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ABSTRACT 

Assessment of Atmospheric Nitrogen Deposition: Possible Effects on Alpine Ecosystems 

Above 9000 Feet in Grand Teton National Park 

 

by 

 

 

Jennifer Hansen, Master of Science 

 

Utah State University, 2012 

 

 

Major Professor: Dr. Helga Van Miegroet 

Department: Wildland Resources 

 

 

 Atmospheric N deposition is becoming a stressor on ecosystems in the western 

U.S. There are few National Atmospheric Deposition Program (NADP) monitoring sites 

and little is known about N deposition impacts on terrestrial ecosystems in the 

Intermountain West. Alpine ecosystems may be particularly sensitive to changes in N 

inputs because of the shallow soils, short growing seasons, and sparse plant cover. This 

study focused on N deposition effects on an alpine ecosystem in Grand Teton National 

Park located along a modeled N deposition gradient (Moose Basin high, Paint Brush 

Medium, Rendezvous Mtn. low) and across contrasting edaphic conditions using a two-

factorial design. At each location, we estimated N deposition and measured soil moisture 

and temperature across edaphic conditions, soil parameters (total and extractable N, 

available N, net mineralization, and nitrification potential), and plant community 

characteristics (species richness, species composition, percent cover, plant and root 

biomass, N content, and above and belowground plant components). These response 
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variables were used to test whether there is a north to south N deposition gradient, if N 

deposition and N status are affected by soil moisture content, and whether soil and/or 

plant properties were affected by N deposition and edaphic conditions and if the response 

variables can serve as indicators as early warning signs of N saturation. The Tetons 

receive 1.42 kg N ha
-1 

yr
-1 

with more in winter (0.85-1.17 kg N ha
-1 

yr
-1

) than during the 

summer (0.25 kg N ha
-1 

yr
-1

). Soil moisture content was related to snowpack 

accumulations and melt but did not affect N status. Moose Basin (i.e., high N deposition) 

showed characteristics of an N-rich site shown by higher soil N content and extractable 

soil NH4
+
,  higher nitrification potential, low C:N ratios, more aboveground biomass, and 

higher foliar N content compared to the RDV location. Rendezvous Mountain (i.e., low N 

deposition) showed characteristics of an N-poor site having lower soil extractable N, high 

C:N ratios in soil and roots, and low N mineralization potential. Paint Brush was highly 

variable in soil and plant characteristics and most clearly showed differences between wet 

and dry sites. In terms of N status, it was intermediate and shared similarities with both 

N-poor and N-rich sites.  This study shows that it is important to consider both soil and 

plant indicators (i.e., total and extractable N in soils, soil nitrification potential, above and 

belowground biomass, and N content) together to assess N status. The C:N ratio of plants 

and soils was less informative than anticipated. Species richness and composition was a 

less sensitive indicator of N-induced change and should be considered for long-term 

assessments only.  

(184 pages) 
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PUBLIC ABSTRACT 

Assessment of Atmospheric Nitrogen Deposition: Possible Effects on Alpine Ecosystems 

Above 9000 Feet in Grand Teton National Park 

 

by 

 

 

Jennifer Hansen, Master of Science 

 

 

 

 Certain forms of nitrogen (N) in the atmosphere are pollutants with effects that 

mimic fertilizer application. If there is too much N, it can become a stressor, and the 

ecosystem may undergo drastic changes (e.g. certain plant species may decline or 

disappear). The N load at which a system starts exhibiting negative effects is dependent 

on the type and location of the ecosystem. Alpine ecosystems (i.e. above 9000 feet in 

Wyoming) may be particularly sensitive to low levels of  atmospheric N input because of 

short growing seasons, sparse plant cover, and shallow soils that limit their ability to 

absorb the extra N. It is therefore very useful to have early warning signs of changes in 

ecosystem N dynamics. 

 The National Atmospheric Deposition Program (NADP) monitors air quality and 

pollutant inputs with precipitation using instruments set up at various sites across the 

U.S., but there are only a limited number of NADP locations in the western U.S., with 

few locations at high elevation. Therefore, for many locations in the Rocky Mountains, N 

deposition is often modeled from the few available NADP monitoring sites. Even less is 
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known about N deposition impacts on ecosystems in the Intermountain West, especially 

in the sensitive alpine ecosystems. 

 This study focused on N deposition effects on an alpine ecosystem located in the 

Grand Teton National Park. Modeling of N deposition for the Rocky Mountains has 

predicted a north to south gradient in the Grand Teton National Park. The objective of 

this project was to evaluate whether small changes in atmospheric N deposition had 

detectable effects on alpine plant communities and soils of Grand Teton National Park. 

First, we wanted to see if there was an actual N deposition gradient from north to south in 

the park by locating our measurements at three locations predicted to receive of high 

(Moose Basin), medium (Paint Brush Divide), and low (Rendezvous Mountain) N 

deposition. Secondly we wanted to investigate whether any of these alpine systems were 

already showing signs of excess available N. This was achieved by gathering information 

on how much N was coming from the atmosphere to each location, and by looking at 

various plant and soil parameters indicative of the N content.  

 Atmospheric N bonds to water molecules in the air and returns to the Earth with 

precipitation events such as rain and snow.  Alpine ecosystems in the Grand Teton 

National Park receive most of their annual precipitation in the form of snow. Thus, snow 

distribution and relative melt rate dictates where the water accumulates in this landscape, 

creating areas that are either wet or dry in the summer months. This is important to plant 

and soil communities. Since atmospheric N inputs follow water, we thought that the wet 

areas would have different amounts of available N compared to dry areas, which in turn, 

would cause differences in plant and soil properties. To see if there were differences in 

wet versus dry areas, we compared ways that plants and soils use and/or store N across 
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this presumed N deposition gradient.  In summary, we followed N from the atmosphere, 

into the plants, then the roots, and then to the soil.  

 Our results show that the Tetons receive modest amounts of atmospheric N 

 (< 2 kg ha
-1 

yr
-1

) mostly in winter (85%) with very small amounts coming in during the 

summer (15%, <0.5 kg ha
-1 

yr
-1

) months. We confirmed that snow pack accumulation and 

snow melt created wet and dry sites, but these sites were not different in terms of N 

status. 

 At the three study locations in Grand Teton National Park, there were small, but 

significant differences in N availability that were expressed in plant and soil properties. 

Moose Basin (i.e., high N deposition) showed characteristics of an N-rich site having 

more N in the soil, more plant biomass, and more N in the plants, while Rendezvous 

Mountain (i.e., low N deposition) showed characteristics of an N-poor site with less N in 

the soil, and less ability to process N in the soil. Paint Brush (i.e. medium N deposition) 

shared similarities with both N-poor and N-rich sites.  

  This study shows that even small changes in atmospheric N input can cause 

fundamental changes in ecosystem characteristics. In order to detect these changes, it is 

important to look at both plant and soils together.  We found that some characteristics 

such as total and extractable N in soils, soil nitrification potential, above and 

belowground biomass, and N content can be used as early warnings signs of ecosystem N 

overload.   
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CHAPTER 1  

 

INTRODUCTION 

 Air pollution in the U.S. remains a growing problem (Fenn et al., 2003 a 

and b) despite legislation to improve air quality and human health (Heidorn 1979). 

In the 1970s, acid deposition was discovered as a cause of a major decrease in 

diversity in both aquatic and terrestrial ecosystems (Scott et al., 1989). NOx and 

NHx have been found to cause a decline in both ecosystem diversity and 

productivity because they act as a fertilizer for plant life and overload the system 

with N. Airborne forms of anthropogenic N (specifically NOx and NHx) react with 

water vapor in the atmosphere and deposit at different locations within ecosystems, 

affecting the structure and function of these ecosystems. NOx originates mostly 

from automobile and industrial emissions. Sources of atmospheric ammonia 

deposition (NHx) include decomposing excrement from livestock (Vitousek et al., 

1997), volatilization from the production and application of fertilizer (Fenn et al., 

2003 a), NHx loss from burning biomass (Asman et al., 1998), and the natural N 

cycle of soils (Dawson 1977; Bouwman et al., 1997). Ninety percent of NOx 

emissions come from northern latitude countries such as the U.S., Canada, Western 

and Eastern Europe, the former USSR, China, Japan, and the Middle East (Olivier 

et al., 1995).  

 Nitrogen deposition is predicted to increase 25% worldwide by the year 2020 

(Peterjohn et al., 1996) causing some ecosystems to become overloaded with N. 

Excessive N in the soil may lead to so-called N-saturation where N availability exceeds 

the demands of microbes and plants, leaving an abundance of N in the soil matrix that 
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can cause ecosystem function to decline (Vitousek et al., 1997; Langan 1999). Most 

ecosystems have evolved in and adapted to N-limited environments since N2 gas, the most 

abundant form of N in the atmosphere is difficult to transform into useful forms for plant 

and soil microbial life (Fenn et al., 1998). 

 

N Deposition in the Eastern vs. Western U.S. 

 The Eastern U.S. receives around 7-17 kg N ha
-1

yr
-1 

(NADP, 2005) of wet N 

deposition that is a regional problem because of the dense human population in the 

eastern U.S. The Western U.S. receives 1-6 kg N ha
-1

yr
-1 

(NADP, 2005) of N deposition 

and has a large amount of land that is being exposed to low levels of N deposition. There 

are “hot spots” in some localized areas downwind from major metropolitan areas such as 

the Colorado Front Range and the Los Angeles Basin where N deposition rates are 

respectively 9 and 35 kg N ha
-1

yr
-1 

(Bowman and Steltzer 1998; Nanus et al., 2003, Fenn 

et al., 1998, 2003 b). Typically in the Western U.S., the closer the ecosystem is to a large 

city, the greater the likelihood for ecosystem damage (Meixner et al., 2002). However, 

large agricultural areas in the Western U.S. are a cause for concern because of the amount 

of NHx that originates from them (Fenn et al., 2003 b).  

There have been few studies of anthropogenic atmospheric deposition in the arid 

western U.S. Western soils were originally thought to be less affected by acid deposition 

compared to soils in the Eastern U.S. because the soils have high base saturation, pH, and 

acid buffering capacities (Belnap and Eldridge 2001; Nagy et al., 2005). Soil types in the 

Western U.S. (excluding the Pacific Coast) are primarily made up of Aridisols, Mollisols, 

some Inceptisols and Andisols, and a small amount of Alfisols and Entisols. Most of 

these soils have a high base saturation (USDA staff, 1999). Since there is less 
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precipitation in the Interior Western U.S., the soils tend to hold much more Ca
2+ 

and 

commonly contain CaCO3, causing the pH of these soils to be higher than the pH of the 

soils in the Eastern U.S., creating an acid buffering system for the arid soils.  Soil types in 

the Eastern U.S. are primarily made up of Ultisols, Inceptisols, Spodosols (in the 

northeast), and Alfisols (in the mid-eastern U.S.) (USDA staff, 1999). These soils 

typically receive more rainfall precipitation causing nutrients such as Ca
2+

 to leach out 

and soil pH to be lower, thus making them more vulnerable to acid deposition than 

western soils. 

 

N Deposition Effects on Ecosystem Structure  

and Function 

 

 

 Nitrogen is considered a limiting factor for plant growth in most ecosystems 

(Aber et al., 1989; Körner 1989; Peterjohn et al., 1996; Näsholm 1997; Friedland and 

Miller, 1999) especially alpine and tundra ecosystems. N deposition causes a general N 

enrichment of soils (Fenn et al., 1998 and 2003 b), which can cause changes in ecosystem 

structure and function such as decreased diversity of mycorrhizal communities (Egerton-

Warburton and Allen, 2000; Van Der Eerden, 1998), increased growth of invasive 

species (Weiss, 1999; Brooks, 2003), lichen community shifts (McCune et al., 1998; 

Geiser and Neitlich 2006), forest expansion into grasslands (Köchy and Wilson, 2001), 

altered cryptobiotic crusts in desert systems (Belnap et al., 2003), and shifts in alpine 

plant communities (Bowman and Steltzer, 1998; Bowman, 2000).   

Excessive N in the soil may lead to so-called N-saturation (Aber et al., 1989; 

Vitousek et al., 1997; Langan, 1999). According to Aber et al., (1989, 1998), a series of 

events take place in plant and soil microorganisms when N input to the ecosystem 
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increases: plant communities respond to increased N by an initial increase in foliar N, net 

primary productivity (NPP), and an overall increase in aboveground and root biomass 

(Aber et al., 1989). Accelerated tree growth in forests causes the trees to sequester N 

initially, but long-term chronic inputs of N in later stages of N-saturation cause tree 

growth to decline, sometimes resulting in tree mortality (Aber et al., 1998; Fenn et al., 

2003 b). Increases in foliar N lead to a decline in foliar and litter C:N ratio resulting in an 

increase in litter decomposition, net increase in N mineralization in the soil, a build up of  

NH4
+
, stimulation of NO3

-
 production , and excess NO3

- 
in the soil matrix that may leach 

from the soil and into aquatic ecosystems. In the later stages of older litter decomposition, 

breakdown rates may decrease significantly with increased N. This is because higher 

levels of N reduce the efficiency of ligninolytic enzymes inside microbes that break down 

lignin, causing it to build up in the soil resulting in much slower humus formation (Magill 

and Aber, 1998).  In the last stages of N-saturation, there is so much NO3
-
 and NH4

+
 in 

the ecosystem (relative to background levels of N), that N availability far exceeds the 

demands for plants and microbes and N may become toxic or inhibit growth (Aber, 

1992).  

 Too much N can lead to several progressive outcomes:   

1) Some plant communities will increase their cover range (i.e. spread out), decrease their 

cover range (i.e. cover smaller areas), or disappear all together (Rusek, 1993; Hungate et 

al., 1997; Suding et al., 2006) as plants inherently differ for their abilities to process and 

uptake N (Miller et al., 2007a; Ashton et al., 2008). 
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2) Competitive interactions among plant communities will change (i.e., since N is no 

longer a limiting factor other factors become limiting), resulting in composition and 

cover changes (Miller et al., 2007a and b). 

3) Relationships among organisms will shift (Suding et al., 2006; Nemergrut et al., 2008).   

4) Root mycorrhyzal relationships will decline resulting in less uptake  of nutrients other 

than N by plants (Van Der Eerden, 1998).  

5) Plants will become deficient in other resources such as phosphorus, calcium, etc.  

  The cover range and composition of plant communities reflects the fact that N is 

a limiting factor in biomass production. Most plants have evolved to grow with limited 

amounts of N. Theodose et al., (1996) suggest that excess N availability may be a 

mechanism used by rare plants as a way to coexist with competitive dominant species, 

thus increasing or maintaining their cover range. The premise is that with elevated soil N, 

N is no longer limiting and there is no competition for N, allowing rare plants to exist 

among dominant species that would normally outcompete them. Nitrophilic plants may 

thrive simply by their natural ability to uptake higher amounts of N compared to plants 

with inherently lower uptake rates of N. However, in the saturation stages of N 

deposition, with too much NO3
-
 inside plant tissues, too many free radicals will form and 

the plant’s enzymes designed to handle these radicals will become overloaded, which 

may result in phytotoxicity and an overall reduction in cover range (Näsholm, 1997).  

 Competitive interactions among plant communities will shift. Too much N may 

cause plant diversity and species richness to decrease because plants inherently differ in 

their tolerance of N concentration and type of N uptake (Ashton et al., 2008; Miller and 

Bowman, 2003; Miller et al., 2007a; Suding et al., 2006). Lesham (1996) conducted a 
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study on NO (an N air pollutant resulting from combusting fossil fuels) in legume plants 

that demonstrated that production of  ethylene (the compound that causes fruits to mature 

and ripen) was inhibited with low concentrations of gaseous NO, and stimulated with 

high concentrations of gaseous NO. In natural ecosystems, this stimulation of fruit 

ripening with high atmospheric N concentrations could be a mechanism for strong 

competition that may result in a mono-specific ecosystem with little to no diversity 

(Bowman et al., 1993; Vitousek et al., 1997).  Some plants preferentially take up only 

NH4
+
, resulting in weak competitive abilities compared to plants that take up both NH4

+ 

and NO3
-
. These specialized plants that only take up one form of N could undergo 

population decline because they will be subject to exploitative competition from other 

plants that are able to take up different forms of N (Ashton et al., 2008; Miller et al., 

2007a; Näsholm 1997). 

 If plant communities change, then so will soil microbial and animal communities. 

Organisms that rely on certain plant communities for resources may disappear or go 

extinct if those plant species decline (Fenn et al., 2003 b). Mycorrhizal fungal biomass 

may be altered because lignin-degrading enzymes may decline and microbial 

communities may shift and start to metabolize different substrates (Frey et al., 2004; 

Ashton et al., 2008; Goulding et al., 1998). This shift in microbial biomass and substrate 

metabolism may be reflected in changes to soil nutrient dynamics that in turn will affect 

plant growth, plant function, and root symbiotic relationships (Bever et al., 1997; Fenn et 

al., 1998; Goulding et al., 1998). It can cause an alteration of plant community structure 

and function by shifting nutrient availability to plant roots and other soil biota, or change 

the pH of the soil all together (Fenn et al., 2003 b; Ashton et al., 2008).  
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  With excess N, other soil nutrients may become deficient. An increase in net 

nitrification follows the early stages of N-saturation creating an excess of NO3
-  

in the soil 

matrix (Bowman et al., 2006).  Nitrate and ammonium that has not been taken up by 

plants or microbes can interact with cation exchange sites and mobilize nutrient cations 

such as Ca
2+ 

, K
+
 and Mg

2+ 
which will then leach from the soil in association with mobile 

NO3
-  

and become lost from the ecosystem. This can result in an overall decline in 

nutrient availability (Magill et al., 2004). In acid soils, NO3
-  

 can also mobilize toxic 

cations such as Al
3+ 

that are harmful to plants (Asner et al., 2001).  
  

 Since N deposition has become a concern in the early 1990’s, scientists have 

found ecosystems in the Western U.S. that are already showing early signs of N-

saturation (Fenn et al., 2003 b). Scientists have attempted to come up with criteria to 

indicate that an ecosystem has become saturated with N (Aber et al., 1989; Aber 1992, 

Stoddard 1994; Peterjohn et al., 1996). This may include (but is not limited to) signs such 

as:  

1) High rates of net nitrification and mineralization.  

2) N concentrations in the soil that show little seasonal changes (little variability) because 

microbial communities have shifted dominance. 

 3) Rapid N leaching from soil with additional N inputs, because the system is becoming 

N overloaded and cannot handle any more uptake of N.  

4) Denitrification with elevated atmospheric N deposition 

5) Elevation of N concentration in nearby aquatic systems because of N leaching from 

soils, resulting in mountain lakes becoming acidic and/or eutrophicated.  
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 The chaparral and forested areas of Southern California near Los Angeles are 

characterized by high base saturation, low C:N ratios, and coarse-textured soils and 

receive 20-35 kg N ha
-1 

yr
-1

 and are showing high net nitrification rates with N cycles 

strongly dominated by NO3
-
 (Fenn et al., 2003 b). This could have a detrimental effect on 

competition for flora that favor the uptake of NH4
+ 

as opposed to NO3
-
 , and could 

ultimately lead to a monoculture of organisms (Bowman et al., 1993; Vitousek et al., 

1997).  

 The Colorado Front Range which receives 3-5 kg N ha
-1 

yr
-1

 is showing signs of 

higher N mineralization among old-growth Engelmann spruce (Picea engelmannii) 

forests on the eastern side compared to the western side, which receives lower inputs of N 

(Baron et al., 2000; Rueth et al., 2003). This increase in the availability of N could affect 

growth and biomass allocation for some plants.  

 In a N-saturated system, seasonal patterns of microbial community abundance and 

activity may be altered. In an alpine ecosystem, soil microbial communities typically 

mineralize N during snowmelt, before the flora becomes active, thus playing a key role in 

the N cycle of the ecosystem. Net mineralization by microbes declines just after 

snowmelt when soils are saturated with water and plants begin to grow (Brooks et al., 

1996). Nitrogen availability peaks in July and August with a decline in microbial biomass 

during the growing season and plants take in up to 93% of available N (based on 
15

N 

tracer studies). Mineralization then peaks again just after plant senescence resulting in a 

pool of available N (Jaeger et al., 1999; Lipson et al.,  1999).  In a N-saturated system, 

the microbe populations do not decline during seasonal changes nor do they shift 
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dominant mineralization/nitrification communities (Peterjohn et al., 1996; Jaeger et al., 

1999).   

 Rapid discharge of N as a sign of N-saturation remains a topic that needs further 

investigation as NO3
-
 leaching responses may vary among communities and ecosystems. 

Magill and co-workers (2000 and 2004) published the results from a 15-year study 

conducted in the Harvard Forest of Massachusetts intended to investigate the effects of 

N-saturation and accelerated N leaching as a system becomes saturated.  Ammonium-

nitrate was added chronically to the forest floor in hardwood and pine plots in a low, 

medium, and high regime (5-15g N m
-2 

yr
-1

) over a 15-year period. They found two 

interesting results. First, red pine forests (Pinus resinosa) have a lower ability to retain N 

than hardwood forests (such as oak, birch, maple, black cherry, and beech). As a 

consequence, mean soil solution concentrations were around 20 mg-L
-1

 in the pine forests 

compared to 10 mg-L
-1

 in the hardwood forest, even though both communities received 

the same amount of fertilization. This demonstrates how different communities and 

ecosystems respond to excess N and N leaching. Second, dissolved organic nitrogen 

(DON) in the high fertilization plots was significantly higher than in the control plots. 

Roughly 35% of the dissolved inorganic N (DIN) was recovered in the high fertilization 

plots as leachates. The rest of the missing N was explained by incorporation into soil 

organic matter or immobilization by soil microbial communities. Formation of DON 

from DIN is an important mechanism for N assimilation to the soil system (Dail et al., 

2001). Looking at ratios of DON and DIN in solution could be a way of assessing NO3
-   

leaching potential because tree roots, foliage, and wood in all of the plots showed little 
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ability to retain N anymore. The high fertilization plots also showed an increase in tree 

mortality of 56% and biomass accumulation had stopped altogether.  

 Denitrification can be stimulated by an overload of N. A study by Mohn and co-

workers (2000) conducted in Switzerland demonstrated that soil redox potential, soil 

temperature and pH were all controlling factors that affected denitrification. Elevated N 

to these soils caused an increase in all of the above factors, which caused denitrification 

to increase from 1.7 to 2.9 kg N ha
-1

yr
-1

. They noted that the increases in denitrification 

were most intense with rain events carrying atmospheric N deposition.  

 High N concentration in soil water causes N to leach from terrestrial systems into 

nearby aquatic systems resulting in eutrophication and acidification.  High concentrations 

of NO3
- 
(compared to background levels of NO3

- 
) have been found in streams of the 

Colorado Front Range, montane watersheds in Southern California, and in parts of the 

southwestern Sierra Nevada Mountain Range (Fenn et al., 2003 a). High-elevation lakes 

in the Colorado Front Range and many other places in the Rocky Mountains are showing 

signs of lower pH. This is due to N-saturated alpine systems located at higher elevations 

leaching N into watersheds that drain into these lakes (Baron et al., 1991, 1994). These 

same high elevation lakes are exhibiting large changes in diatom communities which 

have become an ecological marker for eutrophication (Baron et al., 2000). 

 

 N Deposition on Alpine Ecosystems 

 N deposition can affect ecosystems in different ways because plant and soil 

communities in these different ecosystem types may vary in  their response to changes in 

nutrient availability (Seastedt and Vaccaro, 2001) depending on substrate type, 

topography, hydrology, or successional stage (Güsewell et al., 2002).  Alpine ecosystems 
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are among the most sensitive to chemical and climatic change because they have short 

growing seasons, strong seasonal variation in moisture and temperature, shallow and 

poorly developed soils, variable terrain with an abundance of different microclimates, 

sparse vegetation, and low overall productivity. These ecological factors naturally limit 

the uptake of N by plants (Baron, 1992; Fisk et al., 1998; Burns 2003).  Alpine 

ecosystems are therefore typically affected by atmospheric N deposition earlier than 

ecosystems at lower altitudes (Rusek, 1993).  Fenn and co-workers (2003 a and b; Fenn 

and Poth, 2004) observed that ecosystems with canopies tend to ‘catch’ atmospheric 

pollutants and retain them in their canopy. Since alpine ecosystems occur above the 

treeline, there is no canopy interception, resulting in more N deposition input directly to 

the soil. Alpine ecosystems are already predisposed to poorly retaining N because of very 

low net primary productivity (NPP) (Williams and Tonnessen, 2000) making them that 

much more sensitive to the direct effects of atmospheric N deposition.   

 Soil and snow accumulate in alpine zones on the leeward side of any kind of 

obstruction to the wind such as buolders or depressions (Rehder, 1976).  Since 

atmospheric N tends to follow weather patterns and prevailing winds, N that deposits 

with winter snowfall will tend to follow the same topographic deposition patterns as 

snow accumulation.  Leeward areas have higher soil depth because wind blows and 

deposits dust, debris, and soil in the depressions. Leeward areas likewise hold much more 

snow than more exposed areas. In places where there is more moisture from snow 

accumulation, there is typically more N deposition. These topographic patterns result in 

N-rich sites where plant and soil microbial communities may already be altered or 

shifted. Exposed areas in the alpine are typically drier and have very limited plant cover. 



12 

Topography controls where the moisture is found in alpine ecosystems, and moisture 

plays a major role in the presence or absence of plants and microbes (Fisk et al., 1998). 

Thus, N cycling and responses to excess N are expected to be different in dry versus wet 

alpine sites (Isard, 1986; Bowman, 1992; Fisk et al., 1998). 

