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ABSTRACT 

On-farm Water Management Game with Heuristic Capabilities 

by 

Mohammed Z. Shaban, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Dr. Gary P. Merkley 
Department: Civil and Environmental Engineering 

A modern computer-based simulation tool (WaterMan) in the form of a game for 

on-farm water management was developed for application in training events for farmers, 

students, and irrigators.  The WaterMan game utilizes an interactive framework, thereby 

allowing the user to develop scenarios and test alternatives in a convenient, risk-free 

environment.  It includes a comprehensive soil water and salt balance calculation 

algorithm.  It also employs heuristic capabilities for modeling all of the important aspects 

of on-farm water management, and to provide reasonable scores and advice to the 

trainees. 

Random events (both favorable and unfavorable) and different strategic decisions 

are included in the game for more realism and to provide an appropriate level of 

challenge according to player performance.  Thus, the ability to anticipate the player skill 

level, and to reply with random events appropriate to the anticipated level, is provided by 

the heuristic capabilities used in the software.  These heuristic features were developed 
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based on a combination of two artificial intelligence approaches: (1) a pattern recognition 

approach; and (2) reinforcement learning based on a Markov Decision Processes 

approach, specifically, the Q-learning method.  These two approaches were combined in 

a new way to account for the difference in the effect of actions taken by the player and 

action taken by the system on the game world.  The reward function for the Q-learning 

method was modified to reflect the anticipated type of the WaterMan game as what is 

referred to as a partially competitive and partially cooperative game. 

Twenty-two different persons classified under three major categories (1) 

practicing farmers; (2) persons without an irrigation background; and (3) persons with an 

irrigation background, were observed while playing the game, and each of them filled out 

a questionnaire about the game.  The technical module of the game was validated in two 

ways: through conducting mass balance calculations for soil water content and salt 

content over a period of simulation time, and through comparing the WaterMan technical 

module output data in calculating the irrigation requirements and the use of irrigation 

scheduling recommendations with those obtained from the same set of input data to the 

FAO CropWat 8 software.  The testing results and the technical validation outcomes 

demonstrate the high performance of the WaterMan game as a heuristic training tool for 

on-farm water management. 

(165 pages) 
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PUBLIC ABSTRACT 
 

On-farm Water Management Game with Heuristic Capabilities 
 

by 
 

Mohammed Z. Shaban, Doctor of Philosophy 
 

Utah State University, 2012 
 
 
Major Professor: Dr. Gary P. Merkley 
Department: Civil and Environmental Engineering 

 
Improved on-farm irrigation practices can result in more economical farming, and 

better productivity.  Very little has been done with regard to improved training tools that 

can be used to promote better and more effective on-farm irrigation practices.  Games 

considered as an effective decision support tools in which players are able to test 

alternatives, and demonstrate the effects of their decisions, in a short time, and without 

being afraid of making mistakes.  Training tools in the form of games promotes what is 

called “learning based on experience” through a schematic version of reality, and 

observing the effects. 

The WaterMan game was developed on the sense of being a training tool for on-

farm water management, and to offers an interactive framework with different technical 

and operational options that allow the user to develop scenarios and test alternatives in a 

convenient environment.  A very detailed, consistence, and robust technical model that 

reflect and respond to various alternatives was developed within the software.  Heuristic 

capabilities were employed in the software, to provide more realistic modeling for the 

important aspects of on-farm water management, and to automatically analyze the 
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performance of the player, based on optimal scenarios, to provide feedback and 

recommendations at the end of the play.  Artificial intelligence capabilities were also 

included in the software to anticipate player level of skills in irrigation and to reply back 

with different random events based on the anticipated level to provide a potentially more 

challenging game play.  These capabilities provide the unique characteristics of 

WaterMan as a game with unpredictable scenarios, thereby making it more challenging 

and more engaging, and an enhanced tool for learning. 

Two options of game play were developed to accommodate different trainee 

requirements and interests: “quick play” and “play.”  If the player chooses the “quick 

play” option, he or she will move directly to play with a predetermined set of input data. 

If the player chooses the “play” option, a new window for data input appears, and the 

player is asked to select from various options.  The model has many options of crops, 

climatic zones, water delivery methods, irrigation methods, and soil texture, in addition to 

a flexible planting dates. 

Twenty-two persons were asked to play the WaterMan game and to give their 

feedback. The majority of the players classify the game as an excellent training tool for 

on-farm water management with some very challenging random events.  The technical 

module of the game was validated in two ways: conducting mass-balance calculations for 

the daily soil water and salt content, and comparing the game-generated results of 

irrigation water requirements and irrigation scheduling calculations with those generated 

by the FAO CropWat 8 software. 
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CHAPTER 1 

1 INTRODUCTION 

The global demand for fresh water is progressively increasing as the demand for 

industrial and domestic water supplies increase due to population growth, economic 

development and climatic changes (Feitelson et al. 2007; Ritchie and Basso 2008).  

Sustaining an adequate amount of high-quality water has become an important and 

pressing issue; thus, it is no wonder that many countries have been spending millions of 

dollars over the past several decades for the development of new water resources.  But 

the effectiveness of this approach has greatly diminished.  Instead, improved 

management of the existing resources can be more feasible to secure needed water. 

An understanding of agricultural water requirements is a critical input in resolving 

water resources issues.  Worldwide, agriculture consumes approximately 70 percent of 

available water resources, with estimated overall efficiency of only 30-40 percent (Molle 

and Berkoff 2006).  The growing demands on the existing water resources necessitates 

that the agricultural sector improve its water management.  Even moderate improvements 

in agricultural management could free huge quantities of good quality water which can be 

used directly by other water user sectors (Ritchie and Basso 2008). 

Much of the emphasis and resources toward dealing with the water scarcity 

problems in recent years have been dedicated to infrastructure and technological 

improvements, as well as organizational and institutional changes.  These measures alone 

are not enough to significantly improve water management, unless they are accompanied 

by better and more effective on-farm irrigation practices.  Improved on-farm irrigation 
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practices can result in more economical farming, and better productivity.  However, the 

effective implementation of water resource management options is dependent on broad 

acceptance by all relevant stakeholders, especially those considered the main actors in the 

water resources management sector.  The main actors are generally farmers, irrigators, 

and irrigation and drainage agencies (Schultz et al. 2005). 

An extensive educational program may be required to correct the occasionally 

excessive use of irrigation water by farmers (Johnston et al. 1991).  Despite the 

information availability, experience shows that an educational program is necessary to 

teach the actors in the field of agricultural water how to manage their water resources in a 

better way.  Very little has been done with regard to improved training tools that can be 

used to promote more complete understanding of the problems faced by farmers and 

irrigators, and the difficulty of the operational decisions they face with respect to water 

management.  Successful performance requires effective communication between all 

individuals related to the operation and management of an irrigation system (Skogerboe 

and Merkley 1996).  Simply providing handouts and other written materials to them is 

insufficient.  It may be more efficient to teach them in what is called “learning based on 

experience” through a schematic version of reality, and observing the effects. 

Games considered as an effective decision support tools in which players become 

mutually dependent decision makers (Ubbels and Verhallen 2000, cited in Lankford et al. 

2004).  Gaming simulation provides the mean to test the consequences of a decision 

without the need to use or jeopardize the system that it is testing (Burton 1989).  

Simulations and role-playing games allows the participants to demonstrate the effect of 



3 
 

 

their decisions on the system in a short time, without being afraid of making mistakes 

(Clarke 2004). 

Through intelligent and heuristic simulation tools in the form of a game in which 

the effect of decisions can be seen, a great deal of understanding of the parameter and 

variable interrelationships for a variety of situations can be attained in a much shorter 

time that it would take (many years) by field experience alone.  This understanding can 

lead directly to improvements in the on-farm water management. 

The proposed game will be a training tool to teach the actors in the field of 

agricultural water (farmers, irrigators, canal operators, and students) how to better 

manage their water resources in what is called “learning based on experience” through a 

schematic version of reality, and visualizing the effects.  Therefore, this research project 

developed a software application in the form of a game for simulating different technical 

and operational aspects of on-farm water management, and automatic analysis of the 

results to provide feedback to the trainees.  This training game can be useful throughout 

the world regardless of economic and cultural differences. 

The principal objective of the research is to develop a modern software-based 

simulation tool for on-farm irrigation water management, which can be used in training 

events for farmers and irrigators.  The specific research objectives are enumerated below: 

1. To design an educational and training tool for personnel involved in the 

management and operation of on-farm irrigation water to help them better 

understand and manage their water resources and to actively react to realistic 

scenarios.  The target audience includes farmers, irrigators, and students; 



4 
 

 

2. To develop and test the software application in the form of a game for simulating 

different technical and institutional aspects of agricultural water resources 

management, with automatic analysis of the results to provide feedback to the 

trainee(s); 

3. To produce the software application using a modern graphical interface and a 

modern computer programming environment; and, 

4. To produce a users’ manual and technical reference for the software application to 

facilitate application by individual trainees and groups of trainees. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Water Resources Management 

Improvements in on-farm water management may require substantial changes in 

the operation and physical control of water within a district (Johnston et al., 1991).  

García-Vila et al. (2008) conducted a study aimed at characterizing the behavior of an 

irrigated district over an area of 700 ha in southern Spain.  They concluded that the lack 

of improvement in water productivity, the low irrigation water usage, and the changes in 

cropping patterns indicated that performance trends in irrigated agriculture are 

determined by a complex mix of technical, economic, and socio-cultural factors.  Popova 

and Pereira (2008) performed simulations for the present and scenario-built weather 

conditions that include a pessimistic scenario of precipitation decrease over the next 25 

years.  In their study, the irrigation scheduling simulation model ISAREG was calibrated 

for two maize varieties.  They concluded that the results of simulations do not allow 

selecting one among the other alternatives as the best irrigation scheduling strategy, but 

are useful for creating of an information system for farmers using actual weather data. 

With the rapid development of microcomputer technology, many irrigation 

models and software are now available to improve the coordination process between the 

scheme manager and the farmers, and help scheme managers’ in their water allocating 

decisions to meeting farmers’ water demand.  However, these techniques show various 

limitations when addressing strategic issues such as the interaction between farmers’ 

water demand and the scheme manager’s supply.  Accordingly, optimal solutions are 
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difficult to find due to: (a) the large number of variables to be considered; and, (b) the 

different interests, objectives and strategies of the different stakeholders, especially 

farmers.  Therefore, the decision-making processes should be based on negotiation 

leading to trade-off solutions.  To support this negotiation process, simulation tools 

provide a suitable answer as they allow: (a) producing a clear representation of the 

current management context that can be shared by all stakeholders; and, (b) producing 

expected information about the future of the scheme, e.g. by designing and comparing 

various ‘‘what-if’’ scenarios (De Nys et al. 2008). 

 
2.2 Stakeholder Involvement and Decision Making 

It is important to help people understand the dynamic nature of sustainability 

attributes and to better address the issues, tradeoffs and conflict associated with 

sustainable management of natural resources (García-Barrios et al. 2008).  Van Paassen 

et al. (2007) mentioned that the capacity to identify options for sustainable and equitable 

development depends on the acquisition of knowledge and skills for: (a) complete 

analysis of the biophysical system dynamics; (b) analysis of the multiple positions, 

perceptions, values, beliefs and interests of the stakeholders; and, (c) consideration of the 

action needed to fill the gap between the desired socio-technical system and the real-

world situation. 

Social learning, also sometimes called co-learning, is an approach in which the 

participatory use of tools plays an important role.  Social learning requires the design of 

processes that promote shared learning from experimentation and adaptation of 

organizational and individual procedures, standards, and behavior.  Stakeholders co-
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construct the identity of the resource management problem in ways that help them move 

towards a shared understanding and to learn their way toward solutions.  It involves 

changes in norms, practices, and behavior, as well as changes in perception and 

understanding among stakeholders (Roling et al. 2004). 

 
2.3 Games as Training Tools 

Simulation and management games can provide a means to direct thinking, 

illustrate complex inter-relationships and weight priorities.  The use of simulation and 

games have made them valuable tool and teaching aid.  This includes a role in research, 

education, and training.  Simulation and games are particularly effective in describing 

underlying processes, identifying issues and simulating discussion.  They provide a 

reasonable tool for understanding the behavior of human beings and for training people to 

adapt to extreme situation (Smith 1989; Kos and Prenosilova 1999; Clarke 2004) 

The advantages of games and simulations over other learning techniques can be 

significant.  Carter (1989) listed three particular important advantages: 

1. The opportunity for the trainee to face complex situations which encourage him or 

her to actively seek or develop problem-solving techniques; 

2. The possibility of testing decisions in an environment without fearing the results 

(whereas in reality some decisions may seriously affect people’s life or 

livelihoods or be very expensive); and, 

3. The ability of a game to combine techniques or rules that are usually taught in 

isolated packages. 
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In their paper, Jonoski and Harvey (2004) mentioned that computer-based 

simulation games of the SimCity kind make use of the increasing processing power of 

computing hardware to provide game play based around real time simulation of actual or 

hypothetical realities.  The game play depends on the evolving properties of connected 

simple simulations.  These games can provide an environment that supports learning 

about complex systems and evolving properties in general, and about particular classes of 

systems.  The authors also pointed out that the use of realistic, even if hypothetical, 

scenarios enables such games to help the transfer of knowledge, while the removal from a 

real situation in which fearing the consequences is eliminated allows the unrestricted 

exploration on novel ideas.  In fact, bringing together a variety of people with different 

interests brings in a variety of knowledge. 

Training games includes role-playing games as well as computer-based learning 

simulations.  Using variety of simulation and role playing exercises enable the trainees to 

explore the consequences of decision making based on limited information and to 

appreciate that similar trainees may response differently under similar conditions.  

Computer-based simulation games have the advantage that they require less time to run 

than role-playing simulations.  However, computer-based games lack the interpersonal 

relations and interactions, which can be important in role-playing games (Clarke 2004).  

Although, role-playing games might practice issues of cultural concerns with social 

relations (Barreteau and Daré 2007) which are not considered in computer-bases games. 

Clarke (2004) listed the following elements that must be contained in a game: 
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1. Relevance: the game must be of interest to the trainee and reflect his/her needs, so 

that he/she can understand it easily and benefit from it; 

2. Simplicity: the game should be set in a simple, and clear form so that it does not 

confuse the trainee when playing it; 

3. Realism: avoiding complexity, the program should produce realistic results and 

applied recommendations that could be easily understood and implemented by the 

player; 

4. Interaction: rapid response, different alternatives, and good use of visual effects 

will attract the player's interest; 

5. Flexibility: the ability of the program to modify itself in response to the user 

needs.  To predict all possible actions and reactions within the simulation may be 

difficult, but allowing for as many as possible of them gives the game more 

flexibility in response to user needs and the game goals; 

6. Excitement: to be a game, the simulation should be stimulating.  Therefore, 

challenging alternatives, the good use of random events, and the visual effects in 

the game will add more enjoyment; and, 

7. Discussion: in order to achieve the training goals and to explore the different 

experiences and the decision-making processes that individuals undertook, a 

group de-briefing discussion is recommended once the simulation is completed. 

 
2.4 Irrigation Management Games 

This section of the literature review describes several irrigation management 

games that have been developed by different individuals and groups over the past few 
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decades.  Although each game has its own unique features, there is some degree of 

overlap among them. 

The Green Revolution Game  This role-playing game simulates the life of rural 

farmers in South Bihar province, India.  It addresses the issues of variable strategies to 

obtaining high yield of rice varieties (the concept of high inputs-high outputs).  The game 

introduce players to the conflicting decision made on survival farmers and explores the 

different strategies that can be adopted taking into considerations the uncertainty of 

agricultural inputs such as labor, water and fertilizer.  The game is designed to be played 

by a group of 12-24 participants, and takes a minimum of 6 hours to run and can run over 

2 or even 3 days.  The aim is to imitate the growth of rain-fed rice in an area where 

rainfall is variable and for the participants to develop strategies for dealing with this 

uncertainty in addition to other uncertainties related to other inputs such as rice varieties, 

fertilizers and labor availability (Chapman 1982, cited in Clarke 2004). 

This game combines a set of dimensions: a dynamic physical environment, 

agronomy, sociology, politics, and a simple economy.  Because of this general set it has 

proved its usefulness to a wide number of disciplines and professional groups.  For 

example, it is used by bankers in India to train rural bank managers to understand the 

problems of small farmers, and by political scientists in the UK who are interested in 

small-group dynamics (Chapman 1989). 

The Juba Sugar Estate Game  This role-playing game is described by Carter 

(1989).  The game is suitable for 3-20 participants.  It is based on the Juba Sugar Estate in 

Somalia and it addresses the issue of management under scarce inputs (water and 
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fertilizers) and resources (labor, capital equipment, money and fuel).  Each participant 

takes a role within small management teams and asked to make decisions concerning 

fertilizers application, irrigation, maintenance, harvest, and cane haulage.  The game is 

aimed to introduce the participants to the complex interactions among resources, inputs, 

activities and management decisions.  The game shows evidence of team work 

enhancement and increased mutual understanding of privileges job functions.  The Juba 

Sugar Estate game focused on the logistics and prioritization of resource allocation and 

thus has been proven to be more useful for managers than for irrigation engineers. 

The River Basin Game  The River Basin Game was devised by Bruce Lankford in 

2000 at the University of East Anglia, United Kingdom (UK) to teach undergraduate 

students the principles of common property resource management as applied to surface 

water.  The game shows students that water-claiming strategies result in certain members 

of the community gaining while excluding others (Lankford et al. 2004). 

The River Basin Game, as described by Lankford et al. (2004), is a dialogue tool 

for decision-makers and water users; it has been tested in medium to small catchments in 

Tanzania.  The game consists of a large wooden board that physically represents the 

catchment and reflects a central river flows between the upper catchment and a 

downstream wetland, and has several intakes into irrigation systems of varying sizes.  

The game is played by allowing glass marbles to flow down the channel as a represent of 

river water.  Participants are asked to place small sticks acting as weirs across the river to 

trap the marbles and divert them into irrigation systems where they sit in small holes, in 

order to meet the water requirement of that particular plot of rice or irrigation activity.  
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The players practiced that being at the top of the river has advantages of water 

availability as compared to the tail-end systems that tend to experience water shortages.  

The game allows stakeholder groups to evaluation different management strategies. 

The game shows evidences of mutual understanding among different people’s 

who have different access levels to water and also teaches participants to understand the 

effect of their decisions on the other users within the same catchment.  This promotes 

more understanding to others needs and the concept of sharing same resources.  The 

authors’ experience shows that participants often become highly animated and, by the 

end of the game, have a good understanding of system dynamics, common-property 

pitfalls, and how to effectively react to scenarios.  The authors suggested that if the game-

playing is part of a workshop is to be spread over two days at which the second day to be 

use for discussing the lessons learnt and bring together various scenarios and institutions 

to assist improving the equity of supply for all users. 

The Wye College Irrigation Game  This irrigation management game, called 

“Stop the Breach,” was described by Smith (1989).  The game is a mixture between a 

role-playing game and a computer-base game.  Participants in the game are requested to 

act as farmers or as scheme managers and asked to make decisions regarding the 

operation of a scheme which are then processed by a computer and shows various 

conclusions.  The purpose of the game is to provide experience about the complexities of 

a real irrigation management decision-making, and the interrelationship between farmers 

and scheme managers.  It also allows the participants to practice in the application of 

basic theoretical concepts and methods that are relevant to the successful operation of an 
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irrigation scheme.  Smith (1989) described some experiences with the game concluding 

that the game can achieve its training objectives, stimulates discussion of the different 

factors that affecting the success operation of irrigation schemes, and has the potential for 

further development. 

The Irrigation Management Game (Classroom Version)  This game was 

introduced in 1982 by Burton and Carruthers at Wye College, University of London.  

There have been many changes to the game since then.  This game as described by 

Burton (1989, 1994) is a role-playing exercise primarily developed for the training of 

irrigation engineers and scheme managers.  This game is set on an Indonesian run-of-

river irrigation scheme.  The game is designed to be played by between 10-26 

participants.  The game managed with two trainers: the game controller and assistance as 

trader.  The game takes 6 hours to play with a 1-hour debriefing and discussion at the 

end.  Participants are requested to choose the role farmers or irrigation agency staff.  

In the game, an irrigation system scheme is laid out on a 3 x 2 m wall poster, 

showing eight tertiary units supplied by a main canal on a run-of-the river system.  Each 

tertiary unit is divided into four blocks.  Each block can be planted with one crop; either 

rice, maize or soybeans.  The participants playing as farmers are dependent on irrigation 

water supplies from the main canal system, and are responsible for selecting and planting 

crops and schedule water supplies within their tertiary units based on the supplies 

received.  The participants playing as agency staff are responsible for allocating the water 

available at the main canal intake between the tertiary units. 
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The Irrigation Management Game (Computer Version)  This is a computer 

version of the Irrigation Management Game which aims to fulfill the objectives of the 

original (classroom) game in the form of a computer simulation (Clarke 2004).  This 

version was designed to be played by one person, who is taking the role of a farmer and 

asked to choose one tertiary unit to farm.  To represent the irrigation scheme 

management, the behavior of the other farmers and the irrigation agency staff (players in 

the classroom version) is simulated by the program.  The computer version of the game is 

expected to be operated in a shorter time compared to the classroom version, although it 

lacks the interaction and social relations with other players. 

The game as described by Clarke (2004), allows the trainee to play up to five 

growing seasons in a game run.  This normally takes between 45 minutes and two hours, 

depending on trainee speed and familiarity with the game.  The player asked to choose 

the crops to be planted in each of the four blocks in his/her tertiary unit.  Each crop has 

three growth stages during the growing season.  Each growth stage has its specific data 

on crop water requirements, rainfall, and water availability.  The computer allocates a 

volume of water for the growth stage and asked the player to decide on how to distribute 

it amongst his/her crops.  Information on crop yield and crop prices is available to assist 

in this allocation.  Numerical calculations of irrigation water requirements, crops stress, 

and crop yield are carried out by the computer.  The game can be played as many times 

as the player like, and the player can choose the number of seasons to play each time. 

