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ABSTRACT

Combinatorial-Based Prioritization for User-Session-Based Test Suites

by

Schuyler Manchester, Master of Science

Utah State University, 2012

Major Professor: Dr. Renée Bryce
Department: Computer Science

Faults in software systems often occur due to interactions between parameters. Several

studies show that faults are caused by two-way through six-way interactions of parameters.

Studies have also shown that prioritization by two-way inter-window parameter interaction

coverage is effective at finding faults quickly in the test execution cycle. However, since faults

may be caused by interactions between more than two parameters, we provide a greedy

algorithm for test suite prioritization by n-way combinatorial coverage of inter-window

parameter interactions. While algorithms that generate combinatorial interaction test suites

enumerate all possible t-tuples, we have observed that user-session-based test suites often

do not contain every possible t-tuple. We take advantage of this in our algorithm by only

storing t-tuples that appear in the test suite. Our empirical study shows a comparison

for both time and memory usage associated with our algorithm for two-way and three-

way inter-window parameter interaction coverage. Further, we compare the rate of fault

detection for two-way and three-way prioritization on an open source web application called

SchoolMate that we seeded with 66 faults. Our results show that the rates of fault detection

for two-way and three-way prioritization are within 1% of each other, but two-way provides

a slightly better result. A closer look at the web application, test cases, and faults reveals

that most faults are triggered by two-way interactions. (66 pages)
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PUBLIC ABSTRACT

Combinatorial-Based Prioritization for User-Session-Based Test Suites

by

Schuyler Manchester, Master of Science

Software defects caused by inadequate software testing can cost billions of dollars. Fur-

ther, web application defects can be costly due to the fact that most web applications handle

constant user interaction. However, software testing is often under time and budget con-

straints. By improving the time efficiency of software testing, many of the costs associated

with defects can be saved.

Current methods for web application testing can take too long to generate test suites.

In addition, studies have shown that user-session-based test suites often find faults missed

by other testing techniques. This project addresses this problem by utilizing existing user

sessions for web application testing. The software testing method provided within this

project utilizes previous knowledge about combinatorial coverage testing and improves time

and computer memory efficiency by only considering test cases that exist in a user-session-

based test suite. The method takes the existing test suite and prioritizes the test cases based

on a specific combinatorial criterion. In addition, this project presents an empirical study

examining the application of the newly proposed combinatorial prioritization algorithm on

an existing web application.
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CHAPTER 1

INTRODUCTION

Software defects caused by inadequate software testing often incur billions of dollars in

unnecessary costs [31]. At the same time, software testing is often performed under limited

budget constraints. Algorithms, tools, and techniques are needed for efficient and effective

testing, such that testing may be completed within the limited time and budget constraints

most testers face.

Studies have found that some faults occur due to interactions between parameters, and

in particular due to interactions among six or fewer parameters [20]. Wallace and Kuhn [21]

reviewed 15 years of recall data for medical devices gathered by the U.S. Food and Drug

Administration (FDA) and studied failure data on 109 medical devices. Of these 109 cases,

97% of the reported failures could have been detected by testing all pairs of parameter

settings. Pairwise testing, or two-way testing, covers interactions between two parameters

and is an effective approach, but may also miss some faults [12,19,20,23,39]. For example,

in the web browser software studied by Kuhn et al. [20] 76% of the faults were triggered by

two-way interactions between parameters. The remaining faults were triggered by higher

strength interactions (e.g., three-way through six-way) between parameters. Thus, it is

often important to test higher strength interactions between parameters during software

testing.

Generating higher strength interaction test suites in the smallest number of test cases is

NP-hard [11]. However, several approaches generate higher strength interaction test suites

with trade-offs in effectiveness of time to generate test suites, size of test suites for fixed-level

or mixed-level inputs, and ability to accommodate constraints [11]. Tools such as ACTS

(formerly known as FireEye) [24] generate test suites that provide higher strength coverage

and accommodate constraints, and hundreds of users routinely download such tools.
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More recently, we prioritized existing test suites by two-way inter-window event cover-

age for event-driven systems, i.e., web and GUI systems [8, 9, 33]. Test suite prioritization

is a test suite management technique wherein test cases are ordered for execution based

on certain criteria such that faults may be found early in the test execution cycle. Our

previous work applies test prioritization to the domain of web applications and prioritizes

user-session-based test cases, i.e., test cases created from usage logs of the web system [8,33].

In our empirical studies, we compare two-way inter-window parameter-value interaction cov-

erage with several other prioritization criteria, and two-way is among the best criterion in

several of our subject applications. However, given the observation from existing research

on traditional software that some faults are missed by two-way interaction test suites, we

decided to investigate higher strength prioritization strategies, such as three-way.

In this work, we examine a greedy algorithm to prioritize by t-way combinatorial cov-

erage. Our previous work generates covering arrays that represent t-way interaction test

suites [4–7]. The inputs that we examined in previous work to generate test suites were

significantly smaller, and we focused on obtaining 100% coverage of all t-way interactions.

However, in our application of test suite prioritization, particularly for user-session-based

test suites for web applications, we found that the test cases are much larger in terms of

the length of test cases, and they often have an incomplete coverage of t-tuples. For ex-

ample, a web application may allow users to select a set of dates, but users may not try

selecting every possible combination of months, days, and years available. Consider that

the parameters are continuous, but also can be considered discrete (e.g., although dates are

continuous, the dates entered will generally be the current date +/- two years). Utilizing

this estimate yields approximately 1460 different levels or values for any date entered given

the options for month, day, and year.

