the other two subjects (S353 and S232) were disrupted less in the 

rich than lean. These differences, however, were minimal in some cases. The 

proportion of baseline performance for rate of forgetting across rich and lean  
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Figure 6. Forgetting functions for rich and lean components for the last 10 
sessions of baseline (left column) and ICI food (right column). Functions fit to the 
log d values using Equation 2. 
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Figure 7. The proportion of baseline performance during ICI food for rich and 
lean components for parameters a (top panel) and b (bottom panel) of the 
forgetting functions (fit by Equation 2). 
 
 
 
components was not significantly different; paired t test, t(3) = 0.11, p = .91. 
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Figure 8. Forgetting functions for rich and lean components for the last 10 
sessions of baseline (left column) and the lit houselight during the delay (right 
column). Functions fit to the log d values using Equation 2. 
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during the delays, initial accuracy generally increased across rich and lean 

conditions, and accuracy in the rich condition remained above the lean condition. 

Although lighting the houselight during the delays enhanced performance to 

some degree (at least initial accuracy), this may in part be due to the low levels 

of baseline accuracy compared to previous baselines for three of the four 

subjects (S222 was the exception). Additionally, the houselight presented during 

the shortest delay (0.1 s) would likely have a minimal effect, compared to the 

longer delays (e.g., Brown & White, 2011). Median VAC for the rich and lean 

components during baseline was 0.80 and 0.93, respectively. Median VAC for 

rich and lean components during the disruptive houselight phase was 0.96 and 

0.97, respectively.  

 Figure 9 displays parameters a (top panel) and b (bottom panel) of the 

forgetting functions fit by Equation 2, in which the houselight was lit during the 

delays as a proportion of baseline performance. Parameter a (initial 

discrimination) increased in some cases in both the rich and lean components. 

The increase in proportion of baseline performance was greater in the rich 

component for Subject 232, greater in the lean for Subject 353, and almost no 

differences were observed between rich and lean for Subjects 284 and 222. The 

proportion of baseline performance for initial discrimination across rich and lean 

components was not significantly different; paired t test, t(3) = 0.63, p = .55. For 

the proportion of baseline performance for b (rate of forgetting), however, all 

subjects showed a decrease from initial baseline performance. The differences  
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Figure 9. The proportion of baseline performance during houselight disruption for 
rich and lean components for parameters a (top panel) and b (bottom panel) of 
the forgetting functions (fit by Equation 2).  
 
 
 
from baseline were not systematic across rich and lean components. For 

example, Subject 284 showed less disruption in the rich component, while 

Subject, 232 showed less disruption in the lean component. The proportion of 

baseline performance for rate of forgetting across rich and lean components was 

not significantly different; paired t test, t(3) = 0.51, p = .63. 

 Figure 10 displays the forgetting functions for baseline and prefeeding.  
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Figure 10. Forgetting functions for rich and lean components for the last 10 
sessions of baseline (left column) and prefeeding (right column). Functions fit to 
the log d values using Equation 2. 
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Baseline log d values show a decrease in accuracy as delays increased in both 

the rich and lean components. During baseline, accuracy in the rich component 

was above the lean for three of the four subjects (with the exception of S222). 

During prefeeding, accuracy decreased across rich and lean conditions, although 

accuracy in the rich condition remained above accuracy in the lean. Median VAC 

for the rich and lean components during baseline was 0.95 and 0.89, 

respectively. Median VAC for rich and lean components during prefeeding was 

0.85 and 0.95, respectively.  

 Figure 11 displays the parameters a (top panel) and b (bottom panel) of 

the forgetting functions fit by Equation 2 during prefeeding as a proportion of 

baseline performance. Parameter a (initial discrimination) decreased in both the 

rich and lean components, but the decrease was more drastic in the lean for 

three of the four subjects (S222 was the exception). The proportion of baseline 

performance for initial discrimination across rich and lean components, however, 

was not significantly different; paired t test, t(3) = 1.44, p = .25. The proportion of 

baseline performance for b (rate of forgetting) was not systematically affected by 

prefeeding. For two subjects (S353 and S222), the rate of forgetting was 

disrupted less in the rich component than the lean. For the other two subjects 

(S284 and S232) differences between the proportion baseline of rich and lean 

components were minimal. The proportion of baseline performance for rate of 

forgetting across rich and lean components was not significantly different; paired 

t test, t(3) = 1.42, p = .25. 
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Figure 11. The proportion of baseline performance during prefeeding for rich and 
lean components for parameters a (top panel) and b (bottom panel) of the 
forgetting functions (fit by Equation 2).  
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DISCUSSION 
 