Irrigation Management Simulation Game (Irrigame)  The irrigation management 

simulation game as described by Parrish (1982) is a computer-based simulation game that 
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gives the participant the chance to experience a full season of on-farm irrigation 

management.  The game is structured to allow the trainees to schedule their irrigations 

using weather predictions based on historical data, and using a soil moisture budget.  The 

trainees can use their experience in taking all decision related to the management of their 

irrigation water.  Based on the decisions taken throughout the season, the game simulates 

their irrigation efficiency, their effective use of rain, and their yield.  As a result of this 

experience, it is expected that the trainees can then decide about the decisions they made 

and whether or not they were able to manage their field properly, and how they were able 

overcome difficulties caused by weather forecasting failures, rain when it was not needed 

by the crop, a semi-demand system that may or may not have met their needs, and system 

failures such as canal breaks.  As stated by the author, this game was designed to reflect 

the problems, responsibilities, and consequences of irrigation project water management 

in a convincing and realistic manner. 

Aquavoice  Jonoski and Harvey (2004) introduced the concept of a first prototype 

of the Network Distribution Decision Support System (NDDSS), which has been 

developed in the form of an educational role playing game named “Aquavoice”.  In the 

game, players were asked to take the roles of stakeholders in a decision regarding water 

abstraction plans.  Based on the simulation results from hydrological and economic 

models, the institutional players asked to judge the performance of each scenario against 

their particular interest and can evaluate scenarios by providing weights indicating their 

relative values with respect to the main issues, or they can raise their own new issue.  The 
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judgment engine built in the simulation provides aggregated scores for the different 

scenarios, which can be updated in real time as players adjust their evaluations. 

 
2.5 Heuristic Simulation  

In the Encarta Dictionary (www.bing.com/Dictionary), it is mentioned that 

"heuristics" in the computer field describes a computer program that modifies itself in 

response to the user, e.g. a spellchecker, while in the education field "heuristic" is 

described as using a method of teaching that encourages learners to discover solutions for 

themselves.  In both definitions, an intelligent and self-learning meaning can be 

abstracted. 

In their book, Russell and Norvig (2003) mentioned that artificial intelligence is 

one of the newest sciences and is considered a universal field due to its existence in many 

other fields, includes, speech recognition, data mining, pattern recognition, statistics, 

machine learning, probabilistic reasoning, robotic, computer vision, and knowledge 

representation.  Also, they pointed that AI has advanced more rapidly in the past decade 

because of the greater use of its methods in many applications ranging from general 

purpose areas, such as learning and perception to a specific tasks as playing chess, or 

diagnosing diseases. 

As part of AI methods, Kaukoranta et al. (2003) discussed pattern recognition in 

the context of computer games and its role in extracting relevant information from the 

game environment, cluster this information into patterns, and pass this information to the 

decision making system to choose appropriate action.  They stated that, in real-time 

strategic games, recognizing the behavioral pattern of a human player is very important 
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aspect in implementing a challenging computer opponent.  Through controlling how 

much information is provided, pattern recognition system can be formed of several levels 

of detail, and can be employed in designing different levels of difficulty to match a 

human player with varying skills. 

 Following recent probabilistic techniques in user modeling, Hui and Boutilier 

(2006) used a dynamic Bayesian network approach to model and infer a human user's 

“type.”  They stated that an encouraging results were obtained from using this approach, 

but concluded that they are examining the construction of a decision policies using 

partially observed Markov decision processes (POMDP), in an effort to utilize the 

sequential nature of human-computer interaction.  Fern et al. (2007) presented and 

evaluated a theoretical decision framework that observes a goal-directed agent in order to 

select assistive actions that minimize the overall cost.  They modeled the environment as 

a POMDP, where the hidden states are related to the agent’s unobserved goal.  The 

approach was evaluated on two domains where human subject asked to perform tasks in 

game-like computer environment.  The results show a substantial reduction in user efforts 

with only minimal computational efforts. 

 Learning from observation is a skill well mastered by human beings (Stensrud 

and Gonzalez 2008).  The idea of using systems that can learn to solve problems became 

popular in the artificial intelligence field (Barrios-Aranibar and Gonçalves 2009).  The 

theory of Markov decision processes (MDPs) underlies much of the recent work on 

reinforcement learning (Littman 1994).  Reinforcement learning has become one of the 

most active research areas in machine learning, artificial intelligence, and neural network 
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research.  Reinforcement learning is learning what decision to make, how to link situation 

to actions with the purpose of maximizing a numerical reward signal.  The learner is not 

told which actions to take, as in most form of machine learning, but instead must try all 

actions applicable in a situation to discover which actions yield the most reward (Sutton 

and Barto 1998).  Reinforcement learning algorithms calculate a value function for action 

or for state-action pair, and use observed rewards to learn an optimal policy for the 

environment that maximize the expected total reward (Russell and Norvig 2003).  Among 

reinforcement techniques, Q-learning is one of the most commonly used algorithms and 

has a strong foundation in the theory of Markov decision processes.  It is also easy to use, 

and has been widely applied in several applications like learning in robotics, 

communication systems, trading, and others (Hu and Wellman 2003). 
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CHAPTER 3 

3 MODEL DEVELOPMENT 

The design and development of a computer-based training tool (or model) in the 

form of a game that can be used to analyze both strategic and operational issues related to 

the management of irrigation water resources is described herein.  WaterMan is the name 

used herein for this game, meaning "Water Management."  The WaterMan game utilizes 

an interactive framework, thereby allowing the user to develop scenarios and test 

alternatives in a user-friendly environment.  It employs heuristic capabilities in a 

simulation approach for modeling all of the important aspects of on-farm water 

management that are essential to effective tactical and strategic planning. 

 
3.1 Features of the WaterMan Game 

The game was developed using the Visual Basic .NET programming language in 

Microsoft Visual Studio 2008.  The game has the following target audiences: farmers, 

irrigators, irrigation extension specialists, and students.  Two game play options were 

developed to match different trainee requirements and interests.  The model includes the 

following options: 

1. Distribution system delivery methods: fixed rotation, and on-demand. 

2. On-farm irrigation methods: surface, sprinkler, and localized (trickle). 

3. Water quality: different salinity levels. 

The software consists of three modules: (1) the technical module, which is 

considered the “brain” of the game; (2) the scenario-based module, representing the user 
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interface, and including the heuristic algorithms outputs; and, (3) the scoring and 

recommendation module, which provides an overall evaluation of the decisions taken by 

the player at the end of a simulated irrigation season (Fig. 3.1). 

The technical module uses a database containing the input data (parameters) that 

are provided to the program (software) by the player in the scenario-based module.  The 

scenario-based module mathematically analyzes the decisions and reactions made by the 

player, based on the different events, and automatically composes a scenario-based 

(heuristic) simulation.  Random events are generated according to the evaluation of the 

player type by the artificial intelligence method encoded in the program (see Chapter 4).  

Based on the tactical decisions taken in response to the different random events, a 

sequence of results is obtained.  Processing a comparison between the results obtained 

from the scenario-based module with that obtained from the technical module (the 

reference results), through an optimization function search algorithm, enables the scoring 

and recommendations module to evaluate the decisions made by the player.  In terms of 

results scoring, the player will have a certain set of goals or objectives to meet: maximize 

crop yield, maximize production function, or maximize profit.  The scoring results will be 

based on the achievement of these objectives.  After a simulated irrigation season, the 

program summarizes the overall decision implications (scoring), and makes suggestions 

for improvement and/or other optimal scenarios. 

The technical module includes a comprehensive algorithm that has been 

developed to calculate soil water and salt balances in a crop root zone, and it uses a daily 

time step.  The algorithm is described in detail in the following sections. 
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Fig.  3.1. Schematic diagram of the simulation model 
 

 
Random events (both favorable and unfavorable) and their effect on crop growth, 

phenological stage sensitivity, best management practices, and overall agricultural 

productivity and profitability are also included in the software.  The kinds of random 

events are: unexpected rain, sudden change in air temperature (weather), canal breaks and 

pump/motor failures (water supply interruptions), unexpected increases in the available 

water supply (when it was previously constrained), sudden failure of the on-farm 

irrigation system, temporary electrical outages, labor strikes, water theft (effect on 

available quantity and flow rate), unexpected decreases in the available water supply, and 
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possible use of saline water.  Each of these random events has its own impact on the 

irrigation decision, but they are not linked in their effect on each other. 

The game has various options for making strategic management decisions.  These 

options are presented to the player in the form of random events.  For example, the player 

can choose to invest in buy or rent system parts, use other water source with lower 

qualities.  The software also gives the player the option to purchase additional water 

shares (quantity) from other water users, or to sell the unexpected available water to other 

users. 

At the beginning of the game, the player is asked to choose one of the two play 

mode options offered by the game: “quick play” or “play.”  If the player chooses the 

“quick play” option, he/she will move directly to play with a predetermined set of input 

data.  If the player chooses the “play” option, a new window for data input appears.  In 

the data input window under the “play” option, the player is asked to select the desired 

climatic zone from seven options.  The player has the following climatic-zone options 

based on Keoppen’s climate classification (www.blueplanetbiomes.org/climate.htm): 

1. tropical moist; 

2. temperate; 

3. mountains; 

4. continental; 

5. Mediterranean; 

6. semi-arid; and, 

7. arid. 
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The planted crop(s) can be chosen from a list of 25 different crop types as found 

in Doorenbos and Kassam (1979).  The player can choose from five different on-farm 

irrigation methods: furrow, border, basin, solid-set sprinkler, and drip irrigation.  The 

player can also choose from one of two water delivery options: on-demand, and fixed 

rotation.  Crop phenology, such as initial and maximum root depths, crop spacing, crop 

harvesting date, potential productivity (crop yield), market price of the product, and 

threshold soil water salinity (ECe) are fixed by the program.  The cost of the irrigation 

method, the cost of agronomic inputs and labor, the delivery system flow rate, water table 

depth, and irrigation supply and groundwater salinities are also set automatically by the 

program. 

In the play option, the game allows the player to manage a 10-ha farm consisting 

of four different irrigated sections, a single crop type and a single soil texture class.  The 

player is allowed to choose one on-farm irrigation method for all four sections.  If the 

player decides to irrigate part of the farm due to water shortage or for any other reason, 

he/she has the option of choosing which section is to be irrigated at each irrigation event.  

The player has the option of specifying the planting dates, but the harvest date is set by 

the game, as mentioned above. 

In the quick play option, the player is asked to manage a 10-ha farm, with four 

different irrigated section, same as under the play option except that all the input options 

are preset in the game and the player has no other choices.  The climatic zone is set to 

"Mediterranean", the total the delivery method is set to fixed rotation with a 15-day 

delivery interval, the border irrigation method is used, the soil texture is “medium,” the 
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planted crop is spring wheat with April 15 as the planting date, and all the other 

phenological characteristics of this crop.  This option was added to the game in order to 

offer an introductory way to explore the game for players without a strong background in 

farming (beginners). 

After completing the data input tasks, the simulation window is displayed in 

which the computer-player interaction starts and the artificial intelligence coding method 

is activated to detect the player type, based on the player decisions.  In this window, the 

total available water for the entire season is specified by the program, with the option of 

increasing/decreasing this quantity by certain random events which may or may not 

occur.  The daily available water quantity for the remainder of the season is schematically 

made available to the player. 

A five-day weather forecast, options for irrigation duration, and irrigation water 

quantity, are made available for the player to make management decisions.  Evaluation of 

the player's performance by the game's artificial intelligence system occur based on the 

player's reactions to the random events and the decisions options he/she has made.  The 

generation of random events is adjusted by the program to meet the evaluated player 

type. 

A dynamic sketch showing the daily cropping conditions, based on the decisions 

taken by the player, is continuously presented in the simulation window.  The sketch 

includes information about daily soil water balance, soil water excess or shortage, daily 

root growth, daily expected relative yield, plant growth conditions; animation of crop 
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performance, whether it is performing well or shows symptoms of stress, whether the 

crop is still alive or has died, and so on. 

After the end of the growing season, the game will display the final window.  In 

this window, an economic analysis of the cropping season is presented based on the crop 

yield, production cost, and on-farm water use indicators.  A final score based on the 

overall consequences of the decisions which were made, in addition to recommendations 

for management improvements, are presented to the player. 

The following sections describe the details of the three different modules included 

in the program. 

 
3.2 The Technical Module 

3.2.1 Software Database 

Binary files containing plant types, soils, and climate zone parameters data were 

embedded in the program (software).  The parameters contained in each binary-formatted 

file are mentioned below.  The technical model runs scenario-based simulation uses a 

database containing the crops, soils, irrigation method, and climate zones parameters 

data.  When the game initializes, the software reads the data from the database, and keeps 

all information available for further uses by the technical model.  The input data by the 

player are also saved in arrays to be available for the technical model when running a 

simulation. 

The software database contains crop phenological data for 25 different crop types 

as found in Doorenbos and Kassam (1979), and Allen et al. (1998), such as crop growing 

season, length of each of the four crop growth stages, three single crop coefficient values 
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(Kc initial, Kc mid, and Kc end), initial and maximum root depths, depletion fraction (p), 

yield response factor (Ky) for each growth stage, potential productivity (crop yield), 

market price of the product, and threshold salinity of the soil water extract (ECe).  In 

addition, data for three types of soil texture classes (light, medium, and heavy), such as 

the soil water content at field capacity (FC), the soil water content at the permanent 

welting point, the soil water content at saturation, the residual soil water content at the 

beginning of the growing season, the capillary rise height, and the saturated hydraulic 

conductivity (Ksat) are also included in the program.  Weather data for the seven climatic 

zones (as described above) were also made available in the program.  Five on-farm 

irrigation method characteristics, such as cost of the irrigation method, application 

efficiency, and minimum water delivery interval are fixed by the program.  The cost of 

agronomic inputs and labor, the delivery system flow rate, the water table depth, and the 

irrigation supply and groundwater salinities are also coded into the program or read from 

binary data files included with the program. 

As mentioned above, seven climatic zones are available to the player to choose 

from.  This requires seven different sets of weather data to be available in the program 

database.  To make the game more realistic, long-term real weather data for all climatic 

zones are required.  In addition, and in order to make the game more interesting, new sets 

of weather data are made available each time the game played, so the player cannot 

simply memorize the weather patterns and gain an “unfair” advantage.  The following 

section describe the procedures followed to obtain the different weather data sets, and the 
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next chapter shows the procedure of generating a new weather data each time the game 

played. 

 
3.2.2 Weather Data 

Seven major climatic zones as found in the world, are, namely: Tropical, 

Temperate, Mountains, Continental, Mediterranean, Semi-Arid, and Arid.  These zones 

were identified based on the map shown in Fig. 3.2 

(http://www.geography.learnontheinternet.co.uk/topics/climatezones.html#zones).  The 

Polar climatic zones were neglected because they present extreme conditions for 

agricultural production.  Instead, a continental and a semiarid climatic zone were added 

based on the existence of these zones in Keoppen’s classification 

(www.blueplanetbiomes.org/climate.htm). 

Global daily climate data records for precipitation, minimum air temperature and 

maximum air temperature for 1950 to 1999 time period discussed in Adam and 

Lettenmaier (2003), and Maurer et al. (2009), were used in the model.  The climatic data 

used has 0.5-degree spatial resolution.  The spatial extent of data ranges from 179.75W to 

179.75E in longitude, and from 55.25S to 55.25N in latitude 

(www.engr.scu.edu/~emaurer/data.shtml). 

After identifying the climatic zones spatial extend, a set of points within each 

climate zone was identified (Fig. 3.3).  An average daily value for each climatic variable 

was calculated over the climatic zone gridded points for the whole period of record 

(1950-1999).  The output is a one-year daily record of the specified parameter (e.g. 

minimum and maximum air temperatures) over the selected climatic zone.  The daily 

http://www.engr.scu.edu/~emaurer/data.shtml
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(Image courtesy of the UK Meteorological Office) 

 
Fig.  3.2. World classification of climatic zones 

 
 

 
 
Fig.  3.3. Seven climatic zones used to process the daily records during the period from 
1950 to 1999 for precipitation, minimum temperature, and maximum temperature 
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precipitation averaged over the 50-year period shows unreasonable output, where all days 

have at least some precipitation data in all climatic zones.  Therefore, the precipitation 

data were taken from the selected points over one year only, and that year was 1990.  

After retrieving the one-year daily data averaged over 50 years, the mean monthly 

average and the monthly standard deviation were obtained for the three parameters 

(precipitation, minimum air temperature, and maximum air temperature). 

 
3.2.3 Water Balance Model 

This model is considered the main part of the technical module of the game.  It 

simulates the field soil water and salinity balances on a daily basis and calculates crop 

growth, consumptive use, soil water content, soil salinity, and relative yield response to 

irrigation events.  Thus, the model monitors the daily irrigation scheduling program and 

its effect on crop conditions and productivity (Fig. 3.4a, b). 

 
Required Input Data 
 

The data required for the model to calculate the daily soil water balance are 

divided into two categories: 

1. Farm data: data that are applicable for the whole farm, such as latitude, 

climate zone, depth to the groundwater table, salinity of the irrigation water, 

and farm irrigation water delivery method; and, 

2. Field data: data that are specific for each field within the farm, such as the 

planted crop, planting date, irrigation method, and soil texture. 
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Various parameters that affect the daily soil and salt water balance are considered, 

such as: depth of applied irrigation water, depth of precipitation, groundwater 

contribution, evapotranspiration, deep percolation, and surface runoff.  Calculations of 

water balance are based on the following equation (Allen et al. 1998): 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )EndofDay BeginningofDay net net net a aDr J Dr J P J I J GW J ET J DP J= − − − + +  (3.1) 

 

where J is the day of the year; ( )EndofDayDr J  is the depth of water depletion in the root 

zone at the end of day J; ( )BeginningofDayDr J  is the depth of water depletion in the root zone 

at the beginning of day J; ( )netP J is the actual amount of precipitation that enters the root 

zone during day J; ( )netI J  is the amount of irrigation water that infiltrates into the soil 

during day J; ( )netGW J  is the amount of groundwater contribution in the root zone area 

during day J; ( )aET J is the actual depth of crop evapotranspiration during day J; and, 

( )aDP J  is the actual depth of water deep-percolated below the root zone during day J.  

All terms in Eq. (3.1) have units of millimeters. 

For the first day of simulation, the following are assumed: ( )BeginningofDayDr J   = 0; 

( )BeginningofDay Jθ   = soil water content at field capacity ( FCθ ); ponded water at soil surface 

from irrigation or precipitation, PW (J) = 0; runoff water, RO (J) = 0; relative yield (J) = 

100%.  And, for the subsequent days until the end of the crop growing season the 

following are assumed: ( )BeginningofDayDr J  = ( 1)EndofDayDr J − ; ( )BeginningofDay Jθ =

( 1)EndofDay Jθ − ; PW(J) = PW (J-1); and, RO (J) = RO (J-1). 
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For Each Field 
Load input data: Crop, soil, weather

Sub: 
Return Potential Evapotranspiration (ETo(J))
Return Precipitation amount (P(J))

Determine crop growth stages (4 stages)

J = 1?

Soil Moisture Content (θ (J)) = FC
Root Depth (RZ(J)) = Initial RZ
Soil Moisture Depletion (Dr1(J)) = 0.0
Runoff (RO(J)) = 0.0
Deep Percolation (DP(J)) = 0.0
Surface Ponded Water (PW(J)) = 0.0

Calculate Crop Coefficient (Kc(J))
Calculate Crop Response Factor (Ky(J))

Soil Moisture Content (θ (J)) = θ (J-1)
Soil Moisture Depletion (Dr1(J)) = Dr2(J-1)
Runoff (RO(J)) = RO(J-1)
Surface Ponded Water (PW(J)) =PW(J-1)

Calculate Crop Coefficient (Kc(J))
Calculate Crop Response Factor (Ky(J))

Calculate Crop Evapotranspiration (ETc (J))

Function:
Calculate RZ(J)

Calculate the Total Available Water (TAW(J))
Calculate Readily Available Water (RAW(J))
Calculate θ at RAW

Is Rz within 
groundwater capillary 

fringe?

Ground water contribution (GW(J)) = 0.0
Function:
Calculate Net Irrigation water (Inet(J) effect on θ
Function:
Calculate Net Precipitation (Pnet(J)) effect on θ

Function:
Calculate GW(J)

DP(J) = 0.0

Is GW(J) > amount 
required to bring θ to 

saturation?

GW(J) = amount 
required to bring θ 
to saturation

θ(J) = θ at 
saturation (θS)

θ(J) = θ(J)+GW(J) effect
Function:
Calculate Net Irrigation water (Inet(J) effect on θ
Function:
Calculate Net Precipitation (P(J)) effect on θ

Is θ(J) > FC?DP(J) = 0.0

Calculate Potential Deep Percolation (DPp (J)) 
=PW(J)+((θ(J)-FC)Rz(J)*1000) 

Calculate Maximum DP = (θS -FC) *Rz(J) * 1000
If soil is Light then MaxDP=MaxDP
If soil is Medium then MaxDP = MaxDP/2
If soil is Heavy then MaxDP = MaxDP/3 

MaxDP > DPp?