 

N Deposition in the Rocky Mountains 

 The Rocky Mountains make up much of the Intermountain West of the U.S. and 

are found as far south as New Mexico and extend as far north as northern British 

Columbia in Canada, covering some 4,800 kilometers (3,000 miles). The location of the 

alpine life zone depends on the Earth’s latitude (Körner, 2003), and in the Rocky 

Mountain Range, it is typically found at or above 2745-3700 meters (9,000-11,500 feet).  

The U.S. Geological Survey (see Ingersoll et al., 2008; 2009) is currently 

conducting snow pack surveys at various key locations during peak snow pack times to 

assess and model atmospheric deposition in the Rocky Mountain region, including NO3
-
 

and NH4
+
. The atmospheric deposition data thus obtained has formed the basis for 

modeled GIS maps that graphically show how atmospheric deposition is spatially 

distributed across different locations in the Rocky Mountain region (Nanus et al., 2003). 

The GIS maps show the “hot spots” of high N deposition entering the system as snow.  

One such “hot spot” of N deposition is found within the Niwot Ridge in the Rocky 

Mountains in the Colorado Front Range which gets as much as 9 kg N ha
-1

yr
-1

 of N 

deposition (Bowman and Steltzer, 1998; Nanus et al., 2003).  Though this is not a high 

amount compared to the eastern U.S., it is enough to call this system “critically loaded” 

(defined as N deposition amount above the threshold levels that negatively affect natural 
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resources). Williams and Tonnessen (2000) created an N deposition model for the Rocky 

Mountains and suggested a guideline for a “critical load” for these systems around   

4 kg N ha
-1 

yr
-1

.  

 

N Cycling and Soil Responses at Niwot 

 Ridge, Colorado 

 

 

The Colorado Front Range of the Rocky Mountains is arguably the most affected 

by atmospheric N deposition for the Rocky Mountains because the majority of 

Colorado’s population resides there creating a large metropolitan area (Baron et al., 

2000). However, the Colorado Front Range is also the most studied area for the effects of 

N deposition than any other part of the Rocky Mountains. The Institute of Arctic and 

Alpine Ecology was established in 1952 by The Mountain Research Institute and 

University of Colorado and includes a research station at Niwot Ridge. Studies on N 

deposition in alpine ecosystems of the Rocky Mountains started in the 1990’s and 

continue today (Ives, 1980). The LTER at Niwot Ridge studies patterns and controls of 

nutrient cycling, trace gas dynamics, plant primary productivity and species composition, 

geomorphology, and paleoecology in order to track global climate change (Benedict, 

1968; Mancinelli and Keigley, 1983; Bowman et al., 1995;  Rusch and Sievering, 1995).  

Land masses in the alpine zone that develop a consistent snow cover early in the 

season tend to remain unfrozen during the winter because the snow acts as an insulating 

blanket. These snowpacks have high rates of microbial N immobilization because the soil 

microbes remain active during the winter months, so available NO3
-
 in the soil is minimal 

during early spring snowmelt, and available NH4
+
 is mostly immobilized (Brooks et al., 

1996; Edwards et al., 2007). However, land masses with low or inconsistent snowpack 
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freeze during the winter and the microbes go dormant, resulting in an abundant amount 

soil of NO3
-
 during early spring snowmelt (Brooks et al., 1998).  A system with too much 

N will show equal amounts of available soil NO3
-
 regardless of snow pack accumulation 

(Aber et al., 1989; Aber, 1992; Stoddard, 1994; Peterjohn et al., 1996). 

 Snow packs in the alpine zone hold up to 80% of annual precipitation and up to 

50% of annual N deposition (Edwards et al., 2007). Inorganic N from anthropogenic N 

deposition and natural cycles is stored in snow in the winter and during early snowmelt 

there is a net ionic flux input of NO3
-
 into aquatic systems. The first 25% of the snowmelt 

has higher concentrations of N than later during the growing season when plants come 

out of dormancy. This is because the NO3
- 
trickles down through the snow pack where it 

concentrates at the bottom and flows out via snowmelt into the groundwater. Stream 

chemistry may show NO3
-
 leaching into aquatic systems from terrestrial systems during 

early snowmelt which happens just before the growing season that lasts until early June 

as a result of percolation of meltwater into soil systems. N uptake by plants during 

snowmelt constitutes 12% of season-long uptake for graminoids and 7.4% for forbs 

(Bowman,1992; Bilbrough et al., 2000). As plants come out of dormancy the ecosystem 

has a high retention of N and the snow pack is depleted of N by up to 70% by mid-June 

(Reddy and Caine, 1990; Bowman, 1992). However, when alpine ecosystems are 

continually receiving atmospheric N deposition, this could change the spatial 

heterogeneity of the snow pack N supply (Bowman, 1992).  

 Total N storage in the alpine ecosystem at Niwot Ridge is 7000-8000 kg N ha
-1

 

where 85-95% is stored in organic matter. N storage in living plants account for 1-2% of 

total N with the majority represented as root biomass. Less than 1% of N storage is in 
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microbial biomass with up to 5% of microbial N turnover per day (Fisk et al., 1998). 

Turnover of N in alpine systems is a result of topographic heterogeneity in which soil 

moisture content, NPP, and microbial processes are all affected. Topography dictates 

where soil moisture is found. As a result plant biomass, NPP, and N allocation are higher 

in wet sites (where snow accumulates) than in dry sites (where snow does not 

accumulate). In dry sites, root biomass accounts for the main form of NPP and N 

allocation. Microbial processes such as respiration and N transformation are higher in wet 

sites than in dry sites of alpine ecosystems. However, gross N mineralization and 

immobilization patterns are similar in wet and dry sites suggesting that substrate quality 

or quantity does not contribute to differences observed in N availability and cycling 

among wet and dry communities. This further supports the idea that it is topographic and 

climatic heterogeneity, rather than substrate quality or quantity that dictate where N pools 

and communities are found throughout alpine ecosystems (Fisk et al., 1998).  A N-

saturated system could change this dynamic where both wet and dry communities receive 

higher amounts of N that could shift alpine plant productivity from N limitation to P 

limitation (Burns, 2003) and topography will no longer dictate where N pools are found.  

Arctic tundra and alpine ecosystems are different as far as plant communities go. 

Soil microbial communities in these different ecosystems are very similar in that several 

of the same species of bacteria are ubiquitous and commonly distributed among different 

ecosystems and soil types than many other organisms (Mishustin, 1975; Anderson, 1977; 

Mancinelli, 1986).  The break-down of plant litter by these microbes is heavily 

influenced by plant species, soil type, pH, climate, temperature, moisture, and microbial 
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density (Witkamp, 1966; Ljungholm et al., 1979; Howard and Howard ,1980; Mancinelli 

1986).  

Soil microbial communities of alpine ecosystems exhibit seasonal cycling 

reflected in changes in biomass and community compositional shifts (Lipson et al., 

2002). Overall, microbial biomass generally tends to decrease initially after spring 

snowmelt, fluctuate dynamically in the summer growing season, then increase steadily in 

the fall and peak in the winter just before snowmelt under snow packs (Lipson et al., 

1999; Ley et al., 2004). However, some microbial populations such as N-fixing microbes 

are high in the spring when there is a high demand for N, and low in the fall when there is 

a low demand for N (Mancinelli, 1984).  In the winter, microbial communities shift to 

microbes that utilize different enzymes than summer microbes (Lipson et al., 2002). 

Lipson and co-workers (1999) observed that there was a pulse of extractable soluble 

protein in the soil just after snowmelt, which was shortly followed by a peak of NH4
+ 

and 

amino acids, suggesting a decline in microbial biomass and an increase in plant available 

N. They concluded that proteins, enzyme activity, and amino acids in the soil represent a 

peak of available N that is linked to the decline of microbial biomass and a shift in 

microbial communities just after snowmelt.  

During the summer months in alpine ecosystems, soil microbial biomass exhibits 

a general decline compared to winter and spring biomass. There are several explanations 

for this decline in microbial biomass such as:  protozoal grazing, community shifts due to 

substrate changes, temperature changes, and shifts in moisture regime (Lipson et al., 

1999). Moisture could be the major controlling factor for this decline in biomass as water 
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greatly influences diffusion and availability of soluble compounds (Stark and Firestone, 

1995).  

During the winter, microbial communities in the alpine soil are more abundant 

under consistent snow packs that insulate and allow the soil to remain unfrozen (Fisk et 

al., 1998). Winter freeze-thaw cycles in inconsistent snow-covered areas reduce bacterial 

populations and diversity significantly by disrupting cell structure (Mancinelli, 1986; 

Lipson and Monson, 1998). Spore-forming bacteria dominate variable snow-covered 

areas during this time of year because they can withstand the harsh winter conditions 

better than non spore-forming bacteria (Mancinelli, 1986).    

Net mineralization of organic N from the organic matter left from senescent plants 

tend to be much higher during the snow covered period (2-6 g N m
-2

, Brooks et al., 1996) 

than during the growing season (1.2 g N m
-2

, Fisk and Schmidt, 1995) suggesting 

microbes are utilizing labile C sources during seasonal snow cover. This net 

mineralization of N creates a large pool of inorganic N in the soil just before snowmelt 

suggesting these microbe communities play a vital role in available N to plants for the 

growing season (Brooks et al., 1996).   

Chronic N input to ecosystems such as anthropogenic N deposition, leads to an 

overall decrease in ecosystem function. Soil microbial communities respond to excess N 

by a significant decrease in activity and biomass (Lipson and Monson, 1998; Lipson et 

al., 1999; Schmidt et al., 2004) leading to slower rates of organic matter breakdown, 

decreases in some ecosystem functions (such as declines in mychorrizae/root symbiotic 

reliationships), and microbial dominant community shifts (Nemergrut et al., 2008). 

Mancinelli (1986) found that nitrifier and nitrogen-fixing microbe populations were 
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significantly inhibited with increased NO3
- 
in the soil, while actinomycete populations 

increased. Shifts in microbial species composition such as these may lead to a positive 

feedback loop of higher rates of NO3
-
 leaching from the ecosystem. The dominant 

microbial communities, together with excess N, will result in greater N mineralization 

and nitrification rates. As these populations grow in biomass with excess N, so does the 

demand for carbon. A higher turnover of organic N in the soil releases more inorganic N 

to the soil matrix resulting in additional soil N on top of the atmospheric N deposition 

(Bowman and Steltzer, 1998; Steltzer and Bowman, 1998). 

Shifts in microbial biomass from N deposition seem to be governed by seasonal 

changes. The negative effects of excess N appear to be most prominent during the 

summer growing season when competition is high and communities are more vulnerable 

to decline. There is a tendency to sequester N in microbes in the fall and winter as plants 

senesce and competition between the two decreases. However, this is an unlikely long-

term sink for N because excess N decreases microbial biomass too much and it decreases 

the rate at which microbial biomass can respond to C inputs (Fisk and Schmidt, 1996; 

Schmidt et al., 2004).  

There are no studies that demonstrate what will happen to alpine floral 

communities if microbial communities shift in response to excess N. Plant/microbe 

competition and interactions may change significantly causing the alpine ecosystem to 

decrease in nutrient cycling functionality, therefore compromising the ecosystem’s 

abilities to sequester N and C properly. 
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Plant Responses to N Deposition at Niwot Ridge  

One hypothesis for plant community responses to increases in resources is that 

resource-poor communities typically respond by increasing species diversity or species 

richness, and a resource-rich community responds by a decrease in diversity due to 

competitive exclusion for light (Goldberg and Miller, 1990; Bowman, 2000; Seastedt and 

Vaccaro, 2001). Declines in NPP, fine root biomass, foliar biomass, and increases in 

NO3
-
 leaching are predicted signs of N-saturation in alpine ecosystems of the Colorado 

Front Range as they move from the current stage of 1, to stages 2 and 3 in Aber’s N-

saturation model (Aber et al., 1989; 1998; Burns, 2003). Gough and co-workers (2000) 

conducted a study across a wide variety of plant communities in several different life 

zones including the alpine zone to see how they would respond to N additions. They 

found an overall uniform decline in species richness in each community, irrespective of 

inherent productivity.  

There are several mechanisms of how alpine plants take up, utilize, and store N in 

order to compete and coexist with the rest of the plant community. A unique aspect about 

alpine ecosystems is that when observing community abundance and dominance 

structure, the rate of NO3
- 
uptake is not as significant as differences in allocation to roots, 

shoots, and biomass production. Alpine plants with more N dedicated to roots, shoots, 

and biomass are more abundant than those plants with less N allocated to the same areas. 

However, with increased soil N, this seems to be changing. Rare plants show higher rates 

of N uptake than dominant plants. This may be a mechanism for rare plants to coexist 

with dominant species keeping them from going extinct. Dominant species have much 

slower N uptake rates, but have higher root:shoot ratios and higher overall biomass, 
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resulting in higher abundance and frequency. This suggests that dominant species can 

utilize and allocate N much more efficiently than rare species giving them a competitive 

advantage (Theodose et al., 1996). In a N-saturated system, this interaction may change 

N uptake mechanisms which may help one plant species to increase in biomass and 

abundance, resulting in community and dominance shifts (Rusek, 1993).  

Bowman and co-workers (1993) compared wet and dry alpine meadows at Niwot 

Ridge for nutrient constraints on NPP. He found that dry meadows responded positively 

to N fertilizations, suggesting they were N-limited. The wet meadows showed signs of 

both N and P limitations suggesting that when N is abundant, then P becomes the limiting 

factor. Bowman concluded that the wet sites may be exhibiting levels of N close to 

saturation induced by P limitations. He also noted that graminoid biomass increased 

significantly while forbs biomass decreased significantly with treatment in the wet plots, 

further supporting the hypothesis that light competition becomes a limiting factor when 

resources are abundant. Theodose and Bowman (1997) conducted a similar study that 

also concluded that increases in N from anthropogenic sources show the highest impact 

on limited communities such as dry alpine meadows, by changing the composition of the 

plants and favor the invasion of more competitive species such as grasses. These shifts in 

species composition may be already occurring in alpine tundra systems in central Europe 

(Rusek, 1993).  

In summary, as N increases, diversity and biomass increase initially, then 

diversity decreases as opportunist plants invade and increase cover, then dominance shifts 

to species able to utilize the excess N (Tilman, 1982; Begon et al., 1990; Bowman et al., 

1993). 
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  Alpine plants have developmental constraints, such as preformation of next year’s 

buds during the growing season; and cellular development constraints, such as stunted 

growth in order to cope with the harsh environment typical of alpine environments. These 

may be mechanisms that evolved to deal with fluctuating nutrient concentrations in the 

soil (Bowman et al., 2003). Alpine plants tend to preferentially allocate N to storage 

before foliage (Chapin, 1980; Körner, 1989; Bowman and Conant, 1994) and are capable 

of sequestering and storing N in aboveground foliage only when soil N pools are 

increased (Chapin et al., 1990). Several species of alpine plants store N in belowground 

biomass and only when soil N increases sufficiently, will they allocate N to foliage and 

even start to exhibit luxury consumption (Jaeger and Monson, 1992; Lipson et al., 1996; 

Mullen et al., 1998). Therefore, foliar N and P concentrations do not reflect immediate 

soil N availability and cannot be used as a significant marker for ecosystem N-saturation 

(Bowman et al., 2003). Root:shoot ratio and overall biomass may be a better indicator of 

plant responses to increased N rather than foliage alone. However, examining plant 

biomass alone does not accurately reflect what the entire ecosystem is going through. 

Looking at both plant biomass and soil characteristics may better describe how N is 

moving through the ecosystem.  

 

N Deposition and Acidification Effects on  

Watersheds and Aquatic Systems  

 

 

 Precipitation has increased by 300 mm per year from 1967 to 1996 in the alpine 

tundra of Niwot Ridge, and N deposition has nearly doubled from 1989-1992 (Williams 

et al., 2003). Seasonal snowmelt releases a pulse of NO3
-
 ions that have accumulated in 

the snow pack over winter into the ecosystem that acidifies aquatic systems by lowering 
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the acid neutralizing capacity (Williams et al., 2001). There is a positive feedback of N 

deposition in that it causes net mineralization and nitrification to increase, resulting in 

more loss of NO3
-
 into aquatic systems on top of the seasonal NO3

-
 flux, further 

acidifying these systems (Bowman and Steltzer, 1998; Williams and Tonnessen, 2000).   

Talus slopes are exposed rock and gravel slides in alpine ecosystems with little 

snow pack to cover them. They have little vegetation to retain N and allow rapid 

precipitation infiltration and movement to surface waters. Talus slopes are considered 

important sources of NO3
-
 and are therefore associated with higher NO3

-
 concentrations 

in surface waters draining from them (Williams and Brooks, 1997).  

 Lake sediment cores from three aquatic sites along the Front Range show a long-

term shift in diatom communities that is consistent with increased atmospheric N 

deposition since around 1939 (Wolfe et al., 2001). This shift in species has been 

correlated to agricultural practices and it has been shown that the diatom species respond 

quickly to N additions (McKnight et al., 1990).   

Acidification of lakes and streams is a possible explanation for the decline of 

several Rocky Mountain amphibian species such as the tiger salamander (Ambystoma 

tigrinum), boreal toad (Bufo boreas), and the chorus frog (Pseudacris triseriata) (Harte 

and Hoffman, 1989; Carey, 1993; Kiesecker, 1996). Harte and Hoffman (1989) did an in 

situ study in the Elk Mountains of Colorado where they exposed tiger salamander eggs to 

different pH conditions in a body of water that is known to have seasonal fluxes of 

acidification from NO3
-
  leaching in the early spring (when salamander eggs are present). 

They found that at a pH of 5.6, there was a 100% mortality rate of the zooplankton 

Diaptomus coloradensis, which was a major food source of the aquatic food web. While 
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salamander eggs were not directly affected by the low pH, a drastic decrease in resources 

from the altered pH caused salamander mortality to increase significantly. 

 

N Deposition in Grand Teton National  

Park, Wyoming 

 

 

Most studies on alpine ecosystems of the Rocky Mountains come from the 

Colorado Front Range and specifically from Niwot Ridge. Though these studies have 

been very important in demonstrating how an alpine ecosystem is affected by N 

deposition, they do not fully represent the entire Rocky Mountains. There are few studies 

that compare N deposition in ecosystems of the Intermountain West. The flora, soils, and 

geology vary from region to region throughout the Rocky Mountains (Habeck, 1987; 

Burns, 2003) so N deposition may affect these ecosystems differently.   

 The flora of alpine ecosystems across the Rocky Mountains have similarities in 

that the species are similar based on physiognomic and species characteristics. They also 

differ because of dispersion selection based on barriers such as the Wyoming Desert that 

separates the Colorado Rockies from the Wyoming Rockies. The Teton Mountain Range 

has vegetation characteristics more in common with the mountain ranges found in 

Montana, Idaho, and Southern Canada than it does with the mountain ranges found in 

Colorado, Utah, and New Mexico based on these dispersal barriers (Hadley, 1984). The 

dissimilarities are not large enough to disallow a comparison between Wyoming 

mountains and Colorado mountains because the Wyoming Desert and Colorado Plateau 

had near-periglacial Pleistocene conditions which acted as a corridor for dispersal of 

alpine species resulting in modern day island biogeographic regions in the alpine 

communities of the Rocky Mountains (Mears, 1981). The differences and similarities in 
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physiognomy of the mountains of the Rockies make each one of them unique study areas; 

therefore more studies in different places of the Rocky Mountain Range may contribute a 

better understanding of the Rockies as a whole, compared to intensive studies of a few 

sites. Since most atmospheric N deposition studies occur at Niwot Ridge along the 

Colorado Front Range, our study  used comparisons of the Colorado Front Range to the 

Teton Mountain Range with the physiognomic differences in mind because there are few 

N deposition studies elsewhere in the Rocky Mountains. 

 The state of Wyoming has only 8 National Atmospheric Deposition Program 

(NADP) monitoring stations. The Grand Teton National Park (GTNP) is located in the 

northwest corner of the state. The closest deposition monitoring station is in Yellowstone 

National Park, 50 miles to the north and located at low elevation. Consequently, the 

station at Yellowstone National Park may not accurately reflect N deposition at high-

elevation alpine sites in GTNP. The USGS has 5 snow survey sites located throughout 

the Grand Teton Mountains located at Rendezvous Mountain, Garnet Canyon, (both 

located inside GTNP), Teton Pass, Togwotee Pass, and Four Mile Meadow (located 

outside the boundaries of GTNP). These sites may be slightly more accurate for studying 

N deposition in GTNP. However, the Rendezvous Mountain site is the only site located at 

a high enough elevation to yield usable data for alpine N deposition. 

 

Monitoring N status in “arid” alpine soils  

of the Rocky Mountains 

 

 

  Monitoring the status of N in soil is a very complex issue because N is an 

essential nutrient for all life forms (Fenn and Poth, 2004) and the N cycle depends on 

several biotic and abiotic factors such as N pools and distribution (Bowman, 1992), plant 
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function, microbial activity (Lipson et al., 1999), and soil properties such as temperature, 

moisture regime, and pH.  

 Methods to determine soil N status consists of static and dynamic measurements. 

Static measurements are usually a “snapshot” in time of soil properties, such as C and N 

pools, C:N ratios, or KCl extractable inorganic N (Jaramillo et al., 2003).  Dynamic 

measurements of soil N status integrate N releases over a period of time either in the field 

or in the laboratory under more controlled conditions. This usually entails placing probes 

or resin bags in the field for periods of time, use of 
15

N isotope tracers in soils, or 

conducting field or lab incubations with soil samples to monitor N mineralization and 

nitrification rates (Sala et al., 2000; Hanselman et al., 2004). 

 Assessing N-saturation or excess N typically involves looking at indicators such 

as high levels of nitrate reductase activity of enzymes (Norby et al., 1989; Magill and 

Aber, 1998), accumulation of N or amino acids in plant foliage (Ohlson et al., 1995; 

Stams and Schipholt, 1990), increased emissions of N trace gases from soil (Castro et al., 

1994; Sitaula et al., 1995), high soil NO3
-
  concentrations and NO3

-
 leaching rates, and 

increases of NO3
-
 concentrations in stream water (Riggan et al., 1985; Aber et al.,  1989; 

Stoddard, 1994).  

 Since there are so many factors involved in determining soil N status, it is 

relevant to consider geographic and climatic variables during the examination of any soil 

study. Fenn and Poth (1998) created a list of ecological indicators of N status for the arid 

soils of the western U.S.  The Intermountain west of the U.S. (which includes alpine soils 

of the central Rocky Mountains) is considered arid based on general precipitation patterns 

and lower moisture availability inland compared to coastal (Nagy and Grabherr, 2009; 
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Körner, 2003).  Alpine zones in the Rocky Mountains can indeed be considered relatively 

dry. As the Rocky Mountain range typically receives less moisture and more radiation 

than other mountain ranges in the western U.S. Within the Rocky Mountain Range, the 

Central Rockies have the least amount of humidity relative to the maritime effects on the 

Northern Rockies, and the Gulf moisture influencing the Southern Rockies (Kittel et al., 

2002). Another significant factor is that topographically high places  in alpine systems (as 

opposed to the depressions that retain snow pack) occur on the tops of watersheds where 

water tends to flow off the mountain and water reserves tends to be low due to shallow 

soils (Burns, 2003). This leaves roughly half of the alpine ecosystem drier than lower 

ecosystems that have perennial flows and that are rich in organic matter and are 

characterized by more soil development. For this reason, alpine ecosystems are often 

compared to desert and arid environments (Körner, 2003). 

 The list of potential ecological indicators for soil N status summarized by Fenn 

and Poth (1998) includes:  

 Soil C:N ratios 

 NO3
- 
: NH4

+ 
ratios in soil  

 Soil NO3
-
 (in soil solution or in soil extracts) 

 Nitric oxide (NO) emission levels from soil 

 N-mineralization and nitrification rates 

 Foliar nitrogen:phosphorus (N:P), C:N, and N:cation ratios 

 Accumulation of NO3
- 
in foliage of understory and overstory species 

 Plant response to N fertilization 

 Streamwater NO3
-
concentrations and fluxes 
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 Base saturation and soil pH 

 Because of the extensive prior research at Niwot Ridge, several ecological 

indicators of N cycling in alpine soils have been used in the Rocky Mountains. These 

show several similarities to Fenn and Poth’s (1998) list: 

 Inorganic N concentrations in the root zone of the soil (Bowman et al., 2006)  

 Changes in vegetation species composition and abundance (Phillippi et al., 1998) 

 N in aboveground biomass vegetation (Bowman et al., 2006) 

 Measure of N cycling in soil 

 Use of N
15 

tracers to evaluate N sinks and plant uptake of N 

 N leaching from system (Binkley and Vitousek, 1989)  

 Calculations of critical N load to vegetation species and communities that have 

been found to be sensitive to changes in N through the use of N amendments (Fenn 

et al., 2003 a and b; Bowman et al., 2006). 

 This study has taken into consideration most, but not all of the above ecological 

indicators of N status for alpine soils. Measurements such as NO emissions, NO3
- 
levels 

in soil and stream water, and use of  N
15

 tracers were not considered because of financial 

and logistical constraints.   

 

Objectives 

 

Our project focused on one of the modeled “hot spots” in the Rocky Mountain 

Range, Grand Teton National Park, that receives between 0.1-2.5 kg N ha
-1 

yr
-1

 of N 

deposition (Nanus et al., 2003). 
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  The objective of this project was to evaluate the effects of atmospheric N 

deposition on alpine plant communities and soils of Grand Teton National Park. This 

study investigated potential indicators of changes in N status (i.e. early warning signs). 