To generate a combinatorial interaction test suite for t-way coverage, previously pro-

posed greedy algorithms require that we enumerate every possible t-way interaction among

the parameters, store these in memory, and track the coverage of these tuples as tests are

ordered. However, this is prohibitive for large test suites. In our application of user-session-
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based testing, we have found sparse coverage of t-tuples, as our users do not systematically

cover every possible t-way combination when using the web application. Thus, our appli-

cation of test suite prioritization by t-way interaction coverage poses the challenge that

test cases are often much longer than inputs that we have considered in combinatorial in-

teraction test suite generation in the past. On the other hand, this application offers the

opportunity that exhaustive enumeration of every possible t-tuple is not necessary and the

algorithm can simply store the t-tuples available in the user-session-based test suite.

Our contribution in this paper is two-fold: (1) an algorithm that only uses memory

for valid t-tuples in a test suite, and (2) an empirical study that examines three-way inter-

window parameter-value interaction coverage for test suite prioritization. The algorithm

that we introduce in this paper takes advantage of the incomplete coverage of t-way inter-

actions in order to use less memory and accommodate larger inputs. In addition, we evaluate

the efficiency and fault finding effectiveness of the algorithm, using three-way interaction-

based prioritization. We measure efficiency by studying the time and memory requirements

of the algorithm. To measure fault finding effectiveness, we present a case study with an

open source web application, SchoolMate. We gather user sessions for SchoolMate and pri-

oritize them using our three-way algorithm. We contrast the effectiveness of three-way with

the other prominent prioritization criteria (including two-way) and measure the rate of fault

detection, i.e., how quickly the test order locates faults. The rate of fault detection is the

most commonly used measure of effectiveness of a prioritization criterion [30]. Though we

evaluate the algorithm with a case study of web applications, the algorithm can be applied

when working with test suites of any software systems that have sparse t-tuple coverage. A

subsection of this empirical study has been submitted to the 2012 Journal of Combinatorial

Mathematics and Combinatorial Computing.



4

CHAPTER 2

PREVIOUS WORK - LITERATURE REVIEW

While the greedy algorithm for test suite prioritization that we present may apply to any

test suite, we tailor our focus to user-session-based test suites for web applications. In this

section, we review previous work in two areas: (1) web applications and user-session-based

testing, and (2) test suite prioritization and combinatorial-strategies for prioritization.

2.1 Web Application Testing

Several approaches exist for generating test cases for web applications. For instance,

tools such as HTTPUnit [17] and RationalRobot [28] allow testers to record and play back

test sequences and to measure performance. Some tools check for broken links, validate

HTML code, and measure performance. More semi-automated approaches also exist. For in-

stance, Veriweb offers a simple solution that starts at a given URL and non-deterministically

traverses links in a web application [3]. Andrews et al. use finite state machines with con-

straints to provide system-level tests [2]. The constraints are used to select reduced inputs

to help reduce the state space growth. Kung et al. consider object relations, state, and

page navigation diagrams using a web test model (WTM) [22]. In addition, the model can

be useful in identifying change ripple effects and finding test strategies that will be more

cost-effective during regression testing. Ricca et al. use UML models from pages of a web

application in order to automatically generate test cases for white box testing that are based

on static HTML links [29]. Liu et al. use data flow interactions among clients [25]. These

data flow interactions form test cases for web applications based on flow graphs. Halfond

et al. discover web application interfaces from server code [16]. The discovery of the web

application interfaces assist in generating test inputs for web applications. Wang et al.

locate interaction faults by generating test cases that cover pairwise interactions between
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web pages [40]. Offut et al. use HTTPUnit and HtmlUnit to run bypass tests that bypass

client-side checks [26]. Qian uses a genetic algorithm utilizing crossover and mutations to

generate a large volume of test cases for a test suite [27].

One test generating framework that has been used for numerous studies is the automatic

efficient tests generator (AETG). One example in which this framework is used is in a study

by Cohen et al. [10]. In one experiment, the authors tested user interface modules from

Telcordia, a telecommunications software company. In this experiment, they tested the

modules from two releases, with nine modules from the first release and 13 modules from

the second release. The pairwise test sets that were generated by AETG gave over 90%

block coverage. They also did a comparison of pairwise testing and random input testing

and found better coverage for pairwise testing.

All of these strategies generate test cases from models of the web system. Additional

work to test rich internet applications exists, but such work is outside of the scope of this

thesis. We focus on a particular type of web testing that occurs during the maintenance

phase of the system, user-session-based testing.

Regression testing is one of the largest maintenance costs during the software develop-

ment cycle. There are two primary options for test suites used during regression testing:

(1) generate test suites that fulfill a certain criterion, or (2) user-session-based test suites.

User-session-based testing has the benefit that tests can be automatically constructed from

web logs for use in regression testing and they contain sequences of actions that real users

have performed. User-session-based test cases also have the benefit that testers do not need

to specify inputs for test cases. For instance, web applications are accessible through the

Internet, and each HTTP POST and GET request that a user makes is written to a log file.

The logs can then be parsed into test cases by using the IP addresses, cookies, and time

stamp for each POST and GET request in order to identify the steps of each user and to

create the respective test cases [13,36,38]. A user session is a sequence of base requests and

name-value pairs associated with the requests. Table 2.1 shows an example user session for

a bookstore application.
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Table 2.1. Example User-Session-Based Test Case.