MaxDp = DPp
DP(J) = MaxDP

DP(J) = 
maxDP

MaxDP > Soil 
Saturated Hydraulic 
conductivity (Ksat)

MaxDp = Ksat
DP(J) = MaxDP

DP(J) = 
maxDP

Recalculate θ(J) due to Deep Percolation effect 2

Starting Point 
For each section
day of planting

J = 1

yesno

Yes

Yes

Yes

Yes Yes

No

No

No

No

No

 
Fig. 3.4a. Flowchart of the soil water balance calculations in the model 
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2

Sub:
Calculate Crop Stress Factor (Ks)

Sub:
Calculate Ponded Water (PW(J))

Function:
Calculate Soil Salinity (ECe(J))

Calculate Actual Evapotranspiration 
(ETa(J)) = ETc(J) * Ks

Recalculate θ(J) due to ETa(J)

Calculate Soil Moisture Depletion at the end of the day (Dr2(J)) = 
Dr1(J)+ETa(J)+DP(J)-GW(J)-Inet(J)-Pnet(J)+(FC-θ(J)*1000*(RZ(J)-Rz(J-1))

Function:
Calculate Relative Yield

Next day: J = J + 1

Return to starting point End of season ?

Finished

yes

no

 
 

Fig.  3.4b. Flowchart of the soil water balance calculations in the model 
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Simplified assumptions were made to estimate all parameters on the right side of 

Eq. (3.1).  These assumptions are as follows: 

• Homogeneous soil profile (in both texture and structure) throughout the root zone 

and has only one soil layer.  Therefore, soil water content and salt concentration is 

uniform throughout the depth of the root zone for each 24-h simulation interval. 

• Soil water depletion at the beginning of the planting day is assumed to be zero, 

and the soil water content at this time is at field capacity. 

• The depth to the water table is taken to be independent of internal variables such 

as deep percolation or capillary rise. 

• Lateral flow of soil water between adjacent fields is considered to be negligible. 

• If irrigation, precipitation, and groundwater contributions all enter the crop root 

zone in any given day of a simulation, it is assumed that the groundwater 

contribution occurs first, followed by irrigation, and finally by precipitation. 

• At each day, if the net groundwater contribution to the root zone is more than 

zero, then net deep percolation from the root zone is equal zero. 

 The calculations of all parameters within the water balance model were as 

follows: 

Root depth (Rz):  If there is no vertical barrier within the root zone (e.g. water 

table), the daily root depth is calculated based on the assumption that the daily root 

growth rate is constant and increases linearly from the date of planting (Fig. 3.5).  The 

following equation was used to calculate the daily root depth (Prajamwong 1994): 
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max

cov

( ) ( 1)( ) ( 1) z z
z z

full er planting

R R JR J R J
J J

− −
= − +

−  (3.2) 

where ( 1)zR J − is the root depth at the previous day; max( )zR is the maximum root depth 

of the specific crop, usually reached at the end of the development growth stage; and, 

plantingJ  is the planting day. 

 
Planting Day:

Jplant = 1
Rz (J) = 0.0

Daily root growth between planting (Jplant) and end of 
development stage (Jdev):

∆Rz = ((Rz)max - (Rz)initial)/(Jdev - Jplant)

J = 1 ?
Rz(J) = (Rz)initial + ∆Rz(J - Jplant)

No. of days roots are below water table:
DaysInRz = 0.0

Next day:
J = J + 1

Rz(J) = (Rz)initial + ∆Rz(J - Jplant)
Part of roots below water table:

SubmergedRz(J) = Rz(J) - GWT

SubmergedRz
> 0.0?

DaysInRz(J) = DaysInRz(J-1) + 1
Net root depth: 
Rznet(J) = abs(SubmergedRz(J) - SubmergedRz(J-1))

DaysInRz(J) = 0.0

Is DaysInRz(J) 
≥1 and ≤ 3? Rz(J) = Rz(J-1)

Is DaysInRz(J) > 3? Rz(J) = Rz(J - 1) 
- Rznet(J - 3)

Is J < Jdev?

Rz(J) = Rz(J - 1) + ∆RzRz(J) = Rz(J-1) 

Is Rz(J) > 
(Rz)max?

Rz(J) = (Rz)max

yes

no

yes

no

yes

yesno

End of season?

Finished

no

yes

yes

no

yes

no
no

 
Fig.  3.5. Daily root depth calculation procedure 
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The model will not allow the root depth to exceed the maximum reported root 

depth for the specific crop (Allen et al. 1998).  Also, in calculating the root depth, the 

sub-model considers the depth of the groundwater table.  If the bottom of the root zone is 

at the water table, there will be no root growth during that day.  Likewise, there will not 

be any root growth if the water table is inside the root zone.  If any portion of the root 

zone stays within groundwater table for more than three days, that portion will die. 

The model also considers whether the part of the root that atrophied due to 

saturated soil water conditions will grow back or not, based on the crop growth stage.  If 

the crop has passed the development stage, there will be no additional root growth.  Also, 

if groundwater table coincides with the ground surface for more than three days, the crop 

will die.  The one exception considered herein is that of rice, which can survive fully 

saturated root-zone conditions. 

Actual crop consumptive use (ETa):  The daily actual consumptive use is 

calculated based on the following equation: 

 

 a s c oET K K ET=  (3.3) 
  
 
where sK is used to account for the effect of soil water stress due to water shortage and 

salinity level in the root zone Ke; oET  is the grass reference evapotranspiration 

(mm/day), calculated using the Hargreaves equation; and, cK  is the crop coefficient, a 

function of growth stage (Allen et al. 1998). 

The climatic data required to calculate reference evapotranspiration (ETo) are 

included in the software.  The climatic data parameters are: maximum mean daily 
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temperature, Tmax (oC); and, minimum mean daily temperature, Tmin (oC).  The player 

must choose from one of seven climate zones, as described previously in this chapter.  

Each time the game is played, a new set of climatic data will be used for this calculation.  

The daily reference evapotranspiration, ETo, (Fig. 3.6) is calculated according to 

the Hargreaves equation (Merkley 2007). 

 

 0.0023 ( 17.8)o aET R T TR= +  (3. 4) 
 
where aR is extraterrestrial radiation (MJ/m2/day); T is the mean air temperature in oC; 

and, TR  is the average daily temperature range in oC (mean daily maximum minus mean 

daily minimum air temperature). 

The calculation of ( )oET J  for J=1 is based on converting the planting month and 

planting day entered by the player into day of the year, as a number between 1 and 365.  

This is done using the following equation (Allen et al. 1998): 

 

 

(275( / 9) 30 ), 3,
((275( / 9) 30 ) 2), 3

Planting date Truncate M D if M or
Planting date Truncate M D if M

= − + <
= − + − ≥  

(3. 5) 

 

where M is the planting month (1-12); and, D is the planting day (1-31) in the month.  

These parameters are entered by the player. 
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J = k + Jcrop -1

J > 365? J = J - 365

Input Parameters:
daily Tmax and Tmin for 
the chosen climate

Calculate:
Mean daily air temperature (T(J))
Average daily air temperature range (TR)
Planting day (Jcrop)  

Planting day:
k = 1

ETo (J) = 0.0023* Ra*(T+17.8) * sqrt(TR) 

Calculate extraterrestrial solar 
radiation, Ra, in MJ/m2/day

Parameter: farm 
latitude

ETo(k) = ETo(J)
Ptot(k) = Ptot(J)

k = k + 1

Convert ETo(J) unit from MJ/m2/day 
into mm/day by dividing by λ λ = 0.002361 * T(J)

yes

no

no

End of season?

Finished

yes

 
 

Fig.  3.6. Daily grass reference evapotranspiration calculation procedure 
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To estimate cK on a daily basis, the following equations were used (Allen et al. 

1998): 

 

 
( )r

( )
p ev next prerv

c prev
c c c c

stage

J L
K J K K K

L
 −

= + −   
 

∑
 (3.6) 

 
where Jc is day number within the growing season; 

rp evcK is crop coefficient for the 

previous growth stage; 
nextcK  is crop coefficient for the next growth stage; prevL∑  is sum 

of the length of all previous stages (days); and, stageL is length of the stage under 

consideration (days). 

The soil water and salinity stress factor, sK (Fig. 3.7), is calculated using the 

following equation (Allen et al., 1998): 

 

 

( ) ( )( ) 1 ( ( ) ) ( )
100 ( ) ( )

r
s e threshold

y

TAW J D JbK J EC J EC
K TAW J RAW J

   −
= − −   −      (3.7) 

 
where TAW is total available water in root zone (mm); RAW is readily-available water 

(mm); b is the reduction in crop yield per increase in eEC  (%/dSm-1); thresholdEC  is the 

electrical conductivity of the saturation extract at the threshold when crop yield first 

reduces below the potential crop yield (dS/m); and, yK is a yield response factor 

(Doorenbos and Kassam 1979). 

The first part of the equation represents the stress due to soil water salinity, while 

the second part represents the stress due to water deficit. 
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Dr1 ≤ RAW
and

ECe (J) ≤ ECthreshold? 

Planting day:
J = 1

Next day: 
J = J + 1

Ks = 1

Dr1 ≤ RAW 
and

ECe(J) > ECthreshold?
Ks = 1- (b/Ky*100)*(ECe(J) - ECthreshold)

Dr1 > RAW 
and

ECe(J) ≤ ECthreshold?

no

no

no

yes

Ks = [1- (b/Ky*100)*(ECe(J) - ECthreshold)] * 
[(TAW – Dr1)/(TAW-RAW)]

Ks = (TAW – Dr1)/(TAW - RAW)

Finished

yes

End of season?

no

yes

yes

 
 

Fig.  3.7. Daily stress factor calculation procedure 

 
Groundwater contribution (GW):  Based on the depth of the groundwater table 

(GWT), if the water table is not inside the root zone, the groundwater contribution can 

affect the plant only if capillary rise (capillary fringe) from the groundwater table reaches 

the bottom of the root zone (Table 3.1).  An average of the values is considered in the 

model for each textural classification. 
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Table  3.1. Capillary rise values for various soil types (Tanji and Kielen 2002) 

Soil Texture Capillary Rise (cm) 
Coarse 20 to 50 cm 

Medium 50 to 80 cm 
Fine 90 cm 

 
 

The groundwater contribution is the up-flux due to capillarity from the water table 

(m/day) and can be calculated based on Darcy’s Law (Eching et al. 1994): 

 

 ( ) ( )( ) h hGW K
Z GWT
θ θθ ∂

= − =
∂

 (3.8) 

 
where ( )K θ is the unsaturated hydraulic conductivity (cm/day); GWT is the depth to the 

water table from the ground surface (cm); and, h is the soil water head (cm). 

Unsaturated hydraulic conductivity is calculated from the following equation 

(Eching et al. 1994): 

 

 

20.5 1/
( ) ( )( ) 1 (1 )

m
mr r

sat
s s r

J JK K
r

θ θ θ θθ
θ θ θ θ

    − − = − −   − −       (3.9) 

 
where rθ  is residual soil water content (cm3/cm3); sθ  is saturated soil water content 

(cm3/cm3); satK is the saturated hydraulic conductivity (cm/day); and, m is an empirical 

parameter, defined as follows: 

 

 11m
n

= −  (3.10) 

 
where n is also an empirical parameter (defined in Table 3.2;) and h is soil water head 

(cm), and is calculated as follows (Raes 2009): 
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1/1/
1( ) 1

( )

nm

s r

r

h
J

θ θθ
α θ θ

  − = −  −    (3. 11) 

 
As a logical assumption, if there is any amount of groundwater contribution to the 

soil root zone, no deep percolation occurs on that day.  The sub-model will also calculate 

the effect of this quantity on the soil water content of that day.  If the contributed quantity 

is enough to saturate the soil root zone, then no irrigation or rainfall water can enter the 

soil profile on that day; if any of these happen, the model will add these quantities to the 

runoff, or to the ponded water if the basin irrigation method is used in the simulation.  If 

the quantity is not enough to saturate the root zone, then if any amount of irrigation or 

precipitation occurred at that day, the sub-model will allow for an amount of irrigation 

and/or precipitation to enter the soil profile such that the maximum of this amount is 

enough to raise the root zone soil water content to saturation.  Any amount above that 

level will be added on the runoff quantity, unless the irrigation method is basin irrigation 

method, in which case this amount will be added to the ponded water.  Figure 3.8 

describes the calculation procedure for groundwater contributions to the root zone. 

 
Table  3.2. Class average values of Van Genuchten water retention parameters (Schaap et 
al. 1999 cited in Raes 2009). 

Soil Type n α (cm-1) θs(cm3/cm3) θr(cm3/cm3) 
Sand 3.18 0.035 0.375 0.053 
Loam 1.48 0.0098 0.4 0.062 
Clay 1.27 0.011 0.457 0.1 
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Planting day:
J = 1

Rz(J) is at or below GWT
or capillary fringe?

GW(J) = 0.0

• Calculate matric potential at end of root zone (h) in cm
• Calculate unsaturated hydraulic conductivity (k) in cm/day
• Calculate Van Genuchten empirical parameter (m)
• Calculate GW(J)

Calculate GW(J) from equation 

Input Parameters:
• Soil moisture content at saturation (θS)
• Residual soil moisture content (θR)
• Saturated hydraulic conductivity (Ksat)
• Other empirical parameters

Increment J 
(next day)

no

yes

no End of season? Finishedyes

 
 

Fig.  3.8. Calculation procedure for groundwater contributions to the root zone 

 
UAmount of irrigation water (Inet): U Based on the chosen on-farm irrigation 

method, the model calculates the net amount of irrigation water that enters the soil profile 

as a result of each irrigation event.  For basin irrigation, the total amount of irrigation 

water has the potential to enter the soil profile, with no surface runoff losses.  The sub-

model checks if the amount of total irrigation water is enough to saturate the soil root 

zone.  If it does, it means there will be some extra water, which will be stored on the soil 

surface as ponded water.  By assuming that the ponded water will substitute for the water 

consumptive use of that day, the ponded water might take more than one day to infiltrate 
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in the soil.  The sub-model accounts for this and calculates the depth (which may be zero) 

of ponded water on a daily basis. 

With furrow, border, sprinkler, and drip irrigation methods, no ponded water is 

allowed to remain on the soil surface.  Also, not all of the irrigation water will infiltrate 

the soil even if the amount of water is less than the amount required to bring the water 

content to saturation.  Some of the irrigation water will be lost from the field due to 

runoff.  The amount of runoff is estimated as a fraction of the total irrigation water (p).  

The fraction was based on information from Walker (2010, personal communications) 

and is presented in Table (3.3). 

After calculating the net amount of irrigation water that enters the soil profile, the 

model calculates the effect of that irrigation amount on soil water content (Fig. 3.9). 

 
Table  3.3. Assumed fraction (p) of total irrigation water lost as runoff (Walker 2010, 
personal communications) 

Soil 
Texture 

Irrigation 
Method p 

Coarse Furrow 0.1 
Coarse Border 0.1 
Coarse Drip 0.0 
Coarse Sprinkler 0.01 
Medium Furrow 0.2 
Medium Border 0.15 
Medium Drip 0.0 
Medium Sprinkler 0.02 
Fine Furrow 0.3 
Fine Border 0.2 
Fine Drip 0.0 
Fine Sprinkler 0.05 
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Itot (J-1) > 0.0?

First Day: Planting day
J = 1

Itot (J) = 0.0

Potential Infiltrated amount of Irrigation 
water (Iinf) =Itot(J-1) - RO(J)

Iinf > 0.0 and
Pinf ≥ θS -θ(J) ?

θ(J) = θS
Extrawater = Iinf – θS -θ(J)
NetIrrigation Inet(J)= θS -θ(J)

Irrigation 
Method is 
Basin ?

Ponded Water (PW(J)) = PW(J)+Extrawater
Runoff (RO(J)) = RO(J) + 0.0

Ponded Water (PW(J)) = PW(J) + 0.0
Runoff (RO(J)) = RO(J) + Extrawater

θ(J) = θ(J) + Iinf 
Extrawater = 0.0
Inet(J) = Iinf

Itot(J) = 0.0
Iinf = 0.0
Inet(J) = 0.0
θ(J) = θ(J) + 0.0

Next day: J = J + 1

Input Data
Total Irrigation (Itot(J))

Run Off due to Irrigation 
Method (RO(J))

yesno yes

no

Next day: J = J + 1

yes

no

End of season?

Finished

yes

no

 
Fig.  3.9. Calculation procedure for the effect of net irrigation on soil water content 

 
Amount of precipitation water (Pnet):  The calculation of the amount of 

precipitation water follows the same reasoning as the calculation of the net irrigation that 

enters the soil profile, taking into consideration the irrigation method used.  But, instead 

of taking the runoff quantity as a fraction (percentage) from the total precipitation, the 

sub-model calculates the effective precipitation by following the FAO-AGLW approach, 

after adapting it for daily calculations using the following equations (Smith 1988): 
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 10 700.6 ;
30 30inf total totalP P P mm= − ≤  (3.12) 

 

 
25 700.8 ;
30 30inf total totalP P P mm= − >

 (3.13) 

 
where infP  is the amount of precipitation that infiltrates the soil at the surface. 

If there is any precipitation that goes to runoff or ponded water, these amounts 

will be added to the previously calculated runoff and ponded water quantities due to 

irrigation.  The effect of the net amount of precipitation that enters the soil surface, on the 

soil moisture content is also calculated by the model (Fig. 3.10). 

Deep Percolation (DP): If the soil water content in the root zone is more than the 

field capacity, and there is no groundwater contribution to the soil root zone, there will be 

some amount of water deep percolated at the bottom of the root zone, to be considered in 

the sub-model.  The sub-model calculates the potential deep percolation (DPp), which is 

the amount of water that could potentially percolate below the root zone (and which 

includes the soil water content above field capacity and any ponded water on the soil 

surface). 

Since only a specific amount of water can percolate below the root zone, 

according to the soil texture, not all the potential deep percolation amount can leave the 

root zone in one day.  The sub-model defined the maximum amount of water that can be 

deep percolated in one day based on the saturated hydraulic conductivity of that soil 

texture class.  For the normal range of agricultural soil textures, it will take one to four 

days for the extra water (above field capacity) to drain from the root zone due to gravity 
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(Hargreaves and Merkley 1998).  The model considers three days for heavy soils (clays), 

two days for medium soils, and one day for light soil textures, such as sands. 

 

Ptot (J) > 0.0 ?

At Planting Day
J = 1

Basin irrigation 
method?

Infiltrated amount of 
Precipitation (Pinf) = Ptot(J) Pinf = Effective Precipitation (Peff) Ptot ≤ (70/30)?

Peff = 0.8 (Ptot(J) - (25/30)

Peff = 0.6(Ptot(J)-(10/30)

Pinf > 0.0 and also Pinf ≥ 
θs - θ(J)?

θ(J) = θs
Extrawater = Pinf – θs - θ
NetPrecipitation Pnet(J)= θs - θ(J)

Basin
irrigation 
method?

Ponded Water (PW(J)) = PW(J)+Extrawater
Runoff (RO(J)) = RO(J) + 0.0

Ponded Water (PW(J)) = PW(J) + 0.0
Runoff (RO(J)) = RO(J) + Extrawater

θ(J) = θ(J) + Pinf 
Extrawater = 0.0
Pnet(J) = Pinf

Ptot(J) = 0.0
Pinf = 0.0
Pnet(J) = 0.0
θ(J) = Theta(J) + 0.0

J = J + 1

Input Data
Total Precipitation (Ptot(J))

yes

yes no

yes

no

yesno

yes

no

no

End of season ?

Finished

yes

no

 
 

Fig.  3.10. Calculation procedure for the effect of net precipitation on soil water content 
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Due to actual deep percolation of soil water below the root zone, the soil moisture 

content will change and must be recalculated as follows: 

 

 ( )( ) ( )
1000 ( )

a

z

DP JJ J
R J

θ θ= −  (3.14) 

 
where zR is in m. 
 

Soil Moisture Depletion at the end of the day ( ( )EndofDayDr J ):  In the calculating 

of the water stress due to water shortage, the calculation of soil moisture depletion at each 

day is required.  The calculations in the soil moisture depletion procedure are based on 

Eq. (3.1), which includes all the parameters affecting soil moisture content during the 

day.  Using that equation without considering the growth of the root zone at the end of 

the day, and its related change in soil water content within the increased portion of the 

soil root zone, will result in erroneous calculations of the stress factor.  Therefore, for the 

calculation of the soil moisture depletion at the end of the day, Eq. (3.1) should be 

amended to read as follows: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( 1)* ( ) ( 1)*1000)

= − − − + +

+ − − − −
EndofDay BeginningofDay net net net a a

fc

Dr J Dr J P J I J GW J ET J DP J
J Rz J Rz Jθ θ  

(3.15) 

  
or the following simple equation can also be used in the determination of the depletion at 

end of day: 

 

 ( ) ( ( ) )* ( ) * 1000EndofDay fc End of DayDr J J Rz Jθ θ= −   
(3.16) 
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The use of this equation is subject to the way the soil water content ( )End of DayJθ  is 

calculated, and whether θ is recalculated after the calculation of each parameter affecting 

soil moisture content or not. 

 
3.2.4 Salt Balance Calculations 

The root-zone salt balance is calculated on a daily basis in order to determine the 

daily ECe in the root-zone (Fig. 3.11).  The sub-model calculating root-zone salt balance 

is based on the following concept: 

 

 today yesterdayS S S= + ∆
 (3.17) 

 
where S is mass of salt per unit area (mg/m2); and, S∆  is the change in salt mass in the 

root zone. 

The sub-model will start calculating the mass of salt per unit area in the day of 

planting with an initial value of eEC  and an initial value of root depth Rzinitial.  Then, the 

salt mass in the root zone for the following days in the season is calculated based on the 

following equation: 

 

 
( )

1

5* 6.4 10 * *
j jj e z sS EC R Sθ
−

= + ∆
 

(3.18) 

 
where j is the day of the year; j-1 is the previous day; ECe is the soil water extract salinity 

in dS/m; Rz is the root depth in m; θs is the volumetric water content at saturation 

(fraction); and ∆S is the change in mass of salt in the root zone per unit area (mg/m2) over 

the given time interval. 