There is evidence from prior research in the Rocky Mountains that responses by alpine 

vegetation to increased N input not only depend on current N status, but may also be 

affected by environmental conditions such as snow distribution, microclimate, and wet 

vs. dry soil conditions (Brooks et al., 1996; Fisk et al., 1998). If we can establish early 

warning signals of ecosystem change by examining soil functions and plant community 

structure (i.e. change in function), then it might be possible to avoid the negative effects 

of excess N before expensive restoration is necessary.  

 Specific study objectives for my master's thesis are:  

1) Assess N deposition input along a presumed deposition gradient from north (high) to 

south (low) based on the maps from Nanus et al., (2003).  

2) Assess the current N status in the alpine ecosystems of Grand Teton National Park 

through a series of soil and plant indicators.  

3) Examine the edaphic conditions of each site and assess their influence on N status. 

 4) Assess the influence of the N deposition regime and edaphic conditions on plant and 

soil characteristics such as: community composition, aboveground and belowground 

biomass, and changes in soil N status to see whether soil indicators are more responsive 

than vegetative indicators. 

 My research project will address the following hypotheses: 

Hypothesis 1:  N Deposition Gradient:  N deposition follows a north to south gradient, 

with the highest N input at the north end of the park (i.e. Moose Basin) and the lowest N 
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input at the south end of the park (i.e. Rendezvous Mtn.) as proposed by the Nanus et al., 

(2003) maps (resolution 1km). 

Hypothesis 2(a): Soil Responses:  Soils in the high N deposition sites are already 

exhibiting changes in N status by having more available N, higher nitrification potential, 

and lower C:N compared to the low N deposition sites.  

Hypothesis 2(b) Plant Responses:  Plants in the high N deposition sites are responding to 

changes in N status compared to plants located in the low N deposition sites. They will be 

characterized by higher aboveground and belowground plant biomass (i.e. foliage 

biomass and root biomass), more N in foliar and root content, and lower species richness 

and composition in high N deposition locations. 

Hypothesis 3: Soil Microclimate: The effect of N deposition on plants and soil 

characteristics is influenced by edaphic conditions such that wet edaphic conditions (that 

capture more snow and remain wet throughout the year) will behave as N rich sites 

compared to dry edaphic conditions (such as topographic areas where snow does not 

accumulate). This will be reflected in higher N concentrations, less plant species, higher 

nitrification potential (due to more microbes found in wet soils), and lower C:N in 

aboveground and belowground biomass. 
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CHAPTER 2 

METHODS 

Physiography 

 The Rocky Mountain Range spans a distance of 4,800 kilometers starting in New 

Mexico and ending in the northern most region of British Columbia in Canada. The 

United States is divided into different physiognomic regions based on terrain, soil texture, 

rock type, geologic structure, and history, with the Rocky Mountain Range being among 

one of the physiognomic regions (Fenneman, 1931). The Teton Mountains are part of the 

Rocky Mountain Range and are located in the “central Rockies” region (Fenneman, 

1931). They represent the eastern most extent of several Pacific Northwest flora making 

it a corridor for plant dispersal. 

 The Teton Mountains are located in the northwest corner of the state of Wyoming 

(Fig. 2.1). They reside within Grand Teton National Park on the eastern slope and the 

Jedidiah Smith Wilderness area within the Caribou-Targhee National Forest on the 

western slope of the Teton Range. Yellowstone National Park is to the north of the Teton 

Mountains and the city of Jackson Hole, Wyoming, is located to the south of the 

mountain range.  

 

Climate 

 The Teton Mountains have a north-south orientation making them perpendicular 

to the prevailing westerly winds. Wind flow patterns indicate that the state of Wyoming 

is covered by air from the Pacific most of the time with a small percentage of cold air 

from masses that move down from Canada (Curtis and Grimes, 2004). Storm systems 



31 

typically come down from the northwest dropping precipitation on the north end of 

Grand Teton National Park first, then the south end. The Teton Mountains represent an 

orographic barrier that creates a rain shadow with much of the precipitation falling on the 

western slopes and creating semi-arid conditions on the eastern slopes.  

 The Wyoming climate is semi-arid. Precipitation during the growing season 

averages 250 mm and comes in spring and early summer, mostly as afternoon 

thunderstorms that develop daily. The alpine zone of the Teton Range receives over 7 

meters of snow annually. Average maximum temperature ranges around 16°- 18° C, with 

average summer lows in the range of -1°and 4.5° C and occasional freezes. Temperatures 

rarely exceed 37.8° C above 1830 m. Winter temperatures above 2900 m range from -32° 

to -20.5° C.  

 

Geology 

 Thousands of 7-7.5 magnitude earthquakes over the last 13 million years on the 

Teton fault caused the crust of the earth to break and rise up, forming the Teton 

Mountains. The Teton fault is 65 kilometers long from north to south, and 24 kilometers 

wide from east to west. It lies on the eastern slope of the Teton Range which explains the 

abrupt, steep eastern face of the Tetons and the long, gentle slope of the western face of 

the Tetons. The east side of the Teton fault rises up while the west side of the fault sinks 

and forms the Jackson Hole valley (Smith and Siegel, 2000). 

 From 2 million to 300,000 years ago, Jackson Hole Valley was a convergence 

point for three major glaciers from the north, north-east, and west to form the 

Yellowstone ice cap that was 3200 m in elevation. Alpine glaciers formed in the canyons 

of the Teton Mountains and carved U-shaped valleys that deposited and transported 
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sediment to the Jackson Hole valley. When the glaciers receded 14,000 years ago, 

massive flooding and fast erosion of Paleozoic and Mesozoic formations exposed deep 

layers of older bedrock and formed many glacial lakes (Good and Pierce, 1996). 

 The oldest rock formations that have been eroded and exposed from the processes 

of the last 13 million years occur highest on the Teton Range, and are estimated to be 2.4-

2.8 billion years old.  These rocks typically consist of gneisses, schists, and granites.  

Other rocks that form the Teton Mountains are around 2500 million years old and consist 

of precambrian limestones, various shales, metamorphosed sandstones, and interbeded 

volcanic deposits (Harris et al., 1997).  

 

Study Sites 

 Three locations in Grand Teton National Park were chosen based on a modeled 

atmospheric N deposition gradient (High, Medium, Low) from Nanus et al., (2003) and 

GIS maps (1 km resolution). Sites were selected based on elevation between 2810-3070 

m (difference of 260 m), slope less than 15º, and the following vegetation community 

types based on GIS maps (datum NAD 83) from resource management at Grand Teton 

National Park headquarters: alpine dwarf shrubland, dry graminoid upper elevation, 

herbaceous rockland slopes, herbaceous alpine wetland meadows, tundra-dry alpine, 

sparsely vegetated limestone pavement, and glacier/snow.  The sites are: Moose Basin to 

the north (high N deposition), Paint Brush Canyon (medium N deposition), and 

Rendezvous Mountain to the south (low N deposition; Fig. 2.2; see appendix 1 for plot 

list and UTMs).  

 Within each location, study sites were established at contrasting edaphic 

conditions. Edaphic plots were selected based on visual assessment of snowpack, local 

http://en.wikipedia.org/wiki/Paleozoic
http://en.wikipedia.org/wiki/Mesozoic
http://en.wikipedia.org/wiki/Limestone
http://en.wikipedia.org/wiki/Shale
http://en.wikipedia.org/wiki/Metamorphic_rock
http://en.wikipedia.org/wiki/Sandstone
http://en.wikipedia.org/wiki/Volcano
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topography, and vegetation type from the GIS maps (Fig. 2.3). Wet sites contained soils 

that were physically wet or moist to the touch throughout the summer, had a snow field 

draining into it, or were described on the GIS vegetation community maps as herbaceous 

alpine wetland meadows, or glacier/snow. They were typically low topographic 

depressions where snowmelt accumulated and soils were the most developed. Dry sites 

were chosen based on visual assessment of exposed areas with little snow accumulation 

and having vegetation described as dry graminoid upper elevation, herbaceous rockland 

slope, tundra, sparsely vegetated limestone pavement, and sparsely vegetated exposed 

hillside from the GIS vegetation maps. Dry sites were typically higher topographic areas 

with sparse vegetation and poorly developed, shallow soils. 

 Moose Basin (MB) is located at the north end of Grand Teton National Park at the 

north fork of Webb Canyon. The trail is an official park service trail and the trailhead is 

located at the Lower Berry patrol cabin on the northwest side of Jackson Lake. Moose 

Basin wet and dry plots are located adjacent to each other within 25 meters.  

  Paint Brush Canyon (PB) is located in the middle of the park between Cascade 

Canyon and Leigh Canyon. The trail is an official park service trail and the trailhead is 

located at the String Lake picnic area. The sites are located in the Upper Paint Brush 

Canyon below Paint Brush Divide.  The dry plots are located down the first shelf when 

walking off the main Upper Paint Brush trail to the Grizzly Lake unofficial trail. The wet 

plots are located on the second shelf below in a wetland drainage area. The wet and dry 

plots are approximately 200 m apart.  

 Rendezvous Mountain (RDV) is located at the south end of the park, and is 

accessed by the tram at Teton Village owned and operated by Jackson Ski Resort. The 
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wet plots for Rendezvous Mountain are located off the official trail and to the north along 

a drainage where the trail starts to ascend up to the western ridge. The dry plots are 

located just above the drainage on top of the western ridge off the trail and to the north. 

The wet and dry plots are approximately 200 m apart. GIS UTMs (NAD 83) for each plot 

were recorded and are summarized in the appendix table 2.1. 

Soils 

 The soils of Grand Teton National Park are derived from limestones, a variety of 

shales, metamorphosed sandstones, and interbeded volcanic deposits as parent materials 

(Love, et al., 1989). The Tetons were formed 13 million years ago as opposed to the rest 

of the Rocky Mountains that were formed 65-100 million years ago. Therefore, the 

Tetons are typically craggy rock faces at higher elevations (Smith and Siegel, 2000). 

Some parts of the Tetons are made of quartzite bedrock which is highly resistant to 

erosion. The soils are considered “new” because of the geological “youngness” of the 

Tetons, geological parent material structure, elevation, climate, and glaciation periods.  

 Elevation and climate in the Tetons creates short growing seasons and severe cold 

and freezing.  There is not enough time between freeze and thaw for parent material and 

organic matter to break down fast enough to create and develop pedogenic soil horizons 

except in collection basins and protected areas. Some areas are saturated with water 

during spring run-off and most of the growing season. This inhibits soil formation as well 

(Buol et al., 2003). Glaciation periods tilled sections of the soils and mixed them into a 

horizonless mixture (Mahaney, 1975). 

 Inceptisol/Entisol and Mollisol soil orders make up respectively 25-50% and 10-

25% of the soils found in the alpine zone of the Tetons with 25-50% designated as rock 

http://www.answers.com/topic/limestone
http://www.answers.com/topic/shale
http://www.answers.com/topic/metamorphic-rock
http://www.answers.com/topic/sandstone
http://www.answers.com/topic/volcano
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outcrop. Mollisols form in semi-arid climates typically under grasslands and therefore are 

less relevant to this study. Inceptisols and Entisols are typically horizonless soils found 

on flood plains, delta deposits, or steep slopes where parent material has either recently 

accumulated, or the soil horizon formation has been limited because of constant shifting 

of the soils, or unfavorable climatic conditions. The parent material is typically 

limestone, wind-blown sand, or loess. This study only considers the top 15 cm of the soil 

layers because it is considered the rooting zone where most chemical reactions take place.  

 Moose Basin (MB) soils are part of the Rock outcrop-Sheege-Starman association 

and Midfork-Spearhead association (Soil Survey of Teton County, Wyoming, 1975; 

Young et al., 1982). The parent materials consist of calcareous sedimentary rocks that 

weathered and formed the soils via stream and slope alluvium. The pH of the MB soils 

were 5.93 for the wet plots, and 6.82 for the dry plots. Sheege soil series are very shallow 

and well drained soils that formed from limestone residuum and are found on 

mountainsides between 3-30% slopes. The Starman series is also a very shallow, well-

drained soil that formed from limestone residuum. They are found on hillsides and 

mountain slopes with a slope range of 3-70%. A typical pedon of 0-10 cm of the Sheege-

Starman association consists of a pale brown, very stony loam that turns dark brown 

when moist. It has a moderately fine granular structure that is soft, very friable, sticky, 

and slightly plastic that contains fine roots. It is 25% pebbles, and 20% cobble that is 

calcareous and moderately alkaline. At 10-20 cm, the Sheege-Starman association is a 

pale brown, very stony clay loam that turns dark brown when moist. It has a weak, fine, 

subangular blocky structure that is slightly hard, friable, sticky, and plastic. It is 25% 

gravel, 35% cobble and stone. It is slightly calcareous. At the eight inch mark, it is hard, 
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fractured limestone. The Midfork Series is very deep, well-drained, and formed from 

calcareous alluvium and colluvium from deposited sediment from landslides. Midfork 

soil series are typically found on alluvial fans and mountainsides of a slope range of 15-

70%. Spearhead series are also a very deep, well-drained soil formed in collivium, 

alluvium, and glacial till typically found on mountainsides with a slope ranging between 

3-70%. A typical pedon of the Midfork-Spearhead association for the top 0-10 cm 

consists of a brown, very stony loam that is dark brown when moist. It has a moderately 

fine granular structure that is soft, very friable, slightly sticky and slightly plastic with 

many fine, medium, and coarse roots. The soil consists of 40% pebbles and 10% cobble 

and is mildly alkaline. The next 10-25 cm of the Midfork-Spearhead association consists 

of a brown very stony loam that is dark brown when it is moist. It has a mix of weak to 

medium subangular blocky structure and a weak medium fine granular structure that is 

soft, very friable, sticky, and slightly plastic. It has fine and coarse roots with mostly 

medium roots. It typically is 20% pebbles, 10% cobble, and 10% stone and is mildly 

alkaline.  

 Paint Brush Canyon (PB) sites have soil associations that consist of Rock outcrop-

Teewinot-Moran soil series and a small amount of Rubble land. The parent materials of 

these soils consist mostly of granite and gneiss, that formed slope alluvium, colluvium, 

and till during the glaciation periods. The pH for PB was 5.74 for the wet plots and 6.21 

for the dry plots. The Teewinot soil series consist of shallow, well-drained soils that 

formed from granite residuum. They are found on mountainsides with a slope range of 

20-70%. Moran soil series consist of very deep, well-drained soils formed from 

colluvium and alluvium found on mountainsides with a slope range of 3-70%.  A typical 
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pedon of Rock outcrop-Teewinot-Moran for the first 0-38 cm is a very cobbly grayish 

brown sandy loam that is very dark grayish brown when moist. It has a moderately fine 

granular structure that is soft and very friable. It is 25% pebbles 10% cobble, and 5% 

stones having bedrock at 25-50 cm.  

 Rendezvous Mountain (RDV) soils are part of the Rock outcrop-Sheege-Starman 

association (as described for the Moose Basin Sites) and Starman-Owlcan association. 

The parent materials of these soils consists of calcareous shale and shallow, hard 

sandstone that formed in colluvial and alluvial outwash weathered from underlying 

bedrock. The pH for RDV was 6.34 for the wet sites and 6.65 for the dry sites. The 

Owlcan series consists of a very deep, well-drained soil formed from alluvium found on 

alluvial fans and mountainsides with a slope range of 30-70%. A typical Starman-Owlcan 

pedon usually has a couple of centimeters of forest duff on top, but this was not the case 

in the study plots. The first 0-2.5 cm is a dark grayish brown loam that is a very dark 

brown when moist. It has a moderate, very fine granular structure that is soft, very 

friable, slightly sticky, and slightly plastic. The next 2.5-13 cm is a pinkish grey loam that 

is dark brown when moist. It has a moderate and fine subangular blocky structure that is 

slightly hard, friable, sticky and plastic. The next 13-28 cm of the Starman-Owlcan 

association is a brown clay loam that is dark brown when moist. It has a moderate and 

fine subangular blocky structure that is slightly hard, friable, sticky, and plastic (Soil 

Survey of Teton County, Wyoming, 1975).  

 

Experimental Design 

 Within each of the 3 contrasting N deposition sites (Fig. 2.2), plot pairs were 

established at 3 locations and on contrasting edaphic conditions (wet/dry, Fig. 2.3) 
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yielding a 2-factorial design (3 deposition levels, 2 edaphic conditions) with three 

replications for a total of 18 plot pairs (36 plots total).  The wet and dry plot pairs were 

located within 200 meters of each other (Fig. 2.3).  Each plot measured 2.5 m x 2.5 m and 

was separated by a 1 m buffer zone where microclimate measurements were made. A one 

meter by one meter inner plot was set up within each 2.5 m x 2.5 m plot for the non-

destructive observation of ecological community changes (Fig 2.4). Plot pairs consisted 

of an untreated control and an N addition plot. Treatments were not part of this study. 

Results from the 18 unrelated control plots were used in this study.  

 

Measurements 

  This study assessed how alpine plant and soil communities respond to changes in 

N deposition by collecting information on N deposition, soil microclimate, vegetation, 

and soil properties (Fig. 2.4).  

 

N deposition  

 The atmospheric N input in two of the three sites was estimated from snow pack 

surveys conducted at maximum snow pack level in conjunction with the USGS.  Plot 

level measurements of atmospheric N deposition in wet and dry edaphic conditions were 

measured using ion exchange resin tubes (IERT see Fig. 2.6) that were deployed over 

summer (“Fenn collectors” Fenn and Poth, 2004) or an entire year (“Johnson collectors” 

Susfalk and Johnson, 2002; Johnson et al., 2005).   

 To estimate winter N input, snow pack surveys at the maximum snow pack time 

were conducted at Rendezvous Mountain (3/15/06 and 3/13/07) and Moose Basin 

(3/27/06) in coordination with George Ingersoll of the USGS. After a training session 
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with the USGS, a team skied into MB and dug a snow pit, measured pH, snow water 

equivalent (SWE, cm), temperature, snow pack crystals, and packed a snow sample out 

that was sent to the USGS to be analyzed for  H
+
, Ca

2+
, Mg

2+
, Na

+
, K

+,
 NH4

+,
 Cl

-
, SO4

2-
, 

NO3
- 
(µeq L

-1
), and DOC  (mg L

-1
). USGS personnel conducted the snow pack survey for 

RDV. There are no snowpack values for PB and MB 2007 sites because access to the 

sites was restricted due to avalanche danger.  

 To estimate summer N input, Fenn collectors (Fenn and Poth, 2004) were 

installed just outside the plots (two per plot with one blank per plot pair) (Figs. 2.4 and 

2.6) to capture input of NO3
-
 and NH4

+
 from wet and dry atmospheric N deposition 

during summer. The collectors were set out for a 70-90 day period (7/8/2006-10/3/2006, 

and 7/11/2007-10/9/2007) during the alpine growing season.   

 Fenn collectors (Fig. 2.6) consisted of 30.5 cm diameter funnels with 35.6 cm by 

2.5 cm tube connected to the funnel that held 25-30 grams of Rexin
®
 ion exchange resin 

that was 300 analytical grade, mixed bed, strong acid/base of medium porosity with mesh 

size of 16-50 and a total exchange capacity of more than 1.5 meq g
-1

(Fisher Scientific, 

New Jersey). Blanks consisted of a sealed tube with resin inside that did not have a 

funnel associated with it. The blanks were set up in the field alongside the collectors to 

gather information about changes in resin (if any) under the influence of environmental 

factors. 

 To compare winter and summer N input from the snow pack surveys and the Fenn 

collectors to annual N input estimates, Johnson collectors (Susfalk and Johnson, 2002; 

Johnson et al., 2005) were installed just outside the plots (two per plot with one blank per 

plot pair) (Figs. 2.4 and 2.6).  Johnson collectors gathered NO3
-
 and NH4

+
 input from 
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snowmelt, and wet and dry atmospheric N deposition over a one year period (7/8/2006-

7/20/2007). 

 Johnson collectors consisted of a 5 cm by 17 cm PVC tube  inserted into a coupler 

that had 18-20 g of Rexin
®
 resin sandwiched between 2 sheets (approximately 6-8 cm

2 
, 

20 µm grade) of  Nitex
®
 nylon bolting cloth (Wildlife Supply Company, New York). 

Two to three tent stakes were taped to the coupler to hold the collector off the ground 

which was left in the field for one year.  Blanks consisted of a sealed collector device 

with resin inside placed alongside the collectors. 

 After retrieval from the field, the ion exchange resin from each collector was 

added to 100 ml of a 2 M KCl solution and placed on a shaker for one hour. The KCl 

solution was then filtered using Whatman 42 filters and sent to the Utah State University 

(USU) Analytical Laboratory for analysis of NO3
-
 and NH4

+ 
Using a Lachat Instruments

©
 

Flow Injection Analyzer QuikChem 8000.  

 

Edaphic Conditions 

 To compare edaphic conditions among the sites, soil moisture and temperature 

measurements were taken in each plot pair.  Soil moisture regime was estimated from 

ECH20 probes (Decagon Devices Inc
©

, Washington) installed at 10 cm soil depth within 

the one meter buffer zone between plot pairs (Fig. 2.4). ECH20 probes are flat 10 cm by 

2.5 cm plastic probes that measure electrical conductivity and translate these into 

volumetric soil moisture content using factory-established calibrations. Readings were 

taken during each visit to the sites in 2006 and 2007 with a hand-held device (ECH20 

Check soil moisture monitor) and expressed as percent moisture and millivolts. In 
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addition, two data loggers (Em5b by Decagon
©

) were installed in early summer of 2006 

at one wet and one dry edaphic site at each of the three locations. They were programmed 

to record moisture data every 1.5 hours and data were downloaded in the field using a 

hand-held computer.  Due to data logger malfunction, the only reliable data was obtained 

at the MB wet plot (7/10/2007-10/9/2007) and the RDV wet plot (7/24/2006-9/30/2006).  

 Soil temperature was measured with Tidbit data loggers (Onset
© 

Corp. Bourne, 

Massachusetts) installed in early summer 2006 buried around 15 cm soil depth in the 1 m 

buffer zone (Fig. 2.4). The data loggers recorded soil temperature from 7/06/2006 to 

7/20-2007 at 1.5 hour intervals and were downloaded in the field using an optical 

shuttle™ (Onset Corp. Bourne, Massachusetts) when sites were visited during the 

summer and fall of 2006 and 2007. 

 

Soil N Status 

 To determine soil N status, three soil cores were taken in each plot using a PVC 

pipe that was 5 cm diameter by 17 cm length. The first of the three soil cores was used 

for bulk density, root biomass, and total C and N. The second soil core was used for 

extractable NO3
-
 and NH4

+
 and soil moisture content. The third soil core was used for 

nitrification potential. Because soil depth was highly variable and soils did not always fill 

the core completely, three additional measurements were taken for each core to estimate 

soil volume sampled. The measurements were (see Fig 2.5): 1) ground level (GL): 

measurement of how far the core stuck out of the ground after the core was pounded into 

the ground. 2) TOP: the measurement of the actual soil inside the core to the top of the 

PVC. This measurement was to account for compaction from pounding the core into the 

ground and was taken BEFORE the core was removed from the ground. 3) BOTTOM: 
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Measurement of how far the soil stuck out from the bottom (if at all) of the core AFTER 

the core was removed from the soil. Based on these values, the soil volume sampled was 

estimated as:  

Volume = (core length – GL + Bottom) x Core surface area. 

 For bulk density, one of the soil cores was dried at 65° C for 24 hours and 

weighed. The soil from the core was sieved into a coarse and fine fraction (<2 mm) after 

removing roots. A small sub-sample (1-2 g) of the fine fraction from each bulk density 

core was crushed with a mortar and pestle and sent to the USU Analytical Lab for 

determination of percent C and N (LECO Truspec
® 

CN elemental determinator St. 

Joseph, Michigan). Percent C and N were converted into grams per m
2 

for the top 10 cm 

of the soil based on the bulk density and volume of the soil cores.  

 Extractable inorganic N (NH4
+
 and NO3

-
) in the second soil core was determined 

by in situ KCl extractions using 100 ml of  2 M KCl. The soil core was homogenized in a 

container in the field and a subsample of 6-10 grams of field moist-soil was added to the 

KCl solution. The bottles of soil and KCl solutions were kept in portable coolers. Within 

30 hours of arrival in the field laboratory, bottles were shaken for approximately one hour 

and filtered into 25 ml vials using Whatman 42 filter papers. Extracts were frozen until 

analysis for NH4
+
 and NO3

-
 using a Lachat Instruments

©
 Flow Injection Analyzer 

QuikChem 8000. All soil concentrations were expressed on a dry weight basis. The 

remaining soil from this soil core had large rocks manually removed and was weighed, 

then dried at 65° C for 24 hours, and weighed again to estimate gravimetric soil moisture 

content.  
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 Mineralization and nitrification potential was determined on soil samples from the 

third soil core removed from each plot. Each soil core was kept cool in portable coolers 

until processed upon arrival in the lab. Roots and rocks where removed manually or with 

a 2 mm sieve. Four, 8-gram samples were placed in test tubes and incubated at 24° C for  

30 and 60 days at field moisture content with two replicate samples per incubation 

period. Samples were aerated at mid incubation by opening the containers and allowing 

gasses to escape and oxygen to enter. After the designated incubation period, 40 ml of 2 

M KCl was added to each test tube, and tubes were placed on a shaker for 45 minutes 

then allowed to settle for one hour. Samples were filtered with Whatman 42 filters and 

the extract was sent to USU Analytical Labs for NH4
+
 and NO3

- 
analysis.  Inorganic N 

concentrations from the field extracted soil samples were used as initial (t0) values, and 

nitrification potential was calculated as the increase in soil NO3
- 
concentration over the 

30-day and 60-day incubation time. All rates were expressed on a soil dry weight basis.  