User 1

index.php
showbooks.php?book name=”java for beginners”&book type=”programming”
buybooks.php?book id=”7”
shippingMethod.php?carrier=”ups”&type=”ground”

Existing work on user-session-based testing falls under the categories of test case gen-

eration, test suite prioritization, test suite reduction, and test suite repair. Elbaum et al.

conducted empirical studies and showed that user-session-based testing is a good option to

augment white box testing techniques as they found different faults [13]. Sampath et al. [34]

and Sprenkle et al. [38] also present a framework for user-session-based testing of web sys-

tems. The test case creation heuristics presented in their work is leveraged in this paper

but is extended as we parse Apache web server logs and provide an XML format for test

cases [32]. While there are advantages to user-session-based testing, two major problems

arise over time: (1) user-sessions may become invalid during regression testing (i.e., the

structure of the web application changes, including page names, links, options on a page,

etc.), and (2) a large number of user-sessions build up, making it unrealistic to run all tests

in practice. Alshahwan et al. present work on the first issue of repairing user-session-based

test cases for use in regression testing [1]. Two approaches have been taken to address

the second issue of managing large test suites, that of test suite prioritization [8, 33] and

reduction [35, 36]. In the current work, we focus on test suite prioritization. In the next

subsection, we provide an overview on test case prioritization and elaborate on our prior

work in the area of test suite prioritization for user-session-based test cases.

2.2 Test Case Prioritization

Exhaustive testing of software is almost always an unachievable goal to obtain. This

dilemma has brought software testing to a more attainable goal by using covering arrays

with combinatorial testing. This process requires substantially less time and resources. This
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approach to software testing was first used by Cohen et al. [10] wherein they generated test

suites that cover pairwise up to t-way combinations. One empirical study by Bryce and

Memon [9] showed better fault finding effectiveness for test suites with the largest event

interaction coverage when prioritizing by two-way and three-way interaction coverage.

Test suite prioritization is formally defined by [30]. Given T , a test suite, Π, the set

of all test suites obtained by permuting the tests of T , and f , a function from Π to the set

of real numbers, the problem is to find π ∈ Π such that ∀π′ ∈ Π, f(π) ≥ f(π′). In this

definition, Π refers to the possible prioritizations of T , and f is a function that is applied

to evaluate the orderings.

Xie et al. examined the characteristics of a good GUI test suite [41]. The authors found

there are two primary characteristics that increase the rate of fault detection: (1) diversity

of states in which an event executes, and (2) the event coverage of a test suite. Several

criteria have been applied for test suite prioritization to user-session-based test suites [14,30].

Previous work by Bryce et al. [9] examines two-way and three-way inter-window event

coverage for test suite prioritization on GUI applications. For each application, they applied

two-way and three-way inter-window event coverage, unique event coverage, length of test

cases (longest to shortest and shortest to longest in terms of the number of parameter-

values) and random ordering. The first application, a calculator, only had two windows, so

with the exception of three-way, each technique was applied. The results show that two-

way provides the best rate of fault detection. In the other three applications, there were

three or more windows, so the authors were able to apply all of the prioritization criteria.

For a paint program, choosing the longest tests first resulted in the best rate of fault

detection, followed by three-way and finally two-way. For a spreadsheet program, unique

event coverage provided the best rate of fault detection in the first half of the test suite, but

then two-way and three-way alternate in providing the overall best rate of fault detection in

the latter half of the test suite. Finally, in a word processing application example, two-way

and three-way alternate in producing the best rate of fault detection. This work provides

some motivation for us to explore the application of three-way inter-window parameter-value
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interaction coverage in the domain of web applications.

Bryce et al. [8] examine several prioritization criteria, including the combinatorial cri-

terion, pairwise inter-window parameter-value interaction coverage (two-way), applied to

user-session-based test suites and empirically evaluate them on three web applications,

including an online bookstore, a course project manager, and a conference management

system. All three applications were seeded with faults. The authors found that prioritiza-

tion criteria based on the longest tests with respect to the number of POST/GET requests,

longest tests with respect to the number of parameters that users assigned values and two-

way combinatorial coverage of inter-window interactions were usually efficient techniques

compared to the original order in which test cases were logged or ordered at random. Figure

2.1 shows the rate of fault detection for these four prioritization techniques applied to course

project manager (CPM), a test suite for web applications. In this example, prioritization by

length (gets/posts), number of parameters, and two-way combinatorial coverage provide a

faster rate of fault detection than random ordering. We provide this example here because

CPM was the largest web application with the largest test suite that was studied in our

previous work (9,401 lines of code, 890 tests) [8]. (We refer the reader to [8] for further

details and case studies.)

However, since existing literature recognizes that certain faults are detected by inter-

actions between parameters that are stronger than pairwise interactions, we are interested

in investigating this hypothesis for web applications and user-session-based testing. In the

remainder of this paper, we propose an algorithm for n-way combinatorial interaction cov-

erage and present an empirical evaluation of the efficiency and effectiveness of the algorithm

up to t=3.
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Figure 2.1. Rate of fault detection for the CPM web application.
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CHAPTER 3

ALGORITHM

Our previous work focuses on generating covering arrays for combinatorial interaction

testing (CIT) [4–7]. In such test suite generation, we generate a covering array in which

all t-tuples, with the exception of constraints, are covered at least once. However, in our

work on test suite prioritization, we noticed that the user-session-based test suites did not

contain all possible t-tuples [8]. For instance, we examined three web applications and found

that the associated user-session-based test suites did not contain an exhaustive collection

of all t-tuples of parameter-values between windows. This makes sense because our web

applications had many fields in which different users could manually enter personal data

such as user ids, passwords, mailing addresses, and other textual data. This observation

led us to design an algorithm that does not identify all parameter-values in a system nor

enumerate the possible t-tuples, but rather only stores the t-tuples that appear in the test

suite.