49 
 

 

Input Parameters:
• Irrigation water salinity (ECiw)
• Amount of deep-percolated  water, DP (J)
• Initial Soil Salinity, ECe
• Groundwater contribution to the root zone, GW(J)

J = 1?

Planting day: J = 1

Salt in the root zone (mg/m2): 
Salt(J)= (ECe)initial*θS*Rz(J)*640,000

Groundwater salinity:
(ECgw) = 3*ECiw

DP(J) > 0.0? Determine LF required to remove 
salts due to irrigation

Salinity of deep-percolated water: 
(Ec)dp = ECiw/LF

Change in amount of salt due to irrigation, 
groundwater, or deep percolation:

∆S= (Inet(J)*ECiw+GW(J)*ECgw- DP(J)*ECdp)* 640

Soil water salt content:
Salt(J) = ECe(J-1)*Rz(J)*θS*640,000) +∆S

ECe(J) = Salt(J)/(θS*Rz(J)*640,000)

Next day:
J = J + 1

yes

yes

no

no

no End of season?

Finished

yes

  

Fig.  3.11. Daily salt balance calculation procedure 

 
Salt can enter the root zone in irrigation water and in groundwater, and it can 

leave only as deep percolation.  Therefore, ∆S can be calculated as follows: 

 

 iw gw dpS S S S∆ = + −
  

(3.19) 
where Siw is the mass of salt entering the root zone from irrigation water (mg/m2); Sgw is 

the mass of salt entering the root zone from ground water (mg/m2); and Sdp is the mass of 
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salt leaving the root zone by deep percolation (mg/m2).  Note that Siw ≥ 0, Sgw ≥ 0, Sdp 

≥0. 

The algorithm never allows both net groundwater contribution and net deep 

percolation water on the same day. 

The mass of salt from irrigation water is calculated as: 

 

 

/640
/iw iw i

mg lS EC I
dS m

 =  
   

(3.20) 

 
where ECiw is irrigation water salinity (dS/m); and Ii is the depth of irrigation water that 

entered the soil root zone (mm).  Similarly, 

 

 

/640
/gw gw g

mg lS EC I
dS m

 =  
   

(3.21)
 

 
and 

 

/640
/dp dp dp

mg lS EC I
dS m

 =  
   

(3.22)
 

 

where Ig is the contribution from groundwater (mm); Idp is the amount of deep 

percolation (mm); ECgw is the salinity of groundwater (ds/m); and ECdp is the salinity of 

deep-percolated water (dS/m).  

The ECgw is calculated from the salinity of the irrigation water as follows (Ayers 

and Westcot 1985): 

 

 
3*=gw iwEC EC

 (3.23) 
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The deep percolation water salinity (ECdp) can be calculated based on the fraction 

of irrigation water that is required to prevent excessive accumulation of salts due to 

irrigation (LF), as follows: 

 

 ( )5
iw

e iw

ECLR
EC EC

=
−  (3.24) 

 

 iw
dp

ECEC
LR

=
 

(3.25) 

 
Then, the ECe of the soil water extract can be calculated based on the following 

equation: 

 ( ) 56.4(10) ( )
j

e j
z j s

S
EC

R θ
=  (3.26) 

 
3.2.5 Relative Yield Calculations 

Crop yield is calculated in terms of the relative value with respect to potential 

crop yield.  The relative crop yield is estimated by considering possible yield reduction 

due to the relative evapotranspiration deficit, which governed by root-zone water deficit 

and salinity stress, and the over-irrigation events during the growing season.  Relative 

yield calculations are based on crop growth stage.  At the end of each growth stage, the 

effect of soil water deficit and salinity stress on the relative yield is calculated using the 

following equation (Stewart et al. 1977, cited in Merkley 2007):  
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where ,r SY is the relative yield at the end of the growth stage;  ,a SY  is the actual expected 

yield at the end of the growth stage; ,m SY is the maximum potential expected yield at the 

end of the growth stage; ,y SK is a yield response factor for the growth stage; and 
1

=

=
∑
Sj n

c
Sj

ET  

is the cumulative summation of daily maximum evapotranspiration under ideal growing 

conditions (mm) from Sj=1, which is day1 in the growth stage, to Sj= n, which is the last 

day of the growth stage. cET  is equal to *c oK ET ; and 
1

=

=
∑
Sj n

a
Sj

ET  is the cumulative 

summation of daily actual evapotranspiration (mm) throughout the growth stage. 

The yield response factor ( yK ) relates relative yield reduction to relative evapo-

transpiration deficit.  The yK  values for each growth stage, for the different crop types in 

the model, were obtained from FAO Irrigation and Drainage Paper 33 (Doorenbos and 

Kassam 1979).  On day one of the soil water balance simulation, the relative yield starts 

at 100%.  This percentage remains until the end of the first growth stage, when the 

relative yield is recalculated based on the effect of root-zone water deficit and salinity 

stress, if this occurs during that stage, using Eq. (3.27).  In order not to carry the effect of 

moisture and salinity stress to the following stages, the same equation is used for the 
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calculation of the relative yield for the subsequent growth stages until the end of the 

growing season. 

The end of season relative yield is calculated by taking the minimum value 

obtained from all growth stages as follows (Prajamwong 1994): 

 

 , , 1 , 2 ,min ( , ,..., )r Season r S r S r SkY Y Y Y=   (3.28)
 

 
where ,r SeasonY  is the end of season relative yield (%); and k is number of growth stages. 

Over-irrigation penalty:  Over-irrigation causes aeration problems, loss of water 

and soil nutrients below the root zone, and generally creates unfavorable conditions for 

plant growth, which leads to a reduction from the potential expected yield.  To measure 

the impact of over-irrigation on crop yield, and use it as a penalty for any player who 

cares about maximizing yield without considering the amount of irrigation water used, 

especially when water is available and abundant.  The following equation is used to 

calculate the impact of over-irrigation and the subsequent deep percolation on seasonal 

relative yield reduction (Prajamwong 1994): 

 

 
, 1 ( )season

r Season
n

dpY
d

α= −
  (3.29) 

where dpseason is the total seasonal deep percolation (mm); α is an empirical coefficient (a 

= 0.05, as assumed by Prajamwong 1994); and dn is the maximum readily available 

depth of water in the root zone (mm), calculated as follows: 

 max* *( )n zd p AM R=  (3.30) 
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where p is average fraction of total available soil water that can be depleted from the root 

zone before moisture stress (fraction); AM is water at maximum root depth (mm) equal to 

FC -WP; and max( )zR is the maximum root depth of the specific crop, usually reached at 

the end of a crop growth stage. 

The following flowchart shows the calculation procedure of the overall relative 

yield and each growth stage relative yield obtained (Fig. 3.12). 

 

For each crop growth stage, define a variable 
to calculate the sum of ETa(s) and ETc(s)  

Input Parameters:
• Length of Initial, development, mid-

season, and late growth stages for the 
chosen crop(s)

• Crop response factor (ky) for each stage

J ≥ Jplanting 
and < Jinitial?

Planting day:
Jplanting = 1

Next day:
J = J +1

RelativeYield(J) = 1 RelativeYield(J) = RelativeYield(J-1) 

J = Jinitial?

J = Jdev?

J = Jmid?

J = Jharv?

RelativeYield(J) = 
RelativeYield (J-1) - ky(J)*(1 – (ETa)initial/(ETc)initial)

RelativeYield(J) = 
RelativeYield (J-1) – ky(J)*(1 - (ETa)dev/(ETc)dev)

RelativeYield(J) = 
RelativeYield (J-1) – (ky(J)*(1 - (ETa)mid/(ETc)mid)

RelativeYield(J) = 
RelativeYield (J-1) – ky(J)*(1 - ETa)harv/(ETc)harv) 

Seasonal deep 
percolation > 0.0?

Maximum available moisture:
AM = (FC - WP)*1000*(Rz)max

Maximum readily-available water:
dn = depletion Factor * AM

Yield reduction due to over irrigation: 
YieldPenalty = 0.05 *DP(s)/dn

RelativeYield(J) = RelativeYield(J-1) - 
YieldPenalty Finished

First day:
J = 1

yesno

no

no

no

yes

no no

yes

no

End of
season?

yes

yes

yes

yes

 
 

Fig.  3.12. Calculation procedure for relative yield at the end of the simulation period 
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3.3 Scoring Module 

Processing a comparison between the results obtained from the player behavior 

module (management decisions taken by the player) with that considered to be the 

optimal management practice (the reference results) enables the scoring and 

recommendations module to evaluate the decisions made by the player and gives him or 

her a fair and reasonable score. 

In terms of results scoring, the player will have a certain set of goals or objectives 

to meet: maximize crop yield, maximize production function, or maximize profit.  The 

player must choose one goal before beginning a simulation.  If the player does not choose 

a goal, the program will automatically choose to maximize profit.  The scoring results 

will be based on the achievement of these objectives.  A final score based on the overall 

consequences of the decisions which were made, in addition to recommendations for 

irrigation management improvements, is presented to the player at the end of the 

simulated growing season. 

 
3.3.1 Scoring Procedure 

This part of the code describes the procedure for developing the module 

responsible for making scoring results for the player based on his achievements 

throughout the simulation season.  The calculation of the player performance results 

(score) should be referenced to the best results that can be obtained through running the 

simulation under the same circumstances (crop phenological properties, soil 

characteristics, climatic conditions, irrigation method characteristics, and water delivery 

method).  To do so, and in order to give the player a fair and reasonable score, the 
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program was designed to search for the optimum result irrigation management scenarios 

at the beginning of the growing season, and try to obtain the best results.  After that the 

program runs a comparison between the results obtained by the player and the results 

obtain by its search algorithm. 

Choosing the best search algorithm that gives reliable results depends on the 

objective function to achieve and how easy this search algorithm is to use, and how much 

time it takes in searching for the optimum solution.  As they appear from the set of 

objectives, they are all optimization objective functions.  A one-dimensional (one-

objective) search algorithm, namely Golden Section, was used.  This search algorithm 

was found to be appropriate as it has a low computational cost (low time consumed in 

performing the search).  This is described in additional detail in Chapter 4. 

Finding a general relation that relates the crop yield to the seasonal amount and 

duration of irrigation water used, for all the crops under the different climatological and 

environmental conditions was not found possible after reviewing many related technical 

articles.  Therefore, the same daily soil water and salinity balance, which was described 

in the technical module part of this project, was used in this part of the code for the 

calculation of the crop production function with little modifications to consider the same 

management for all the sections within the field.  The search algorithm goes through the 

calculation of all the parameters that affect the soil water balance and consequently affect 

the crop yield, each time searching for the only decision variable it has, which is the net 

irrigation amount. 
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The objective function was set to minimize the yield loss due to using certain 

percentages of net irrigation (Eq. 3.31).  That will in turn calculate maximum yield obtain 

due to certain management practices.  Because the quantity of applied water each 

irrigation varies due to soil water content at the time of irrigation, and due to weather and 

crop characteristics changes between each two irrigations, different decision variables 

could be considered.  But, in order to make it easy to search for the optimal solution, it is 

found more feasible to limit the decision variable to one variable, which has a strong 

effect on the computational cost of the search process.  The decision variable chosen to 

be the percentage of net irrigation water to be apply each irrigation (same percent each 

time) in order to bring the soil water content in the root zone to field capacity Eq. (3.32) 

The general objective function used is: 

  (3.31) 

 
where RelativeYieldObtained  is the relative yield (0 - 1) obtained at the end of the season 

due to the different irrigation scheduling scenarios (net irrigation percentage).  The 

decision variable that used is as follows: 

 

 ( ) 0.01* * ( ( 1) * ( 1) *1000= − − −zInet J Ipercentage FC J R Jθ  (3.32) 

 
where Inet(J) is net amount of water at the scheduled irrigation, which will enter the 

calculations for the soil water balance and crop relative yield; Ipercent is the percentage 

of total Inet required to bring the soil water content in the root zone to field capacity.  FC 

is the soil moisture content at field capacity; ( 1)−Jθ is the soil water content at the day 

of irrigation; and Rz (J-1) is the root depth on the day of irrigation. 
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As a dynamic programming objective function there is one constraint related to 

the amount of irrigation water that is available for the whole season.  The total amount of 

water used for all irrigations must not exceed the total available water.  Although the 

decision variable was the same for all the objective function, the limitations for 

calculating each goal are different (these minor constraints are to make the obtained 

results more accurately reflect the reality of the goal).  The following sections describe 

the decision variable and constraints for each goal under different management scenarios 

of the water delivery methods included in the model. 

 
3.3.2 Maximizing Crop Yield 

If maximizing the crop yield is the objective function of the player, he or she will 

typically try to use all the available water without considering the optimum production 

function.  In this case, the player usually opts for this objective when irrigation water is 

plentiful and inexpensive.  But in conditions where water is limited during the whole 

season, different management decisions should be taken with regard to irrigation 

scheduling. 

Under this objective function (maximizing crop yield), the search algorithm will 

consider the different delivery methods available in the game options; fixed rotation, or 

on-demand.  The differences among these delivery methods is the delivery interval, 

where under fixed rotation the delivery interval is pre-determined, and knowing the 

seasonal amount of available water, the program can determine the maximum amount of 

water available for each irrigation.  This maximum amount should not be exceeded.  The 

difference under on-demand is that the player has no restrictions in terms of when to 
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order water and how much water to order for each irrigation, although the total amount of 

available water for the whole season is fixed and can't be exceeded.   Therefore, when to 

irrigate and how much water is available for each irrigation are not fixed for the program 

to search through. 

In this part of the model, there are few limitations on irrigation scheduling 

decisions under the maximization of yield objective function; minimum irrigation interval 

based on the irrigation method chosen, and minimum irrigation duration .  One day 

minimum interval set for drip irrigation, while seven days minimum interval set for 

border and basin, two days for sprinklers, and three days for furrow irrigation methods.  

So, the program considers the extreme possibility that the famer might choose to irrigate 

more frequently with the least amount of water at each irrigation, as this could be the 

optimal solution to obtain the highest crop yield.  But, this minimum amount is subject to 

the fixed limitation (in the program) that the minimum irrigation duration is one hour.  

Irrigating more frequently with the least amount of water at each irrigation might not be 

feasible from a management point of view, but as a scoring procedure it might lead to the 

achievement of 100% yield, so the player might use this strategy. 

 
3.3.3 Maximizing the Production Function 

In this part, the goal in playing the game is to achieve the highest possible yield 

with lowest amount of irrigation water.  That is, maximization of production per unit 

volume of water.  The search algorithm in the program will study all possible percentages 

of net irrigation water that can give the highest production function using the same 

minimization function, to minimize the yield loss, and the same decision variable, same 
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percent of net irrigation water to be apply each irrigation, as described above.  Although 

the same decision variable is used for this goal, a set of limitations and constrains were 

included in the program in order to minimize the possibility of irrigating daily with a very 

low amount of water.  Therefore, the limitation on when to irrigate is linked with the 

amount of soil moisture deficit.  Under the fixed rotation delivery method, the limit of 

soil water deficit was set to the consumption of half of the readily available water (RAW) 

before allowing an irrigation event to take place.  In contrast, under the on-demand 

delivery method the soil water content limitation is set to the consumption of all readily 

available water before allowing an irrigation event to occur, as this will lead to the 

optimal production function by minimizing the total irrigation water used without 

reducing the potential yield.  

Another constraint exists for the last irrigation for all delivery methods, in which 

the last irrigation is limited so as to not exceed the amount of water required to raise soil 

moisture content to the mid-point between soil moisture content at FC and soil moisture 

content at RAW, because that will reduce the waste of additional water at the end of the 

season.  The reason for this is that it is not desirable to leave the soil with high water 

content during harvest; this is will minimize the water that can be consumed, while 

having the same objective function of maximizing crop yield.  Accordingly, the best 

production function can be achieved.  The equation is: 

 

 0.01*RelativeYield*MaximumYield*1000*10BestProductionFunction =
Total Water Used

 (3.33) 
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where RelativeYield is the best yield that was obtained by the automatic search for 

maximum yield (1-100); MaximumYield is the predefined maximum yield that could be 

obtained for the specified crop under the optimal management conditions (kg); and Total 

Water Used is the total amount of irrigation water used throughout the growing season 

(m3). 

 
3.3.4 Maximize Profit 

The same procedure used in maximizing the production function is used for 

maximizing the profit.  Taking into consideration that the profit is equal to revenue minus 

cost, revenue is related to the crop yield production, so increasing the yield will increase 

the revenue.  Cost is related to the amount of water used throughout the growing season 

and does not include other possible production costs, such as agricultural chemicals, 

labor, cultivation practices, and others.  This is because the focus of this game is 

irrigation water management, not overall farm management.  The profit equation is: 

 
  (3.34) 

 
3.4 The Scenario-Based Module 

In order to simulate the impact of both agents (system and player) on the game 

environment (the farm, including crops, soil, water, and weather conditions), the heuristic 

features of the game were developed based on a combination of two artificial intelligence 

technologies: (1) a pattern recognition approach; and, (2) reinforcement learning based on 

Markov Decision Processes (MDP).  The pattern recognition approach enable the system 

to model the player type based on previously defined types, and the reinforcement 
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approach teaches the system to determine the optimal policy (actions) to be taken at the 

specified states of the environment taking into consideration the player type (Fig. 3.13). 

The task of the pattern recognition system is to develop a player model by 

extracting player information from the game world (player management decisions and 

actions), group the information into classes of similar patterns, and forward this 

information to the decision-making system (reinforcement learning).  Based on the 

forwarded information, the decision-making system has the responsibility to decide the 

appropriate action by the system (agent) from the set of possible actions allowed by the 

game environment. 

 

Fig.  3.13. Schematic of the heuristic model 
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The intention from any actions taken by the player is to successfully achieve the 

main goal of the game, which is generally, to maximize profit.  After taking an action, the 

closer the player is to the goal describes how rational the player is.  The player model 

defines the player into one of four different categories base on his or her decisions 

(actions) in the game environment (see Chapter 4). 

In the pattern recognition system, the action taken by the player will be observed, 

traced with the sequence of the previous actions that were taken, and classified and 

learned as one case in the pattern generation process.  Based on the obtained cases, the 

player modeling process can match human behavior and generate a player model by 

matching the learned case with a previously defined player models.  This information will 

be forwarded to the decision-making system (reinforcement learning system), which has 

the responsibility to choose an appropriate action based on the given information and the 

state of the environment. 

The reinforcement approach used in the decision-making system is based on the 

idea of learning through interaction with the environment.  Learning what to do is 

accomplished through learning the best reward obtained from taking a particular action in 

a particular game-world state. 

The Q-Learning system learns an action-value function, or Q-function, giving the 

expected utility of taking a given action in a given state.  It deals with the theory of 

expected utility maximization.  The learning system divides the environment into states 

based on certain criteria given by the designer, and it examines the effect of all available 

action on each state.  Based on the reward criteria set in the game, the system returns the 
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reward of taking each action at each state.  The reward is calculated based on how close 

the action taken by the system (agent) toward achieving the previously defined goal.  The 

returned reward is used to calculate the Q-value function of a state-action pair Q (a, s).  

Choosing the maximum Q-value state-action pair is analogous to deciding the best action 

that should be taken in the current world state returns the expected best action to be taken 

in this state.  The system observes the environment after taking that action and evaluates 

its decision based on the new reward obtained, and learns from its decision.  The 

algorithm used to determine the optimal policy is called the Q-learning algorithm and is 

based on the following equation: 

 ( )( , ) ( , ) ( ( ) max ( ', ') ( , )new current currenta
Q a s Q a s r s Q a s Q a sα γ= + + −  (3.35) 

 
where, Q(a, s) is the value function of state action pair; α is the learning rate and reflect 

the difference in utility between two successive states; r is the expected reward value, 

reflecting the future effect of taking action a in world state s; γ is a discount factor 

describes the performance of an agent for current reward over future reward; (s) is the 

current state; and (s') is the new state the game world expected to move to after taking 

action “a” in world state (s). 

  



65 
 

 

CHAPTER 4 

4 HEURISTIC SIMULATION 

 
In efforts to achieve higher levels of enjoyment and realism in playing the game, 

different heuristic approaches were employed.  The following describes implementation 

of the heuristic capabilities within the game for more realistic simulation of all the 

important aspects of on-farm water management and irrigation scheduling. 

 
4.1 Weather Data Generation 

4.1.1 Maximum and Minimum Temperatures 

A model was developed to generate new sets of daily maximum and minimum 

temperature each time the game instantiated (Fig. 4.1).  The model generates a random 

number using the monthly standard deviation for both maximum and minimum 

temperature obtained as shown previously for each climate zone.  The procedure to 

generate new set of daily data is as follows: the year is divided into a total of 13 peaks, 

where the 12 in-between spaces represent the 12 months of the year.  The first peak is on 

day 1 of the year, and the last peak is on day 365.  The number of days for each peak is 

the same as the number of days in each month.  To determine the minimum and 

maximum range for randomization of each month, the monthly standard deviation of the 

particular parameter is used.  The range falls between plus and minus one standard 

deviation from the daily value.  Accordingly, a random number is generated within that 

monthly numbers space will be taken as a coefficient to be added to (or subtracted from) 

the actual daily data. 
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To generate that coefficient for all the days in the month, and in order to obtain a 

smooth randomization of the coefficients, a 3rd-degree polynomial curve is defined 

between each two adjacent peaks (months).  The model generates a random number 

coefficient) at each peak.  The randomly-generated coefficient for each of the two 

adjacent peaks, considered the start and the end y-coordinate of the polynomial curve, 

while the starting day at each peak considerd the x-coordinate of that curve.  To generate 

all the points on the curve, the Gauss-Jordan elimination method is used to solve a linear 

system of four equations based on the two known points and their specified end slopes to 

create a 4 x 4 matrix.  Accordingly, 365 randomized coefficients are generated each time 

the module is invoked. 