 Nutrient availability supply rate in the soil was assessed by installing PRS™™ 

(Plant Root Simulator, Western Ag Innovations, Canada) at 10 cm soil depth in each plot. 

The probes were small, flat ion exchange probes (3 cm x 15 cm) (Hangs et al., 2004), and 

each plot measurement was derived from eight probes per plot (4 anion and 4 cation 

exchangers). The PRS™ probes were deployed during two summers (from 7/8/2006 

to10/3/2006, and from 7/20/2007 to10/6/2007) and one winter (from 10/3/2006 to 

7/20/2007) to estimate nutrient releases in summer and winter, respectively. Because the 

burial time varied among sites and seasons, nutrient release rates were standardized to 

100 days for comparison. Probes were sent to Western Ag Innovations in Canada to be 

analyzed for 14 ions, including NH4
+
and  NO3

-
.  
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Plant Responses 

 To asses potential vegetation differences among locations and edaphic conditions, 

species richness, aboveground biomass, and belowground biomass were measured. 

 Plant cover, composition, and species richness surveys were conducted within a 1 

m x 1 m undisturbed subplot in the center of each 2.5 m x 2.5 m plot. Overall percent 

cover of mixed vegetation based on foliage cover was visually recorded, along with 

percent bare ground, percent lichens, percent moss, and percent rock (further subdivided 

into rock, cobble, and gravel). Cover estimates were based on Grossman et al., (1998) 

national vegetation classification system for cover scale. However, increments of 5% 

were used instead of 15% because the alpine vegetation is so sparse (see appendix Table 

2.2).  Each plant occurring in the 1 m x 1 m subplot was identified and a specimen was 

taken outside the plot (when needed) to compare to herbarium specimens for a positive 

identification. Each species of plant within the plot was assigned a percentage (with 0-5% 

increments as described above) for its relative contribution to plant cover compared to 

other species in the plot. The median of this percent cover was then used to obtain species 

diversity and richness. 

 Aboveground plant biomass was determined from destructive sampling using two 

25 cm
 
x 25 cm PVC frames that were randomly tossed into the sampling area of each plot 

(Fig. 2.4). After recording the percent plant cover within the frames, all vegetation within 

the frames was clipped completely to bare ground and separated into live and dead 

portions. The samples were placed in a drying oven at 65° C for 24 hours and the weight 
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of aboveground live and dead biomass was recorded. The samples were then ground into 

powder using a Wiley mill and mortar and pestle, and a subsample was sent to the USU  

Analytical Labs for a C and N analysis (LECO).  

 Belowground root biomass from the first soil core was determined by manually 

removing the roots from the soil and separating the mineral material by floating the roots 

in water. The roots were then dried at 65° C for 24 hours and weighed. The volume of the 

core and weight of the roots were used to estimate the root biomass per square meter for  

the top 10 cm of the soil horizon. The roots were then ground into a fine powder with a 

mortar and pestle and a sub-sample was sent to the USU Analytical Labs for total C and 

N analysis using LECO. 

 

Statistical Analysis 

 The study design is a 2 factor (factor1: nitrogen deposition gradient. factor 2: 

edaphic conditions.) sample type. A mixed model ANOVA on the response variables for 

differences between locations and edaphic conditions was conducted. The fixed effects 

are: (1) The N deposition gradient because they were not chosen at random; they were 

chosen based on the Nanus et al., GIS maps (Nanus et al., 2003); and (2) Edaphic 

conditions (wet/dry communities) because there are other types of communities than just 

wet and dry. The random effects are: The 3 areas in each location (i.e. replicates), and  

the locations of the wet/dry plots (i.e. within the wet/dry communities, the plots were 

randomly placed). 

 Two-way ANOVAs were performed on the various plot-level measurements to 

test for significant differences among sites along a N deposition gradient (hypothesized 

high, medium, and low sites), differences between wet and dry sites, and to test whether 
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there were significant interactions between edpahic conditions and  gradient effects  for 

the measurements considered. 

 The study examined whether there is a gradient from north to south in the Grand 

Teton National Park, whether this is reflected in site characteristics and N status 

differences, and to what extent responses differ with edaphic conditions within the alpine 

ecosystem.  

 To asses N input, a test for hypothesis 1, the data from Fenn collectors, Johnson 

collectors, and snow pack surveys were considered in the analysis. The snow pack survey 

gradient could not be statistically compared because there is only one data point for MB 

in 2006, two data points for RDV for 2006 and 2007, and no data points for PB because 

of inaccessibility during the harsh winter months in the Tetons.   

 To assess differences in N status and test hypothesis 2, soil and plant N indicators 

were compared.  To characterize potential differences in N status, soil N content, C:N 

ratios,  the amount and form of KCl extractable  inorganic N,  nitrification potential, and 

available N (i.e., PRS™ probes), as well as  plant N contents and distribution were 

considered in the analysis.  

 To test for differences in plant responses to N input/status in the wet versus dry 

plots, and to test hypothesis 3, Shannon-Weiner indices for species richness, abundance, 

and evenness were calculated based on the plant cover estimates. Biomass (in grams), 

plant N content, C:N ratio, and percent cover were compared using two-away ANOVA.  
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Fig. 2.1. Map of Wyoming illustrating where Grand Teton National Park is located (in 

black circle) 
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Fig. 2.2. Map of Grand Teton National Park with field site locations, Moose Basin, Paint 

Brush Canyon, Rendezvous Mountain. 
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Fig. 2.3. Plot location layout.  Wet and dry plots were located within 200 m of each other. 

Areas were located approximately 200-800 m apart at each location. Maps were made 

using NAD83 projection. 
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Fig. 2.4. Plot pair layout: A: Fenn Collectors B: Johnson collectors C: 25 cm x 25 cm 

PVC frames for destructive biomass sampling D: 1 m x 1 m undisturbed subplots for 

species richness surveys and treatment regime. E: 2.5 m x 2.5 m plot F: 1m buffer zone 

between plot pairs G: Onset
©  

tidbit temperature data logger H: Decagon
© 

 ECH2O 

moisture probe. I: Decagon
©  

Em5b soil moisture data logger (2 per site) 
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Fig. 2.5. Ion exchange resin tubes (IERT); Fenn and Johnson collectors set up in the field 

at paint brush wet site.  

  

Fenn 

Johnson 
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Fig. 2.6.  Measurements of soil cores from each plot. GL: ground level. when the core 

was pounded into the ground, this was the distance the core went in or the measurement 

of how far the core stuck out of the ground. 2) TOP: the measurement of the actual soil 

inside the core to the top of the PVC. This measurement was to take compaction into 

account from pounding the core into the ground and was taken BEFORE the core was 

removed from the ground. 3) BOTTOM: Measurement of how far the soil stuck out from 

the bottom (if at all) of the core AFTER the core was removed from the soil. 

  

GL TOP 

BOTTOM 
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CHAPTER 3 

NITROGEN DEPOSITION INPUTS IN  

GRAND TETON NATIONAL PARK 

 The Teton Mountains run in a north-south direction with most of the precipitation 

coming from the northwest and moving toward the southeast (Curtis and Grimes, 2004). 

The working hypothesis in this study is that the north end of the national park receives 

more atmospheric N deposition than the south end of the park, resulting in the possible 

gradient observed in the modeled N deposition maps developed by Nanus et al., (2003).   

 To test these proposed differences in N deposition, three different measurements 

were used: 1) snow pack surveys for winter 2006 (two sites only) and winter 2007 (one 

site only); (Fig. 3.1); 2) N inputs over a 90-day period in summer 2006 and 2007 using 

exchange resins (Fenn collectors; see fig. 2.6 in chapter 2); 3) Annual N input from 

summer 2006 to summer 2007 using exchange resins (Johnson collectors; see fig. 2.6 in 

chapter 2).   

 In the alpine zone of the Tetons, the four seasons were separated by months: 

December, January, February, and March were considered the winter months; April, May 

and June were spring; July, August, and September were summer; and October and 

November were the fall months.  For the year 2006, the Teton study sites received a total 

summer precipitation of 10.74 cm (4.23 inches) for MB, 14.66 cm (5.77 inches) for PB, 

and 12.55 cm (4.94 inches) for RDV. The 2006 winter precipitation was 96.04 cm (37.81 

inches) for MB, 71.86 cm (28.29 Inches) for PB, and 82.65 cm (32.54 inches) for RDV.  

The 2007 summer precipitation was 18.85 cm (7.42 inches) for MB, 20.27 cm (7.98 

inches) for PB, and 16.00 cm (6.30 inches) for RDV. The 2007 winter precipitation was 
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60.22 cm (23.71 inches) for MB, 56.95 cm (22.42 inches) for PB, and 65.71 cm (25.87 

inches) for RDV. Based on the 2006 and 2007 data, winter precipitation comprises 84%-

89% of the annual precipitation (84% in MB, 79% in PB, and 89% in RDV). Therefore, 

the predominant form of precipitation in the Tetons comes in the form of snow. 

 According to long-term annual precipitation from the PRISM data (from 1971-

2000), MB receives slightly more annual mean precipitation (174 cm) than PB (168 cm) 

and RDV (166 cm), with most in the form of snow. This could account for the observed 

higher N deposition in MB than in RDV.    

 The snow pack survey showed a winter N input at MB of 1.70 kg N ha
-1 

with 

NH4
+
-N

 
comprising 59% of the total winter N input.  RDV showed 0.96 kg N ha

-1 
with 

NH4
+
-N

 
comprising 53% of total N in 2006.  For the 2007 snow pack survey, there was 

0.85 kg N ha
-1 

at RDV with NH4
+
-N comprising 49% of the total winter N (Fig. 3.1). 

Moose Basin was inaccessible in 2007 due to avalanche danger.   

 The long term USGS data showed an average winter input of 0.12-0.81 kg N ha
-1 

as NH4
+
-N and 0.20-0.72 kg N ha

-1
as NO3

-
-N

 
(Ingersoll et al., 2008 and 2009) for the 

central Rocky Mountains region, with an 11-year average (1993-2004) for Rendezvous 

Mountain of 0.41 kg N ha
-1 

for NH4
+
-N

 
and 0.43 kg N ha

-1
as NO3

-
-N (Ingersoll et al., 

2009).  The measured total N input snowpack data from MB and RDV
 
fall within the 

long term averages for the snow pack data reported by the USGS of RDV, and can thus 

be considered representative (Fig. 3.1).  

 Our data would support a north to south gradient for snow N input, but since snow 

pack surveys only represent two data points, data from more sites would need to be 

collected to ascertain such a gradient.  
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 Fenn collectors at the three locations were set out for an average of 90 days to 

collect summer atmospheric N deposition for 2006 and 2007. In general, summer N input 

was small (0.2-0.3 kg N ha
-1

) with NH4
+
-N comprising 60% of the total summer N input. 

There is no evidence of a significant north to south gradient in summer N input for either 

inorganic N or NH4
+
-N

 
and NO3

-
-N

 
separately.  Overall, when the 2006 and 2007 summer 

N inputs are compared to winter inorganic N inputs from the snowpack survey, most of 

the N coming into the system comes during winter rather than the summer months with 

slightly more in the form of NH4
+ 

(Fig. 3.2).  

 The summer inorganic N inputs for both 2006 and 2007 show no significant 

differences between wet and dry sites or significant interactions between location and 

edaphic conditions (Fig. 3.3). Since topography dictates where snow is deposited in 

alpine zones (Fisk et al., 1998), it was hypothesized that the wet sites, which accumulate 

more snow, would receive more inorganic N than the dry sites, especially in winter. This 

is possibly because the wet sites in the winter accumulate more snow pack via wind-

blown deposition on leeward sides of topography (Rehder, 1976). During the summer 

months however, the wet and dry sites receive the same distribution of precipitation and 

are no longer affected by the snow. Therefore, no significant differences in N input 

between wet and dry sites would be expected in the summer months.  

 Johnson collectors were set out at the field sites for approximately 1 year (from 

7/8/06-7/20/07) to estimate annual N input and to compare values obtained from summer 

plus snow N input for the three sites. Table 3.1 summarizes the N input from the Johnson 

collectors. Note how much more NH4
+ 

-N there is compared to NO3
- 
-N. The N flux 

derived from the Johnson collectors would suggest an annual inorganic N input of 15-23 
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kg N ha
-1

 yr
-1

, an amount well above the critical load estimated by Williams and 

Tonnessen (2000) of 4 kg N ha
-1

 yr
-1

. When compared to winter snow pack inputs (Fig. 

3.4), the Johnson collectors seem to capture significantly more NH4
+
-N

 
(8-10 kg N ha

-1 

yr
-1

)
 
than the snow pack survey indicates. While the NH4

+
 levels seem to be higher than 

expected, the NO3
-
 levels seemed to slightly coincide to the reported data of the Nanus (et 

al., 2003) deposition maps that show the highest input of NO3
-
-N

 
in the Rocky Mountains 

is 0.46-0.68 kg NO3
- 
-N ha

-1
 yr

-1 
along the Colorado Front Range, the Park Range in 

Colorado, and the Wasatch Range in Utah. The snow pack survey and the summer NO3
- 
-

N input were summed for MB and RDV and then compared to Johnson collector values. 

The Johnson collectors are still two to three times higher for NO3
-
-N

 
(2.42 kg N ha

-1
 yr

-1 

vs. 0.76 kg N ha
-1

 yr
-1 

for MB, and 1.17 kg N ha
-1

 yr
-1 

vs. 0.56 kg N ha
-1

 yr
-1 

for RDV Fig. 

3.5). Based on the Nanus maps of NO3
-
-N

 
deposition (Nanus et al., 2003), MB receives 

0.46 kg NO3
-
-N ha

-1
 yr

-1
, PB 0.34 kg NO3

-
-N ha

-1
 yr

-1
, and RDV 0.12 kg NO3

-
-N ha

-1
 yr

-1
. 

Our NO3
-
-N

 
input estimates for the summer plus winter compared well to the trends from 

1993-2004 for the Central Rocky Mountain region with mean NO3
- 
-N inputs of 0.41 kg 

NO3
- 
-N ha

-1
yr

-1
 reported by Ingersoll (2008). Though the Johnson collector NO3

-
-N

 
data 

was higher than what Nanus (2003) and Ingersoll (2008) reported, it still compared to 

literature more than the NH4
+
-N. Therefore, further analysis was performed on the 

Johnson NO3
-
-N

 
inputs.  

 There were no significant differences in NO3
-
-N

 
inputs estimated from the 

Johnson collectors by site, gradient, or edaphic condition. The NH4
+
-N

 
data on the other 

hand, seem suspect and need investigation as to what might be responsible for these high 
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estimates. Therefore, no further statistical analysis was performed on the NH4
+
-N data 

from the Johnson collectors.  

  Resins have been used since the mid-1930s (Adams and Holmes, 1935) to mimic 

soil colloid function, and more recently, plant roots (Hangs et al., 2004). Our study used 

the resins to capture N before it reached the soil to estimate atmospheric N input as  Fenn 

and Johnson did as a new experimental utilization of these resins (Fenn and Poth, 2004; 

Susfalk and Johnson, 2002; Johnson et al., 2005).  

 There are several possible explanations for the unusually high NH4
+ 

N input 

values derived from the Johnson collectors: The resins could have been breaking down 

from long exposure; there could have been external source contamination to the resins; 

the resin affinities for NH4
+ 

could have been greater than for NO3
-
, so more NH4

+ 
was 

being captured by the resins; the extraction methods used could have yielded greater 

extraction recovery of NH4
+ 

 than NO3
-
; or other unaccounted for phenomena could have 

taken place in this study as well. 

 Our study used resin beads that had amide active groups which function as site 

exchangers (Skogley and Dobermann, 1996). Several studies indicate that these amine 

groups, when placed in the field for extended periods of time, can start to break down 

resulting in overestimates of NH4
+ 

(Binkley and Matson 1983; Kjønaas 1999; Langlois et 

al., 2003; Fenn and Poth, 2004). This may have happened to the Johnson collectors in this 

study since they were placed in the field for close to one year and were subject to wet/dry 

and freeze/thaw cycles.  

 One way to quantify and account for the degree of resin breakdown is to include 

“blanks” which are resin collectors sealed with plastic caps set out into the environment. 
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These do not collect anything but reflect background “noise” originating from the resins 

themselves (Skogely and Dobermann, 1996; Langois et al., 2003; Simkin et al., 2004). 

Blanks were set out in our study for both Johnson and Fenn collectors. The average blank 

extraction results for the Johnson collectors was between 0.15-0.65 µg/g for NO3
- 
-N, 

while NH4
+
-N values were 0.92-2.66 µg/g.

 
In the Fenn collectors, the average blank 

extractable NO3
- 
-N was 0-0.15 µg/g and 0.10-0.16 µg/g for NH4

+
-N. Both collectors 

exhibited more extractable NH4
+
-N

 
than NO3

-
-N

 
which could be a result of resin 

breakdown from wet/dry and freeze/thaw cycles (Mamo et al., 2004). The Johnson 

collectors showed as much as ten times more resin modification than the Fenn collectors. 

Exposing the resin for 6-12 months with freeze/thaw and wet/dry cycles may have 

increased the NH4
+ 

values and provided a potential for microbial transformation into 

NO3
-
. This resin breakdown may partially explain the higher NH4

+ 
numbers exhibited in 

the Johnsons collectors, but the extractable NH4
+
-N is far above the average extractable 

NH4
+
-N found in the literature on these types of resins and collectors (Susfalk and 

Johnson, 2002; Langois et al., 2003; Fenn and Poth, 2004).   

 Contamination from soil dust or organic matter that blows into the collector can 

potentially inoculate the resins with soil microbial entities (Susfalk and Johnson, 2002). 

Microbes ingest the organic N inside the collector and transform the atmospheric N 

contaminants and amine groups released from the resins. This further adds to mineralized 

inorganic N in the collectors. The Johnson collectors were placed less than five cm above 

the ground with the open top no more than 25 cm from the ground, whereas the bottom of 

the Fenn collectors were at least 15-20 cm above the ground. The Johnson collectors may 
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have been close enough to the ground to capture wind-blown soil particles and organic 

matter to create some contamination within the tubes. 

 Mamo et al., (2004) conducted a study on the integrity and affinities of strong 

acid-base mixed bed resins (resins similar to the one used in this study) in freeze-thaw 

and wet-dry conditions. They found that freeze-thaw cycles did not affect the adsorption 

efficiency of the resins, but wet-dry cycles caused the resin beads to swell and shrink 

causing desorption of N by 3.3%.  Skogely and Dobermann (1996) examined affinities 

for resin adsorption and found that the affinity for NH4
+ 

on the exchange site on synthetic 

resins ranked 19
th

 out of 22 cations present in the soil, especially when the active group is 

sulfonated (Langois et al., 2003). The affinity for NO3
- 
ranked 3

rd
 out of 19 anions present 

in the soil. If NO3
-
 indeed has a stronger affinity to the resin beads than NH4

+
, the 

Johnson collectors should have collected and reflected more NO3
-
 in the KCl extracts 

than NH4
+
. Perhaps the wet/dry cycles described by Mamo et al., (2004) influenced the 

affinities of NO3
- 
and NH4

+ 
in the field differently causing desorption of NO3

-
 but not 

NH4
+
 during field incubations resulting in higher extractable NH4

+
-N. However, this 

cannot account for the unusually high NH4
+
-N deposition values measured.  

 Lab studies are sometimes done to quantify adsorption efficiency and recovery of 

adsorbed N with KCl extractions. Typically, a solution carrying a known amount of the 

ion of interest is poured over the resins. The throughfall solution is analyzed to determine 

adsorption efficiency for the ion. The ion is then extracted from the resins. This gives the 

investigator an idea of the resin affinities for the ions, how much of the ion slips by the 

resin (i.e., adsorption efficiency), and how much of the ion does not get extracted from 

the resin (i.e., recovery). Langois et al., (2003) found that the recovery for NO3
- 
was 
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anywhere between 50%-100% and the recovery for NH4
+ 

had much more variability, 

ranging from -146% (i.e. more background level than recovered) to 22.5% (Binkley and 

Matson, 1983; Skogely and Dobermann, 1996;  Langois et al., 2003, Reno, 2006; Simkin 

et al., 2004).  Langois et al., (2003) also found that the recovery for NO3
-
 was influenced 

by the resin pretreatment (i.e. rinse with KCl solution before deploying to the field), the 

brand of resin, and the extraction solution used; whereas NH4
+
 recovery was not affected 

by this. However, as discussed earlier, resins made of amino compounds could release 

NH4
+
 and interfere with analysis (Binkley and Matson, 1983; Langois et al., 2003).  This 

could explain the background “noise” found in the blanks with more NH4
+
 than NO3

-
, but 

it does not seem to account for the differences between the Fenn vs. Johnson collectors 

for the unusually high amounts of NH4
+
 observed.  

 Overall, this study took into consideration the 2 M KCl pretreatment (it was 

decided not to pretreat the resin), the type of resin to use to collect atmospheric N, 

comparison of results to other similar studies using similar methods for collecting N, and 

comparison of results to NADP stations set up throughout the Rocky Mountain Region. 

The phenomena of unusual amounts of NH4
+
,
 
but comparable amounts of NO3

-
 is 

perplexing and an explanation for it goes beyond the scope of this project. Mixed-bed 

resins may not be an accurate way to estimate NH4
+
-N deposition when collectors are 

placed in harsh field conditions for prolonged periods of time such as ours were. 

 In summary, our measurements show that the Tetons receive 1.42 kg N ha
-1

 yr
-1 

of 

N deposition (0.25 kg N ha
-1

 in the summer months and 1.17 kg N ha
-1

 in the winter 

months) which coincides well with the Nanus et al., (2003) estimate of 0.1-2.5 kg Nha
-

1
yr

-1
for the Tetons. However, this seems to be a little low compared to the hot spot found 
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along the Colorado Front Range of the Rocky Mountains which receives upwards of 9 kg 

N ha
-1

 yr
-1 

(Williams and Tonnessen, 2000; Williams et al., 2003; Burns, 2003; Blett et 

al., 2004; Bowman et al., 2006). The input pattern for N in the Teton Mountains follows a 

similar trend observed in the rest of the Rocky Mountain Range, with more N coming in 

the form of snow. 
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Table 3.1 Nitrogen input from Johnson collectors set out for standardized 365 days  

(kg N ha
-1 

yr
-1

) 

 

 

Site Name NH4
+-N NO3

--N Inorganic N 

MB 9.28 2.42 11.7 
PB 10.2 0.80 11.0 
RDV 7.62 1.17 8.79 
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Fig. 3.1 Comparison of snow pack surveys (N input kg ha
-1

) for 2006, 2007, and long-

term average of RDV from 1993-2004 (from Ingersoll et al., 2008 table 2).  
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Fig 3.2 Amount and form of inorganic N input (kg N ha
-1

) and during 90-day period in 

summer 2006 and 2007. All sites compared to winter inputs at MB (2006) and RDV 

(2006, 2007).  
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Fig 3.3. Comparison of inorganic N input (kg N ha
-1

 per 90 days) during summer 2006 

and 2007 in dry and wet sites along a north-south gradient.   
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Figure 3.4 Amount and form of N input during summer 2006 and 2007 (Fenn collectors), 

in winter 2006, and annual input estimates (Johnson collectors) for Moose Basin, Paint 

Brush, and Rendezvous Mountain (kg N ha
-1

).  
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Fig. 3.5. Comparison of annual NO3
- 
N input for the sum of the 2006 Fenn + Snow pack 

and Johnson collectors. 
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CHAPTER 4 

EFFECTS ON NITROGEN STATUS IN  

THE SOILS AND PLANTS  

 The objectives of this study were to examine whether the observed differences in 

N deposition had any influence on N status at the three sites, and whether edaphic 

conditions at each site affected N status. Ultimately, the goal was to identify system 

indicators to detect changes in ecosystem structure/function that could be used in the 

future as early warning signs. The soil objective was to assess soil N status both statically 

and dynamically and evaluate what system characteristics, if any, were strong or weak 

indicators for differences in soil N status. The plant response objective was to assess 

effects of N deposition on plant characteristics, such as above and belowground biomass, 

N content, species composition and species richness.  

 

Soil Microclimate  

 The microclimate of the soil needs to be considered when examining soil nutrient 

cycling. The major factors of soil microclimate, such as soil moisture and temperature,   

influence the rate at which N cycles and becomes available in the soil.  Soil moisture and 

temperature affect nutrient availability by influencing distribution and chemical reactions 

throughout the soil matrix. Our hypothesis was that wet sites would have more available 

N than the dry sites because 1) wet sites capture more snow and N deposition and 2) wet 

sites remain wetter in the summer than the dry sites allowing more turnover of organic 

matter.  
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 To determine soil moisture regime, moisture probes (ECH2O probes) were placed 

in sites that were a priori designated as wet and dry based on snow retention patterns (see 

chapter 2).  Six probes (3 for wet and 3 for dry sites) were placed between the plot pairs 

at the three locations for a total of 18 probes. These probes were factory calibrated to 

provide volumetric moisture content using a uniformly loamy soil that did not consider a 

coarse fraction for the soil. Due to data logger failure, continuous annual moisture 

measurements were not possible. When each plot was visited (twice per summer), soil 

moisture was measured with a hand-held device (ECH20 Check soil moisture monitor, 

Decagon Devices
© 

Washington) and expressed as millivolts converted into volumetric 

water content.  