 

 Several findings emerged from the present study, in which we explored 

disruption of response rates and forgetting functions using magnitude to establish 

rich (4.5-s access to food) and lean (0.75-s access to food) contexts within a VI-

DMTS procedure. First, response rates during successive baseline conditions 

were consistently higher in the rich component relative to the lean. No significant 

differences between response rates in the rich component relative to the lean, 

however, were found during disruptive conditions.  

 Second, accuracy in the rich component was consistently above lean 

during baseline conditions. Third, when accuracy data from the rich and lean 

components were compared across disruptors (extinction, ICI food, houselight 

during delay, prefeeding) initial discriminability (parameter a) in the rich 

component was less disrupted than the lean during extinction. No other 

significant differences were found between rich and lean components for the 

other disruptors. Each of these findings will be discussed in turn.  

 Response rates were higher in the rich component than the lean during 

successive baseline conditions. These results extend those of Odum and 

colleagues (2005), in which differing probabilities were used to establish rich and 

lean contexts in a VI-DMTS procedure. Differing magnitudes (used in the present 

study) and differing probabilities (used in Odum et al., 2005), therefore, have 

similar effects on response rates across rich and lean components.  

 When the effects of each disruptor (extinction, ICI food, houselight during 
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delay, and prefeeding) on response rates were examined, however, no 

significant differences were found between rich and lean components. This 

finding is at odds with previous research on response rates across rich and lean 

components using a VI-DMTS procedure (e.g., Nevin et al., 2003; Odum et al., 

2005). Contrary to the present experiment, in which differing magnitudes were 

used to establish rich and lean contexts, differing probabilities were used in 

Odum and colleagues, as well as Nevin and colleagues. As previously noted, 

stronger effects in biasing responding have been reported with frequency of the 

reinforcer than with magnitude (Boldero et al., 1985). When magnitude is used to 

establish rich and lean contexts, therefore, it is possible that response rates 

across rich and lean components during disruption are affected similarly. 

Alternatively, using probabilities to establish rich and lean contexts renders 

response rates in the rich component less susceptible to disruption (or response 

rates in the lean more susceptible).  

 Parameters a (initial discriminability) and b (rate of forgetting) of the 

forgetting functions were affected differently by each disruptor. Replicating the 

results of Odum and colleagues (2005), parameter a was decreased significantly 

during extinction, but b was not. A similar result was found for prefeeding in the 

present study. That is, parameter a decreased during prefeeding for three of the 

four subjects (although these differences were not statistically significant across 

rich and lean components), but there was no clear effect on parameter b. Odum 

and colleagues found that during prefeeding, when pigeons were fed 20 grams 
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performance was not disrupted, but with 40 grams they ceased responding 

altogether. In the current study, we fed pigeons an intermediate amount of 30 

grams of food during prefeeding and found that performance was disrupted, but 

not so severely that the subjects would not respond.  

 Extinction and prefeeding both affected parameter a (initial 

discriminability) but not b (rate of forgetting). These data suggest that extinction 

and prefeeding affect encoding of the sample (possibly through attention), but 

have little effect on remembering. As suggested by Odum and colleagues (2005), 

the reason extinction decreased initial discriminability may be because attention 

to the samples was decreased. 

 Nevin and colleagues (2007) extended this concept to suggest that 

extinction (or other disruptors) could decrease not only attending to the sample 

stimuli, but also to the comparison stimuli. Similarly, by prefeeding subjects 

before each session, the motivation to attend to sample and/or comparison 

stimuli was likely decreased. This theory helps to describe the overall form of the 

functions, but deciphering the precise differences in attention that result from 

using probabilities versus magnitudes may be difficult within the present study.  

 During ICI food, no significant differences between initial discriminability or 

rate of forgetting were found between rich and lean components. In the research 

of Odum and colleagues (2005), however, ICI food did increase the rate of 

forgetting. The lack of change in accuracy during ICI food may be related to the 

subjects' extensive experience with the DMTS task. 
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 When the houselight was lit during delays, no significant differences in 

initial discriminability or rate of forgetting were found between rich and lean 

components. This may, in part, be due to the increase in rate of forgetting 

resulting from the increase in initial accuracy, rather than a decrease in accuracy 

at longer delays. Because there was little change in accuracy at longer delays in 

either the rich or lean components, it is not surprising that no difference in 

persistence between the two components was found. One potential reason initial 

accuracy increased during the presentation of the houselight during delays could 

be related to the level of initial accuracy during the baseline immediately prior. 