By adding the randomly-generated coefficient to the actual daily data, new set of 

daily maximum and minimum temperatures are generated each time the player starts a 

new game.  The program makes sure that maximum temperature is always larger than or 

equal to the minimum temperature on each day.  This daily data set is the one that is used 

in the technical model to calculate the potential ET and the daily soil water balance.  

Figure 4.1 shows the coding process for this module. 

Figure 4.2 shows sample results of generated daily maximum and minimum 

temperature as compared to the real (measured) data that were obtained for each 

parameter as discussed in the previous chapter.  Figure 4.3 shows a comparison between 

the average daily data generated and real data to show the effectiveness of the method in 

generating acceptable random air temperature data based on a fixed set of daily measured 

values. 
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Input Data
first zone is z= 0 

Daily Max and Min temperature 
 Standard deviation (SD) for each of the 12 months

Maximum days in the month

Generate 13 peaks, one for each month of the year
First peak for day 1, last peak for day 365

First peak is k = 0

k = 1
PeakDays(0) = 0

MaxCoeff (0) = SD (0)
MinCoeff (0) = -1 *MaxCoeff (0)

PeakDays(k) = MaxDaysInMonth (k-1)
PeakDays(k) = PeakDays(k)+PeakDays(k-1)

Determine the max and min range of randomization
MaxCoeff (k)= SD (k-1)

MinCoeff (k) = -1 * MaxCoeff(k)

Generate random number; Coefficient
Coefficient = Rand (MinCoeff, MaxCoeff)

Generate polynomial curve between to adjacent peaks

Next peak: k = k + 1

Define two end points, (p)
p(0). x = Peakdays (k)
p(0). y = Coefficient (k)
p(1). x = PekDays(k+1)

p(1). y = Coefficient (k+1)

j  = d

Load
Gauss-Jordan Method;
solve for A, B, C, and D

Define parameters:
PeakLength = PeakDays(k)

x = p(0).x
deltaX = 1

d = 0

k = 12?

Coefficient (j)= AX^3 + BX^2 + CX + D

d = PeakLength-1?

d = PeakLength

j > 365

NewTmax(j) = RealTmax(j) + CoefficientTmax(j)
NewTmin(j) = RealTmin(j) + CoefficientTmin(j)

yes

no

yes

d = d + 1

First day: j = 0
no yes

no

yes

Next day: j = j + 1

Next climate: z = z + 1

NewTmax(j) = NewTmin(j)
NewTmin(j) = NewTmax(j)

NewTmax(j) > 
NewTmin(j)?no

yes
no

 
Fig.  4.1. Flow diagram of the process to randomly generate modified sets of maximum 
and minimum temperature 
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Fig.  4.2. Comparison of daily minimum and maximum temperature between actual and 
generated data 
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Fig.  4.3. Comparison of average daily temperature between actual and generated data 
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4.1.2 Rain and Number of Rainy Days 

A module within the program developed to generate rainy days and rain quantity 

based on the real weather data extracted for each of the climate zones mentioned above 

(Fig. 4.4).  The code start at day 1 of the year and examines if it is a rainy day or not, and 

keeps moving day-by-day until finding the first day with some rain (a precipitation 

event).  At this point the program starts a “rainy days” range (J1), and moves to find the 

following consecutive days with rain until finding the next day without rain.  At this point 

the program determines the end of the range (J2).  The program then randomly 

determines an adjusted range up to ±3 days to be added to the beginning and the end of 

the range.  The program makes sure that the range does not become less than zero due to 

the randomization process.  If that happens, the program assigns a zero quantity to the 

days within the range. 

If the program generates a range of rainy days, with at least one day with rain 

within the new range, then it generates a magnitude for the amount of precipitation for 

each day.  The program calculates the average precipitation from the actual data for the 

new range, and multiplies the average with a generated random number from -0.5 to 0.5.  

This adjusted average is then added to the actual amount of precipitation for that day 

within the range.  If the day is a newly generated rainy day within the range (i.e. there 

was no measured precipitation on this day), then the amount of precipitation assigned to 

that day will be equal to the average rainfall depth in that range, plus the adjusted 

average.  The program makes sure that the precipitation quantity never goes below zero.  

After finishing the first range, the program follows the same procedure for finding and 
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modifying another range, until it reaches the end of the year.  This procedure also 

repeated for all climate zones and the results are recorded for later use.   

Accordingly, a new set of rainy days and precipitation quantity data will be 

generated each time the game is played, and used in the technical model for the 

calculation of daily soil water balance and other uses in the program, like weather 

forecasting.  Other options could be investigated for the generation of rainy days, but this 

is the method developed for use in WaterMan.  Figure 4.4 summarizes the coding 

procedure for rainfall modifications.  

Figure 4.5 shows sample result of generated daily rainfall (days and quantity), as 

compared to real (measured) data. 

 
4.1.3 Five-day Weather Forecast 

To simulate the reality of the fact that the farmers usually could have access to a 

weather forecast that they choose to view, the model gives the player access to a five-day 

weather forecast.  The player can see the expected maximum and minimum air 

temperatures, in addition to the possibility of having rainy days during the coming five 

days, with the respective probabilities of occurrence. 

To code this part, the same procedure used to generate new sets of weather data 

(maximum temperature, minimum temperature, and precipitation days and amount), each 

time the game is played, was used to generate the weather forecast data.  The only 

exception is that the weather data source used to generate the forecast data is the new sets 

of that were randomly generated, and not the actual data.  This is to increase the 

uncertainty of the forecasted data, but within a controlled limit.  After all, it is only a 
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forecast, and it is recognized that real weather data forecasts are often incorrect, even in 

the short term.  After preparing the database values for the parameters, the daily soil 

water balance is performed, as described below. 

 
Climatic zone:

First zone is z = 0

First day of year: j = 0

Precipitation (j) > 0?

Start a new group of rainy days.
HaveRainRange = True

D1 = j

Parameters:
D1 = 0
D2 = 0

RangeD1 = 0
RangeD2 = 0

HaveRainRange = False

This is the end of this range.
HaveRainRange = False

D2 = j
D2 = D2 -1

HaveRain
Range?

HaveRain
Range?

Next day: j = j + 1

Randomly adjust the begin and 
end of this range up to ±3 days

RangeD2 < 
RangeD1?

The range has gone to zero.
So, no rain for this group.

New Precipitation Amount = 0

There is at least one day in the new range.
Calculate an average precipitation for this range 

from the real data.

Randomly adjust precipitation amount.
Generate a gain between -0.2 and 0.8 and 

multiply it by the average precipitation.

The real data has 
rain on that day?

New Precipitation Amount = Real 
Amount + Adjustment Factor

New Precipitation Amount = Average 
precipitation + Adjustment Factor

 Make sure the precipitation does not goes below zero.
 Assign zero precipitation for the days outside the 

adjusted range.

j > 365?

noyes

truefalse

yes

no

no

yes

no

true

false

yes Next zone:
z = z + 1More zones? yes

Finished

no

 

Fig.  4.4. Flow diagram of the process to randomly generate modified sets of rain and 
number of rainy days 



72 
 

 

 
Fig.  4.5. Comparison of rain quantity and number of rainy days between actual rain data 
and generated rain data 

 
4.2 Optimization of Irrigation Scheduling 

Building a crop production function that describes the relationship between 

irrigation water and crop yield under the assumption of optimal irrigation scheduling 

(timing and quantity) is the basic objective in the set of objective functions that are given 

to the player to choose from, and is considered to be the main target for improved water 

management.  Crop production function is defined as the amount of crop produced per 

unit volume of water.  As such, maximizing the crop production function reflected in the 

optimal relation between maximizing crop yield and minimizing the amount of irrigation 

water used.  The golden section search algorithm was applied at the beginning of the 

growing season to search for the optimal crop production function. 
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4.2.1 Golden Section Search Algorithm 

In applying the golden section search algorithm to solve an optimization function 

(function minimization) the decision variable must be bracketed by minimum and 

maximum values.  The minimum value is set to 10% and the maximum is 100%, as a 

percentage of the net amount of irrigation water to restore the soil water content to field 

capacity.  This percentage is subject to the constraint of total water availability 

throughout the irrigation season, and for each individual irrigation.  The field capacity 

limit was used because any additional water above this limit is considered to be wasted, 

as it will go to deep percolation, and that will affect the crop yield inversely so it will not 

be part of the optimal solution to exceed that limit when searching for the best solution.  

The minimum percentage could be less than 10%, but as long as there will be irrigations, 

this minimum is reasonable (why would anyone irrigate a crop to achieve less than 10% 

of the potential crop yield?).  Figure 4.6 shows the golden section optimization coding 

procedure. 

 
4.2.2 Objective Function Coding 

Description of the coding method of the objective function with using one 

decision variable and different constraints is as given in the following.  For maximizing 

the crop yield function (Fig. 4.7): 
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Input parameters:
Dr, Inet,  Pnet,  GW, DP, Tmax, Tmin, Inet_low, Inet_high

Inet_mid = 0.5 (Inet_low + Inet_high) 

Choose a 4th point by applying the 
golden section principle

f1 = f(X1)
f2 = f(X2)

Converged ?

f1 < f2 ?

Shift rightShift left

Finished

Objective Function:
minimize (1 - 
RelativeYield)

no

yes

noyes

Add a new point

 

Fig.  4.6. Golden section optimization coding procedure 

 
J = 1

J/delivery 
interval = 0?

Delivered quantity = 
Duration * Flow Rate

Calculate net irrigation
MinMax(minimum volume, delivered quantity)

Calculate accumulated gross irrigation
MinMax(0, seasonal available water)

Net irrigation = 0.0

Calculate RelativeYield

Objective Function: minimize 
(1 – RelativeYield)

Finished

Increment J (next day)

no

yes

no

End of season?

yes

 

Fig.  4.7. Flowchart describing the logic used to determine maximum crop yield 
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At each day when there is possibility for irrigation water to become available 

(depending on the delivery interval, as set by the player or by the program for fixed 

rotation delivery method, or according to certain constraints based on the irrigation 

method for the on-demand delivery method), do the following: 

1. Determine the amount of water delivered: quantity = duration * flow rate; 

2. Search for the best value of the decision variable; percentage of irrigation water to 

raise the water content to FC: 

 ( ) 0.01* *( ( 1)* ( 1)*1000zInet J Ipercentage FC Theta J R J= − − −  (4.1) 
 

3. Set limits for that quantity (minimum and maximum), where minimum is the net 

flow rate multiply by the minimum irrigation duration, and maximum is the net 

delivered quantity; 

4. Calculate the accumulative gross amount (volume) of irrigation water used; 

5. Assign a variable to calculate the accumulated total amount of water used at each 

irrigation during the season in order to limit (constraints) it to the total available 

water for the whole season; 

6. Apply the daily soil water balance technical module to calculate the relative yield 

objective function: 

 minimize: YieldReduction = 1 - RelativeYieldObtained  (4.2) 
 

7. Minimize the crop yield reduction, which is equivalent to maximizing the relative 

crop yield,  “Relative Yield = 1 - Yield reduction”; 

8. Return the numerical value of the yield reduction. 
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For maximizing the crop production function (Fig. 4.8): 

At the day when water could be available (depending on the delivery interval, as 

set by the player or by the program for a fixed rotation delivery method, or according to 

certain constraints based on the irrigation method for the on-demand delivery method), 

do the following: 

1. Determine the mid-point between field capacity and readily available water; that 

is, ½(θFC + θRAW); 

2. Do not irrigate if the soil water content is above the mid-point, if water delivery 

method is fixed rotation, or do not irrigate if the soil water content is above θRAW, 

if water delivery method is on-demand; 

3. Determine the delivered irrigation water quantity: duration * flow rate; 

4. Search for the best decision variable.  This is the best percentage of net irrigation 

water that is required to raise the soil water content, from its current amount, to 

field capacity.  It will be the same percentage for all irrigations throughout the 

growing season. 

 

  (4. 3) 
 

5. Specify a range for that quantity whereby “min” is the minimum irrigation 

duration multiplied by the net flow rate, and “max” is the net delivered quantity; 

6. Calculate the accumulative gross amount of irrigation water used; 
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7. Assign a variable to calculate the accumulated total amount of water used in each 

irrigation during the season so that it does not exceed the total available water for 

the whole season; 

8. If the delivery interval less than 15 days, set a limit on the amount of the last 

irrigation, so as to not exceed the refilling of the soil water content to the mid-

point between θFC and  θRAW; 

9. Apply the daily soil water balance technical module and calculate the relative 

crop yield objective function: 

  (4. 4) 
 

10. Minimize the crop yield reduction, which is equivalent to maximizing the relative 

yield (1 - yield reduction); 

11. Calculate the best production function by dividing the crop yield by the total 

amount of irrigation water used; and, 

12. Return the calculated yield reduction. 

Figure 4.9 shows sample results obtained from playing the game when the 

objective function is to maximize profit.  The score is indicated as “89” because the 

player obtained a net profit of $3,093, while the program obtained $3,484 (the ratio is 

equal to 0.89).  The graph also shows the player’s results in terms of relative crop yield 

and production function, compared to the “best” results from the model, using the same 

parameters with the search algorithm. 
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Delivery method is
fixed rotation?

First day:
d = 1

d / delivery 
Interval = 0 ?

Delivered quantity =
Duration * Flow Rate

Net irrigation =
MinMax(flow rate, 

Delivered Quantity)

Calculate accumulated gross irrigation:
MinMax(0, Seasonal Available water

Net irrigation = 0.0

Calculate Relative Yield

Objective Function: Yield 
Reduction = 1 - RelativeYield

Finished

d = d + 1

MidPoint = 0.5(FC+RAW)

θ(d-1) < 
MidPoint?

Delivery interval ≤ 15
& Last irrigation?

Calculate net irrigation:
MinMax(flow rate, MidPoint)

d / delivery 
Interval = 0 ?

Accumulated gross irrigation =
MinMax(0, Seasonal Available water

Calculate Relative Yield

Objective Function Yield 
Reduction = 1 - RelativeYield

θ(d-1) < RAW?

Net irrigation =
MinMax(flow rate, MidPoint)

no

no

yes

yes

no

yes

no

yes

yes

yes

no

yes

no

no

End of season?

Net irrigation = 0.0

d = d + 1

Finished

yes

End of season?

no

 
Fig.  4.8. Flowchart describing the logic used to maximize the crop production function 
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Fig.  4.9. Sample results using the profit maximization objective function 

 
4.3 Player Type and Random Event Generation 

The main objective from generating random events within the game play is to 

reflect some of the real conditions that might occur during a cropping season, and to 

show the difficulties that a decision maker might face about irrigation scheduling.  As a 

training tool, this game will be played by people with different irrigation management 

skills and experience.  In order to make the game more interesting, the program is 

expected to anticipate the player skill level, and to reply with events appropriate to the 
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anticipated level.  The following shows the approaches followed in the game program to 

achieve this goal. 

 
4.3.1 Artificial Intelligence Simulation 

As briefly described in the previous chapter, the heuristic features of the program 

were developed based on a combination of two artificial intelligence approaches: (1) a 

pattern recognition approach; and, (2) reinforcement learning based on Markov Decision 

Processes, specifically, the Q-learning method.  These two approaches were taken to 

account for the difference in the effect of actions taken by the player and action taken by 

the system on the game world.  The pattern recognition part of the program is described 

as being responsible for developing a player model and the determination of the player 

type, then passes this information to the decision-making system. The decision-making 

system is responsible for learning an action Q-function, and then choosing and executing 

an action at the particular state based on a maximization of the utility function (maximum 

Q-Value).  The following section describes the problem setup within the game program 

after giving an overview about the reinforcement learning approach and some definitions 

for the terms that are used. 

 
Reinforcement Learning/MDP Approach Overview 

The specification of a sequential decision problem for a “fully observed” 

environment with a Markovian transition model and additive reward is called a Markov 

Decision Process, or MDP.  The environment is considered fully observed if the agent 

can see all the parameters that form the environment state at each time interval, and 
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knows its current state.  In the artificial intelligence field of research, Markov Decision 

Processes have become the most popular framework for representing and solving 

problems of sequential decision under uncertainty (Sigaud and Buffet 2010).  Markov 

decision processes are defined as controlled stochastic processes satisfying the Markov 

property in the sense that the probability of reaching the next state of the environment 

from the current state depends only on the current state and not on the history of earlier 

states, the future is independent of the past given the present (Russell and Norvig 2003).  

MDP is defined by the following three components; initial state, transition model, and 

reward model.  The states of the environment (S) represent the state space where actions 

(A) take place. The initial state is the starting state of the environment. 

The transition probability p( ) characterizes the state dynamics of the system, and 

indicates which states are likely to appear (new state (s')) after taking an action (a) in the 

current state (s) and are represented as p(s', a, s).  As a result of choosing action (a), in 

state (s), the deciding agent receives a reward (r) = r(s , a).  The reward function could be 

positive or negative depend on how the action positioned the new state of the 

environment closer to the goal state. 

The idea that we learn from interaction with our environment is probably the first 

to occur to us when we think about the nature of learning.  Reinforcement learning is a 

computational approach that involves learning while interacting with the environment 

through selecting the appropriate action in a particular state so as to maximize a 

numerical reward signal.  The agent is not told which action to take, but instead must 

discover the action that yields the maximum reward by trying all possible actions in that 
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state.  Sutton and Barto (1998) define four elements for reinforcement learning; a policy, 

a reward function, a value function, and a model of the environment.  The policy is 

identifying the best actions to be taken at a particular state.  The reward function reflects 

how good it is to perform a given action in a given state and redefines the state-action 

pair into a single number.  The value function reflects the accumulated reward from being 

in a particular state given the chosen behavior.  The model of the environment reflects the 

ability of the model to predict the resulting next state given the current state and action.  

Reinforcement learning methods are said to be model-free or model-based depending on 

whether they build a model of the transition and reward function p(s' , a, s) and r(s ,a) of 

the underlying MDP. 

 
Implementation of the AI approaches in WaterMan 

In order to develop the artificial intelligence capability of the software, the 

human-computer interactions were modeled as sequential decision problems under 

uncertainty (Hui and Boutilier 2006).  The logic behind this approach is strongly 

dependent on ideas presented in the book by Sigaud and Buffet (2010), Chapters 1 and 2, 

and on Russell and Norvig’s book (2003), Chapters 17 and 21.  The problem is classified 

as sequential because the current decision has a future impact on the consequent 

decisions and the overall results, and the system continuously moves from state to state 

within the game world.  At each step of this sequence, the agent (decision-maker) needs 

to decide on the current action by taking into consideration its future impact.  The 

uncertainty comes from the lack of knowledge about action effects on the game 

environment (world states). 
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Game Environment 

Based on the definition of the agent as the decision maker whose decisions 

directly affect the environment and move it to a new state, the computer system in our 

case will be considered as our agent because it will decide which random event to be 

generated based on the current state and the expected reward from taking this action.  The 

human player can also be considered as an agent because of his/her decision of whether 

to irrigate or not at a given state, or to agree (or not) to the option given by the system, 

will also affect the environment and determine the next state.  For the purpose of the 

game implementation herein, the player decisions were considered as part of the 

environment after categorizing them in patterns to reflect the player types. 

 
Game States Representation 

As defined previously, the state is a representation of the environment at each 

time step.  The game states were defined based on three parameters: (1) soil water content 

(four different levels); (2) irrigation water availability (binary: available or not); and, (3) 

the daily score (above 85, equal to 85, and below 85).  Accordingly, the environment in 

the model consists of 24 different states. 

 
System (Agent) Actions  

Accordingly, sixteen different random messages (including the "no action" 

message) and their options are given to the player by the system.  Most of the messages 

have strategic options from which the player can choose.  Based on the action and the 
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selected option of the player, the game environment is expected to either move to a new 

state or remain in its current state. 

 
Player Types Identification 

Four criteria were used to define the player types: (1) the game state when the 

player decides to irrigate; (2) if all or part of available water is used per irrigation; (3) 

whether the player checks the weather forecast or not; and, (4) if the player seems to have 

a goal and changes the default values given by the program.  Accordingly, four player 

types are defined in the model: 

1. Risk averse: The player always irrigates at high soil water level,  and 

whenever water is available, if the delivery method is fixed rotation, with 

complete irrigations all the time.  

2. Risk neutral: The player does not irrigate when the soil water content is very 

high, in spite of water availability, and checks the weather forecasts from time 

to time.  

3. Risk taker: The player delays irrigations until all the readily available water is 

consumed, or allows soil water content to drop below RAW for more than five 

consecutive days during the season, the player might skip some irrigations at 

critical soil water contents, does not check the weather forecast at all.  

4. Strategic: The player is risk neutral and also goal-oriented through changing 

default values, checking weather forecasts more often, never irrigate at high 

soil water level, not necessarily using all available water per irrigation when 
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the soil water level is not critical.  A risk taker or risk-averse player is never 

considered to be a “strategic” player by the game. 

The player type updated continuously each time an irrigation event is occur 

throughout the simulated season.  Also, the program was made able to define and return a 

player type, even if there was some ambiguity occur at one of the identification 

processes.  

 
Defined Player Actions  

Unrepeated action: change default values, which can happen only once, at the 

beginning of a simulation.  These repetitive actions are checked daily: 

• Irrigating 

• Not irrigating 

• Ordering irrigation water 

• Checking the weather forecasts 

 
4.3.2 Problem Setup Within WaterMan Game 

After specifying the game environment, game states, and agent (system) actions, 

in addition to player types and actions, the setup of the artificial approaches within the 

WaterMan game is described in the following parts. 