 In addition, soil samples were taken from the plots on 8/4/2006 and 7/11/2007 at 

MB, 8/14/2006 and 7/20/2007 at PB, and 9/4/2006 and 7/14/2007 at RDV for KCl 

extractions. Soil moisture content was determined on a subsample for each plot and 

converted into volumetric moisture content based on measured gravimetric soil moisture 

content and soil bulk density from soil cores. This allowed a comparison between the 

ECH20 probe readings and volumetric soil moisture content, and a means to further 

compare edaphic conditions.  The ECH20 probes recorded a range between 0.03-2.27% 

soil moisture, while the soil samples had a range of 3.15-38.29% volumetric soil moisture 

content. A simple regression analysis to evaluate if there was any correlation between the 

ECH20 probe readings and the volumetric moisture content of the soil samples revealed 

that there was little, if any, correlation between the two methods (R
2
= 0.026). The ECH20 

probes may therefore not be good indicators to monitor soil moisture unless the probes 

are calibrated to the specific soils under investigation rather than using the factory 



70 

calibrations (see Cobos and Chambers, 2010 to learn how to calibrate ECH20 probes for 

specific soils).   

  A two-way ANOVA was performed with volumetric soil moisture as the variable 

and compared to edaphic conditions across all locations and within sites to see if there 

were differences in soil moisture content. For summer of 2006, there was a significant 

difference in soil moisture between wet and dry sites (P = 0.004) with a significant 

interaction (P = 0.03)  between location and edaphic condition that shows that differences 

between wet and dry plots were most pronounced at PB, whereas MB and RDV showed 

no significant difference between wet and dry plots (Fig. 4.1). There was a significant 

difference among the locations (P = 0.006) with RDV soils (4.4% soil moisture content) 

significantly drier than MB and PB sites (13.8% and 14.2% soil moisture content, 

respectively) which were not different from each other. For summer of 2007, there was a 

significant difference at the site level between wet and dry (P = 0.002), again mainly due 

to the PB sites where the wet sites had 15.3% and the dry sites had 3.1% soil moisture 

content. Neither location nor the interaction were significant. 

 Comparison of the 2006 and 2007 volumetric soil moisture suggests that 2006 

was a wetter year than 2007. Climate data from the PRISM (Parameter-elevation 

regression independent slopes model, 2006 and 2007) data set suggests that in summer 

2006 (i.e. July-September) MB received 5.8-7.5 cm, PB received 5.0-6.5 cm, and RDV 

received 5.6-7.0 cm of summer precipitation. In 2007, MB received 4.0-6.8 cm, PB 

received 5.6-6.6 cm, and RDV received 4.8-5.8 cm summer precipitation. Based on these 

data, MB and RDV indeed received slightly less precipitation in 2007 suggesting it was a 

drier year for those sites.  
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 In summary, all the dry sites seem to have similar soil moisture over the snow free 

period for both 2006 and 2007. However, sites designated as “wet” differed in soil 

moisture content among sites and sampling dates. The PB wet sites had significantly 

more soil moisture in 2006 compared to the RDV sites but not in 2007. The PB wet sites 

could of had significantly more moisture in 2007, but the soils in the RDV wet sites were 

wetter in 2007 than in 2006, thus reducing differences to insignificant levels between PB 

and RDV wet sites in 2007. The PRISM data suggests that 2006 had slightly more 

summer precipitation than 2007.  

 We also wanted to see how different the edaphic sites were in terms of 

temperature. To determine this, temperature data loggers were installed in each plot-pair 

(18 loggers total) to measure soil temperature. There was an abrupt increase in soil 

temperature during the winter to spring transition, where temperatures went from zero to 

above zero, indicating the date of the beginning of the snow free period (Table 4.1). We 

anticipated that differences in edaphic conditions were reflected in the dates of the snow 

free periods, namely that wet sites would have a snow pack longer than dry sites. 

However, the data from wet and dry sites at RDV and the three wet sites and one dry site 

at PB suggest that the snow free period for these sites came on similar dates (late June). 

Data from the one wet site and the three dry sites at MB suggest that the snow free period 

came earlier (late May-early June) at MB than RDV and PB, and that MB dry sites might 

have lost snow pack slightly earlier than the MB wet sites.  

 An ANOVA was performed on the temperature on the date of the snow free 

period to see if there were differences in temperature among the three sites. There was a 

significant difference in location (P = 0.005) with RDV sites being overall warmer than 
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PB and MB (i.e., RDV 3.96 °C, PB 1.84 °C, and MB 2.26 °C on the date of the snow free 

period). A comparison among wet versus dry sites was not done because there were not 

enough data.  

 Annual degree days were calculated from 7/10/2006 to 7/10/2007 for MB and 

RD, and from 8/14/2006 to 8/14/2007 for PB (Fig. 4.2) and wet and dry sites were 

compared with a two-way ANOVA. The results showed that there is a significant 

difference between locations (P = 0.02) with RDV being slightly warmer than PB, while 

the temperature regime at MB was not different from either RDV or PB. There were no 

significant differences in edaphic conditions and no significant interactions among 

location and edaphic conditions.  

 In summary, the moisture and temperature data show that RDV had lower overall 

soil moisture during the growing season, and warmer soil temperatures on the date when 

soils became snow free compared to PB and MB. The PB wet sites had the most soil 

moisture of all three sites, but the temperature on the date of the snow free period was not 

significantly different from MB and RDV. The observed higher precipitation in the north 

of the park at MB from the Nanus et al., (2003) maps and the PRISM data does not seem 

to have an effect on the soil moisture or temperature along a north to south gradient for 

the summer months, but it may perhaps have an effect on total annual and winter 

precipitation. 

 

Ecosystem Response: above and  

belowground N pools  

 This study considered the N status in terms of N content in both aboveground 

biomass with live and dead foliage, and belowground with plant roots and soil. 
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Combining all N pools gives an estimate of the total amount of N contained in the entire 

ecosystem. Summer 2007 was not considered in this analysis because there is no 

aboveground biomass data. 

 The two-way ANOVA of 2006 ecosystem N pools show that there was a 

significant difference in location (P = 0.004) with MB (average N is 186.60 g N m
-2

) 

having more total N  than the PB (average N is 93.79 g N m
-2

)
 
and RDV (average N is 

86.82 g N m
-2

). There were no significant differences among wet and dry sites or a 

significant interaction between edaphic conditions and site (Fig. 4.3).   

 

Soil Response: N Status 

 This study considered both static and dynamic indicators of soil N status. Static 

indicators include total N pool, extractable inorganic N (NH4
+
 and NO3

-
) in the root zone, 

and C:N ratios. Dynamic indicators include net N mineralization and nitrification 

potential, and availability of inorganic N in the soil root zone measured by PRS™ probes 

over standardized 100-day intervals. 

 It was hypothesized that soil N status in the modeled high N deposition sites (i.e. 

Moose Basin) would be higher than the soil N status in the modeled low N deposition 

sites (i.e. Rendezvous Mountain). The hypothesis stated that MB was already showing 

signs of higher N status possibly expressed by higher soil N, more extractable N, lower 

C:N,  more available N, and higher nitrification potential, compared to the RDV and PB 

sites. To test this hypothesis, soil cores were taken in 2006 and 2007, and a sample from 

the fine fraction portion (with roots removed) was analyzed for C and N content (g m
-2

 in 

top 10 cm of soil), and then C:N ratios calculated from this. Inorganic N was measured in 

the soil with KCl extractions. Net mineralization and nitrification potential was measured 
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as a dynamic laboratory indicator under a controlled environment. PRS™
 
probes were 

placed in the field plots for periods of times representing the changes in seasonal flux and 

then the data were standardized to 100 days during summer and winter to provide 

dynamic and seasonal field rates of resin-extractable N.   

 Soil N pools in the upper 10 cm determined from the soil cores were used in this 

study to compare N status across all three sites (Fig. 4.4).  For the 2006 N pools in the top 

10 cm of the soil, the two-way ANOVA shows that there was a significant difference (P 

= 0.001) in total soil N among locations, with MB (site average is 168.34 g N m
-2

) having 

a larger soil N pool than RDV (site average is 76.68 g N m
-2

) and PB (site average is 

75.08 g N m
-2

). There were no significant differences between wet and dry sites overall, 

but there was a significant interaction (P = 0.03) with dry sites having higher or lower N 

pools than wet sites depending on location (Fig. 4.4). 

 For 2007, the two-way ANOVA showed a significant difference among locations 

(P = 0.03) with MB (site average is 185.9 g N m
-2

) again having a significantly larger N 

pool than PB (site average 126.73 g N m
-2 

) and  RDV (site average 122. g N m
-2

) which 

did not differ from each other. There were no significant differences between the wet and 

dry sites overall, but there was a significant interaction (P = 0.03) where the MB dry plots 

(238.49 g N m
-2

) had a larger N pool than the MB wet plots (133.31 g N m
-2 

, Fig. 4.4) 

but no significant differences between wet and dry plots for RDV and PB. 

  It was hypothesized that the observed high N deposition (MB) sites would have 

lower C:N ratios than the low N deposition sites (RDV and PB) due to higher N in the 

soil.  The two-way ANOVA for the 2006 C:N ratio showed a significant difference in 

location (P = 0.05) with the highest values at RDV, that were significantly different from 
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those in PB, with no significant difference between MB and either PB or RDV.  There 

was no significant difference between wet and dry sites, and no significant interactions 

between edaphic conditions and location (Fig. 4.5).  

 The ANOVA for 2007 C:N showed a significant effect of location (P = 0.01) 

where RDV had a significantly higher C:N than MB and PB, while MB and PB were not 

significantly different from each other. There was a significant difference between wet 

and dry sites (P = 0.02) and there was a significant interaction between the location and 

edaphic conditions (P = 0.02) with significantly higher C:N in the RDV wet sites 

compared to the RDV dry sites. At MB and PB there were no differences between wet 

and dry sites (Fig. 4.5).  

 The RDV wet sites consistently had the highest C:N ratio for both years (27.70). 

There were few differences in C:N ratio among sites (MB = 10.92 PB = 10.12, RDV = 

20.49), between edaphic conditions, and between years. Therefore C:N ratio may not be a 

strong indicator for assessing differences soil N status but soil N pools alone, may be 

more sensitive and reveal more information.  

 Extractable soil NH4
+
-N and NO3

- 
N is a static indicator of the amount of 

inorganic N in the soil at any one given time. For both 2006 and 2007, extractable soil 

NO3
- 
was consistently below detection limits (detection limit was 0.25 mg L

-1
). However, 

NH4
+
 was detectable for 2006 (Fig. 4.6), but not in 2007 and statistical analysis was done 

for NH4
+
-N for 2006, but not 2007 for this reason.  Extractable soil NO3

- 
N in the field 

may therefore not be a strong indicator of N status in the soil, but extractable soil NH4
+
-N 

may be considered if it is detectable.  
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 The 2006 two-way ANOVA for extractable soil NH4
+
-N showed no significant 

differences between location (P = 0.09), likely due to high variability in NH4
+ 

levels 

among sites and edaphic conditions. There were no significant differences between wet 

and dry plots across all sites, and no significant interaction among edaphic condition and 

location.  Since soil NO3
- 
N was rarely detectable and NH4

+
-N was detectable for 2006, 

but not in 2007, KCl-extractable inorganic N in the field may not be a very good 

indicator for soil N status.  It should be noted that we only did one KCl extraction per site 

per summer. Alpine ecosystems have high seasonal variability in N cycling where soil N 

availability differs during the seasons (Bardgett et al., 2007; Miller et al., 2007 a and b). 

Soil N may not be as available during this period of time as it is during the spring or fall. 

Perhaps a series of KCl extractions to coincide with the seasons would be more 

appropriate when trying to chartacterize soil N status with field KCl extractions. 

 Inorganic soil N (NH4
+
 and  NO3

-
) flux was determined from a dynamic field 

measurement using PRS™ probes (exchange membranes) placed in each plot for three 

consecutive seasons (i.e. summer 2006, winter 2006, and summer 2007).  The N release 

rates in µg NH4
+
 and NO3

–  
per 10 cm

2
 over a standardized 100-day period were analyzed 

(Fig. 4.7).  

 The two-way ANOVA for summer 2006 PRS™-probe N values indicated  

significant differences in total inorganic N mostly due to differences in NO3
- 
N with no 

significant differences in NH4
+
-N.  The two-way ANOVA for NO3

- 
-N showed a 

significant difference among locations (P = <0.0001) where MB had the most probe-

extractable NO3
- 
-N (site average 71.28 ± 11.31 µg), RDV was intermediate (site average 

41.88 ± 5.70 µg) and PB had the least amount of soil  NO3
-
-N (site average 5.40 ± 0.92 
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µg) during the summer growing season. There was a significant difference between wet 

and dry sites (P = 0.02) but also a significant interaction between location and edaphic 

conditions (P = 0.0004). The wet plots in MB (95.65 ± 5.40 µg) had more soil NO3
-
-N 

than the dry plots (46.9 ± 4.11 µg), whereas the RDV dry plots (48.17 ± 3.81 µg) had 

more soil NO3
-
-N than the wet plots (35.60 ± 10.42 µg). There were no significant 

differences in NO3
-
-N between the PB wet and dry plots.   

 Comparing wet sites among locations, they followed the overall location trend 

with highest NO3
- 
-N levels at MB, intermediate NO3

- 
-N at RDV, and the lowest at PB. 

For the dry sites, PB dry plots had significantly lower soil NO3
- 
-N

 
than the RDV and MB 

dry sites which were not significantly different from each other.  

 For winter 2006/2007, there were no significant differences in PRS™-extractable 

N among locations or any significant differences between wet and dry sites.  A statistical 

analysis was not done on the summer 2007 PRS™ data because data from all MB sites, 

all PB dry sites and one PB wet site, and two RDV wet sites are missing. There were not 

enough data to perform an ANOVA.  Fig. 4.7 illustrates the available data.  

 At both PB and RDV sites, the PRS™ extractable N levels were higher in 2007 

than 2006, even though summer 2007 was considered drier.   

 In this study, PRS™-extractable NH4
+
-N was less sensitive while PRS™-

extractable NO3
- 
N showed good responses to changes in edaphic conditions and 

locations, and may be a better indicator of differences in N status. Based on our results, 

the PRS™ probes seem to be good dynamic indicators for soil N. Putting them out for 

each season is a practical and inexpensive method for monitoring the changes in N 

cycling in the soil. 
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 To check whether variability in N status among the wet and dry plots at the three 

locations were related to variation in soil moisture, simple regressions were performed on 

inorganic N in soil KCl extractions (2006 only), soil N content, and PRS™-extractable  N 

(per 100 days) against volumetric soil moisture for 2006, 2007, and 2006 + 2007 

combined. None of the above regressions showed any significant correlations except the 

PRS™-extractable N for 2006 (P = 0.01 R
2 

= 0.30) which showed a weak positive 

correlation with soil moisture. These results suggest that there is no direct relationship 

between the status of N and the soil moisture regime. 

 Mineralization and nitrification potential derived from laboratory incubations 

were used as dynamic indicators of NH4
+
 and NO3

- 
release in the soil in a controlled 

environment. It was hypothesized that the MB sites would exhibit higher nitrification and 

net N mineralization rates than the RDV sites based on the supposedly higher availability 

of N in the soils. Incubations were done for 60 days, and soil samples were extracted and 

analyzed for NH4
+ 

and NO3
- 
at  0, 30, and 60 days.  The soil samples at time zero were 

extracted in the field and are the KCl soil extractions discussed above.  

 The 2006 two-way ANOVA for potential net N mineralization rate (Fig. 4.8) 

showed a significant difference among locations (P = 0.02) where PB had the highest 

mineralization potential, RDV had the lowest, and MB was not significantly different 

from PB and RDV. There was a significant difference between wet and dry sites (P = 

0.02) where wet sites generally had higher net N mineralization rates. However, there 

was also a significant interaction between edaphic conditions and location (P = 0.001), 

where MB and RDV showed no differences between their wet and dry plots, while there 
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was a significant difference between the PB wet and dry plots most likely driving this 

significant wet-dry effect.  

 The ANOVA for the 2007 net mineralization potential (Fig. 4.8) indicated a 

significant difference between locations (P = 0.05), where the PB sites again exhibited 

greater mineralization potential than RDV, and rates in MB were not significantly 

different from either PB or RDV. There were no significant differences between wet and 

dry sites, and no significant interaction between location and edaphic conditions.  

 There were no differences in net N mineralization potential among the dry sites at 

the three locations, whereas differences among wet sites were observed in 2006, but not 

in 2007. The PB sites had the highest net N mineralization potential for 2006 and 2007 

driven mostly by the high rates in the wet sites. The mineralization potential notably 

decreased across all sites from 2006 to 2007 concurrent with a decline in soil moisture.   

 If net mineralization potential was broken down into net release of NH4
+
-N and 

NO3
- 
-N, significant differences were observed for NO3

- 
-N only. We therefore 

specifically analyzed nitrification potential for 2006 and 2007 in this study (Fig. 4.9). 

Since T0 (initial) NO3
-  

levels were derived from field KCl soil extractions, and  were 

frequently below the detection limit, it was assumed that the T0 values were equal to zero 

for both 2006 and 2007.  A two-way ANOVA was done on the T1 and T2 NO3
- 
-N 

concentrations to see if differences among sites and/or edaphic conditions emerged. 

 The two-way ANOVA for the 2006 nitrification potential (Fig. 4.9) showed no 

significant differences after 30 days incubation, but a significant difference among 

locations was observed after 60 days incubation (P = 0.02), with RDV having the lowest 

nitrification potential while PB and MB had higher nitrification potential. There were no 
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significant differences in net nitrification potential among wet and dry sites after 30 and 

60 days incubations, nor was there a significant interaction between location and edaphic 

conditions.  

 The 2007 ANOVA for nitrification potential (Fig. 4.9) again showed a significant 

difference among locations for the 60 days incubation (P = 0.04), but not the 30 days 

incubation. RDV had a significantly lower nitrification potential than MB, with MB and 

PB showing higher values that were not different from each other. There was a 

significant difference between wet and dry sites for the 60 days incubation (P = 0.01), but 

not for the 30 days incubation, where wetter sites generally exhibited higher nitrification 

potential than dry sites. There was no significant interaction between location and 

edaphic conditions after either 30 or 60 days of incubation. 

 The nitrification and mineralization potentials were much lower in 2007 than in 

2006. Soil sampling protocols were the same for 2006 and 2007, and all field and lab 

procedures followed were the same for both seasons. Since soil samples were incubated 

at field moisture, these differences could be due to annual variability in moisture content. 

Despite this year-to-year variability in soil moisture content and N mineralization and 

nitrification rates, the MB sites showed consistently higher nitrification potential than 

RDV in both 2006 and 2007.  

 The various indicators of N status collectively are able to distinguish some, but 

not all, sites in terms of differences in N cycling. Overall, our data showed that MB, 

characterized by higher atmospheric N inputs, showed signs of relative N enrichment: 

lower soil C:N ratio, higher overall soil N content, higher extractable NH4
+
-N,  more 

PRS™ extractable inorganic soil N in the summer, but not in the winter, and  higher 
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nitrification potential compared to the RDV sites. The RDV location showed 

characteristics of being a N-poor site with the highest soil C:N ratio, lower KCl and 

PRS™-extractable inorganic N, and the lowest net N mineralization potential. The PB 

sites were harder to distinguish because they seem to have high variability in the 

indicators of N status that are intermediate and not always different from those at the MB 

and RDV locations. In general, the PB sites showed signs of higher N availability.  Thus, 

with this analysis several indicators of N status were able to distinguish N-rich from N-

poor soil characteristics, but not intermediary soil N conditions. In broad terms, data are 

supportive of our hypothesis that MB is N enriched compared to RDV.  

 

Plant Response: N Status 

 It was hypothesized that the plant communities in the high N deposition sites 

(MB) would have more live biomass, more N in roots and foliage, different allocation of 

above and belowground biomass, and decreased species richness than the sites with lower 

modeled N deposition (RDV). To test this hypothesis, in summer 2006 all aboveground 

biomass within a 50 cm
2 
frame was removed and separated into live and dead portions, 

then analyzed for C and N content. Roots were removed from the same soil cores as the 

soil C and N cores in 2006 and 2007 (to ensure volume and bulk density were the same) 

and analyzed for C and N, and a full floral survey was done for each plot in 2006 (See 

appendix 2 and 3 for full floral data and percent cover procedures).  

 Plant biomass plays an important role in the quantity and quality of SOM and 

nutrient turnover in an ecosystem (Booth et al., 2005). Alpine ecosystems typically have 

poor SOM quality leading to the slow breakdown of litter because of harsh climatic 

conditions such as short growing seasons and cold temperatures (Baron, 1992; Fisk et al., 
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1998; Burns, 2003). It is important to look at both above and belowground biomass and 

N content in an alpine system during the peak season of growth. This is because the 

aboveground biomass is only prevalent for the short growing season and a significant 

amount of biomass and N is found in the roots (Körner, 2003). Evaluation of the mass 

and N content of plant biomass can give an indication of litter production and potential 

soil N input since alpine plants senesce annually (May et al., 1982). This may aid in 

explaining how much N is being cycled into the soil and where it is being allocated. For 

this project, the hypothesis was that in the modeled high N deposition sites there would 

be more aboveground biomass as a reflection of higher N availability to plants, and less 

N stored in the roots of the plants. 

  For 2006, two-way ANOVAs were performed on total biomass (i.e. aboveground 

live+dead+root), aboveground (i.e. live+dead) biomass, and the root mass separately to 

see if there were any differences between locations and edaphic conditions. There were 

no significant differences in total plant biomass when above and belowground biomass 

were combined (MB 401 ± 224 g m
-2

, PB 453 ± 207 g m
-2

, RDV 188 ± 178 g m
-2

) and 

there were no significant differences in the mass of the aboveground biomass. However, 

when total biomass was broken down into individual components (i.e. live, dead, and 

roots), there were significant differences for each component of aboveground and 

belowground biomass. 

 The two-way ANOVA for the live aboveground plant biomass (i.e. weight in g m
-

2
 Fig. 4.10) showed a significant difference between locations (P = 0.03) where MB had 

more live biomass than RDV, and PB had intermediate amounts that showed no 

differences with either MB or RDV. There were no significant differences among 
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edaphic conditions or interaction between location and edaphic conditions for the live 

aboveground biomass. The mass of the dead aboveground biomass were not different 

among locations, but there was a significant difference between edaphic conditions (P = 

0.01) with more dead litter at wet versus dry plots (Fig. 4.10). There were no significant 

interactions between location and edaphic conditions for the dead biomass.   

 The two-way ANOVA for the 2006 mass of the roots contained in the top 10 cm 

of the mineral soil (Fig 4.11) showed significant differences among locations (P = 0.006) 

with PB (210 g m
-2 

per top 10 cm of soil) having more root biomass than MB (78 g m
-2 

per top 10 cm of soil) and RDV (64 g m
-2 

per top 10 cm of soil), which were not different 

from one another. There were no significant differences between wet and dry sites, but 

there was a significant interaction between location and edaphic conditions (P = 0.02) 

where PB had significantly higher root biomass in the wet plots than the dry plots. 

  For 2007, the National Park Service did not allow destructive sampling for 

aboveground biomass, but soil cores were taken and root biomass was estimated. Trends 

in root biomass were generally similar to those in 2006. However, the two-way ANOVA 

showed that there were no significant differences in root mass for 2007 (P = 0.3, Fig. 

4.11).  

 Simple regressions were performed on gravimetric soil moisture content versus 

aboveground and belowground biomass to see if there were any correlations between 

moisture and biomass. The gravimetric soil moisture content was averaged for both years, 

then compared to plant biomass. For both the aboveground and belowground biomass, 

there were no significant correlations between soil moisture and biomass (R
2 

 = 0.05 for 

both aboveground and belowground biomass). 
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 The N content in the foliar and root biomass (Fig. 4.12 and 4.13) were considered 

in this study as potential indicators of N status. The hypothesis was that the modeled high 

N deposition sites (MB) would have higher above and belowground N content than the 

low N deposition sites (RDV), but that less N would be allocated to the belowground 

biomass. 

 The two-way ANOVA for the 2006 live aboveground N content showed 

significant differences between locations (P = 0.01) with MB having the highest live 

foliar N content (MB 4.93 ± 3.0 g m
-2 

) and no differences between PB (2.34 ± 1.4 g m
-2 

) 

and RDV (1.71 ± 1.0 g m
-2 

;  Fig. 4.12). There were no significant differences between 

edaphic conditions and no interaction between location and edaphic conditions.  For all 

locations, the aboveground N content followed the biomass with the PB location 

intermediate for both biomass and live N content.   

 The two-way ANOVA for the 2006 dead aboveground N content showed no 

significant differences between locations. There were no trends observed between 

biomass and dead N content for the three locations. There was a significant difference 

between edaphic conditions (P = 0.03) with the wet sites having more overall N content 

in the dead foliage than the dry sites. There were no significant interactions between 

edaphic condition and location. The two-way ANOVA for the root N content in 2006 and 

2007 showed no significant differences between sites or edaphic conditions (Fig. 4.13). 

 In addition, a simple regression was done between volumetric soil moisture and N 

content of aboveground foliage, belowground roots, and both above and belowground 

plant N content for 2006 to see if soil moisture affected content and/or distribution of N 

in the plants. Furthermore, simple regression was done for volumetric soil moisture 
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content, root N content for 2006, 2007, and 2006+2007 to see if variability in soil 

moisture could account for the observed variability in the N content of the roots among 

sites, edaphic conditions, or sampling years.  None of the variables significantly 

correlated with soil moisture content for either or both years. 