In this section, we illustrate t-way test suite prioritization for t = 2 and t = 3 and then

present the prioritization algorithm.

3.1 Example of t-way Prioritization

Consider an e-commerce application wherein users purchase and ship items. Table 3.1

defines four pages of the web application. In the first page, the user may select one of three

options for the shipment time. The user may then select one of three options for the postal

carrier on the second page. On the third page, the user may specify one of three options for

tracking. Finally, the user may choose one of three options for insurance on the fourth page.

Selecting different options will execute different lines of code in the system. For instance,

if the user selects any tracking option other than “None”, the system generates a unique
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Table 3.1. Web Testing Example with Four Factors and Three Levels for Each Factors.

Page 1, Shipment Time Page 2, Carrier Page 3, Tracking Page 4, Insurance

5 - 10 days USPS Status tracking (Stat) up to $100

1 - 3 days UPS Signature confirmation (Sig) up to $1000

overnight Fedex None None

tracking identifier and directs the user to a separate page that describes the conditions of

the desired tracking. Thus, having test coverage for the different values for tracking could

potentially uncover a fault that might have been overlooked by a different test.

Table 3.2 contains an example test suite that accesses the pages. This test suite contains

a total of four different test cases and covers a total of twenty unique 2-tuples and fifteen

unique 3-tuples as shown in Table 3.3. The tuples represent the

inter-window parameter-value interactions in the test case.

When prioritizing by two-way, we select the first test case such that it covers the largest

number of 2-tuples. The second column of Table 3.3 shows that all four test cases cover

six 2-tuples. We then break the tie at random, select t2, and mark the 2-tuples in this

test as covered. We next examine which of the remaining tests cover the most remaining

uncovered 2-tuples. Test case t1 covers three uncovered 2-tuples, t3 covers six new uncovered

2-tuples, and t4 covers five uncovered 2-tuples, so we choose t3. We mark the 2-tuples in

t3 as covered and examine the last two remaining tests to select the test that covers the

most uncovered 2-tuples. We select test t4 as it covers the most uncovered 2-tuples. The

ordering for two-way prioritization is then {t2,t3,t4,t1}.

To prioritize by three-way, we select the first test case that covers the most 3-tuples.

All four test cases cover four 3-tuples, so we break the tie at random and select t3. We then

mark the 3-tuples covered in test t3 as covered. In the next iteration, there is a tie among

all of the tests as they cover the same number of 3-tuples, so we break the tie at random

and select t2. In the next iteration, t4 covers more uncovered 3-tuples than t1, so we select

t4. Finally, we add the last test case, t1 to the test suite. The final ordering by three-way

is {t3,t2,t4,t1}.
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Table 3.2. Test Suite Example of Table 3.1 Web Testing Example.

Test case Ship Time Carrier Track Insur Parameter-Values (P-V) Covered

t1 5-10 days USPS None $100 Ship Time:5-10 days,
Carrier:USPS,
Track.:None
Insur:$100

t2 1-3 days USPS None $100 Ship Time:1-3 days,
Carrier:USPS,
Track.:None
Insur:$100

t3 overnight UPS Sig. $1000 Ship Time:overnight,
Carrier:UPS,
Track.:Sig.
Insur:$1000

t4 1-3 days Fedex Stat. $100 Ship Time:1-3 days,
Carrier:Fedex,
Track.:Stat.
Insur:$100

Table 3.3. Two-way and Three-way P-V Covered from Test Suite Described in Table 3.2.

Test case Two-way Tuples Covered Three-way Tuples Covered

t1 (Ship Time:5-10 days, Carrier:USPS), (Ship Time:5-10 days, Carrier:USPS,
(Ship Time:5-10 days, Track.:None), Track.:None), (Ship Time:5-10 days,
(Ship Time:5-10 days, Insur:$100), Carrier:USPS, Insur:$100),
(Carrier:USPS, Track.:None), (Ship Time:5-10 days, Track.:None,
(Carrier:USPS, Insur:$100), Insur:$100), (Carrier:USPS,
(Track.:None, Insur:$100) Track.:None, Insur:$100)

t2 (Ship Time:1-3 days, Carrier:USPS), (Ship Time:1-3 days, Carrier:USPS,
(Ship Time:1-3 days,Track.:None), Track.:None), (Ship Time:1-3 days,
(Ship Time:1-3 days, Insur:$100) Carrier:USPS, Insur:$100),
(Carrier:USPS, Track.:None) (Ship Time:1-3 days, Track.:None,
(Carrier:USPS, Insur:$100) Insur.:$100), (Carrier:USPS,
(Track.:None, Insur:$100) Track.:None, Insur:$100)

t3 (Ship Time:overnight,Carrier:UPS), (Ship Time:overnight, Carrier:UPS,
(Ship Time:overnight, Track.:Sig.), Track.:Sig.), (Ship Time:overnight,
(Ship Time:overnight, Insur:$1000) Carrier:UPS, Insur:$1000),
(Carrier:UPS, Track.:Sig.) (Ship Time:overnight, Track.:Sig.,
(Carrier:UPS, Insur:$1000) Insur:$1000), (Carrier:UPS,
(Track.:Sig., Insur:$1000) Track.:Sig., Insur:$1000)

t4 (Ship Time:1-3 days, Carrier:Fedex), (Ship Time:1-3 days, Carrier:Fedex,
(Ship Time:1-3 days,Track.:Stat.), Track.:Stat.), (Ship Time:1-3 days,
(Ship Time:1-3 days, Insur:$100) Carrier:Fedex, Insur:$100),
(Carrier:Fedex, Track.:Stat.) (Ship Time:1-3 days, Track.:Stat.,
(Carrier:Fedex, Insur:$100) Insur:$100), (Carrier:Fedex,
(Track.:Stat., Insur:$100) Track.:Stat., Insur:$100)
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3.2 Algorithm for t-tuple Prioritization

Phase 1: Preprocessing. We iterate through each test cases ti in the test suite TS.