Initial accuracy in the third baseline condition (see Figure 8) was low when 

compared to other baseline conditions. This may have allowed more opportunity 

than usual for an increase. Because experienced birds were used in this 

experiment, it is also possible that the houselight was somehow associated with 

reinforcement in their learning histories. Additionally, these subjects were 

exposed to a variation of this baseline for over a year before disruptors were 

presented. Due to their extensive experience with the task, it is possible that 

lighting the houselight had no distracting effects in either the rich or lean 

components.  

 Although there are some differences between the present results and 

previous findings, these data generally agree with the theory of remembering 

proposed by Nevin and colleagues (2007). As discussed previously, relatively 

more reinforcement could lead to increases in attention to the sample and 
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comparison stimuli and potentially result in higher accuracy. Although this model 

specifically addressed the influence of reinforcement probability on attention, and 

the present experiment employed reinforcement magnitude, the general form of 

the forgetting functions were still similar. For example, as generally predicted by 

Nevin and colleagues, baseline accuracy in the rich component was above 

accuracy in the lean component (see Figures 4, 6, 8, and 10). When DMTS 

performance was disrupted, forgetting functions in the rich condition still 

remained above the lean in most cases (Figure 4, 6, 8, and 10). Additionally, 

accuracy was more persistent in the rich component than the lean during 

extinction. Although not statistically significant, the same trend was observed for 

three of the four subjects during prefeeding. Systematic differences in accuracy 

between rich and lean components during the other disruptors were not 

observed.  

 When systematic differences in accuracy between rich and lean 

components were found in the present study, accuracy in the rich component 

was more persistent than in the lean. On the other hand, Nevin and Grosch 

(1990) found a lack of systematic differences in accuracy across rich and lean 

components during disruption in a signaled DMTS task. The procedure used in 

the present study (VI DMTS), however, was different than that used in Nevin and 

Grosch.  

 The differences found in persistence of DMTS performance upon 

disruption across these experiments may be due to trial structure (Nevin et al., 



53 
 

2011). In the present experiment, we employed a VI DMTS procedure, in which a 

multiple schedule leads to DMTS trials in each component. Within each rich or 

lean component, four trials were presented each time (thus rich and lean trial 

presentations were not random). In the task used by Nevin and Grosch (1990), 

an auditory stimulus signaled rich and lean trials, which were randomly 

presented. Nevin and colleagues (2011) proposed these and other differences in 

overall trial structure could affect attention to the sample and comparison stimuli, 

and thus lead to greater persistence in the rich component in a VI DMTS 

procedure. The opposite effect in a signaled DMTS procedure is predicted (more 

persistence of accuracy in the lean component upon disruption). For these 

reasons, it is likely that trial structure was more influential in the divergent 

findings of Nevin and Grosch, rather than the use of magnitude of reinforcement 

to establish rich and lean contexts.  

 While the present experiment extended previous findings on the effects of 

disruption on response rates and accuracy within a VI DMTS procedure, there 

are some limitations. One limitation was the number of subjects used. With the 

use of only four subjects, significant differences between rich and lean 

components may fail to be detected, despite moderate effect sizes. To address 

this issue, we are currently conducting the same experiment with four additional 

subjects. 

 We used magnitude to establish rich and lean contexts within a VI DMTS 

procedure in the present experiment. Although we differed magnitude by differing 
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the length of hopper presentation as in previous studies (e.g., Nevin & Grosch, 

1990; Brown & White, 2009), this method is dependent on the amount of time it 

takes the subject to gain access to the hopper, which may be different from trial 

to trial. This lack of precision in the current method may help to explain the 

differences found between performance in VI DMTS procedures where 

probability is used to establish rich and lean contexts, rather than magnitude. 

Perhaps a more precise method would be to alter the number of pellets delivered 

(e.g., 1 versus 5). Future experiments could address this issue by using the 

same VI DMTS procedures, but altering the way in which magnitude is 

differentiated.  
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