 The C:N ratios for aboveground live, dead, and roots were a measure to assess 

translocation of N in plants, and whether or not more N was stored in foliage, litter, or 

roots. The two-way ANOVA for 2006 data showed no significant differences in C:N for  

aboveground live and dead foliage, and roots. However, in 2007, there was a significant 

difference in the root C:N ratio (P = 0.02) with RDV (C:N ratio 23) having a higher root 

C:N ratio than PB (C:N ratio 12) or MB (C:N ratio 11, Fig. 4.14). The C:N ratios for MB 

and PB were consistently around 10-12 for both 2006 and 2007, but the RDV C:N ratio 

for roots was higher in 2007 than 2006 with no significant differences between edaphic 

conditions.  

 Allocation of plant N in 2006 was used as an indicator to see if different N 

availability caused differences in how much N was allocated in belowground versus 

aboveground biomass. If the ratio was low, this would suggest preferential N allocation 

to foliar biomass, and if the ratio was high, it would suggest preferential N allocation to 

root biomass. A simple regression of root N content versus foliar N content suggested 

that there was no significant correlation between above and belowground N content. The 

ratios for root:foliar N content were 574 for MB, 1594 for PB, and 4635 for RDV.  A 

two-way ANOVA was performed on the root:foliar N content to see if there were 

statistical differences across locations and edaphic conditions since differences in 

root:foliar N content were empirically observed. There were no significant differences 
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among location or edaphic conditions, and no significant interactions between location 

and edaphic conditions.   

 Live:dead N content ratios were examined because  a high ratio might suggest 

that the plant, due to low soil N, removes N from its foliage before it senesces, therefore 

litter will be low in N. A low live:dead N content ratio may suggest that the plant does 

not remove N from its foliage before senescence due to enough soil and root N storage.  

The ratios for live:dead N content of plants were 42 for MB (NOTE: MBD1B was an 

outlier with a ratio of 367. When the outlier was removed, the live:dead N content had a 

mean of 13), a live:dead N content of 4 for PB, and RDV had 7.5 live:dead N content.  A 

simple regression was done on alive vs. dead N content which had a significant 

correlation (P = 0.001, R
2 

= 0.35).  This suggests that the N content of the dead litter 

simply followed the N content of the live foliage.  A two-way ANOVA was performed 

on the live:dead N content  to see if there were differences across locations and edaphic 

conditions since there appeared to be differences, and there was a correlation  between 

live:dead N content. There were no significant differences across location or within 

edaphic conditions.  

 The MB sites had the highest foliar N, total, and available soil N, but litter N 

content for all three locations were not significantly different. This indicates that MB may 

have sufficient supplies of N and the plants at that location may be exhibiting “luxury N 

uptake” described in a study that Bowman (1994) did in alpine communities where he 

fertilized plots and removed N as a limiting factor in the ecosystem. (Bowman,  1994).  It 

is possible that MB is increasing aboveground biomass because N is no longer a limiting 

factor in the soil. This may be a reflection of MB receiving more N into its location in the 
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form of precipitation. Considering the above markers for N status, MB consistently had 

higher values than RDV.  Thus both soil N and plant biomass N content values, in this 

case, could detect changes of N status. However, C:N ratios in soil and plants were less 

informative.  

 The 2006 plant survey assessed percent cover in the 50 cm
2 

areas prior to the 

destructive sampling of the aboveground biomass (Table 4.2). All vegetation was then 

clipped to the bare ground and separated into live and dead portions, then weighed after 

being dried. The two-way ANOVA results showed a significant difference among 

locations (P = 0.001) with plots at PB (44.58 ± 13.5%) having more plant cover than at 

MB (21.96 ± 4.0%) and RDV (13.58 ± 3.6%) which were not different in plant cover. 

There was a significant difference between wet and dry conditions (P = 0.001) where wet 

edaphic conditions generally had more plant cover than dry edaphic conditions, but there 

was also a significant interaction between location and edaphic conditions (P = 0.002). 

These differences were mainly driven by the PB site: the PB wet plots had more cover 

(72.08 ± 12.4%) than the PB dry plots (17.08 ± 1.8%). There were no significant 

differences in cover among the wet and dry plots in MB and RDV locations (Table 4.2).  

 The MB and RDV locations had similar vegetation communities consisting of a 

mix of forbs and woody plants giving similar cover characteristics.  MB consisted of a 

mix of sparse vegetation and heath for the dry sites, and a mix of forbs and grasslands for 

the wet sites. RDV had a mix of sparse vegetation and forbs for the dry sites, and a mix 

of forbs and dwarf shrubs for the wet sites. The MB sites had significantly more 

aboveground biomass than PB or RDV, but not significantly more cover. The PB location 

was different in vegetation in that it had bare ground with sparse vegetation in the dry 
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sites, and had grassland/graminoid communities for the wet sites. The graminoid 

community in the PB wet plots could account for the significant difference in cover.  

 A floral survey was done in summer of 2006 and 2007 within a 1m x 1m area at 

the center of each plot (see appendix 3 for full floral survey data) to see if species 

composition and richness differed between the modeled high N deposition sites (MB) and 

the low N deposition sites (RDV).  Since the majority of alpine plants are perennial, there 

were little, if any differences in plant composition from 2006 to 2007.  To best represent 

the diversity in the wet and dry communities for each location, the six wet plots and six 

dry plots were combined to create a 6m x 6m macroplot to represent one wet and one dry 

community at each location.  

   The floral survey counted a total of 85 species (in 2006 and 2007) at all three 

locations across the wet and dry communities. Of the 85 species counted, 59 species were 

found at MB, 41 species at PB, and 68 species at RDV.  The most abundantly occurring 

species were Poa cusiskii epilis and Sibaldia procumbens which was observed in 5 of the 

6 wet and/or dry community plot locations (Fig. 4.15). Poa cusickii epilis was found in 

all but the RDV wet sites, and Sibaldia procumbens was found in all but the MB dry 

sites. These species had a high frequency, but they were not the dominant species in all 

the sites. 

  Percent cover by plant species was used to calculate species evenness and 

identify the dominant species at each site. Table 4.3 summarizes the species richness, 

dominant species in each location and edaphic condition, and estimated mean (based on 

cover category ranges) for cover in each macroplot.  The high estimated cover for Poa 

cusickii epilis (79.17%) found at the PB wet sites confirms that the PB plant communities 
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are primarily grass communities affecting plant cover.  Aside from MB and RDV dry 

sites (being dominated by shrub and forbs), all the sites appear to be dominated by 

graminoids (i.e. rush, sedge, grass). Although it is not uncommon for alpine ecosystems 

to be graminoid-dominant, there are several cases in which excessive N is predicted to 

decrease plant diversity with an eventual increase in graminoid species (Suding et al., 

2006; Bowman, 2000; Näsholm, 1997; Seastedt and Vaccaro, 2001; Fenn et al., 1998; 

Blett, 2004).  Monitoring dominant cover for species may be a good indicator for changes 

in N status. However, this is a long term indicator and goes beyond the scope of this 

project.  

 The Shannon-Weiner index was calculated for each macroplot from the floral 

survey data and the values were used in a two-way ANOVA to test species richness 

differences among location and edaphic condition (Fig. 4.16). Since there were no 

differences in plant composition between 2006 and 2007, the 2006 data was further 

analyzed. There were no significant differences in Shannon-Weiner index numbers 

among locations or edaphic conditions. Although there were no statistically significant 

differences in species diversity, RDV wet sites had the highest diversity (Shannon-

Weiner = 1.3), while MB wet sites had the lowest (Shannon-Weiner = 1.06).  For 

evenness (table 4.3), the percent cover for each species was compared to the total cover 

for the 6 m
2 

macroplot.  All locations had an even distribution of species (evenness 

number = 0.02), except for MBW (eveness number = 0.03) and PBW (evenness number 

= 0.04) where both had a dominant species of plant that had a much higher cover than 

any other species in the plot. Based in our data, in this system, species richness and 
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diversity may not be a good short-term marker to detect the effect of small differences in 

N deposition.  

 

Discussion 

 The total ecosystem N pool for the Tetons across locations had an average of   

122.4 g N m
-2

. Most N (85-95%) is typically found in the organic layer in alpine soils 

(Fisk et al., 1998). Of the total N pool, 8.81% was found in aboveground biomass (6.62% 

live 2.19% dead), 18.12% in root biomass, and 73.07% was found in soil N. The soil N 

concentration in our Teton sites was 0.26-0.31% (Table 4.5). Other sites in the Rocky 

Mountains have 0.3-0.6 % soil N in the Medicine Bow Mountains of Wyoming (Welker 

et al., 2004), and 0.97-1.36% at Niwot Ridge on the Colorado Front Range (Steltzer and 

Bowman, 1998; Baron et al., 2000). Root N content for the Tetons was 0.4-1.9% and for 

Niwot Ridge, it was 0.05-1.5% (Steltzer and Bowman, 1998) which compares well to the 

Teton data.  

 The C:N ratios of alpine soils differ among plant community type. Soils in alpine 

communities with sparse vegetation exhibit C:N ratios between 5-7, alpine grasslands 

show ratios between 8-28, and dwarf shrub and heath soils have 12-40 C:N ratios 

(Körner, 2003). The 2006 C:N ratios for this study show MB wet 11.09 MB dry 10.98, 

PB wet  6.52 PB dry 9.26, and RDV wet 21.90 RDV dry 15.98.  All the locations had soil 

C:N ratios consistent with those reported for the appropriate alpine plant communities 

except RDV site, especially dry sites, which seemed to be a little higher than the expected 

5-7 for sparse vegetation. High C:N ratios typically suggest soils low in N content 

(Conley et al., 2000) and soil organic matter. Perhaps microclimate constraints are 

limiting soil N more than normal at the Tetons. 
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 The soil C:N ratios for Niwot ridge were between 25-32 (Table 4.5). The Tetons 

had C:N ranging between 7-20. The Colorado Front range receives more N deposition (9 

kg N ha
-1

yr
-1

) than the Tetons (0.1-2.5 kg N ha
-1

yr
-1

 Bowman and Steltzer, 1998; Nanus 

et al., 2003).  Therefore, the C:N ratios should be smaller than the Tetons. Niwot could be 

experiencing higher N immobilization and increases in NPP as described by Aber and 

others (1989, 1998) in the initial stages of N-saturation.  

  Low, but measurable concentrations of extractable NH4
+ 

-N are typical in alpine 

soils during the season of highest plant biomass (Stark and Hart, 1997; Miller and 

Bowman, 2003; Makarov et al., 2010).  Various studies of  extractable NH4
+
-N soil 

concentrations in alpine systems during the growing season world-wide show values of 

12-40  µg g
-1

 NH4
+ 

-N in Russia, (Makarov  et al., 2010),  3.6 µg g
-1

 in the Alps 

(Haselwandter  et al.,  1983),  10-20 µg g
-1

 NH4
+
-N in a wet sedge community in the 

arctic of Canada (Edwards et al.,  2006), 0.9-9.6 µg g
-1

 in Alaska (Kielland, 1995), and 0-

1.5 µg g
-1

 NH4
+
-N at Niwot Ridge in the Rocky Mountains (Lipson et al., 1999; Miller 

and Bowman, 2003; Schmidt et al., 2004).  The Tetons showed 0.06-0.39 µg g
-1

 NH4
+ 

-N 

which is in the low range of values overall for alpine and arctic systems (Table 4.5).  

 Based on exchange resins, the Tetons had 4.9-5.4 µg g
-1

(top 10 cm soil per 100 

days) of available N. Since methods for analyzing in situ availability rates of soil N differ 

so much, it is difficult to compare numerical values to other studies for this assessment. 

However, net mineralization and nitrification potential through laboratory incubations is 

a more appropriate and suitable way to make comparisons of a wide range of data. The 

Tetons had a net mineralization rate of 6-55 µg N g
-1 

and a net nitrification rate of 2-37 

µg NO3
-
 N g

-1
 after 60 days incubation. Niwot Ridge showed a net mineralization of 40-
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200 µg N g
-1 

and 4-34 µg NO3
-
 N g

-1 
per 60 days of incubation (Fisk et al., 1998; Baron et 

al., 2000; Bowman et al., 2006).  While mineralization is higher at Niwot Ridge, both 

sites have similar nitrification potential (Table 4.5).  

 Plant biomass in alpine ecosystems around the world range from 170-1070 g m
-2 

for the Austrian Alps (Brzoska, 1969), 1740 g m
-2

 for the New Zealand Alps (Meurk, 

1978), 100-400 g m
-2 

for the South-central Himalayas (Rikhari et al., 1992),  

110-350 g m
-2 

 for the Medicine Bow Mountains in southwestern Wyoming (Bliss, 1966), 

100-250 g m
-2  

for the Central Rocky Mountains (Walker et al., 1994), and 50-150 g m
-2 

for Niwot Ridge along the Colorado Front Range (Theodose et al., 1996; Fisk, et al.,  

1998; Bowman et al., 2006).  If broken down into wet and dry edaphic conditions, Niwot 

Ridge has an average of 155 g m
-2 

in the dry communities and 291 g m
-2 

live biomass in 

the wet communities (Fisk et al., 1998). The Tetons have 80-240 g m
-2 

in the wet and 80-

255 g m
-2

 in the dry communities (Fig. 4.10). Overall, the Teton aboveground biomass 

compares well to the Central Rockies and typical alpine ecosystems throughout the world 

(Table 4.5).   

  Table 4.6 makes a detailed comparison of aboveground and belowground 

biomass and N content in wet and dry alpine communities at the Tetons compared to 

Niwot Ridge in the Colorado Front Range (Fisk et al., 1998). The wet and dry sites for 

both locations had similar site characteristics in that both Teton and Niwot Ridge dry 

communities where on exposed upper topographic areas with sparse vegetation (Forb and 

lichen dominant for Tetons and tussock forming sedges for Niwot Ridge). The wet 

communities were both low topographic areas with wet soils throughout the growing 
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season due to snowmelt. Both wet communities at the Tetons and Niwot Ridge were 

dominated by sedges and rushes.  

 Niwot Ridge has much more dead biomass than the Tetons. The wet sites at 

Niwot Ridge seem to have twice as much overall biomass (mostly in the roots) than the 

wet sites at the Tetons, but the dry sites seem comparable. The N content of roots and 

aboveground biomass are similar for both wet and dry sites at both locations.  Plant litter 

seems to accumulate more at Niwot Ridge than in the Tetons. This could possibly explain 

the higher mineralization rates at Niwot Ridge.  

 For species richness, the Tetons have an average of 6-20 species m
-2 

while Niwot 

Ridge has 12-29 species m
-2

 (Bowman et al., 2006). The input of N influences plant 

productivity and composition (Blair et al., 1998), and in alpine ecosystems, this overall N 

input is highly correlated to snowpack and topography (Fisk et al., 1998; Williams et al., 

2003). This could explain why the wet sites in both the Tetons and Niwot Ridge have 

higher overall biomass than the dry sites.  

 Overall, when assessing N status in alpine ecosystems, wet sites have much more 

variability in the ecosystem markers considered in this study than the dry sites (which 

showed little, if any, differences among locations). This seems to be a trend observed in 

other alpine ecosystems in the Rocky Mountain Range (Fisk et al., 1998; Steltzer and 

Bowman, 1998; Bardgett et al., 2007).  Therefore, when assessing N in alpine 

ecosystems, greater variation in wet sites implies that these wet sites may be more 

responsive to changes in N input, while dry site responses are more controlled by 

limitations in water availability. 
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Table 4.1 Dates and temperatures (C°) of the soil (at 10cm depth) based on the date when 

the temperature increased from 0° C indicating the onset of the snow free period. 

 

 

Location WET 
 

DRY 
 

Date Temperature  

C° 

Date Temperature 

C° 

Moose Basin (MB) 1 NO 

DATA 

NO DATA 5/28/2007 2.02 

Moose Basin (MB) 2 NO 

DATA 

NO DATA 5/12/2007 1.59 

Moose Basin (MB) 3 6/4/2007 3.06 5/13/2007 2.38 

Paint Brush Canyon 

(PB) 1 

6/29/2007 2.85 NO 

DATA 

NO DATA 

Paint Brush Canyon 

(PB) 2 

6/22/2007 1.07 NO 

DATA 

NO DATA 

Paint Brush Canyon 

(PB) 3 

6/16/2007 1.31 6/16/2007 2.14 

Rendezvous 

Mountain (RDV) 1 

6/19/2007 2.14 6/16/2007 5.01 

Rendezvous 

Mountain (RDV) 2 

6/14/2007 3.44 6/27/2007 4.57 

Rendezvous 

Mountain (RDV) 3 

6/13/2007 3.65 6/20/2007 4.97 
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Table 4.2. Mean percent cover with standard deviation for 50 cm
2 

frames within each 

edaphic condition. Capital letters represent differences among locations. * Represents the 

interaction driving the significant differences among sites and edaphic conditions.  

 

       

Location Combined Plots Wet % Cover Dry % Cover 

Moose Basin 21.6 ± 4.01         B 28.33 ± 4.91              15.58  ± 3.94 

Paint Brush 44.58 ± 13.52     A 72.08  ± 12.42  *  17.08  ±1.82 

Rendezvous Mtn. 13.58 ± 3.62       B 11.58  ± 2.81             15.58  ±7.31 
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Table 4.3 The number of species, quantitative distribution of species, dominant species, 

and the estimated median percent cover for dominant species occurring in each 

community. NOTE:  PBD had a type of lichens as a dominant cover (20.83%). Since 

lichens is not considered a vascular plant species, it was omitted and the next dominant 

plant species cover was used.  

 

 

Location Number of 

Species (out of 

85 total) 

Mean 

Evenness 
(based on sp. 

Cover & total 
cover) 

Dominant Species Median Cover of 

Dominant 

Species (%) 

MBW 23 0.03 Juncus parryi 15.82 

MBD 36 0.02 Potentilla fruticosa 25.83 

PBW 22 0.04 Poa cusiskii epilis 79.17 

PBD 19 0.02 Juncus Parryi 3.06 

RDVW 35 0.02 Carex breweri 
paddoensis 

11.67 

RDVD 33 0.02 Rumex paucifolius 15.83 
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Table 4.4 Comparison of soil N, C:N, extractable NH4-N, net mineralization, and plant 

biomass of the Tetons with other alpine ecosystems in the Rocky Mountains and around 

the world. 

 

 

 

Location Soil N 

Conc. 

(%) 

Soil 

C:N 

Extractable 

NH4-N 

(µg g
-1

) 

Net 

Mineralization 

Rate (µg N g
-1

)  

Plant 

Biomass 

(g m
-2

) 

Source 

Tetons 0.2-0.3 7-20 0.06-0.39 6-55 80-240 This Study 

Medicine 

Bow Mtns. 

(Wyoming) 

0.3-0.6    110-350 Welker et al., 2004, 

Bliss1966 

Niwot 

Ridge 

(Colorado) 

0.9-1.36 25-

32 

0-1.5 40-200 50-150 Steltzer and 

Bowman 1998, 

Baron et al., 2000, 
Lipson et al., 1999, 

Miller and Bowman 
2003, Schmidt et 

al., 2004, Fisk et 

al., 1998, Bowman 
et al., 2006, 

Theodose et al., 

1996 

Central 

Rocky 

Mtns. 

    100-250 Walker et al., 1994 

Russia   12-40   Makarov et al., 

2010 

Austrian 

Alps 

  3.6  170-

1070 

Haselwandter et al., 
1983, Brzoska 1969 

Canada   10-20   Edwards et al., 2006 

Alaska   0.9-9.6   Kielland 1995 

New 

Zealand 

    1740 Meurk 1978 

Himalayas 

(South 

Central) 

    100-400 Rikhari et al., 1992 

 

  



98 

Table 4.5 Comparison of aboveground and belowground biomass and N content between 

the Tetons and Niwot Ridge along the Colorado Front Range. *NOTE: Dead plant 

biomass for Niwot Ridge accounted for 3-4 times more biomass and N than the live 

portions of plants and roots. Dead plant matter was estimated from this observation and 

omitted from total biomass and N as actual numbers were not reported (Fisk et al., 1998) 

 

 

Biomass and N Content Tetons Niwot Ridge 

 g m
-2 

 and g N m
-2

 Wet Dry Wet Dry 

Aboveground Live biomass 171 152 291 155 

 Dead Biomass  110 27 ~1595* ~840* 

 Live N content 3.52 2.5 6.4 2.4 

 Dead N content 1.43 0.34 ~25* ~10* 

Belowground Root biomass 153 89 364 125 

 Root N content 3.96 2.93 4.7 2 

Total Above Live + Root 

Biomass 

324 241 655 280 

 Above Live + Root 

N Content 

7.48 5.43 11.1 4.4 
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Fig. 4.1. Volumetric soil moisture for summer 2006 and 2007. Capital letters represent 

Tukey post-hoc test for differences between locations. * Represents significant 

differences within locations. 
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Fig. 4.2. Annual degree days from 7/10/2006-7/10/2007 for MB and RDV, and 

8/14/2006-8/14/2007 for PB for each site. Capital letters represent differences between 

locations. (MBD1 and PBW2 have no data). 
 
‡ MBW2 has data from 7/10/2006-

10/30/2007 and ‡
 
PBD2 has missing data from 1/24/2007-5/31/2007. 
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Fig. 4.3. Total N content consisting of live and dead foliage, root and soil N in each site 

(0-10 cm depth). Capital letters represent significant differences between locations. 
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Fig. 4.4. Total soil N from 2006 and 2007.  Capital letters represent differences between 

location.  * Represents significant differences between wet and dry plots within location.  
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Fig. 4.5. 2006 and 2007 C:N ratios in g
 
m

2
 (0-10cm of soil). Capital letters represent 

differences among location. * Represents significant differences between wet and dry 

plots within location. 
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Fig. 4.6. Summer 2006 NH4
+
-N from field KCl extractions.  
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Fig. 4.7. Summer 2006, winter 2006/2007, and summer 2007 PRS-extractable inorganic 

N over a standardized 100 day period. Capital letters represent differences in NO3
- 
-N 

among location. *Represents differences in wet and dry NO3
- 
-N within sites. There is no 

data for MB and PBD for summer 2007.  



106 

* 

0

10

20

30

40

50

60

70

80

90

100

110

MBW MBD PBW PBD RDVW RDVD

µ
g/

g 
so

il/
6

0
 d

ay
s 

Location 

2006 Mineralization Potential 

NH4

NO3

AB A  B 

Wet > Dry (P = 0.02) 

0

10

20

30

40

50

MBW MBD PBW PBD RDVW RDVD

µ
g/

g 
so

il/
6

0
 d

ay
s 

2007 Mineralization Potential 

NH4

NO3
AB  A  B 

Wet = Dry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. 2006 and 2007 net N mineralization potential after 60 days of laboratory 

incubation. Capital letters represent differences among location. NOTE: for 2006, 

differences are for NO
-
3-N only and for 2007, differences are for net N Mineralization. * 

Represents differences within wet and dry plots. 
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Fig. 4.9. 2006 and 2007 net nitrification potential after 30 and 60 days of laboratory 

incubation. Captial letters represent differences among location after 60 days incubation. 

For 2007, all wet plots were higher than all dry plots.  
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Fig. 4.10. Summer 2006 live and dead vegetation biomass (g m
-2

). Capital letters 

represent significant differences in location for live biomass (P = 0.03).  
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Fig. 4.11. 2006 and 2007 root mass. Capital letters represent differences among location. 
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Fig. 4.12. 2006 nitrogen content with live and dead foliage considered. Capital letters 

represent differences among location for Live foliage.  
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Fig. 4.13. 2006 and 2007 N content of roots. 
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Fig. 4.14. 2006 and 2007 C:N ratios for the root biomass. Capital letters represent 

differences among location. 
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Fig. 4.15. Cumulative frequency for species occurrence and distribution observed across 

the six macroplots.  Out of  a total of 85 species observed, 41 species occurred in one plot 

only, 18 species occurred in two plots, 16 species occurred in three plots, 8 species 

occurred in four plots, and 2 species, (Sibaldia procumbens and  Poa cusiskii epilis) 

occurred in five plots. There were no species observed that occurred in all six of the plots. 
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Fig. 4.16.  Shannon-Wiener diversity index for species richness.  
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CHAPTER 5 

 

CONCLUSIONS 

 The main objective of this study was to assess the “hot spot” of N deposition that 

were assumed to exist in the Grand Teton National Park (consisting of 0.1-2.5 kg N ha
-1 

yr
-1

 of N deposition) from the modeled Nanus deposition  maps for the Rocky Mountains 

(Nanus et al., 2003), and how this affected soil and plant characteristics in alpine 

ecosystems. 

 The hypothesis that a N deposition gradient existed from north to south was 

inconclusive. Based on our data, the Tetons receive an average of 1.42 kg N ha
-1

yr
-1

 with 

0.85-1.17 kg N ha
-1

yr
-1 

in the winter, and 0.25 kg N ha
-1

yr
-1 

in the summer. This average 

value compares well with the Nanus (et al., 2003) model that estimate that the Tetons 

receive 0.1-2.5 kg N ha
-1

yr
-1

. The MB sites receive more N deposition (1.7 kg N ha
-1

yr
-1 

) 

than RDV (0.85 kg N ha
-1

yr
-1

) mostly in the form of snow. There was no winter data for 

the PB sites, and only one snow pack survey for the MB sites because winter access to 

the sites was too dangerous so gradients could not be thoroughly tested.  There were no 

differences in summer N input which generally was in the order of 

 0.18-0.32 kg N ha
-1

yr
-1

 in 2006 and 2007. We encountered some methodological issues 

with the mixed-bed resin collectors (i.e. the Johnson collectors) relative to NH4
+
-N 

overestimation. The NO3
- 
-N from the mixed-bed resin collectors might be a good 

candidate for further investigation of ecosystem NO3
- 
-N deposition.  Therefore, mixed-

bed resins may not be suitable to estimate NH4
+
-N deposition when collectors are placed 

in harsh field conditions for prolonged periods of time.  
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 The hypothesis that the effect of N deposition would be influenced by edaphic 

conditions was not supported. Our a priori wet and dry sites were different based on 

gravimetric soil moisture content (P = 0.004) and temperature (P = 0.005). During the 

snow free period, all dry sites had similar moisture content, while the wet sites exhibited 

greater variability. Based on annual degree days, the RDV location was overall warmer 

and drier compared to the MB sites (P = 0.02).  These differences were found to have no 

effect on N deposition or N status in both plants and soils. The PRISM data suggested 

that 2006 had slightly more precipitation than 2007. The idea that N deposition follows 

precipitation may have relevance for MB receiving more N deposition than RDV. 