For each URL, we identify each parameter p that has been assigned a value v on each page.

We refer to the assignment of a value to a parameter as a parameter-value. We then create

a list of all t-way inter-window parameter-value interactions (t-tuples) in the test suite and

store them in our tuplesList. This preprocessing stage allows us to only store tuples in

memory that are contained in the test suite.

Phase 2: t-way Prioritization. The greedy algorithm selects the test case that has

the largest count of uncovered t-tuples from the tuplesList, marks those t-tuples as covered

(i.e., removes them from the tuplesList), and repeats this process until the entire test suite

has been prioritized. In each iteration, for each test case, the tCountMax is computed as

the number of uncovered t-tuples that are in the test case. The test case with the highest

tCountMax is added to the test suite, and the t-tuples that are covered in this test case

are removed from the tuplesList that stores the uncovered t-tuples. Figure 3.1 provides

pseudocode for this algorithm.

In the next section, we present our empirical study that shows the scalability of the

algorithm for t = 3 and the effectiveness of the prioritized test orders.
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// Preprocessing of test suite
sizeOfTestSuite = 0
foreach test case ti in the test suite TS

foreach URL url in ti
foreach param p assigned a value v in ti

tuple tu = url + p + v
if tuplesList does not contain tu
tuplesList add tu

end foreach
end foreach
sizeOfTestSuite++

end foreach

// Generate all t-tuple combinations and insert into t-tuplesList
t-wayTuplesList = generate-t-wayTupleList(tuplesList)

// Test Suite Prioritization
testbestTest = select a test that covers the most unique t-way tuples from t-wayTuplesList
add testbestTest to prioritized test suite TSp
mark testbestTest as used
remove the t-way tuples that appear in testbestTest from t-wayTuplesList
selectedTestCount = 1
while(selectedTestCount < sizeOfTestSuite)
tCountMax = -1
for j=1 to (sizeOfTestSuite-selectedTestCount)

if testj is not used
compute tCount as the number of newly covered t-way tuples from t-wayTuplesList in testj
if(tCount > tCountMax)
tCountMax = tCount
testbestTest = j

else if(tCount == tCountMax)
break the tie at random

end for
add testbestTest to TSp
mark testbestTest as used
remove the t-way tuples that appear in testbestTest from t-wayTuplesList
selectedTestCount++

end while

Figure 3.1. Algorithm for test suite prioritization by t-way combinatorial coverage.
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CHAPTER 4

EXPERIMENT

The two main lines of inquiry in our study are:

1. How well does the t-way prioritization algorithm scale, for t=3, for user-session-based

test suites?

2. How effective are the prioritized test orders generated by two-way and three-way at

detecting faults?

4.1 Subject Application

Our subject application is an open-source web-based application called SchoolMate. It

is written in PHP with a MySQL backend. SchoolMate is designed for elementary, middle,

and high schools to manage classes, registration, assignments, and grades. There are four

different types of users that can log into this application: (1) admin (2) teacher (3) parent

and (4) student. The parent and student can access identical web pages, except that a parent

also has a list of assigned children. Therefore, we refer to this functionality as parent/student

in the remainder of the paper. Table 4.1 describes the technical characteristics of the

application, information about the test suite, and seeded faults.

4.2 Test Suites

The test suites for this study were gathered by an undergraduate software testing class.

The class was instructed to login to the web application and test out as many web pages as

possible. The test cases are constructed using the IP addresses that are associated with each

GET/POST request. If there is more than a 45-minute break in between a GET/POST

request from the same user, we begin a new test case. We initially collected a large test

suite with 125 test cases, but later broke it down into three smaller test suites where each
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Table 4.1. Composition of the Web-based Application and Test Suite in Our Study.

Description SchoolMate

Files 63

Unique parameter-values in test suite 2,611

Lines of Code (LOC) 6652

PHP methods 15

JavaScript methods 70

Branches 618

Total no. of tests 125

Total no. of tests with Administrator users 59

Total no. of tests with Student users 44

Total no. of tests with Teacher users 55

Largest count of GETS/POSTS in a test case 193

Average count of GETS/POSTS in a test case 36.5

Largest count of parameters in a test case 874

Average count of parameters in a test case 163.04

Two-way parameter-value interactions covered in test suite 278,109

Three-way parameter-value interactions covered in test suite 477,450

No. of seeded faults 66

test suite contains tests for either an administrator, teacher, or parent/student user. While

there is overlap in the code that some of the user types access, we split the test suites based

on user types because different user types are required in order to access certain parts of

the code and seeded faults. Table 4.1 shows that the three test suites have between 44

to 59 test cases. See Appendix A for a more detailed sample test case. In addition, see

Appendix B for details on the percent code covered in SchoolMate for each test case within

the test suite.