 Markov Decision Processes are dynamic programming described by the 5-tuple 

(S, A, T, p, r), where S, is a finite set of world states in which the process evolution takes 

place; A, is a finite set of all possible actions available for the agent (random events); T, is 

the set of time steps where decisions need to be made (crop growing season); p is the 
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transition probability function of the world states, p(s'/s, a), representing the probability 

of transitioning to state s' given that action a is taken in state s (unknown and should be 

learnt from the reward function); and, r is the reward function that returns all possible 

actions over a particular state as real numbers (the daily score after taking the action). 

 
Value Function 

The value function is calculated in the MDP using the transition probability of the 

world states and the reward function of state action pair, based on the following equation. 

 '

( ) ( , ) ( '/ , ) ( ')
s S

V s r a s p s a s V sγ
∈

 = + 
 

∑
 

(4. 5) 

where V(s) is the utility function of the state s; γ, is discount factor, set between 0 and 1; 

p(s'/s, a) is the transition probability of moving to state s' after taking action a in state s; 

and, V(s') is the value of function when in the new state. 

As observed in the above equation, the system should have a prior knowledge 

about the transition function in order to calculate the expected value function.  In the case 

of the WaterMan game, the transition function is unknown previously by the system due 

to unpredicted player actions.  Therefore, an artificial intelligence method was found that 

follows the Markov decision property needed due to the stochastic nature of the 

WaterMan game, but does not need a prior knowledge of the transition model of the 

world.  This method is known as the Q-learning method, which belongs to an artificial 

intelligent approach called Reinforcement Learning. 

In the Reinforcement Learning Approach, the transition functions are not 

necessary to be known previously by the system and could be learnt by interacting with 
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the environment (world states).  In this method, instead of calculating the value function, 

a utility function is calculated based on the following equation: 

 ( )( ) ( ( ') )U s r U s U sα γ= + −  (4.6) 
 
where U(s) is the utility function of the state s; α, is the learning rate set as 1, usually set 

between 0 and1, a high value means that learning can occur quickly; γ, is discount factor, 

set as 0.5.  This models the fact that future rewards are worth less than immediate 

rewards; U(s') the utility function of being in the new state. 

 
Q-Learning Method and Algorithm 

The Q- Learning method is a method in the reinforcement learning approach that 

learns an action-value representation instead of learning the utility of the action.  The Q-

values represented as Q (a, s) to denote the values of performing an action: (a) in state, 

(s), and are directly related to utility values as follows: 

 ( ) max ( , )aU s Q a s=  (4.7) 
 

The Q-learning method is considered a model-free method (Russell and Norvig 

2003), but due to the special characteristics of the WaterMan game, and because not all 

actions are possible in all states, the game environment was given a kind of a model 

through grouping the set of actions available for the system into three categories in order 

to link each state of the world with its possible action.  Furthermore, this was done to 

minimize the searching cost for the best action, and to make the produced actions more 

reasonable to the state.  The criteria for the three categories are: the player’s irrigation 

decisions; the player’s water orders with the on-demand delivery method, or the water 
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availability under the fixed rotation delivery method; and, a general group of actions that 

can take place at any time during a simulation. 

The sequence of the Q-learning algorithm is as follow (Fig. 4.10): 

1. Initialize the Q-values table, Q (a, s), and the reward value table, R (a, s). 

2. Return the current state ID (s). 

3. Does the current state match the required states category? 

4. Choose an action, (a), from the possible actions set, (A), for that state based on 

the ε-greedy policy, in which most of the time the action associated with the 

highest reward value is chosen. 

5. Execute the selected action, and observe the reward, (r), as well as the new state, 

(s'). 

6. Update the Q-value for the state using the observed reward and the Q-value of the 

next state, according to the following equation:

( )( , ) ( , ) ( ( ) max ( ', ') ( , )new current currenta
Q a s Q a s r s Q a s Q a sα γ= + + −  (4.8) 

7. Repeat the process daily until the end of the growing season. 

 
Reward Function 

The system action is evaluated based on the reward that will be obtained from 

moving the game environment from the previous state to the current state.  Due to the 

nature of the WaterMan game as a training tool, it was designed to be neither competitive 

game, in which the system will be rewarded if it causes the human player to lose, nor 

cooperative game, in which the system is rewarded if it cooperates with the human player 
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to help him or her achieve a goal.  Instead, the WaterMan game required to be 

competitive when the player is performing well and to be cooperative when the player is 

not achieving well.  The player achievement is measured based on his/her daily score. To 

deal with this special case, the WaterMan game reward function is constructed based on 

the daily score of the player.  The score range for the game is set numerically between 70 

and 100.   

 
Input Data

States, attributes, sets of possible actions
α =1, γ = 0.5, ε = 0.5

Initialize
Q-values table, Q(s,a)=0.0

Initialize reward table: R(s,a)= -15

Create World States from 
attributes

Calculate New Reward
R = (Math.Abs(85 - GameData.Score(d))) * (-1)

Current State = match 
required states category?

Get Current State ID

Get best action based on ϵ-greedy policy

Update Q-value
Q(a, s) = Q(a, s) + (α * (R(s) + γ *Q(a’, s’) – Q(a, s)))

J= Jmax? Finish

Next day: J = J + 1

First day: J = 1

Execute Best Action

Apply all possible actions 
over current state

Calculate the Expected Q-value for each action given all 
states as possible new state (use initial Q-value table)

Qcurrent = Qcurrent  + ( α * (R + γ * Qmax  – Qcurrent)

Update Q-values table
Q(a,s)

Get Qmax value

Qmax - 
Q(a,s)value=0.0? 

Return action associated 
with Qmax as best action

Select action randomly and 
return it as best action

yes

no

no

yes

Yes No

Action Selection Policy (ϵ-greedy policy)

 
 

Fig.  4.10. Flowchart of the Q-learning algorithm 
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The goal score for the system to achieve the highest reward was set to 85.  So, if 

the player performs in a way that maintains a high score, then the system will be 

rewarded if it generates actions to make the daily score drop closer toward 85.  This is 

accomplished by generating more challenging random events.  If the player performance 

is poor (e.g. a daily score of less than 85), then the model will generate assistive actions 

to help the player improve the score.  The real number reflecting the achieved reward 

ranges between -15 and 0.  It might seem that the negative reward is a penalty and not a 

reward, but the fact that minimizing the penalty can be considered as maximizing the 

reward allows the use of this concept.  

To achieve this concept, the reward function was calculated based on the 

following maximization equation: 

 

 85 ( )R Score day= − −  (4. 9) 
 
where R is a real number representing the reward; and, Score(day) is the daily score 

obtained by the player. 
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CHAPTER 5 

5 RESULTS AND DISCUSSION 

5.1 Technical Results Validation 

Throughout the development of the game’s technical module, the calculation 

procedures for all the input parameters were tested, both individually and in combination 

with other related parameters by applying different sets of data and observing the impact 

on the daily soil water balance calculations.  To demonstrate the performance of the 

technical module in calculating the daily soil water balance, a validation test was carried 

out for the game’s technical module output results. 

The validation of the output results of the technical module of the WaterMan 

game was carried out in two ways: (1) conducting mass-balance calculations over a 

period of time, during a crop growing season, for the daily soil water and salt contents; 

and, (2) comparing the game-generated results of irrigation water requirements and 

irrigation scheduling calculations with those generated by the FAO CropWat 8 software 

using the same set of data.  The following section shows the validation steps and results. 

 
5.1.1 Mass Balance Calculations 

Mass Balance for Daily Soil Water Content 

Table 5.1 shows the results obtained by estimating the mass balance of soil water 

content over a period of 30 days during a cropping season for spring wheat growing 

under Mediterranean climatic conditions.   
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Table  5.1. Calculations of the soil water mass balance over a period of 30 days (all values 
are in kg/m2) 

Inf. 
Rain 

Total 
Irrig 

Ground 
Water ETa Deep 

Perc. 
Ponded 
Water RunOff Mass_In - 

mass_Out 
Storage 
change Error 

0.00 0.00 0.00 4.74 0.00 0.00 0.00 -4.74 -4.74 0.00 

0.00 0.00 0.00 4.47 12.94 0.00 13.20 57.38 57.38 0.00 

0.00 88.00 0.00 4.60 0.00 0.00 0.00 -4.60 -4.60 0.00 

0.00 0.00 0.00 4.30 0.00 0.00 0.00 -4.30 -4.30 0.00 

0.00 0.00 0.00 4.14 0.00 0.00 0.00 -4.14 -4.14 0.00 

0.00 0.00 0.00 4.03 0.00 0.00 0.00 -4.03 -4.03 0.00 

0.00 0.00 0.00 4.22 0.00 0.00 0.00 -4.22 -4.22 0.00 

0.00 0.00 0.00 3.88 0.00 0.00 0.00 -3.88 -3.88 0.00 

0.00 0.00 0.00 3.70 0.00 0.00 0.00 -3.70 -3.70 0.00 

0.00 0.00 0.00 3.68 0.00 0.00 0.00 -3.68 -3.68 0.00 

0.00 0.00 0.00 3.34 0.00 0.00 0.00 -3.34 -3.34 0.00 

0.00 0.00 0.00 3.19 0.00 0.00 0.00 -3.19 -3.19 0.00 

0.00 0.00 0.00 3.17 0.00 0.00 0.00 -3.17 -3.17 0.00 

0.00 0.00 0.00 3.07 0.00 0.00 0.00 -3.07 -3.07 0.00 

0.00 0.00 0.00 2.83 0.00 0.00 0.00 -2.83 -2.83 0.00 

0.00 0.00 0.00 2.74 0.00 0.00 0.00 -2.74 -2.74 0.00 

0.00 0.00 0.00 2.68 19.45 0.00 13.20 52.68 52.68 0.00 

0.00 88.00 0.00 2.48 0.00 0.00 0.00 -2.48 -2.48 0.00 

0.00 0.00 0.00 2.49 0.00 0.00 0.00 -2.49 -2.49 0.00 

0.00 0.00 0.00 2.12 0.00 0.00 0.00 -2.12 -2.12 0.00 

0.00 0.00 0.00 2.12 0.00 0.00 0.00 -2.12 -2.12 0.00 

0.00 0.00 0.00 1.98 0.00 0.00 0.00 -1.98 -1.98 0.00 

0.00 0.00 0.00 1.87 0.00 0.00 0.00 -1.87 -1.87 0.00 

0.00 0.00 0.00 1.70 0.00 0.00 0.00 -1.70 -1.70 0.00 

0.00 0.00 0.00 1.57 0.00 0.00 0.00 -1.57 -1.57 0.00 

0.00 0.00 0.00 1.44 0.00 0.00 0.00 -1.44 -1.44 0.00 

0.00 0.00 0.00 1.31 0.00 0.00 0.00 -1.31 -1.31 0.00 

0.00 0.00 0.00 1.20 0.00 0.00 0.00 -1.20 -1.20 0.00 

0.00 0.00 0.00 1.05 0.00 0.00 0.00 -1.05 -1.05 0.00 

0.00 0.00 0.00 0.94 0.00 0.00 0.00 -0.94 -0.94 0.00 
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The calculations are based on the following mass-balance concept: 

 _ _mass in mass out change in storage− =  (5.1) 
 

where mass_in (kg) is the mass of effective rain + total irrigation + ground water 

contribution); mass_out (kg) is the mass of actual evapotranspiration + deep percolation 

+ ponded water + runoff; and, change in storage (kg) is the change in the mass of soil 

water in the crop root zone. 

It can be concluded that the technical module of the game is performing the daily 

soil moisture content calculations in an acceptable manner based on the calculation of the 

difference between the two parts of the above equation, which was equal to zero. 

 
Mass Balance for Daily Salt Content 

Table 5.2 shows results obtained by estimating the mass balance of the salt 

content over a period of 30 days during the cropping season of spring wheat growing 

under Mediterranean climatic conditions.  The concept of the calculations was the same 

as in the calculation of daily soil water content. 

It can be concluded that the technical module of the game is correctly performing 

The daily soil electrical conductivity (ECe) calculations based on the calculation of daily 

changes in root zone salt content.  The difference between the calculated soil electrical 

conductivity and that obtained by the model is almost zero every day of the studied 

period. 
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Table  5.2. Calculations of the mass balance of salt content over a period of 30 days (all 
headings and their units are explained beneath the table) 

ECemodel Rz LR EC
dp 

Net 
Irrig 

Gr. 
Water 

D. 
Perc. 

∆ 
Rz ∆S Salt ECecalc Error 

0.88 1.25 0.29 3.42 0.00 0.00 0.00 0.00 0.00 283004.85 0.88 0.00 

0.95 1.25 0.27 3.73 74.80 0.00 12.94 0.00 16997.06 300001.91 0.94 -0.01 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.73 0.00 0.00 0.00 0.00 0.00 302529.10 0.95 0.00 

0.95 1.25 0.27 3.75 74.80 0.00 19.45 0.00 1193.77 303722.87 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 

0.95 1.25 0.27 3.75 0.00 0.00 0.00 0.00 0.00 304011.09 0.95 0.00 
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ECe is soil extract salinity (dS/m); Rz is the root zone depth (m); LR is the leaching 

requirement, which is the portion of irrigation water that should pass through the root 

zone to prevent excessive accumulation of salts (%); ECdp is the salinity of deep 

percolated water (dS/m); Net Irr. is the net irrigation (kg); Gr. Water is the ground water 

contribution to the root zone (kg); D.Perc. is the deep percolation water (kg); ∆Rz is the 

daily change in the root depth (m); ∆SRz is the change in salt quantity due to root depth 

increase (mg); ∆S is the amount of salt added to the root zone (mg); Total ∆S is the total 

amount of salt added to the root zone including the root growth effect; Salt is the daily 

salt balance in the root zone (mg); ∆ stored Salt is the change in salt quantity storage in 

the root zone (mg); and, Error is the calculated difference between the salt mass added or 

removed and the mass stored in the root zone (mg). 

 
5.1.2 Comparison with CropWat 8 

CropWat 8, as defined on the web page www.fao.org/nr/water/, is a decision 

support system developed by the Land and Water Development Division of FAO as a 

tool for crop water requirements and irrigation requirements.  It calculates crop water 

requirements and irrigation requirements based on soil, climate, and crop data as entered 

by the user, and it uses the Penman-Monteith equation for the calculation of reference 

evapotranspiration (ETo). 

Because CropWat 8 and the WaterMan technical module base their calculations 

on the same procedures presented in FAO Irrigation and Drainage Papers 56 and 33; 

http://www.fao.org/nr/water/
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therefore, it is reasonable to use results obtained from the CropWat 8 software to 

compare and validate the output results of the technical module of the WaterMan game. 

Results of irrigation water requirements and irrigation scheduling for corn and 

wheat crops by using both the CropWat 8 and WaterMan technical module were 

compared in order to test the ability of the WaterMan technical module in performing 

accurate calculations for these two irrigation management parameters.  All calculations 

on this section, were performed using weather data from Delta, UT, for the year 2010.  

The reference evapotranspiration calculations were based on the Penman-Monteith 

equation.  Following are the comparison results that were obtained. 

 
Irrigation Water Requirements 
 

Crop water requirements are the amount of irrigation water needed for optimal 

plant growth.  The irrigation water requirements can be calculated by subtracting any 

amount of water added to the soil root zone through rain or ground water from crop 

evapotranspiration.  In the absence of any ground water contribution to the soil root zone, 

the irrigation water requirement is calculated by subtracting the effective rain from crop 

evapotranspiration.  

 
Corn Crop  

Figure 5.1 shows a comparison between calculated actual crop evapotranspiration 

(ETa) for corn from CropWat 8 and the WaterMan technical module.  As seen in Fig. 5.1, 

both applications gave almost the same trend and magnitudes for ETa. 
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Fig.  5.1. Actual daily evapotranspiration for corn 

 
Considering that no stress occurred during the growing season, the calculation of 

crop water requirements was performed by subtracting the effective rainfall quantity from 

the actual evapotranspiration (ETa).  The comparison between the calculated results of 

irrigation water requirements for corn are shown in Table 5.3. 

The difference in the obtained results of the crop irrigation requirement was found 

to be due to the difference in the calculation of the effective rain quantity, and also the Kc 

values between the two applications.  Although the same formula for effective rain 

calculation is used in the two applications (the FAO/AGLW formula), it is calculated on 

a decade basis in CropWat 8, while in the WaterMan technical module it is calculated on 

a daily basis because of the requirements of the daily nature of the game play.  The Kc 

values given in CropWat 8 were found to be higher than that calculated in the WaterMan 

technical module, especially in the Mid and Late seasons. 
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Table  5.3. Irrigation water requirements for corn 

Parameter CropWat WaterMan 
Accumulative  ETa (mm) 808.0 756.0 
Effective Rain (mm) 46.3 71.8 
Irrigation Requirements (mm) 765.9 684.2 
Difference in Irrig. Req  -10.7% 

 
 
 
Wheat Crop 

To confirm the results, another run for the same ETo data were used to calculate 

the crop irrigation requirements and the actual daily evapotranspiration (ETa) for a wheat 

crop with a planting date of April 15, and a 135-day growing season.  Figure 5.2 shows 

the trend of the obtained results for ETa. 

With the same consideration that no stress occurred during the growing season, 

the calculation of crop irrigation requirement was performed by subtracting the effective 

rain quantity, received during the growing season, from the estimated ETa data.  The 

comparison between the calculated results of crop irrigation requirement for wheat is 

shown in Table 5.4. 

 

 

Fig.  5.2. Actual daily evapotranspiration for wheat 
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Table  5.4. Data of crop water requirement for wheat 

Parameter CropWat WaterMan 
Accumulative  ETa (mm) 616.7 576.6 
Effective Rain (mm) 43.9 63.9 
Irrigation Requirements (mm) 572.8 512.7 
Difference in Irrig. Req  -10.5% 

 

The same argument used to explain the sources of the difference in the calculation 

of the corn crop irrigation requirements can be used for the wheat crop. 

 
Irrigation Scheduling 

Irrigation scheduling is the answer to two important questions: when to irrigate, 

and how much to irrigate at each irrigation.  CropWat 8 software gives the user different 

alternatives to decide the calculation criteria for these two questions.  According to the 

chosen option, the software suggests the scheduling program to the user.  

For the purpose of the comparison herein, two options for when to irrigate were 

chosen: irrigate at critical depletion, and irrigate at an interval of 15 days.  On the other 

hand, for the calculation of the application quantity, one option was taken: refill the soil 

water to field capacity.  The results of the irrigation scheduling programs for corn and 

wheat calculated using the CropWat 8 software and the WaterMan technical module were 

as follows. 

 
Corn Crop 

Irrigate at Critical Depletion 

Figure 5.3 and Table 5.5 show the irrigation scheduling, timing, and quantity, for 

corn crop, based on the critical depletion in deciding when to irrigate.  
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The results of corn irrigation based on the critical depletion, shows a net irrigation 

requirement of 650.4 mm and 638.6 mm as calculated by the CropWat 8 software and the 

WaterMan technical module, respectively.  The absolute value of the difference in the 

calculated quantities was less than 2%.  Also, looking to the timing of irrigation, it can be 

observed that both software applications give very similar recommendations for 

irrigation, with a maximum difference of four days between the two results. 

 

 
 

Fig.  5.3. Irrigation scheduling for corn crop based on the critical depletion 

 
Table  5.5. Corn irrigation scheduling based on the critical depletion in deciding when to 
irrigate 

CropWat WaterMan 
Day after 
planting 

Net Irrigation 
(mm) 

Day after 
planting 

Net Irrigation 
(mm) 

70 100.6 71 103.4 
89 111.9 91 107.5 
104 110.1 107 109.9 
119 108.2 123 104.4 
136 109.6 138 105.6 
156 110 159 107.8 

Total 650.4  638.6 
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Irrigate at a Specified Interval 
 
Figure 5.4 and Table 5.6 show the irrigation scheduling, timing and quantity, for 

corn crop, based a fixed interval of 15 days in deciding when and how much to irrigate. 

 
 
Fig.  5.4. Irrigation scheduling for corn crop, with a 15-day irrigation interval1 

 
Table  5.6. Corn irrigation scheduling based on a 15-day interval in deciding when and 
how much to irrigate 

Days 
after planting 

CROPWAT 
Net Irrigation (mm) 

WaterMan 
Net Irrigation (mm) 

15 7.2 3.9 
30 3.3 6.5 
45 9.3 1.5 
60 35.6 36.2 
75 57.2 50.3 
90 112.1 103.5 
105 110.4 102.5 
120 106.3 101.8 
135 97.2 104.3 
150 88.1 84.4 
165 65.9 63.7 

Total 692.6 658.6 
 

                                                 
1 A temporal shift of 2 days was made on the CropWat data for the purpose of better visualization of the 
results. 
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The results of corn irrigation at a defined interval of 15 days, shows a net 

irrigation requirement of 692.6 mm and 658.6 mm, as calculated by CropWat 8 and the 

WaterMan software, respectively.  Thus, the absolute value of the difference in the 

calculated quantities was less than 5%. 

 
Wheat Crop 

Irrigate at Critical Depletion 

Figure 5.5 and Table 5.7 show the irrigation scheduling, timing and quantity, for 

wheat crop, based on the critical depletion in deciding when to irrigate. 

 

Fig.  5.5. Irrigation scheduling for wheat crop based on the critical depletion 

 
Table  5.7. Wheat irrigation scheduling at critical depletion in deciding when to irrigate 

CropWat WaterMan 
Days after 
planting 

Net Irrigation 
(mm) 

Days after 
planting 

Net Irrigation 
(mm) 

53 105 53 108 
72 107 74 109 
87 109 90 106 
102 105 107 108 
124 104 

  Total 532  431 

0
20
40
60
80

100
120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

N
et

 Ir
rig

 (m
m

) 

Days from planting 

CROPWAT-Net Irrig GAME-Net Irrig



103 
 

 

The results of irrigation scheduling for wheat shows greater differences between 

the two software applications compared to the results obtained for the irrigation 

scheduling of a corn crop.  The number of irrigation calculated by the WaterMan 

technical module was one irrigation less as compared to the number of irrigations 

calculated by the CropWat 8 software.  The total number of irrigations were 4 and 5 for 

the WaterMan technical module and the CropWat 8 software, respectively.  Comparing 

the days of irrigation, there is a close similarity between the two applications for the first 

four irrigations.  The fifth irrigation, as called for by the CropWat 8 software, was 

recommended 10 days before the harvesting of the wheat crop, which is perhaps 

unreasonable and unlikely to be applied in the field (a fifth irrigation was not 

recommended by WaterMan). 