However, this is not reflected during the summer months. 

 The hypothesis that sites with higher N deposition (i.e., MB) had higher soil N 

content, more available N in the summer, and higher nitrification potential than sites with 

lower N deposition (i.e., RDV) was supported. These parameters showed MB to be an N-

rich site, and RDV to be an N-poor site.  The PB sites were intermediate in value, had 

high variability, and shared several aspects between both MB and RDV. Thus, in this 

study, the various soil indicators of N status were able to distinguish N-rich from N-poor 

soils, but not intermediate conditions.  

 The hypothesis of more soil N, more available N, higher net mineralization, and 

nitrification potential in wet vs. dry sites was not supported. There were three cases 

where the N differed between wet and dry (2007 soil N pool, Fig. 4.4, 2006 summer PRS 

extractable N, Fig. 4.7, and 2006 mineralization potential, Fig. 4.8), but that was mostly 

due to high variability and statistical interactions. Overall, there were little, if any 

differences between wet and dry sites for N status in the soils. 
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 The hypothesis of the plant responses to N status was that high N deposition sites 

would have more above and belowground biomass, more N in foliage and roots, and 

would differ in species richness and composition. This hypothesis was only partially 

supported.  The MB sites indeed had more aboveground (but not belowground) biomass, 

more N in foliage (but not roots), and greater percent cover than the RDV sites. The MB 

sites exhibited slightly less (although not statistically significant) plant diversity than 

RDV, which does not support our hypothesis. The hypothesis that wet sites would have 

more overall biomass than dry sites was generally supported, but were mainly driven by 

the large differences at the PB location. 

 In summary, our findings show that alpine ecosystems do respond to small 

changes in N deposition and N status as shown by both plant and soil indicators. Extreme 

differences can be established (i.e. N-rich vs. N-poor), but sites with intermediary 

conditions are difficult to distinguish with the indicators used in this study.  
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Appendix 1 Summary of plot pair location, edaphic condition, replicate, UTMs, and specific 

elevation for each plot.  

 
 
 

edaphic 
condition 

plot 
site 

plot 
designation 

UTM X UTM Y elevation 
(Meters) 

MB WET 1 A 512656 4866537 2810 

MB WET 2 A 512590 4866486 2921 

MB WET 3 A 512928 4866659 2872 

MB WET 1 B 512656 4866537 2810 

MB WET 2 B 512590 4866486 2921 

MB WET 3 B 512928 4866659 2872 

ML WET 1 A 515579 4849331 2975 

ML WET 2 A 515574 4849430 2980 

ML WET 3 A 515721 4849485 2978 

ML WET 1 B 515579 4849331 2975 

ML WET 2 B 515574 4849430 2980 

ML WET 3 B 515721 4849485 2978 

RDV WET 1 A 509432 4827157 2839 

RDV WET 2 A 509464 4827283 2862 

RDV WET 3 A 509492 4827467 2851 

RDV WET 1 B 509432 4827157 2839 

RDV WET 2 B 509464 4827283 2862 

RDV WET 3 B 509492 4827467 2851 

MB DRY 1 A 512622 4866552 2912 

MB DRY 2 A 512660 4866476 2927 

MB DRY 3 A 512940 4866626 2881 

MB DRY 1 B 512622 4866552 2912 

MB DRY 2 B 512660 4866476 2927 

MB DRY 3 B 512940 4866626 2881 

ML DRY 1 A 515142 4849303 3081 

ML DRY 2 A 515214 4849371 3070 

ML DRY 3 A 515159 4849385 3067 

ML DRY 1 B 515142 4849303 3081 

ML DRY 2 B 515214 4849371 3070 

ML DRY 3 B 515159 4849385 3067 

RDV DRY 1 A 509321 4827587 2925 

RDV DRY 2 A 509332 4827647 2915 

RDV DRY 3 A 509358 4827748 2926 

RDV DRY 1 B 509321 4827587 2925 

RDV DRY 2 B 509332 4827647 2915 

RDV DRY 3 B 509358 4827748 2926 
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Appendix 2. percent cover estimate scale based on Grossman et al., (1998) national vegetation 

classification system. Increments of 5% were used instead of 15%. 

 

  

Index number Percent Cover Index number Percent Cover 

1 0-5% 7 30-35% 

2 5-10% 8 35-40% 

3 10-15% 9 40-50% 

4 15-20% 10 50-55% 

5 20-25% 11 55-60% 

6 25-30% 12 60-65% 
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Appendix 3. Floral Survey for Each Plot 

MBW1A  
Date: 8/4/2006 and 7/11/2007 % Slope: 0 
UTM X: 512656   Aspect: 0 
UTMY: 4866537 
Elevation (Meters): 2810 
 
Species 

# 
Species/genus 

Name 
Species 

% 
cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground 

1m
2 

% 
veg 

cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex haydeniana 25-30 0 40 60 grass, 
sedge, forbs 

6 

28 Ranunculus 
eschscholtzii 

10-15 0 40 60 grass, 
sedge, forbs 

6 

46 Hieracium fendleri 0-5 0 40 60 grass, 
sedge, forbs 

6 

53 Symphyotrichum 
foliaceus 

10-15 0 40 60 grass, 
sedge, forbs 

6 

55 Juncus drummondii 15-20 0 40 60 grass, 
sedge, forbs 

6 

57 Poa cusiskii epilis 5-10 0 40 60 grass, 
sedge, forbs 

6 
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MBW2A  
Date: 8/4/2006 and 7/11/2007 %Slope: 2.5 
UTM X: 512590   Aspect: N/A 
UTMY: 4866486 
Elevation (Meters): 2921 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex 
haydeniana 

0-5 0 70 30 grass, 
sedge, forbs 

10 

7 Arnica mollis 0-5 0 70 30 grass, 
sedge, forbs 

10 

8 Erigeron 
speciosus 

0-5 0 70 30 grass, 
sedge, forbs 

10 

20 Castilleja 
miniata 

0-5 0 70 30 grass, 
sedge, forbs 

10 

23 Sibaldia 
procumbens 

0-5 0 70 30 grass, 
sedge, forbs 

10 

30 Senecio 
serratta 

5-10 0 70 30 grass, 
sedge, forbs 

10 

41 Erigeron 
formosissimus 

5-10     10 

55 Juncus 
drummondii 

5-10 0 70 30 grass, 
sedge, forbs 

10 

62 Senecio 
hydrophilus 

0-5 0 70 30 grass, 
sedge, forbs 

10 

71 Ligusticum 
filicinum 

5-10 0 70 30 grass, 
sedge, forbs 

10 
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MBW3A  
Date: 8/4/2006 and 7/11/2007 %Slope: 1 
UTM X: 512928   Aspect: slightly west 
UTMY: 4866659 
Elevation (Meters): 2872 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number of 
Species 
Per Plot 

4 Elymus 
trachycaulus 

0-5 0 70 30 forb 8 

8 Erigeron 
speciosus 

5-10 0 70 30 forb 8 

11 Mertensia 
ciliata 

0-5 0 70 30 forb 8 

19 Phleum 
alpinum 

0-5 0 70 30 forb 8 

30 Senecio 
serratta 

5-10     8 

39 Arnica longifolia 25-30 0 70 30 forb 8 

52 Boechera 
microphylla 

0-5 0 70 30 forb 8 

71 Ligusticum 
filicinum 

0-5 0 70 30 forb 8 

 



 

1 

 

 

MLW1A  
Date: 8/14/2006 and 7/20/2007 %Slope: 5 
UTM X: 515579   Aspect: East 
UTMY: 4849331 
Elevation (Meters): 2839 
 

Species # Species/genus Name Species % 
cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community type Number of 
Species Per 

Plot 

1 Juncus parryi 50-55 10 5 85 grass, sedge, forb 13 

12 Salix arctica petraea 5-10 10 5 85 grass, sedge, forb 13 

13 Phyllodoce empetriformis 10-15 10 5 85 grass, sedge, forb 13 

22 Antennaria umbrinella 0-5 10 5 85 grass, sedge, forb 13 

38 Carex paysonis 5-10 10 5 85 grass, sedge, forb 13 

41 Erigeron formosissimus 0-5 10 5 85 grass, sedge, forb 13 

42 Salix wolfii 15-20 10 5 85 grass, sedge, forb 13 

45 Deschampsia cespitosa 5-10 10 5 85 grass, sedge, forb 13 

47 Carex breweri paddoensis 35-40 10 5 85 grass, sedge, forb 13 

57 Poa cusiskii epilis 65-70 10 5 85 grass, sedge, forb 13 

57 Poa cusiskii epilis 15-20 10 5 85 grass, sedge, forb 13 

65 Boechera lyallii 5-10 10 5 85 grass, sedge, forb 13 

78 UK 0-5 10 5 85 grass, sedge, forb 13 

 

1
4
0
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MLW2A  
Date: 8/14/2006 and 7/20/2007 %Slope: 5 
UTM X: 515574   Aspect: East 
UTMY: 4849430 
Elevation (Meters): 2862 
 
Speci
es # 

Species/gen
us Name 

Species 
% 
cover 

1m2 % 
rock 

1m2 % 
bare 
ground  

1m2 % 
veg 
cover 

communit
y type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 75-80 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 

38 Carex 
paysonis 

25-30 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 

45 Deschampsia 
cespitosa 

10-15 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 

57 Poa cusiskii 
epilis 

85-90 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 

65 Boechera 
lyallii 

0-5 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 

70 Potentilla 
diversifolia 
perdissecta 

0-5 0 0 100 grass, 
sedge, 
forb, short 
shrub 

6 
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MLW3A 

Date: 8/14/2006 and 7/20/2007 %Slope: 3 
UTM X: 515721   Aspect: West 
UTMY: 4849485 
Elevation (Meters): 2851 
 
Species 
# 

Species/genus 
Name 

Species 
% 
cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 85-90 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

6 Luzula 
parviflora 

5-10 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

8 Erigeron 
speciosus 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

13 Phyllodoce 
empetriformis 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

19 Phleum 
alpinum 

15-20 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

22 Antennaria 
umbrinella 

5-10 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

23 Sibaldia 
procumbens 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

38 Carex paysonis 25-30 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

40 Epliobium 
glaberrinum 
fastigiatum 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

41 Erigeron 
formosissimus 

25-30 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

44 Carex 
leporinella 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

45 Deschampsia 
cespitosa 

5-10 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

57 Poa cusiskii 
epilis 

80-85 0 10 90 grass, 
sedge, forb, 
short shrub 

13 

  



 

 

RDVW1A 
Date: 7/24/2006 and 7/14/2007 %Slope: 5 
UTM X: 509432   Aspect: East 
UTMY: 4827157 
Elevation (Meters): 2839 
 
Species # Species/genus Name Species 

% cover 
1m

2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community type Number of 
Species Per 

Plot 

2 Carex haydeniana 0-5 0 30 70 grass, sedge, forb 20 

3 Poa leptocoma 0-5 0 30 70 grass, sedge, forb 20 

9 Erigeron rydbergii cronq. 0-5 0 30 70 grass, sedge, forb 20 

17 Anemone multifida tetonensis 0-5 0 30 70 grass, sedge, forb 20 

19 Phleum alpinum 0-5 0 30 70 grass, sedge, forb 20 

21 Achilliea millefolium lanulosa 0-5 0 30 70 grass, sedge, forb 20 

24 Trisetum spicatum 0-5 0 30 70 grass, sedge, forb 20 

27 Castilleja sulphurea 0-5 0 30 70 grass, sedge, forb 20 

28 Ranunculus eschscholtzii 0-5 0 30 70 grass, sedge, forb 20 

29 Anemone parviflora 0-5 0 30 70 grass, sedge, forb 20 

31 Senecio dimorphophyllus 5-10     20 

32 Epilobium brachyocarpum 0-5 0 30 70 grass, sedge, forb 20 

37 Poa alpina 0-5     20 

46 Hieracium fendleri 0-5 0 30 70 grass, sedge, forb 20 

47 Carex breweri paddoensis 15-20 0 30 70 grass, sedge, forb 20 

52 Boechera microphylla 0-5 0 30 70 grass, sedge, forb 20 

53 Symphyotrichum foliaceus 0-5 0 30 70 grass, sedge, forb 20 

62 Senecio hydrophilus 15-20 0 30 70 grass, sedge, forb 20 

64 Erigeron simplex 0-5 0 30 70 grass, sedge, forb 20 

81 UK 10-15 0 30 70 grass, sedge, forb 20 

 

 

1
4
3
 



 

 

RDVW2A 
Date: 7/24/2006 and 7/14/2007 %Slope: 5 
UTM X: 509464   Aspect: East   
UTMY: 4827283 
Elevation (Meters): 2862 
Species 
# 

Species/genus Name Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg cover 
community type Number 

of 
Species 
Per Plot 

3 Poa leptocoma 0-5 10 70 20 grass, sedge, forb, short shrub 19 

9 Erigeron rydbergii cronq. 0-5 10 70 20 grass, sedge, forb, short shrub 19 

17 Anemone multifida tetonensis 0-5 10 70 20 grass, sedge, forb, short shrub 19 

18 Antennaria microphylla 5-10 10 70 20 grass, sedge, forb, short shrub 19 

19 Phleum alpinum 0-5 10 70 20 grass, sedge, forb, short shrub 19 

21 Achilliea millefolium lanulosa 0-5 10 70 20 grass, sedge, forb, short shrub 19 

24 Trisetum spicatum 5-10 10 70 20 grass, sedge, forb, short shrub 19 

25 Sedum lanceolatum 0-5 10 70 20 grass, sedge, forb, short shrub 19 

26 Sedum debile 0-5 10 70 20 grass, sedge, forb, short shrub 19 

27 Castilleja sulphurea 5-10 10 70 20 grass, sedge, forb, short shrub 19 

29 Anemone parviflora 0-5 10 70 20 grass, sedge, forb, short shrub 19 

37 Poa alpina 0-5 10 70 20 grass, sedge, forb, short shrub 19 

47 Carex breweri paddoensis 15-20 10 70 20 grass, sedge, forb, short shrub 19 

48 Linanthus Pungens 15-20 10 70 20 grass, sedge, forb, short shrub 19 

50 Salix drummondii 5-10 10 70 20 grass, sedge, forb, short shrub 19 

53 Symphyotrichum foliaceus 10-15 10 70 20 grass, sedge, forb, short shrub 19 

64 Erigeron simplex 0-5 10 70 20 grass, sedge, forb, short shrub 19 

65 Boechera lyallii 0-5 10 70 20 grass, sedge, forb, short shrub 19 

75 UK 0-5 10 70 20 grass, sedge, forb, short shrub 19 

1
4
4
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RDVW3A 
Date: 7/24/2006 and 7/14/2007 %Slope: 3  
UTM X: 509492   Aspect: West 
UTMY: 4827467 
Elevation (Meters): 2851 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

17 Anemone 
multifida 
tetonensis 

0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

18 Antennaria 
microphylla 

10-15 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

24 Trisetum 
spicatum 

5-10 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

25 Sedum 
lanceolatum 

0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

26 Sedum debile 0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

29 Anemone 
parviflora 

0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

31 Senecio 
dimorphophyllus 

5-10     12 

32 Epilobium 
brachyocarpum 

0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

37 Poa alpina 0-5 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

50 Salix 
drummondii 

15-20 15 5 80 grass, 
sedge, forb, 
short shrub 

12 

54 Carex elynoides 0-5     12 

61 Hedysarum 
occidentale 

0-5     12 

 
  

NOTES:  1m
2 

Veg cover is 65% 

moss 
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MBW1B 
Date: 8/4/2006 and 7/11/2007 %Slope: 0  
UTM X: 512656   Aspect: N/A 
UTMY: 4866537 
Elevation (Meters): 2810 
 

Species 
# 

Species/genu
s Name 

Specie
s % 
cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

communit
y type 

Numbe
r of 

Specie
s Per 
Plot 

1 Juncus parryi 45-50 0 60 40 grass, 
sedge, 
forbs 

7 

2 Carex 
haydeniana 

5-10 0 60 40 grass, 
sedge, 
forbs 

7 

28 Ranunculus 
eschscholtzii 

5-10 0 60 40 grass, 
sedge, 
forbs 

7 

53 Symphyotrichu
m foliaceus 

10-15 0 60 40 grass, 
sedge, 
forbs 

7 

55 Juncus 
drummondii 

5-10 0 60 40 grass, 
sedge, 
forbs 

7 

57 Poa cusiskii 
epilis 

0-5 0 60 40 grass, 
sedge, 
forbs 

7 

71 Ligusticum 
filicinum 

0-5 0 60 40 grass, 
sedge, 
forbs 

7 

 

  

NOTES: Signs of Pocket gopher 

activity in plot 
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MBW2B 
Date: 8/4/2006 and 7/11/2007 %Slope: 2.5  
UTM X: 512590   Aspect: N/A 
UTMY: 4866486 
Elevation (Meters): 2921 
 
Species 
# 

Species/genus 
Name 

Species 
% 
cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number of 
Species 
Per Plot 

2 Carex 
haydeniana 

0-5 0 20 80 grass, sedge, 
forbs 

9 

8 Erigeron 
speciosus 

0-5 0 20 80 grass, sedge, 
forbs 

9 

19 Phleum 
alpinum 

0-5 0 20 80 grass, sedge, 
forbs 

9 

30 Senecio 
serratta 

10-15 0 20 80 grass, sedge, 
forbs 

9 

55 Juncus 
drummondii 

35-40 0 20 80 grass, sedge, 
forbs 

9 

57 Poa  
cusiskii epilis 

0-5 0 20 80 grass, sedge, 
forbs 

9 

62 Senecio 
hydrophilus 

5-10 0 20 80 grass, sedge, 
forbs 

9 

71 Ligusticum 
filicinum 

10-15 0 20 80 grass, sedge, 
forbs 

9 

77 UK 5-10 0 20 80 grass, sedge, 
forbs 

9 
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MBW3B 
Date: 8/4/2006 and 7/11/2007 %Slope: 1  
UTM X: 512928   Aspect: West 
UTMY: 4866659 
Elevation (Meters): 2872 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

8 Erigeron 
speciosus 

0-5 0 20 80 forb 7 

19 Phleum alpinum 15-20 0 20 80 forb 7 

30 Senecio 
serratta 

5-10 0 20 80 forb 7 

32 Epilobium 
brachycarpum 

10-15 0 20 80 forb 7 

39 Arnica longifolia 30-35 0 20 80 forb 7 

60 Rumex 
paucifolius 

5-10 0 20 80 forb 7 

71 Ligusticum 
filicinum 

0-5 0 20 80 forb 7 
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MLW1B 
Date: 8/14/2006 and 7/20/2007 %Slope: 1  
UTM X: 515579   Aspect: East 
UTMY: 4849331 
Elevation (Meters): 2839 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 25-30 10 20 70 grass, sedge, 
forb 

14 

12 Salix  
arctica petraea 

5-10 10 20 70 grass, sedge, 
forb 

14 

13 Phyllodoce 
empetriformis 

5-10 10 20 70 grass, sedge, 
forb 

14 

22 Antennaria 
umbrinella 

15-20 10 20 70 grass, sedge, 
forb 

14 

23 Sibaldia 
procumbens 

5-10 10 20 70 grass, sedge, 
forb 

14 

38 Carex paysonis 35-40 10 20 70 grass, sedge, 
forb 

14 

40 Epliobium 
glaberrinum 
fastigiatum 

0-5 10 20 70 grass, sedge, 
forb 

14 

41 Erigeron 
formosissimus 

0-5 10 20 70 grass, sedge, 
forb 

14 

47 Carex  
breweri 
paddoensis 

25-30 10 20 70 grass, sedge, 
forb 

14 

57 Poa cusiskii epilis 55-60 10 20 70 grass, sedge, 
forb 

14 

65 Boechera lyallii 0-5 10 20 70 grass, sedge, 
forb 

14 

78 UK 5-10 10 20 70 grass, sedge, 
forb 

14 

80 UK 0-5 10 20 70 grass, sedge, 
forb 

14 

83 moss 2 0-5 10 20 70 grass, sedge, 
forb 

14 

 

  

NOTES:  1m
2
 Bare ground is  

cryptobiotic crust 
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MLW2B 
Date: 8/14/2006 and 7/20/2007 %Slope: 5  
UTM X: 515574   Aspect: East 
UTMY: 4849430 
Elevation (Meters): 2862 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 70-75 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

22 Antennaria 
umbrinella 

0-5 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

23 Sibaldia 
procumbens 

0-5 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

38 Carex paysonis 0-5 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

45 Deschampsia 
cespitosa 

5-10 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

47 Carex  
breweri 
paddoensis 

0-5 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

57 Poa  
cusiskii epilis 

90-95 0 5 95 grass, 
sedge, forb, 
short shrub 

8 

84 moss 3 0-5 0 5 95 grass, 
sedge, forb, 
short shrub 

8 
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MLW3B 
Date: 8/14/2006 and 7/20/2007 %Slope: 3  
UTM X: 515721   Aspect: west 
UTMY: 4849485 
Elevation (Meters): 2851 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 40-45 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

8 Erigeron 
speciosus 

10-15 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

19 Phleum 
alpinum 

5-10 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

22 Antennaria 
umbrinella 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

38 Carex paysonis 0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

41 Erigeron 
formosissimus 

25-30 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

45 Deschampsia 
cespitosa 

0-5 0 10 90 grass, 
sedge, forb, 
short shrub 

8 

57 Poa cusiskii 
epilis 

85-90 0 10 90 grass, 
sedge, forb, 
short shrub 

8 
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RDVW1B 
Date: 7/24/2006 and 7/14/2007 %Slope: 5  
UTM X: 509432   Aspect: East 
UTMY: 4827157 
Elevation (Meters): 2839 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex 
haydeniana 

0-5 15 5 80 grass, 
sedge, forb 

13 

2 Carex 
haydeniana 

10-15 15 5 80 grass, 
sedge, forb 

13 

3 Poa leptocoma 20-25 15 5 80 grass, 
sedge, forb 

13 

21 Achilliea 
millefolium 
lanulosa 

0-5 5 80 15 grass, 
sedge, forb 

13 

24 Trisetum 
spicatum 

0-5 5 80 15 grass, 
sedge, forb 

13 

27 Castilleja 
sulphurea 

5-10 5 80 15 grass, 
sedge, forb 

13 

29 Anemone 
parviflora 

0-5 5 80 15 grass, 
sedge, forb 

13 

30 Senecio serratta 5-10     13 

31 Senecio 
dimorphophyllus 

10-15     13 

37 Poa alpina 0-5     13 

60 Rumex 
paucifolius 

0-5 5 80 15 grass, 
sedge, forb 

13 

62 Senecio 
hydrophilus 

10-15 5 80 15 grass, 
sedge, forb 

13 

67 Solidago 
spathulata nana 

0-5 5 80 15 grass, 
sedge, forb 

13 

 
 

NOTES:  The 1m
2 

veg cover is 

65% moss 



 

 

RDVW2B 
Date: 7/24/2006 and 7/14/2007 %Slope: 5  
UTM X: 509464   Aspect: East 
UTMY: 4827283 
Elevation (Meters): 2862 

 
 

 

Species 
# 

Species/genus Name Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community type Number of 
Species 
Per Plot 

3 Poa leptocoma 0-5 20 65 15 grass, sedge, forb, short shrub 15 

9 Erigeron rydbergii cronq. 0-5 20 65 15 grass, sedge, forb, short shrub 15 

17 Anemone multifida tetonensis 0-5 20 65 15 grass, sedge, forb, short shrub 15 

18 Antennaria microphylla 5-10 20 65 15 grass, sedge, forb, short shrub 15 

21 Achilliea millefolium lanulosa 5-10 20 65 15 grass, sedge, forb, short shrub 15 

25 Sedum lanceolatum 0-5 20 65 15 grass, sedge, forb, short shrub 15 

26 Sedum debile 0-5 20 65 15 grass, sedge, forb, short shrub 15 

30 Senecio serratta 5-10 20 65 15 grass, sedge, forb, short shrub 15 

31 Senecio dimorphophyllus 5-10 20 65 15 grass, sedge, forb, short shrub 15 

37 Poa alpina 15-20 20 65 15 grass, sedge, forb, short shrub 15 

47 Carex breweri paddoensis 25-30 20 65 15 grass, sedge, forb, short shrub 15 

48 Linanthus Pungens 0-5 20 65 15 grass, sedge, forb, short shrub 15 

50 Salix drummondii 20-25 20 65 15 grass, sedge, forb, short shrub 15 

64 Erigeron simplex 0-5 5 80 15 grass, sedge, forb, short shrub 15 

67 Solidago spathulata nana 0-5 20 65 15 grass, sedge, forb, short shrub 15 

 

1
5
3
 



 

 

RDVW3B 
Date: 7/24/2006 and 7/14/2007 %Slope: 3  
UTM X: 509492   Aspect: West 
UTMY: 4827467 
Elevation (Meters): 2851 