4.3 Faults

A total of 66 faults were seeded into SchoolMate by a graduate student. Each seeded

fault version belongs to two categories, user type and fault classification. We seeded faults

for each type of user of the system, i.e., admin, teacher, parent/student, and any. Sampath

et al. [36] and Guo et al. [15] presented a fault classification for web applications. We use

this classification (described below) when seeding faults in SchoolMate.

• Appearance faults: Faults in the application code that change the display of a web
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page. An example is that a missing print statement in the PHP code can sometimes

cause the code to display in an incorrect manner.

• Link faults: Faults in the application code that manipulate the page pointed to by

a URL. An example is a link that points to a non-existent page causing an error to

display.

• Data Store faults: Faults in the code that modify data storage within the application.

An example includes swapping variables for an SQL Insert query which causes the

data to be stored improperly.

• Form faults: Faults in the application code that manipulate a form’s name-value pairs.

An example includes swapped variables for the text and values for an HTML option

list which causes incorrect text to be displayed, and incorrect values to be sent to the

server.

• Logic faults: Faults in the application code that manipulate control flow and/or busi-

ness logic. An example is displaying an improper date format that causes the date to

be saved incorrectly.

Logic faults have seven subcategories, of which we use five, because the remaining categories

were not applicable for our subject application, SchoolMate. The five subcategories we used

are:

• Session faults: Faults in the application code that manipulate the current session state

of the application or faults that manipulate other session-based operations such as

using sessions to save information entered on a form and display the information after

the sessions have been validated. An example is accidentally setting a variable that

determines what menu navigation screen is displayed; this causes undesired behavior.

• Paging faults: Faults in the application code that manipulate the display of large

amounts of data. An example is using a ‘<’ instead of a ‘<=’ when iterating through

the pages of users, which causes the last page of users to never be displayed.
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• Server-side parsing faults: Faults in the application code that change server-side pars-

ing of data. An example is an escaped variable that causes the variable name to be

saved instead of the value assigned to that variable.

• Encoding/decoding faults: Faults in the application code that encode or decode infor-

mation during transmission, storage, and/or display. An example is a missing convert

from a database function that causes the data to not be decoded into a more readable

format.

• Locale faults: Faults that exist in code that manipulate locale-specific information

within the application, such as date format or language. An example is that saving

the date format in European date encoding causes the date to be saved incorrectly

for a U.S. application.

See Appendix C for details on the fault type distribution.

4.4 Prioritization Criteria

We use five prioritization criteria. First, we use two-way and three-way inter-window

parameter-value interaction coverage in order to evaluate whether three-way offers improve-

ment over two-way in fault finding effectiveness. Second, we use two length-based criteria,

namely, number of GET/POST requests in a test case and the number of parameter-values

in a test case. We choose these length-based criteria as they performed well in our previous

work [8]. Random ordering is used as a control.

• Two-way. We select the test cases in non-ascending order of the number of inter-

window parameter-value combinations between two separate pages. Ties are broken

at random.

• Three-way. We select the test cases in non-ascending order of the number of inter-

window parameter-value combinations between three separate pages. Ties are broken

at random.
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• Length (GETS/POSTS). We select the test cases in non-ascending order of the

number of GET/POST requests. Ties are broken at random.

• Number of parameter-values. We select the test cases in non-ascending order of

the number of parameter-values. Ties are broken at random.

• Random. We use the random function available in Java to randomly swap the

ordering of the test cases. The tool produces a different random ordering each time

the user chooses to prioritize at random.

4.5 Experimental Framework

The usage logs for SchoolMate are converted into test cases and prioritized within our

tool, CPUT [32]. The t-way prioritization algorithm is implemented in CPUT for t = 2

and t = 3, in addition to other criteria, such as length, randomness and frequency-based

prioritization criteria. Apache logs are parsed and XML format test cases are created. The

test cases can then be prioritized using the different prioritization criteria. Figure 6.3 shows

a screenshot of CPUT with the prioritized test order displayed in the bottom-left window

pane, and the test case displayed in the bottom-right pane.

We next execute the test cases using a replay tool. We created a new replay tool that

can execute the XML format test cases. We conducted fault detection experiments using the

framework presented by Sprenkle et al. [38]. Initially, we execute the test cases on a clean

version of the application and save the returned files. This is the expected output, since

we consider the non-fault-seeded version of the application as our gold standard. Then,

one fault is seeded in the application at a time, and all the test cases are executed. The

returned HTML files are saved (this is the actual output). The test oracle is then executed

on the returned files to determine if the test case detects the fault. We present the results

from the struct oracle here. The struct oracle [38] compares the expected and actual output

in terms of the HTML tags in the files to identify differences. A fault matrix is generated

that shows how many faults and which faults are detected by each test case.
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CHAPTER 5

RESULTS

We first review the scalability of our algorithm on several web logs for the SchoolMate

application and next present our findings on the fault-finding effectiveness of prioritization

by three-way inter-window parameter-value interaction coverage for our application and

test suites.

5.1 Scalability

To study the scalability potential of our algorithm, we record each component’s exe-

cution time and space requirements of the output. The experiment was run on a machine

with a Windows 7 operating system with 6GB of RAM, and with an i7 processor with 1.6

GHz per core. In this study, we split the log into 1 day usage, 5 days usage, 10 days usage,

15 days usage (which is the entire log file), and doubled the size of the log file. To double

the size of the log file, we modified the log file by changing the year from 2010 to 2011 for

the date. We then replaced digits in the IP addresses and cookies to make them different.

For instance, we swapped occurrences of the number 4 with the number 3.

Table 5.1 summarizes the results. We present the results for each log file separately.