Accordingly, it can be concluded that both applications gave similar results in 

terms of their irrigation scheduling calculations.  But the quantity of irrigation water at 

each irrigation varied between the two applications.  A total net irrigation requirement of 

532 mm and 431 mm was calculated by the CropWat software and the WaterMan 

technical module, respectively, and the absolute difference in the calculated quantity was 

around 19%.  But after excluding the last irrigation from the CropWat calculations, the 

results are nearly identical. 

 
Irrigate at a Specified Interval 

Figure 5.6 and Table 5.8 show the irrigation scheduling, timing and quantity, for 

wheat crop, based on a fixed interval of 15 days in deciding when to irrigate. 
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Fig.  5.6. Irrigation scheduling for wheat crop with a 15-day irrigation interval2 

 
Table  5.8. Wheat irrigation scheduling based on a 15-day irrigation interval 

Days 
after planting 

CROPWAT 
Net Irrigation (mm) 

WaterMan 
Net Irrigation (mm) 

15 2.7 12.5 
30 6.3 3.3 
45 48.4 47.4 
60 71.2 63.9 
75 106.8 94.9 
90 105.9 99.5 
105 104 97.1 
120 72.2 70.6 

Total 517.5 489.1 
 

 
The results of wheat irrigation at a defined interval of 15 days, shows a net 

irrigation requirement of 517.5 mm and 489.1 mm, as calculated by the CropWat 8 

software and the WaterMan technical module, respectively.  The absolute difference in 

the calculated quantity was around 5.5%. 

                                                 
2 A temporal shift of 2 days was made on the CropWat data for the purpose of better 
visualization of the results. 
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After this comparison, it can be concluded that the WaterMan technical module 

shows acceptable results for calculating crop irrigation requirements and irrigation 

scheduling, as compared to CropWat 8.  However, it is noted that in practice it is not 

reasonable to have irrigation amounts of only 2.7 or 3.3 mm, as shown in Table 5.8.  For 

such small applications, most of the water would be lost as evaporation if the irrigation 

method is sprinkler or surface. 

With the comparison results obtained, in addition to the mass balance calculation 

preformed previously, it can be said with confidence that the WaterMan technical module 

calculations for daily soil water balance are valid. 

 
5.2 Game Testing Results 

In order to evaluate WaterMan game performance as a training tool for on-farm 

water management and to test its robustness and its capabilities to generate reasonable 

and challenging random events.  Twenty-two persons, with different irrigation 

backgrounds, were asked to play the game.  The twenty-two players were chosen from 

three irrigation background categories: seven are practicing farmers, seven have no 

irrigation background, and eight have a background in irrigation studies.  After playing 

the game, the players were asked to complete a questionnaire about their playing 

experience and their suggestions for improvements (Appendix). 

While playing, some information was collected through observing the player 

interaction with the game interface such as: the level of soil water at which a player 

decided to irrigate, and if the player checked the weather forecast or not, in addition to 

the generated random events throughout the growing season, and the final score he/she 
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obtained.  Additional information recorded by the game included: the selected player 

option ("Quick Play" or "Play"), the selected delivery method; fixed rotation or on-

demand delivery, the selected goal (maximize yield, maximize production function, or 

maximize profit), in addition to the selected crop, climate zone, texture, and irrigation 

method.  The following sections summarize the obtained results through testing the game. 

 
5.2.1 WaterMan Game Robustness 

Game robustness reflected in its ability to respond to the different options and 

actions taken by the players in a satisfactory manner.  Various people with different 

interests and different backgrounds played the WaterMan game under the supervision of 

the developer.  This heterogeneity of players reflected in the different choices of crops, 

planting dates, soil, irrigation method, delivery method, and climate.  Also, the 

WaterMan game includes different events generated randomly to reflect real farming 

conditions.  These random events add more challenges to the game flexibility in 

responding to the effect of these events on the game environment. 

The WaterMan game responded to all these challenges in an acceptable manner 

most of the time.  But, in certain cases, some problems were observed, and these were 

subsequently addressed in the program code.  Following are some examples: 

• A problem was observed when a player tried to pause irrigation of the whole 

field, attempting to irrigate only certain sections.  The game did not respond 

correctly, so it was later modified to respond to this kind of request. 

• One player tried to close the weather forecast window through the "X" button (not 

the "OK" button) and the game did not respond, so this was also fixed. 
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• When the irrigation duration was set to more than 24 hours, the delivered amount 

of water was correctly divided over a period of two consecutive days, but it was 

noticed that the duration timer remained running the next day for another 24 hour, 

and not only for the remaining hours of the said duration.  This issue was also 

fixed in the program. 

• When the player received a random event corresponding to a canal break and five 

days of simulation time were needed to repair it, and he/she tried to order another 

irrigation during the canal repair period, the game inappropriately accepted the 

request and supplied water.  This issue was fixed by adding denial messages 

(“unable to deliver water”) throughout the five-day repair period. 

• Another important issue encountered during game testing was that the optimal 

profit results, which are predicted through the game search algorithm, sometimes 

became negative and the score was higher than it should be.  This problem was 

fixed by not allowing the optimal profit result to drop below zero during a 

simulation. 

 
5.2.2 WaterMan Game Performance 

Scoring Results 

WaterMan is not a competitive game to be evaluated based on how many times it 

is “won” or how many time the player “loses.”  Instead, the evaluation of the WaterMan 

game performance will be based on the score obtained by the players.  As mentioned in 

Chapter 4, the game achieves good performance if it forces the player’s score to be 

between 80 and 90, by challenging the player if his/her score is maintained above 90, and 
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to minimize the challenges if the score is below 80.  In order to test the performance of 

the game, data were collected at different times when the game was played. 

Table 5.9 shows data collected by the WaterMan game and through observing 

practicing farmers playing the game.  The game was played nine times by seven 

practicing farmers.  As shown in the table, farmers varied in their choices of play level; 

quick play or play, the same also regarding the delivery method.  But, all farmers choose 

to maximize the profit as their goal of playing the game, also they were noticed checking 

the weather forecast very extensively throughout the growing season, specifically before 

the irrigation decision, also it was notice that the majority of farmers who played the 

game were risk averse in their decisions about when to irrigate, especially under an on-

demand delivery method; they ordered water and tried to irrigate so as to maintain a high 

soil water content. 

The scoring results obtained by the farmers presented in Table 5.9 shows that six 

out of the nine times the game was played, the score was between 80 and 90, while two 

times it was above 90.  Only once did it reach 70.  It can be concluded that the game 

achieved its goal almost 67% of the time when a practicing farmer played it. 

 
Table  5.9. Results collected by observing practicing farmers while playing WaterMan 

Play Level Goal to maximize Delivery Method Checked the 
Weather? Score Quick 

Play 
Play Yield Prod. 

Function 
Profit Fixed 

Rotation 
On-demand Yes No 

√    √ √  √  84 
 √   √  √ √  90 
 √   √ √  √  87 
 √   √ √  √  98 
 √   √  √ √  95 

√    √ √  √  90 
√    √ √  √  70 
√    √ √  √  90 
 √   √  √ √  81 
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Table 5.10 shows data collected by the WaterMan game and through observing 

players without an irrigation background when playing the game.  The game was played 

thirteen times by seven players without an irrigation background.  As shown in the table, 

the players varied in their choices for choosing the play level: quick play or play.  It was 

expected that this category of player would chose the "Quick Play" option more often 

than the "Play" option, but the data shows that the players chose the "Play" option almost 

twice as often.  Regarding the delivery method, the majority of the players under the no-

irrigation background category chose fixed rotation.  But, all players chose to maximize 

the profit as their goal for playing the game.  Checking the weather forecast was noticed 

by the players in this category, but not extensively and not by all players. 

The scoring results obtained by the players without an irrigation background, as 

presented in the table, shows that four times out of the thirteen, the score was between 80 

and 90, and another four times it was above 90, while five times it was below 80.   

 
Table  5.10. Results collected by observing players without an irrigation background 

Play Level Goal to maximize Delivery Method Checked the 
Weather? Score Quick 

Play 
Play Yield Prod. 

Function 
Profit Fixed 

Rotation 
On-demand Yes No 

√    √ √  √  89 
√    √ √  √  75 
√    √ √  √  84 
 √   √ √  √  70 
 √   √ √   √ 70 

√    √ √   √ 70 
 √   √  √ √  70 
 √   √ √  √  89 
 √   √ √  √  99 
 √   √  √ √  92 
 √   √  √ √  98 

√    √ √   √ 90 
 √   √ √   √ 98 
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The score of two of the players who played the game twice decreased the second 

time they played.  Those two players mentioned that they wanted to challenge the game 

by playing more professionally, but the game challenged them more, with more random 

events and so their score was reduced because the program recognized their higher skill 

level.   

And as for another two players, one played the game three consecutive times, and 

the other played the game two times, with the resulting score showing an improvement 

due to the increase of their knowledge about irrigation.  One player was careless the first 

time he played the game, so his score was low.  He tried to compensate the second time, 

but he surrendered to the challenges early in the simulated season and he again obtained a 

low score. 

Table 5.11 shows data collected by the WaterMan game and through observation 

of players with a scientific (academic) irrigation background while playing the game.  

The game was played a total of fourteen times by eight players in this category.  As 

shown in the table, players varied in their choices for choosing "Quick Play" or "Play", 

although the number of times that the "Play" option was chosen was almost double the 

times the "Quick Play" option was chosen, as expected.  Regarding the water delivery 

method, these players chose almost equally between the fixed rotation and on-demand 

options.  Again, almost all players chose to maximize profit as their goal when playing 

the game, except once in which the maxim yield option was selected.  Checking the 

weather forecast was noticed by the players of this category, but not extensively and not 

by all players. 
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Table  5.11. Results collected by observing players with a scientific irrigation background 

Play Level Goal to maximize Delivery Method Checked the 
Weather? Score Quick 

Play 
Play Yield Prod. 

Function 
Profit Fixed 

Rotation 
On-demand Yes No 

 √   √  √   70 
 √ √    √   100 

√    √ √   √ 77 
√    √ √  √  77 
 √   √  √ √  87 
 √   √  √ √  70 
 √   √ √  √  95 

√    √ √   √ 70 
√    √ √   √ 80 
 √   √  √ √  70 
 √   √ √  √  100 

√    √  √  √ 80 
 √   √ √  √  100 
 √   √ √  √  71 

  
 
The scoring results presented in the table shows a wide range of scores obtained 

by the players with an irrigation background; three times out of the fourteen, their score 

was between 80 and 90, while seven times it was below 80 and four times it was above 

90.  A score of 100 was obtained three times by this category.  It was noticed that the 

stronger the background of the player, the more challenges he or she faced, and the more 

variable their score. 

 
Random Event Generation 

The generated random events each time the game was played were recorded 

during the tests.  Different random events were generated for the different players.  Table 

5.12 shows all the random events included in the WaterMan game and their descriptive 

abbreviations (label).  Tables 5.13 through 5.15 shows the random events generated each 

time the game was played and for each player’s irrigation background category; 
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practicing farmers, players without and irrigation background, and players with an 

irrigation background, respectively. 

Table  5.12. Random events and their labels 

Random Event Label 
You have unexpected rain today.  UXR 
The main canal is broken and will be repaired in 5 days. No options available. CBN 
Due to water theft, the flow rate to your farm has been reduced to half. No options available. WTH 
Due to canal capacity limitations, you will receive your water after 3 days. Do you want to use 
existing well with $400 pumping cost? CLW 

The main canal is broken and will be repaired in 5 days. Do you want to use water from drainage 
ditches with a salinity of 4 dS/m? CBS 

Due to canal capacity limitations, you will receive half of your water quantity. Would you like to get 
additional water from an existing well with $200 pumping cost? HFW 

Your irrigators are on strike. Do you want to hire temporary irrigators at an additional cost of $100? IST 
Due to a sudden failure in the irrigation system, you can't irrigate one section.   Do you want to rent a 
system for $200 to irrigate this section? SFR 

You can't irrigate today, due to an electrical outage. Do you want to rent a diesel engine? The cost is 
$400. EOR 

The pump on your farm is broken. Do you want to buy a new pump? The annual cost is $500. PBB 
Your crop was attacked by a disease and it requires two days to control. You can’t irrigate, you lost 
your water turn.   CDA 

The average air temperature for the next week is 10 oC higher than previously expected, Do you want 
to spend $100 for an additional irrigation? HTA 

Additional water has become available, so your water share has increased. Do you want to sell the 
extra water for $100? AWS 

Due to water shortage, your water share has decreased. Are you interest in buying an equivalent 
amount from your neighbors for $100? SWB 

The weather forecast is currently unavailable. WFN 
 
 

Table  5.13. Scores and random events generated by practicing farmers 

Score 
Random Events 

UX
R 

CB
N 

WT
H 

CL
W 

CB
S 

HF
W 

IS
T 

SF
R 

EO
R 

PB
B 

CD
A 

HT
A 

AW
S 

SW
B 

WF
N 

84 √ 
   

√ 
      

√ 
  

 

90 
    

√ 
   

√ 
 

√ 
   

√ 

87 
  

√ 
           

 

98 
  

√ 
     

√ 
   

√ 
 

√ 

95 
    

√ 
 

√ 
     

√ 
 

√ 

90 √ 
   

√ 
     

√ 
  

√  

70 √ 
         

√ 
  

√  

90 
     

√ 
      

√ 
 

 

81 
      

√ 
    

√ √ 
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Table  5.14. Scores and random events generated by players without an irrigation 
background 

Score 
Random Events 

UXR CBN WTH CLW CBS HFW IST SFR EOR PBB CDA HTA AWS SWB 
WF
N 

89 √ 
           

√ 
 

 

75 
         

√ 
 

√ 
  

 

84 
            

√ 
 

 

70 
       

√ 
   

√ 
  

 

70 
     

√ 
      

√ 
 

 

70 
      

√ 
   

√ 
 

√ √  

70 
    

√ 
  

√ 
  

√ 
 

√ 
 

√ 

89 √ 
     

√ 
    

√ 
  

 

99 √ 
      

√ 
    

√ 
 

√ 

92  √   √  √ √   √   √ √ 

98    √ √    √    √  √ 

90   √    √ √    √    

98 √     √ √         

 
 
Table  5.15. Scores and random events generated by players with an irrigation background 

Score 
Random Events 

UXR CBN WTH CLW CBS HFW IST SFR EOR PBB CDA HTA AWS SWB 
WF
N 

70 
    

√ 
       

√ 
 

 

100 
           

√ 
  

 

77 
  

√ 
 

√ 
   

√ 
  

√ 
  

 

77 
             

√  

87 √ 
   

√ 
    

√ 
  

√ 
 

 

70 √ 
   

√ 
  

√ 
 

√ 
   

√  

95 
    

√ 
  

√ 
     

√  

70 
  

√ 
  

√ √ 
 

√ 
    

√  

80 √ 
   

√ 
  

√ 
  

√ √ 
  

 

70     √    √ √   √  √ 

100   √   √  √ √     √  

80 √               

100   √     √      √  

71     √      √   √  
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As seen in the above tables, each of the possible random events occurred many 

times during the game testing.  There was no pattern observed for the generated random 

events among the different categories, except the complete absence of some random 

events for certain categories as compared to others, and the frequent occurrence of some 

random events for players with an irrigation background.  An average of three random 

events were generated by the model each time practicing farmers played the game, and 

also from the players without an irrigation background, while the average was four 

random events per simulation received by each of the players with an irrigation studies 

background. 

 
5.2.3 Questionnaire Results 

In the questionnaire (Appendix), players were asked to answer 11 questions; there 

were nine questions with multiple choices, and two questions in which they were asked to 

write about their opinions of the model.  The questions and the labels for each question 

are presented in Table 5.16. 

 
Table  5.16. Questions contained in the questionnaire 

Question Label 
Does the game reflect real field situations? Q 1 
Does the game cover the very important aspects of on-farm irrigation managements? Q 2 
Are the random events realistic? Q 3 
Are the random events challenging? Q 4 
Are the options given realistic? Q 5 
Are the final score and recommendations reasonable? Q 6 
Do you consider the game well designed with a friendly user interface? Q 7 
Playing the game increases your knowledge about on-farm irrigation management? Q 8 
In your opinion. What are the limitations within the game? Q 9 
What are your suggestions for improvements? Q 10 
What is your overall evaluation of the game as a training tool for on-farm irrigation 
management? Q 11 
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Because the testing sample was not large enough to be statistically significant, no 

statistical analysis was performed on the data; instead, results were explained through 

tables and through graphs as shown above. 

 
Results for Questions from One to Eight 

Table 5.17 shows the number of players who choose to select each of the 

questionnaire choices, and it helps explain the results presented in Fig. 5.7. 

Figure 5.7 shows the number of players who choose to select each choice given 

by the questionnaire.  As observed in the graph, 14 players out of the 22 who played the 

game chose “agree” on the first question, while eight chose the “totally agree” option, 

and none of the responses were “not sure,” “disagree,” or “totally disagree.”  The answers 

for question 2 shows six players totally agree, fifteen were agree, and one player was not 

sure, while for question 3, six players were totally agree, and sixteen players were agree, 

and none was not sure, disagree, or totally disagree.  Question 4 answers showed that 

seven player totally agree, while fourteen were agree, and one was “not sure.”   

 
Table  5.17. Player answers to the questions 

 
Totally Agree Agree Disagree Totally Disagree Not Sure 

Q 1 8 14 0 0 0 
Q 2 6 15 0 0 1 
Q 3 6 16 0 0 0 
Q 4 7 14 0 0 1 
Q 5 5 16 1 0 0 
Q 6 7 15 0 0 0 
Q 7 8 13 0 0 1 
Q 8 10 10 0 0 2 
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Fig.  5.7. Number of players who answered each of the questions in the questionnaire 

 
For question 5, five players “totally agreed,” sixteen players “agreed,” and one 

player “disagreed.” For question 6, seven player select the “totally agree” option, while 

fifteen selected the “agree” option. For question 7, the answers were; eight “totally 

agreed,” thirteen “agreed,” and one was “not sure.”  Ten of the players “totally agreed” 

with question 8, another ten “agreed,” and two said they were “not sure.” 

Considering the results for each irrigation background category, the following 

tables and figures show the obtained results.  Table 5.18 shows the number of farmers 

who chose to select each choice for the questions given, and the results are presented in 

Fig. 5.8. 

Table 5.19 shows the number of players without an irrigation background who 

choose to select each choice for the questions given, and the results are presented in Fig. 

5.9. 

 

 

0
2
4
6
8

10
12
14
16

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8

Totally Agree Agree Disagree Totally Disagree Not Sure



117 
 

 

Table  5.18. Farmers’ answers to the given questions 

 
Totally Agree Agree Disagree Totally Disagree Not Sure 

Q 1 1 6 0 0 0 
Q 2 0 6 0 0 1 
Q 3 1 6 0 0 0 
Q 4 2 4 0 0 1 
Q 5 2 4 1 0 0 
Q 6 1 6 0 0 0 
Q 7 1 5 0 0 1 
Q 8 0 5 0 0 2 

 
 

 
 

Fig.  5.8. Number of farmers who answered each question in the questionnaire 

 
Table  5.19. Answers to the questions by players without an irrigation background 

 
Totally Agree Agree Disagree Totally Disagree Not Sure 

Q 1 5 2 0 0 0 
Q 2 4 3 0 0 0 
Q 3 2 5 0 0 0 
Q 4 2 5 0 0 0 
Q 5 2 5 0 0 0 
Q 6 3 4 0 0 0 
Q 7 3 4 0 0 0 
Q 8 6 1 0 0 0 
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Fig.  5.9. Number of players without an irrigation background who answered each 
question in the questionnaire 

 
Table 5.20 shows the number of players with an irrigation background who chose 

to select each choice for the questions given, and explains the results presented in Fig. 

5.10.  