 
 
 

Species 
# 

Species/genus Name Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg cover 
community type Number of 

Species Per 
Plot 

17 Anemone multifida tetonensis 0-5 30 40 30 grass, sedge, forb, short shrub 15 

18 Antennaria microphylla 5-10 30 40 30 grass, sedge, forb, short shrub 15 

19 Phleum alpinum 0-5 30 40 30 grass, sedge, forb, short shrub 15 

23 Sibaldia procumbens 0-5 30 40 30 grass, sedge, forb, short shrub 15 

25 Sedum lanceolatum 0-5 30 40 30 grass, sedge, forb, short shrub 15 

26 Sedum debile 0-5 30 40 30 grass, sedge, forb, short shrub 15 

27 Castilleja sulphurea 0-5 30 40 30 grass, sedge, forb, short shrub 15 

29 Anemone parviflora 0-5 30 40 30 grass, sedge, forb, short shrub 15 

30 Senecio serratta 0-5     15 

32 Epilobium brachyocarpum 0-5 30 40 30 grass, sedge, forb, short shrub 15 

37 Poa alpina 0-5 30 40 30 grass, sedge, forb, short shrub 15 

43 Pedicularis groenlandica 0-5 30 40 30 grass, sedge, forb, short shrub 15 

50 Salix drummondii 30-35 30 40 30 grass, sedge, forb, short shrub 15 

61 Hedysarum occitentale 0-5 30 40 30 grass, sedge, forb, short shrub 15 

70 Potentilla  
diversifolia perdissecta 

0-5 30 40 30 grass, sedge, forb, short shrub 15 

NOTES: 1m
2 

%rock is all gravel 

1
5
4
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MBD1A 
Date: 8/4/2006 and 7/11/2007 %Slope: 5  
UTM X: 512622   Aspect: South 
UTMY: 4866552 
Elevation (Meters): 2912 
 

Species 
# 

Species/genus 
Name 

Species 
% 
cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

9 Erigeron 
rydbergii cronq. 

0-5 10 70 20 grass, sedge, 
forbs 

10 

10 Ivesia gordonii 10-15 10 70 20 grass, sedge, 
forbs 

10 

21 Achilliea 
millefolium 
lanulosa 

0-5 10 70 20 grass, sedge, 
forbs 

10 

33 Bistorta 
bistortoides 

0-5 10 70 20 grass, sedge, 
forbs 

10 

37 Poa alpina 0-5 10 70 20 grass, sedge, 
forbs 

10 

63 Antennaria 
media 

0-5 10 70 20 grass, sedge, 
forbs 

10 

72 UK 0-5 10 70 20 grass, sedge, 
forbs 

10 

73 moss 1  10 70 20 grass, sedge, 
forbs 

10 

82 UK 0-5 10 70 20 grass, sedge, 
forbs 

10 

83 moss 2 5-10 10 70 20 grass, sedge, 
forbs 

10 

 
 

NOTES: 1m
2 

%rock is all gravel 



 

 

MBD2A 
Date: 8/4/2006 and 7/11/2007 %Slope: 3  
UTM X: 512660   Aspect: South 
UTMY: 4866476 
Elevation (Meters): 2927 
 
Species # Species/genus Name Species % 

cover 
1m

2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community type Number of 
Species Per 

Plot 

2 Carex haydeniana 0-5 20 40 40 grass, sedge, forbs 16 

5 Danthonia   20 40 40 grass, sedge, forbs 16 

9 Erigeron rydbergii cronq. 0-5 20 40 40 grass, sedge, forbs 16 

24 Trisetum spicatum 0-5 20 40 40 grass, sedge, forbs 16 

25 Sedum lanceolatum 0-5 20 40 40 grass, sedge, forbs 16 

27 Castilleja sulphurea 0-5 20 40 40 grass, sedge, forbs 16 

34 Astragalus kentrophyta 15-20 20 40 40 grass, sedge, forbs 16 

36 Petradoria pumila 0-5 20 40 40 grass, sedge, forbs 16 

54 Carex elynoides 15-20 20 40 40 grass, sedge, forbs 16 

57 Poa cusiskii epilis 0-5 20 40 40 grass, sedge, forbs 16 

63 Antennaria media 0-5 20 40 40 grass, sedge, forbs 16 

70 Potentilla diversifolia perdissecta 0-5 20 40 40 grass, sedge, forbs 16 

72 UK 0-5 20 40 40 grass, sedge, forbs 16 

74 UK 0-5 20 40 40 grass, sedge, forbs 16 

83 moss 2 55-60 20 40 40 grass, sedge, forbs 16 

85 lichens 1 35-40 20 40 40 grass, sedge, forbs 16 

 
 
 

NOTES: 1m
2 

rock is all gravel. 1m
2 

veg cover has 

35% moss and lichens 

1
5
6
 

 



157 

 

 

MBD3A 
Date: 8/4/2006 and 7/11/2007 %Slope: 2  
UTM X: 512940   Aspect: West 
UTMY: 4866626 
Elevation (Meters): 2881 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

4 Elymus 
trachycaulus 

0-5 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

21 Achilliea 
millefolium 
lanulosa 

0-5 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

25 Sedum 
lanceolatum 

0-5 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

35 Potentilla 
fruticosa 

 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

40 Epliobium 
glaberrinum 
fastigiatum 

25-30 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

66 UK 0-5 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

68 UK 15-20 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

76 UK 75-80 0 5 95 grass, 
sedge, 
forbs, dwarf 
shrub 

8 

 

  

 



158 

MLD1A 
Date: 8/14/2006 and 7/20/2007 %Slope: 5  
UTM X: 515142   Aspect: South 
UTMY: 4849303 
Elevation (Meters): 3031 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 5-10 60 30 10 n/a 12 

8 Erigeron speciosus 0-5     12 

15 Androsace 
septentrionalis 

0-5     12 

22 Antennaria 
umbrinella 

0-5 60 30 10 n/a 12 

23 Sibaldia 
procumbens 

5-10 60 30 10 n/a 12 

38 Carex paysonis 0-5 60 30 10 n/a 12 

46 Hieracium fendleri 0-5 60 30 10 n/a 12 

57 Poa cusiskii epilis 5-10 60 30 10 n/a 12 

64 Erigeron simplex 0-5 60 30 10 n/a 12 

65 Boechera lyallii 0-5 60 30 10 n/a 12 

82 UK 0-5 60 30 10 n/a 12 

85 lichens 1 10-15 60 30 10 n/a 12 

 

  

NOTES:  1m
2 

Rock is 50% 

gravel.  1m
2 

veg cover is 5% 

lichens 



159 

MLD2A 
Date: 8/14/2006 and 7/20/2007 %Slope: 12  
UTM X: 515214   Aspect: North 
UTMY: 4849371 
Elevation (Meters): 3070 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number of 
Species 
Per Plot 

1 Juncus parryi 5-10 30 0 70 grass, forb 10 

6 Luzula parviflora 0-5     10 

15 Androsace 
spetentionalis 

0-5     10 

22 Antennaria 
umbrinella 

5-10 30 0 70 grass, forb 10 

23 Sibaldia 
procumbens 

0-5 30 0 70 grass, forb 10 

38 Carex paysonis 5-10     10 

46 Hieracium fendleri 0-5 30 0 70 grass, forb 10 

65 Boechera lyallii 0-5 30 0 70 grass, forb 10 

85 lichens 1 25-30 30 0 70 grass, forb 10 

86 lichens 2 5-10 30 0 70 grass, forb 10 

 
  

NOTES:  1m
2 

veg cover is 50% 

cryptobiotic crust 
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MLD3A 
Date: 8/14/2006 and 7/20/2007 %Slope: 6  
UTM X: 515159   Aspect: South/East 
UTMY: 4849385 
Elevation (Meters): 3067 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 10-15 70 20 10 grass, forb 12 

6 Luzula parviflora 0-5 70 20 10 grass, forb 12 

8 Erigeron speciosus 0-5 70 20 10 grass, forb 12 

14 Minuartia 
austromontana 

0-5 70 20 10 grass, forb 12 

22 Antennaria 
umbrinella 

0-5 70 20 10 grass, forb 12 

23 Sibaldia 
procumbens 

0-5 70 20 10 grass, forb 12 

33 Bistorta bistortoides 0-5 70 20 10 grass, forb 12 

37 Poa alpina 0-5 70 20 10 grass, forb 12 

46 Hieracium fendleri 0-5 70 20 10 grass, forb 12 

57 Poa cusiskii epilis 5-10 70 20 10 grass, forb 12 

64 Erigeron simplex 0-5 70 20 10 grass, forb 12 

86 lichens 2 35-40 70 20 10 grass, forb 12 

 

  

NOTES:  1m
2 

rock is 65% 

gravel 5% cobble 



161 

RDVD1A 
Date: 7/24/2006 and 7/14/2007 %Slope: 6  
UTM X: 509321   Aspect: East 
UTMY: 4827587 
Elevation (Meters): 2925 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex haydeniana 10-15 0 60 40 grass, sedge, 
forb 

8 

3 Poa leptocoma 15-20 0 60 40 grass, sedge, 
forb 

8 

15 Androsace 
spetentionalis 

15-20 0 60 40 grass, sedge, 
forb 

8 

19 Phleum alpinum 0-5 0 60 40 grass, sedge, 
forb 

8 

48 Linanthus 
Pungens 

0-5 0 60 40 grass, sedge, 
forb 

8 

52 Boechera 
microphylla 

5-10 0 60 40 grass, sedge, 
forb 

8 

60 Rumex paucifolius 20-25 0 60 40 grass, sedge, 
forb 

8 

82 UK 0-5 0 60 40 grass, sedge, 
forb 

8 

 

  

 



162 

RDVD2A 
Date: 7/24/2006 and 7/14/2007 %Slope: 3  
UTM X: 509332   Aspect: West 
UTMY: 4827647 
Elevation (Meters): 2915 
 

Species 
# 

Species/genus 
Name 

Species 
% 
cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 0-5 35 30 35 grass, 
sedge, forb 

16 

2 Carex haydeniana 0-5 35 30 35 grass, 
sedge, forb 

16 

15 Androsace 
spetentionalis 

0-5 35 30 35 grass, 
sedge, forb 

16 

17 Anemone  
multifida tetonensis 

0-5 35 30 35 grass, 
sedge, forb 

16 

20 Castilleja miniata 0-5 35 30 35 grass, 
sedge, forb 

16 

24 Trisetum spicatum 0-5 35 30 35 grass, 
sedge, forb 

16 

25 Sedum lanceolatum 0-5 35 30 35 grass, 
sedge, forb 

16 

29 Anemone parviflora 0-5 35 30 35 grass, 
sedge, forb 

16 

48 Linanthus Pungens 15-20 35 30 35 grass, 
sedge, forb 

16 

51 Ranunculus 
alismifolius 

0-5 35 30 35 grass, 
sedge, forb 

16 

52 Boechera microphylla 0-5 35 30 35 grass, 
sedge, forb 

16 

53 Symphyotrichum 
foliaceus 

5-10 35 30 35 grass, 
sedge, forb 

16 

57 Poa cusiskii epilis 0-5 35 30 35 grass, 
sedge, forb 

16 

59 Poa cusiskii epilis 0-5 35 30 35 grass, 
sedge, forb 

16 

60 Rumex paucifolius 15-20 35 30 35 grass, 
sedge, forb 

16 

65 Boechera lyallii 0-5 35 30 35 grass, 
sedge, forb 

16 

 

  

NOTES: 1m
2 

rock is 25% 

cobble and 10% gravel 



163 

RDVD3A 
Date: 7/24/2006 and 7/14/2007 %Slope: 1  
UTM X: 509358   Aspect: North 
UTMY: 4827748 
Elevation (Meters): 2926 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex 
haydeniana 

5-10 5 60 35 grass, 
sedge, forb 

16 

9 Erigeron 
rydbergii cronq. 

5-10 5 60 35 grass, 
sedge, forb 

16 

15 Androsace 
spetentionalis 

0-5 5 60 35 grass, 
sedge, forb 

16 

20 Castilleja miniata 0-5 5 60 35 grass, 
sedge, forb 

16 

21 Achilliea 
millefolium 
lanulosa 

0-5 5 60 35 grass, 
sedge, forb 

16 

23 Sibaldia 
procumbens 

0-5 5 60 35 grass, 
sedge, forb 

16 

24 Trisetum 
spicatum 

15-20 5 60 35 grass, 
sedge, forb 

16 

32 Epilobium 
brachyocarpum 

0-5 5 60 35 grass, 
sedge, forb 

16 

38 Carex paysonis 0-5 5 60 35 grass, 
sedge, forb 

16 

52 Boechera 
microphylla 

5-10 5 60 35 grass, 
sedge, forb 

16 

53 Symphyotrichum 
foliaceus 

0-5 5 60 35 grass, 
sedge, forb 

16 

56 Lithophragma 
glabrum 

0-5 5 60 35 grass, 
sedge, forb 

16 

58 Geranium 
richardsonii 

5-10 5 60 35 grass, 
sedge, forb 

16 

60 Rumex 
paucifolius 

5-10 5 60 35 grass, 
sedge, forb 

16 

64 Erigeron simplex 0-5 5 60 35 grass, 
sedge, forb 

16 

85 lichens 1 0-5 5 60 35 grass, 
sedge, forb 

16 

 
  

 



164 

MBD1B 
Date: 8/4/2006 and 7/11/2007 %Slope: 5  
UTM X: 512622   Aspect: South 
UTMY: 4866552 
Elevation (Meters): 2912 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

2 Carex 
haydeniana 

0-5    grass, 
sedge, forbs 

15 

5 Danthonia         grass, 
sedge, forbs 

15 

9 Erigeron 
rydbergii cronq. 

0-5    grass, 
sedge, forbs 

15 

10 Ivesia gordonii 10-15    grass, 
sedge, forbs 

15 

14 Minuartia 
austromontana 

0-5    grass, 
sedge, forbs 

15 

21 Achilliea 
millefolium 
lanulosa 

0-5    grass, 
sedge, forbs 

15 

24 Trisetum 
spicatum 

0-5    grass, 
sedge, forbs 

15 

25 Sedum 
lanceolatum 

0-5    grass, 
sedge, forbs 

15 

34 Astragalus 
kentrophyta 

5-10    grass, 
sedge, forbs 

15 

37 Poa alpina 0-5    grass, 
sedge, forbs 

15 

41 Erigeron 
formosissimus 

0-5     15 

47 Carex  
breweri 
paddoensis 

0-5    grass, 
sedge, forbs 

15 

53 Symphyotrichum 
foliaceus 

0-5    grass, 
sedge, forbs 

15 

54 Carex elynoides 0-5    grass, 
sedge, forbs 

15 

83 moss 2 15-20    grass, 
sedge, forbs 

15 

 
  

 



165 

MBD2B 
Date: 8/4/2006 and 7/11/2007 %Slope: 3  
UTM X: 512660   Aspect: South 
UTMY: 4866476 
Elevation (Meters): 2927 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

5 Danthonia         grass, 
sedge, 
forbs 

9 

21 Achilliea 
millefolium 
lanulosa 

0-5    grass, 
sedge, 
forbs 

9 

24 Trisetum 
spicatum 

0-5    grass, 
sedge, 
forbs 

9 

34 Astragalus 
kentrophyta 

5-10    grass, 
sedge, 
forbs 

9 

36 Petradoria pumila 5-10    grass, 
sedge, 
forbs 

9 

54 Carex elynoides 15-20    grass, 
sedge, 
forbs 

9 

69 Polygonum 
douglasii 

0-5    grass, 
sedge, 
forbs 

9 

70 Potentilla 
diversifolia 
perdissecta 

0-5    grass, 
sedge, 
forbs 

9 

83 moss 2 35-40    grass, 
sedge, 
forbs 

9 

 
  

 



166 

MBD3B 
Date: 8/4/2006 and 7/11/2007 %Slope: 2  
UTM X: 512940   Aspect: West 
UTMY: 4866626 
Elevation (Meters): 2881 
 

Specie
s # 

Species/genus Name Specie
s % 
cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
groun
d  

1m
2 
% 

veg 
cover 

community type Number of 
Species 
Per Plot 

2 Carex haydeniana 10-15    grass, sedge, 
forbs, dwarf shrub 

17 

14 Minuartia 
austromontana 

0-5    grass, sedge, 
forbs, dwarf shrub 

17 

21 Achilliea millefolium 
lanulosa 

10-15    grass, sedge, 
forbs, dwarf shrub 

17 

27 Castilleja sulphurea 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

34 Astragalus kentrophyta 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

35 Potentilla fruticosa     grass, sedge, 
forbs, dwarf shrub 

17 

37 Poa alpina 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

40 Epliobium glaberrinum 
fastigiatum 

15-20    grass, sedge, 
forbs, dwarf shrub 

17 

53 Symphyotrichum 
foliaceus 

5-10    grass, sedge, 
forbs, dwarf shrub 

17 

54 Carex elynoides 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

63 Antennaria media 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

68 UK 10-15    grass, sedge, 
forbs, dwarf shrub 

17 

70 Potentilla diversifolia 
perdissecta 

0-5    grass, sedge, 
forbs, dwarf shrub 

17 

72 UK 5-10    grass, sedge, 
forbs, dwarf shrub 

17 

77 UK 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

79 UK 0-5    grass, sedge, 
forbs, dwarf shrub 

17 

83 moss 2 5-10    grass, sedge, 
forbs, dwarf shrub 

17 

 
  

 



167 

MLD1B 
Date: 8/14/2006 and 7/20/2007 %Slope: 5  
UTM X: 515142   Aspect: South 
UTMY: 4849303 
Elevation (Meters): 3081 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 20-25 0 50 50 n/a 12 

8 Erigeron speciosus 5-10     12 

14 Minuartia 
austromontana 

0-5     12 

15 Androsace 
spetentionalis 

0-5     12 

22 Antennaria 
umbrinella 

5-10 0 50 50 n/a 12 

23 Sibaldia 
procumbens 

0-5 0 50 50 n/a 12 

33 Bistorta 
bistortoides 

0-5 0 50 50 n/a 12 

38 Carex paysonis 0-5 0 50 50 n/a 12 

46 Hieracium fendleri 0-5 0 50 50 n/a 12 

57 Poa cusiskii epilis 20-25 0 50 50 n/a 12 

64 Erigeron simplex 5-10 0 50 50 n/a 12 

85 lichens 1 25-30 0 50 50 n/a 12 

 
  

NOTES: 1m
2 

veg cover is 20% 

cryptobiotic crust 



168 

MLD2B 
Date: 8/14/2006 and 7/20/2007 %Slope: 12  
UTM X: 515214   Aspect: North 
UTMY: 4849371 
Elevation (Meters): 3070 
 

Specie
s # 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

6 Luzula parviflora 0-5 90 0 10 grass, forb 10 

14 Minuartia 
austromontana 

0-5 90 0 10 grass, forb 10 

15 Androsace 
spetentionalis 

0-5     10 

22 Antennaria 
umbrinella 

5-10 90 0 10 grass, forb 10 

23 Sibaldia 
procumbens 

0-5 90 0 10 grass, forb 10 

38 Carex paysonis 15-20 90 0 10 grass, forb 10 

46 Hieracium fendleri 0-5 90 0 10 grass, forb 10 

57 Poa cusiskii epilis 0-5 90 0 10 grass, forb 10 

70 Potentilla 
diversifolia 
perdissecta 

0-5 90 0 10 grass, forb 10 

85 lichens 1 0-5 90 0 10 grass, forb 10 

 

  

NOLTES: 1m
2 

rock is all 

cobble.  1m
2 

veg cover is 5% 

lichens 



169 

MLD3B 
Date: 8/14/2006 and 7/20/2007 %Slope: 6 
UTM X: 515159   Aspect: South/East 
UTMY: 4849385 
Elevation (Meters): 3067 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 5-10 70 20 10 grass, forb 12 

6 Luzula parviflora 0-5 70 20 10 grass, forb 12 

14 Minuartia 
austromontana 

0-5 70 20 10 grass, forb 12 

22 Antennaria 
umbrinella 

5-10 70 20 10 grass, forb 12 

23 Sibaldia 
procumbens 

5-10 70 20 10 grass, forb 12 

33 Bistorta 
bistortoides 

0-5 70 20 10 grass, forb 12 

38 Carex paysonis 0-5 70 20 10 grass, forb 12 

44 Carex leporinella 0-5 70 20 10 grass, forb 12 

46 Hieracium fendleri 0-5 70 20 10 grass, forb 12 

57 Poa cusiskii epilis 0-5 70 20 10 grass, forb 12 

85 lichens 1 15-20 70 20 10 grass, forb 12 

86 lichens 2 15-20 70 20 10 grass, forb 12 

 

  

NOTES: 1m
2 

rock is all gravel 



170 

RDVD1B 
Date: 7/24/2006 and 7/14/2007 %Slope: 6 
UTM X: 509321   Aspect: East 
UTMY: 4827587 
Elevation (Meters): 2925 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 

% 
veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 0-5 5 80 15 grass, sedge, 
forb 

13 

2 Carex 
haydeniana 

0-5 5 80 15 grass, sedge, 
forb 

13 

4 Elymus 
trachycaulus 

0-5 5 80 15 grass, sedge, 
forb 

13 

9 Erigeron 
rydbergii cronq. 

10-15 5 80 15 grass, sedge, 
forb 

13 

15 Androsace 
spetentionalis 

0-5 5 80 15 grass, sedge, 
forb 

13 

25 Sedum 
lanceolatum 

0-5 5 80 15 grass, sedge, 
forb 

13 

48 Linanthus 
Pungens 

5-10 5 80 15 grass, sedge, 
forb 

13 

52 Boechera 
microphylla 

0-5 5 80 15 grass, sedge, 
forb 

13 

52 Boechera 
microphylla 

0-5 5 80 15 grass, sedge, 
forb 

13 

53 Symphyotrichum 
foliaceus 

0-5 5 80 15 grass, sedge, 
forb 

13 

58 Geranium 
richardsonii 

5-10 5 80 15 grass, sedge, 
forb 

13 

60 Rumex 
paucifolius 

0-5 5 80 15 grass, sedge, 
forb 

13 

65 Boechera lyallii 0-5 5 80 15 grass, sedge, 
forb 

13 

 

  

 



171 

RDVD2B 
Date: 7/24/2006 and 7/14/2007 %Slope: 3 
UTM X: 509332   Aspect: West 
UTMY: 4827647 
Elevation (Meters): 2915 
 

Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 
% 

rock 
1m

2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

9 Erigeron 
rydbergii cronq. 

5-10 60 20 20 grass, sedge, 
forb 

12 

15 Androsace 
spetentionalis 

0-5 60 20 20 grass, sedge, 
forb 

12 

16 Erigonum 
jamesii 

5-10 60 20 20 grass, sedge, 
forb 

12 

24 Trisetum 
spicatum 

0-5 60 20 20 grass, sedge, 
forb 

12 

25 Sedum 
lanceolatum 

0-5 60 20 20 grass, sedge, 
forb 

12 

32 Epilobium 
brachyocarpum 

0-5 60 20 20 grass, sedge, 
forb 

12 

47 Carex  
breweri 
paddoensis 

5-10 60 20 20 grass, sedge, 
forb 

12 

49 Penstemon 
rydbergii 

0-5 60 20 20 grass, sedge, 
forb 

12 

51 Ranunculus 
alismifolius 

0-5 60 20 20 grass, sedge, 
forb 

12 

52 Boechera 
microphylla 

0-5 60 20 20 grass, sedge, 
forb 

12 

57 Poa  
cusiskii epilis 

0-5 60 20 20 grass, sedge, 
forb 

12 

60 Rumex 
paucifolius 

0-5 60 20 20 grass, sedge, 
forb 

12 
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RDVD3B 
Date: 7/24/2006 and 7/14/2007 %Slope: 1 
UTM X: 509358   Aspect: North 
UTMY: 4827748 
Elevation (Meters): 2926 
 
Species 
# 

Species/genus 
Name 

Species 
% cover 

1m
2 

% 
rock 

1m
2 
% 

bare 
ground  

1m
2 
% 

veg 
cover 

community 
type 

Number 
of 

Species 
Per Plot 

1 Juncus parryi 5-10 5 30 65 grass, sedge, 
forb 

15 

2 Carex 
haydeniana 

15-20 5 30 65 grass, sedge, 
forb 

15 

3 Poa leptocoma 0-5 5 30 65 grass, sedge, 
forb 

15 

4 Elymus 
trachycaulus 

0-5 5 30 65 grass, sedge, 
forb 

15 

9 Erigeron 
rydbergii cronq. 

5-10 5 30 65 grass, sedge, 
forb 

15 

19 Phleum alpinum 0-5 5 30 65 grass, sedge, 
forb 

15 

30 Senecio serratta 0-5     15 

48 Linanthus 
Pungens 

5-10 5 30 65 grass, sedge, 
forb 

15 

52 Boechera 
microphylla 

0-5 5 30 65 grass, sedge, 
forb 

15 

53 Symphyotrichum 
foliaceus 

0-5 5 30 65 grass, sedge, 
forb 

15 

56 Lithophragma 
glabrum 

0-5 5 30 65 grass, sedge, 
forb 

15 

58 Geranium 
richardsonii 

5-10 5 30 65 grass, sedge, 
forb 

15 

60 Rumex 
paucifolius 

10-15 5 30 65 grass, sedge, 
forb 

15 

64 Erigeron simplex 0-5 5 30 65 grass, sedge, 
forb 

15 

65 Boechera lyallii 0-5 5 30 65 grass, sedge, 
forb 

15 
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