For each log file, we present the time taken by the test case creation engine and the different

prioritization and reduction criteria (column 4). We also present the space occupied by the

output of the different components of the framework (column 5). We note that the test

creation engine takes from a few seconds to slightly over one minute for the double log

file. The time taken results from the tool parsing the web log into test cases and storing

the data from the test suite using the pre-processing part of our algorithm that is run

before the test suite prioritization options are available to the user. Once the web log

parsing and pre-processing are complete, the user may choose the prioritization technique



21

Table 5.1. Execution Time and Size of Test Suites for SchoolMate Logs.

Component Component Execution Output Space
Log file name output time requirements

1 day Test case creation engine XML format tests 3.831 99 kb (10 test cases)
Test prioritization (Length) Order file 0 138 bytes
Test prioritization (No. of params) Order file 0 138 bytes
Test prioritization (two-way) Order file 0.359 138 bytes
Test prioritization (three-way) Order file 0.701 138 bytes

5 days Test case creation engine XML format tests 7.196 488 kb (50 test cases)
Test prioritization (Length) Order file 0 658 bytes
Test prioritization (No. of params) Order file 0.001 658 bytes
Test prioritization (two-way) Order file 1.403 658 bytes
Test prioritization (three-way) Order file 2.118 658 bytes

10 days Test case creation engine XML format tests 20.749 1326 kb (110 test cases)
Test prioritization (Length) Order file 0 1438 bytes
Test prioritization (No. of params) Order file 0.001 1438 bytes
Test prioritization (two-way) Order file 3.242 1438 bytes
Test prioritization (three-way) Order file 6.778 1438 bytes

15 days Test case creation engine XML format tests 26.899 1888 kb (173 test cases)
Test prioritization (Length) Order file 0.001 2257 bytes
Test prioritization (No. of params) Order file 0.002 2257 bytes
Test prioritization (two-way) Order file 5.248 2257 bytes
Test prioritization (three-way) Order file 10.292 2257 bytes

double Test case creation engine XML format tests 70.552 3776 kb (348 test cases)
Test prioritization (Length) Order file 0.004 4532 bytes
Test prioritization (No. of params) Order file 0.002 4532 bytes
Test prioritization (two-way) Order file 11.662 4532 bytes
Test prioritization (three-way) Order file 25.406 4532 bytes

to run. Prioritization by the length and number of POST/GET requests generally takes

negligible time, reported as 0 seconds, up to 0.004 seconds. Prioritization by the number

of parameters-values in a test is also negligible, taking 0 to .002 seconds. The two-way

prioritization criteria are also in the order of seconds—starting at 0.359 seconds and going

up to 11.662 seconds. The three-way prioritization criteria take .701 seconds, up to 25.406

seconds.

The output of the test case creation engine is the test suite. We see that tests created

vary from 10 to 348 tests, occupying from a few bytes to 3,776 kilobytes. The output of the

different prioritization criteria is stored in the order file which contains the test case names

printed to file. The size of this output file also ranges from a few bytes to 4 kilobytes.

From these results, we note that the time taken by the t-tuple prioritization algorithm

is in the order of a few seconds. Therefore, our algorithm has the potential to scale to larger

usage logs and test cases on which the test prioritization criteria need to be applied.
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5.2 Rate of Fault Detection

We prioritized our three test suites by the prioritization criteria described above and

measured the rate of fault detection with the metric, average percentage of fault detection

(APFD) [30]. APFD measures the area under the curve that plots test suite fraction and

the number of faults detected by the test ordering. Rothermel et al. [30] define APFD as

follows: For a test suite, T with n test cases, if F is a set of m faults detected by T, then let

TFi be the position of the first test case t in T ′, where T ′ is an ordering of T, that detects

fault i. Then, the APFD metric for T ′ is given as

APFD = 1− TF1 + TF2 + TF3 + ...+ TFm

mn
+

1

2n
(5.1)

Intuitively, APFD measures the area under the curve that plots test case size on the x-axis

and percent of unique faults detected on the y-axis. APFD is a measure of how quickly

faults are detected by the test suite, which is essential in regression testing scenarios.

Out of the total 66 faults seeded, the parent/student test suite with 44 test cases

detected 33 faults, the admin test suite with 59 test cases detected 50 faults, and the

teacher test suite with 55 test cases detected 39 faults. The full test suite detects 51 of the

66 faults. However in this section, we present our results with the test suites divided by the

user-type. We divide the test suite into three smaller test suites based on the user type as

the three different user types could access different parts of code and we did not want one

user type to dominate over others.

We ran our algorithm five times for each combinatorial prioritization criterion and

report the average of these runs in Table 5.2. For all three test suites, two-way and three-way

provide the best APFD and are within 1% of each other, with two-way performing slightly

better. Prioritization by length of GET/POST requests and the number of parameter-

values in a test case alternate in providing the third and fourth best APFD for the admin

and teacher test suites; however, random ordering provides the third best APFD for the

parent/student test suite. The random ordering is the least effective for the admin and

teacher test suites. The results among two-way, length by GET/POST requests, number
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Table 5.2. Average APFD of the different test orders.