 
Table  5.20. Answers to the questions by players with an irrigation background 

 
Totally Agree Agree Disagree Totally Disagree Not Sure 

Q 1 2 6 0 0 0 
Q 2 2 6 0 0 0 
Q 3 3 5 0 0 0 
Q 4 3 5 0 0 0 
Q 5 1 7 0 0 0 
Q 6 3 5 0 0 0 
Q 7 4 4 0 0 0 
Q 8 4 4 0 0 0 
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Fig.  5.10. Number of players with irrigation background who answer each question 
presented in the questionnaire 

 
UResults for Question Eleven 

The answers for question 11, which was about the overall evaluation of the game 

as a training tool, are presented in Table 5.21 and Fig. 5.11.  The general results show 

that eleven players considered the game as “excellent,” nine considered it a “very good 

tool,” while two players classified it as a “good tool.”  Taking each category 

classification shows that one farmer classified it as “excellent,” five considered it “very 

good,” and one considered it to be a “good tool.”  The game was considered an “excellent 

tool” by all seven players without an irrigation background, while three players with a 

scientific irrigation background considered the game as an excellent training tool, four 

considered to be a very good tool, and one player had the opinion that the game is a 

“good tool.”  The overall classification of the game by the majority of the players was 

that it is an “excellent training tool.” 
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Table  5.21. Players’ answers about their overall evaluation of the game 

 

All Players Farmers No-Irrigation  
Background 

With irrigation  
Background 

Excellent 11 1 7 3 
Very good 9 5 0 4 
Good 2 1 0 1 
Fair 0 0 0 0 
Not sure 0 0 0 0 

 
 
 

 
 

Fig.  5.11. Players’ answers about their overall evaluation of the game 

 
Limitations and Suggestions For Improvement 

Players were asked for their opinion about the game’s limitations, and for their 

suggestions to improve it in questions 9 and10.  The players’ unedited answers were 

presented in three different tables representing the opinion of each player category 

(Appendix).  Following are samples of the limitations and suggestions given by the 

respondents: 
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Limitations: 

1. “Decision of irrigation had to be made quickly” 

2. “The screen is very busy, could have multiple screen to look at for decision” 

3. “Should have an excellent strategy for training users on how to use the 

program, or make it more self explanatory with pop ups or windows” 

4. “Needs more random events to be added” 

Suggestions: 

1. “Another version that simulate all on-farm practices” 

2. “Allow for user input data” 

3. “Allow the storage of the additional water for future use” 

4. “The possibility of buying additional water when needed” 

5. “Allow for the management of more than one crop at the same time” 

6. “Include suggestion about how early or late crop is planted” 

Suggestions already considered: 

Some of the suggestions were considered immediately in the game to improve its 

performance, such as: 

1. To show the crop name and the days of the growing season on the main form 

2. To have different flow rates for the different irrigation systems 

3. To pause the game when the message "No water is available for irrigation" 

appears 
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CHAPTER 6 

6 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary 

This dissertation describes the development of a software application in the form 

of a game that simulates different technical and operational aspects of on-farm water 

management for use in training events for farmers, irrigators, irrigation extension 

specialists, and students, on how to manage on-farm water resources for more economical 

farming and better productivity.  Irrigators face difficult operational decisions when 

deciding when and how much to irrigate.  This game provides an interactive framework 

to enable trainees to develop different management scenarios, and to test alternative 

approaches without worrying about the consequences of their decisions in a real farming 

environment.  “WaterMan” is the given name to this game, reflecting its nature as a 

simulation approach for the different aspects of "On-Farm Water Management," in which 

various related water resources managerial issues are integrated.  This game has the 

potential to be a universal tool, for application in almost any irrigated agricultural area in 

the world, easily spanning economic and cultural differences. 

The Visual Basic .NET programming language in Microsoft Visual Studio 2008 

was used in for the development of the WaterMan game.  This modern computer 

programming environment offers great capabilities in designing a user-friendly interface 

to visualize the important aspects of on-farm water management.  The interface was 

designed in a way that reflects a real farming environment, in which a dynamic graphic 

showing the daily cropping conditions is continuously presented in the simulation 
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window.  The graphic includes information about daily soil water content, daily expected 

relative yield, daily root zone development, plant growth conditions; animation of crop 

growth status, whether it is performing well or shows symptoms of stress, whether the 

crop is still alive or has died, and so on, are included in the animated sketch.  In addition, 

a five-day (probable) weather forecast, the available water for the remaining of the 

season, and irrigation water quantity based on the farm flow rate and the delivery 

interval, are made available to the player for making irrigation management decisions.  

The interface was designed to integrate all information that is usually available to 

irrigators and to be easily accessed by the player. 

Timers control the simulation to reflect actual conditions and to foster the active 

engagement of the players with the game environment.  Three seconds were set to 

represent a day in the growing season of the crop, with a capability to speed it up or to 

reduce the speed at the convenience of the player.  Accordingly, the duration of the game 

play is governed by the player choices of the crop (different growing seasons), and the 

chosen game speed. 

Two options of game play were developed to accommodate different trainee 

requirements and interests: “quick play” and “play.”  The “quick play” option was added 

to the game in order to offer an introductory way to explore the game for players without 

a strong background in farming (i.e. novices).  In this option the player moves directly to 

simulate irrigation water management with a predetermined set of input data.  If the 

“play” option is selected, a new window for data input appears, and the player is asked to 

select from various options.  The different options for planted crops, climatic conditions, 
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water delivery methods, soil texture classes, and on-farm irrigation methods included in 

the WaterMan game are supported by a specially constructed database and heuristic 

capabilities in order to accommodate the different players, needs as best as possible. 

The software database contains crop phenological data for 25 different crop types, 

three soil texture classes, five on-farm irrigation methods, and seven climate zones.  The 

database and the heuristics capabilities were added to the program to provide the player 

with a realistic game environment without the need for a massive amount of “calibration 

data.”  The diversity of options also reflects the flexibility of the WaterMan game in 

introducing different scenarios to enable the player to test different alternatives while 

playing the game repeatedly.  This flexibility of the WaterMan game is achieved through 

the development of special programming modules encoded in the software to deal with 

the database and to respond effectively to the player’s behavior.  This kind of flexibility 

and heuristic capability is seldom (if ever) found in other irrigation management training 

games. 

A very detailed technical module was developed within the WaterMan game to 

simulate the daily soil water and salt balances.  Based on procedures presented in the 

FAO Irrigation and Drainage papers 56 and 29, all variables affecting soil water and salt 

balances were considered in the calculations.  An Excel spreadsheet was developed 

outside of the game software to track and evaluate the results obtained from the 

interaction between the different equations used in the calculations.  Accordingly, a 

modification was made on Eq. (85), page 170, in FAO Irrigation and Drainage Paper 56 
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for the calculation of the daily soil water balance (the soil water depletion at the end of 

the day), to include the effect of the root growth at the end of the day. 

Also, an extensive search was done to include an accurate calculation of the 

capillary rise from the ground water table, which is a one component of the above-

mentioned equation.  In the calculation of the salt balance, it was determined that the use 

of Eq. (2), page 25, in FAO Irrigation and Drainage paper 29 is inappropriate, as was 

intended for the calculation of the leaching fraction (LF).  Instead, the deep-percolated 

quantity was considered as a percentage from the leaching requirement and its salinity 

calculated proportional to that percentage. 

Throughout the development of the technical part of the program, the calculations 

were evaluated step-by-step to demonstrate their effectiveness.  The payoff of this 

continuous evaluation was shown on the near perfect results obtained when a mass 

balance calculation was done to validate the calculation procedure for the daily soil water 

and salt content over a period of time during an irrigation season, and also when making 

a comparison between the game-generated results of irrigation water requirements and 

irrigation scheduling calculations with those generated by the FAO CropWat 8 software.    

The comparison results between the WaterMan technical module and the CropWat 

applications shows that the absolute value of the difference in the calculated quantities of 

crop water requirements for two crops under investigation; corn and wheat, was less than 

11%, for both crops.  The respective recommendations for irrigation scheduling shows a 

very similar set of irrigations with a maximum absolute difference of four days over the 

duration of a growing season, and a difference of less than 2% in the recommended 
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irrigation amount for corn and wheat crops with the critical depletion option for deciding 

when to irrigate.  Under a specified interval option for when to irrigate, the results show 

an absolute difference of less than 5.5% for the two crops included in the analysis. 

Different heuristic approaches were employed during the development of the 

WaterMan game in efforts to achieve higher levels of realism in playing the game.  The 

areas of implementation of the heuristic capabilities within the game were: weather data 

generation, optimization of irrigation scheduling, and the generation of random events. 

For weather data generation, seven major climatic zones are identified in the 

world namely: Tropical, Temperate, Mountains, Continental, Mediterranean, Semi-Arid, 

and Arid.  A one-year daily record for precipitation, minimum and maximum air 

temperature obtained from a global daily climate data records for 1950 to 1999 time 

period over each of the specified climatic zones were included in the WaterMan software 

database.  Two different code modules were developed within the software to generate a 

new set of daily maximum and minimum air temperature and a new set of rainy days and 

rain quantity each time a new game is instantiated.  Another module was developed to 

generate a five-days weather forecast data including the expected maximum and 

minimum air temperatures, in addition to the possibility of having rainy days during the 

coming five days, with the respective probabilities of occurrence is also encoded in the 

software.   

As a training tool, this game is expected to be played by people with different 

irrigation management skills.  In order to make the game more interesting, the program is 

expected to anticipate the player skill level, and to reply with random events appropriate 
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to the anticipated level.  Generating random events based on the automatic evaluation of 

the player skill level,was the main goal of using the artificial intelligence approaches 

within the WaterMan game, and it is a significant new technology introduced by this 

game, as compared to the other games previously developed as a training tools for on-

farm irrigation management. 

The author studied many approaches within the artificial intelligence (AI) field of 

research, searching for those that assist in achieving the anticipated goal.  Ultimately, two 

artificial intelligence approaches were found to be appropriate and were used in the 

program to achieve this capability: (1) a pattern recognition approach; and, (2) 

reinforcement learning based on Markov Decision Processes; specifically, the Q-learning 

method.  The pattern recognition part is responsible for the determination of the player 

type, and passes this information to the decision-making system.  The decision-making 

system is responsible for choosing and executing an appropriate action at the particular 

state based on the Q-values calculation.  It is believed that this is the first documented 

case of combining these two artificial intelligence approaches in a game. 

The pattern recognition approach classifies the player into four categories; risk-

averse, risk neutral, risk-taker, and strategic.  These classifications were based on player 

interaction with the game environment and the environment state at which the irrigation 

decision is taken, in addition to other action such as checking the weather forecast, and 

the input data options the player made.  The reinforcement learning approach describes a 

system that learns from its interaction with the environment governed by a policy and a 

reward function.  Q-learning is a method within the reinforcement approach that follows 
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the selection of an action based on its calculated maximum Q-Value to be executed.  

After that, the system observes the effect of the executed action on the environment and 

evaluate its decision based on a certain criteria called the reward function.  The system 

will be rewarded if it executed an action that moves the game environment state closer to 

goal set for the system to achieve, otherwise it will consider the action as inappropriate.  

From its interaction with the environment the system learns to execute the most 

appropriate action, and this was demonstrated through the game testing procedures, as 

described in the previous chapter. 

All the identified applications that apply the Q-learning method were built with 

the agent (system) as a cooperative agent, in which the system will be better awarded if it 

helps the user to achieve his/her goal, or as a competitive agent, at which the system will 

be rewarded if it is able to challenge the player and attempt (to some degree) to cause 

him/her to have a lower score.  The challenge in the WaterMan game was that the agent 

should be built as a competitive agent when dealing with a skilled (strategic), or a risk-

averse player, and should be cooperative, or less challenging, when dealing with (neutral, 

or risk-taker) player types.  To overcome this challenge, the player daily score (known 

only by the system and not by the player) was set as an indicator for the reward function.  

The range of player scores was set between 70% and 100%, and the goal for the Q-

learning method system to achieve is to maintain a score between 80 and 90%.  An 

equation was given to the system pointing that the highest reward achieved, that 

associated with the maximum Q-value is when the daily score is equal to 85%. 
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The artificial intelligence method searches among fifteen different events encoded 

in the program to select the appropriate one to be executed at the particular state of the 

environment.  The effectiveness of the game artificial intelligence approaches was tested 

through playing the game by twenty-two persons with different irrigation backgrounds; 

seven are practicing farmers, seven have no irrigation background, and eight have a 

scientific irrigation background.  The generated random events were found appropriate 

for most of the cases.  This effectiveness indicated by the range of scores obtained by the 

different players, at which most of the scores had fallen between 80 and 90%.  It was also 

noticed that the higher the skills level of the player, the more challenges he/she faced, and 

the more variable score obtained. 

In order to provide feedback to the trainee(s) an economic analysis of the 

cropping season is presented based on the crop yield, production cost, and on-farm water 

use indicators.  At the beginning of the simulation, the player is asked to select a goal 

he/she wants to achieve from playing the game.  Three goals were given to the player to 

choose from: maximize yield, maximize production function, and maximize profit.  The 

default goal was set to maximize profit, in-case the player didn't choose a goal.  How 

close the player was in achieving the selected goal is the criteria on which he/she is 

evaluated and given the score accordingly.  To give a reasonable evaluation and score, 

the optimal results that can be achieved under the same circumstances is estimated and 

used as a reference for the evaluation. 

As indicated, all goals are optimization objective functions.  To search for the 

optimal results a one-dimensional (single decision variable) search algorithm, namely the 
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Golden Section method, was used to search for the optimal solution for a decision 

variable to achieve an objective function.  The decision variable that was set for the 

algorithm to search for is the percentage of net irrigation water to be apply each irrigation 

in order to bring the soil water content in the root zone to field capacity.  The general 

objective function the algorithm is searching for is to minimize yield reduction.  The 

“smart” selection of the decision variable and the objective function, enable the use of a 

one-dimensional search algorithm that minimizes the cost (time required) to search for an 

optimum result.  The search cost by the game’s algorithm was measured at approximately 

three seconds, indicating a quick search that is needed to avoid delays in the start of the 

game. 

The final score given to the player is based on his/her achievement with reference 

to an optimal target set by the game software.  A one-dimensional search algorithm based 

on the golden section method is used in the software to search for optimal results at the 

beginning of the game.  A comparison is processing between the results obtained by the 

player based on the selected goal, with that considered as the optimal management 

practice (the reference results by the search algorithm) enables the scoring module to 

evaluate the decisions made by the player and gives him or her a fair and reasonable 

score. 

 
6.2 Conclusions 

The principal goal of this work was to develop a modern software-based 

simulation tool for on-farm irrigation water management, which can be used in training 

events for farmers and irrigators.  This goal was accomplished by developing a model 
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that uses a custom-designed heuristic algorithm, custom artificial intelligence coding, and 

various technical and interface features to make the game both realistic and interesting to 

play.  The model randomizes various events and weather data in ways that were 

previously undocumented in the technical literature.  Sophisticated soil and salt mass 

balance algorithms correctly account for all of the water entering, exiting, and stored in 

the crop root zone.  These algorithms have significant new features not documented in 

other irrigation or water management software. 

To avoid developing a completely predictable game, which is a characteristic of 

all the irrigation management games that was evaluated in the process of doing this 

research, the WaterMan game was developed with different heuristic approaches to 

produce a new game environment and some challenges each time the game is 

instantiated.  New random events are generated each time the game is played, in terms of 

event type and timing, make the game more interesting and more realistic in reflecting 

real situations that irrigators could actually encounter in irrigated farming practice.  Two 

artificial approaches were successfully combined to generate random events.  These two 

approaches are known in the artificial intelligence field of study, but it is the first 

documented time that they have been combined in a game.  The two approaches were 

adapted in an innovative way to reflect the nature of the interaction between the human 

player and the game system, and to avoid the complicity arise by considering the game as 

a multi-agent game.  Specific reward function was developed to fulfill the requirement of 

the WaterMan game as an educational tool that is neither competitive nor cooperation. 
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After the end of the simulated season, the optimal solution obtained by the search 

algorithm which reflects the best yield obtained with the lowest amount of irrigation 

water consumed is used as a reference to generate the score obtained by the player.  The 

ability of the search algorithm to converge on the right global minimum, gives more 

realistic scoring results to the player.  The search algorithm was observed to converge to 

the right of the global minimum in 78% of the time.  That proves the ability of the using 

of a one-dimensional search algorithm with a single objective function and a single 

decision variable to solve for the crop production function. 

Various people with different interests and different backgrounds were asked to 

play the WaterMan game.  Different choices of crops, planting dates, soils, irrigation 

methods, delivery methods, and climates were selected.  In addition, the different events 

generated randomly by the game added more challenges to the game flexibility in 

responding to the effect of these events on the game environment.  The WaterMan game 

manifests a very high robustness in responding to all these challenges. 

Based on the majority of the players who tested the game, the WaterMan game 

was considered as an effective and innovative tool for teaching people of different 

irrigation background about on-farm water management, being technically correct, 

interesting, and challenging. 
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6.3 Recommendations 

6.3.1 Suggestions for Improvement 

Although the WaterMan game is simulating many aspects of on-farm water 

management through a user-friendly interface, some other refinements can be suggested 

for future development of the software, such as: 

1. The addition of another level in the game for more professional users by 

allowing the management of more than one field with different cropping 

patterns and different irrigation methods. 

2. The addition of more options for making strategic management decisions, 

such as: 

a) The investment in an upgrade from the current irrigation method to a more 

efficient one. 

b) The investment in an on-farm pond to store additional water, especially 

under a fixed rotation distribution water delivery option. 

3. Include even more crop types when there is a potential for that in the future. 

4. In the recommendation part, give suggestion regarding how appropriate the 

selected planting date and the irrigation method are for the chosen crop. 

5. Simulate the effect of other on-farm agricultural practices on irrigation 

management decisions. 

6. Expand the game to include another part about the water distribution system 

(canals) operation, with a linkage between the on-farm water management 

decisions and canal operating decisions. 
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7. The re-development of the game using other spoken languages, in order to 

achieve a more universal usage of the game as a training tool.  

 
6.3.2 Recommendations for Future Research 

During the development of the WaterMan game, and in looking for the 

development of a more realistic software application, the following areas of research 

were found to be important and could add more value to game if considered: 

1. Other artificial intelligence approaches could be tested through considering 

the game as a multi-agent stochastic game.  

2. Knowing the driving forces behind farmers’ decisions and the prediction of 

farmers’ behavior would enable a better classification of the player types and 

improve the output from the artificial intelligence approaches already used 

(and others that could be used in the future) in the game.  

3. Porting the game to other platforms, such as iPad-type devices, with an even 

simpler interface and more artistic graphics would make the game more 

readily available and perhaps more effective. 
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Evaluate the effectiveness of the WaterMan game as a training tool for on-farm 
irrigation management 

Questionnaire 
 
Age: 

Occupation:  

Education level: 

 
1. Does the game reflect real field situations?  
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
2. Does the game cover the very important aspects of on-farm irrigation managements? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
3. Are the random events realistic? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
4. Are the random events challenging? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
5. Are the options given realistic? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
6. Are the final score and recommendations reasonable? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
7. Do you consider the game well designed with a friendly user interface? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
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8. Playing the game increases your knowledge about on-farm irrigation management? 
 
Totally Agree  Agree  Disagree Totally Disagree Not Sure 
 
 
9. In your opinion: What are the limitations within the game? 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
 
10. Do you have any suggestion/s for improvements 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
____________________________________________________________________ 
 
 
 
11. What is your overall evaluation of the game as a training tool for on-farm irrigation  

management? 
 
Excellent  Very Good  Good  Fair  Not Sure  
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Table  A.1. Farmer opinions about game limitations, and their suggestions for 
improvement 

Limitations Suggestions 

• Decisions had to be made quickly 
• Not many, It is good to see the crop 

grow and at time suffers to make your 
decision 

• No water reservoir to store water 
• Uncontrollable happenings with what 

happens to water 
• The time you can water 
• It still a game, in the end I know it is not 

quite real 
• I believe there are things like crop 

varieties and management outside of 
water, even though water is still the most 
important 

• Need more options to manage rather 
than put irrigation -Speed is an option in 
your decision. 

• Would like to see the crop changing 
visually according to the management of 
the water 

• The screen is very busy - could have 
multiple screens to look at for decision 

• Need the ability to change parameters 

• I had a lot of questions, so you should 
have an excellent strategy for training 
users on how to use the program and 
understand it. or make it more self 
explanatory with pop ups  or windows 

• Adding more events 
• I would like to see a running balance of 

cost or expenses 
• No, everything is good 
• No, everything is very realistic, and 

similar to every day happenings when 
dealing with weather and water 
availability 

• Change from metric to standard 
• Maintenance of canal or ditches 
• How early or late crop planted 
• Neighbor could take water??? 
• Good job 
• A few more options and labels in both 

English and metric units 
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Table A.2. Farmer opinions about game limitations, and their suggestions for 
improvement 

Limitations Suggestions 

• None 
• None 
• Should be provided with an option to 

store additional water for future use, if at 
present do not need to irrigate 

• Print results 
• Save results 
• More option messages along with the 

random events to give more flexibility in 
seeing the consequences of my decision. 

• Does the maintenance timing included  
• An option to buy water when it become 

deficit in the soil 

• I would like to see a second version that 
simulates all on-farm practices 

• Help the player focus on the key criteria 
of the game (soil moisture, irrigation 
event) 

• Please provide the weather forecast all 
the time. A more efficient forecast 
would save the crop and the profit. 

• Allow the user to set up the game with 
his input data 

• By showing the crop, window showing 
its crop water demand quantity 

• By choosing the flow rate based on the 
selected irrigation process, process 
might not be adequate to 400 m3 

• Include different cropping patterns 
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Table  A.3. The opinion of the players with an irrigation background about game 
limitations, and their suggestions for improvement 

Limitations Suggestions 
• Irrigation till porosity should be 

accounted for, with some penalty 
• Water logging conditions, pest 

infestation, w.r.t GDD's should be 
represented 

• Farmer need to have a certain level of 
education 

• Cannot control different fields/crops at 
the same time 

• None 
• None 
• Not seeing crop stress while it is 

happening 
• Random events challenge could be 

improve 
• The option of having more than one 

crop in the field 4 sections 
• Crop rotation might be interesting to 

include 
• The Pause/Stop of irrigation needs some 

insight, to know how much is sufficient. 
• Add help interface 
• Add units in the plots in the interface 

• Should show were we went wrong, and  
• What could have help improve our profit 
• Allow more time to control during 

irrigation, maybe more time to control 
separate fields 

• More challenging random events 
• Maybe showing the calendar, so I know 

for example the month (to expect the 
weather conditions) 

• Pause game when we have "No water 
available for irrigation" message 

• I am interested to see its application in 
reality and comparison with real data 

• The options needs to be explained more 
with random events, ex: You got extra 
water, would you rather sell it or store it? 
your pump broke, would you like to fix 
it for $400 or skip this irrigation. 

• No 
• Add limitations and problems of system 

failure 
• Add a conservation behavior 
• Add draught conditions 
• No 
• A short video you-tube with indication 

how to use can be very useful. 
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