% of Admin
test suite two-way three-way GET/POST P-Vs Random

10% 70.44 70.42 70.13 70.13 63.13
20% 86.89 73.09 71.48 72.75 73.32
30% 86.89 85.43 74.86 77.12 75.83
40% 88.76 85.43 83.68 84.04 78.98
50% 89.63 87.98 85.25 86.52 79.63
60% 89.63 87.98 85.98 86.52 80.56
70% 89.63 87.98 85.98 86.52 81.91
80% 89.63 87.98 85.98 86.52 82.07
90% 89.63 87.98 85.98 86.52 82.77
100% 89.75 88.01 86 86.65 82.9

% of Parent/Student
test suite two-way three-way GET/POST P-Vs Random

10% 64.6 64.6 63.57 63.77 58.77
20% 64.6 64.6 63.57 63.77 63.62
30% 64.6 64.6 63.57 63.77 64.31
40% 64.6 64.6 65.39 65.67 64.94
50% 67.13 66.22 65.39 65.67 65.6
60% 67.13 66.96 65.39 65.67 65.88
70% 67.13 66.96 65.86 66.27 66.29
80% 67.13 66.96 65.86 66.27 66.45
90% 67.13 66.96 65.86 66.27 66.66
100% 67.3 67.2 66.1 66.51 66.66

% of Teacher
test suite two-way three-way GET/POST P-Vs Random

10% 68.94 68.91 64.24 67.02 47.32
20% 68.94 68.91 66.91 67.02 56.53
30% 68.94 68.91 68.06 68.17 61.48
40% 68.94 68.91 68.06 68.17 62.47
50% 68.94 68.91 68.06 68.17 64.1
60% 68.94 68.91 68.06 68.17 65.01
70% 70.39 68.91 69.08 69.19 65.43
80% 71.02 69.71 70.11 69.19 66.13
90% 71.64 71.03 70.73 70.51 66.64
100% 71.64 71.03 70.73 70.51 66.72

of parameter-values, and random ordering are consistent with previous literature [8], but

the results for three-way rank first within the domain of user-session-based testing for web

applications.

We examined the faults detected by the two-way and three-way test suites to under-

stand our results. We noticed that we seeded faults in our system based on the existing

fault classification (presented in Section 4.3) without regard to whether they were caused
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by three-way interactions between parameters. An example of a web application fault that

could be triggered by three-way inter-window interaction between parameters is as follows:

First add a new teacher, next navigate to a page where classes are managed, and finally

edit an existing class to assign the newly added teacher to the class. The fault could be

introduced when assigning the teacher to an existing class. The new teacher could be as-

signed a substitute teacher designation instead of being noted as main teacher. This fault

thus occurs due to interactions on parameters from three different windows.

An example of a web application fault triggered by two-way inter-window parameter-

value interactions is as follows: A user creates a new semester, the application sets a hidden

parameter “addsemester” to the value “4” (new semester id). After this new semester

is successfully saved, a fault is introduced in the web page, by replacing all of the other

semester’s hidden ids to “4” (new semester id). The user then attempts to delete a previously

existing semester, which is when the fault actually appears. The attempted delete should

have the parameter “deletesemester” set to the value “1” (the previously existing semester’s

id); however, the fault has every semester id value set to “4”. Thus, the interaction of these

two parameter-values on different pages causes a fault when attempting a deletion of a

semester immediately after adding a new semester.

We also note that some failures were observable only when the user session contained

a certain sequence of URLs, where sequences of size two or size three caused the failure to

be observed in the test case. For example the fault is introduced by a typo in the database

insertion statement when a new username is created. This causes the username to save

with an extra character appended to it. The fault is observed only when the user navigates

to the page where she/he can view all users of the system. However, the fault itself is

not caused by interactions of parameters across multiple pages. The fact that there were

no faults seeded in the system that would have been expressly identified by the three-way

test suites could explain why two-way and three-way test orders performed equivalently.

However, in SchoolMate, there are few opportunities for such three-way interaction faults.

Nonetheless, in the future, we will examine SchoolMate and other applications and seed
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Figure 5.1. APFD for admin test suite of SchoolMate web application.

faults that capture three-way interactions between parameters and evaluate the test orders

to see if the three-way orderings are better at detecting these faults than the two-way

orderings. Figures 5.1, 5.2, and 5.3 show that both two-way and three-way combinatorial

prioritization were within a fraction of a percent for APFD, with the exception for the

admin test suite.
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Figure 5.2. APFD for teacher test suite of SchoolMate web application.
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Figure 5.3. APFD for student test suite of SchoolMate web application.
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CHAPTER 6

CPUT

In addition to the research contributions found in the algorithms presented in Chap-

ter 3, the experiments discussed in Chapter 4, and the results presented in Chapter 5;

this project also contributes to the open-source software testing tool Combinatorial-based

Prioritization for User-Session-Based Testing (CPUT), thus making three significant con-

tributions to the field of software testing. These are listed below. In particular, my contri-

bution of the prioritization functionality makes my research accessible to others.

New logger for Apache: We developed our logger for the most popular open-

source web server. Previous tools provided loggers for Resin, which has a substan-

tially smaller user population.

Conversion of web usage logs into an XML test case format: We generate

tests in an XML format that can easily be rerun by replay tools that can parse

XML data. Previous tools generate test files that have sequences of URLs and

parameter-value pairs.

Prioritization criteria: Prior empirical studies have shown that black-box test

prioritization of length-based and combinatorial-based criteria create effective test

order [8]. Previous tools have not implemented these criteria for web-based appli-

cations.

Figure 6.1 gives an overview of CPUT functions. The logger for Apache is implemented

as a module in C. We implemented the logger such that it easily integrates with other

modules of Apache. The remaining components of CPUT – the test case creation engine,

the prioritization engine, and the user interface – are implemented in Java. A user of the

tool first deploys the module in Apache to enable the logging of user sessions. The user
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Figure 6.1. CPUT: Overview.

then loads the usage logs into CPUT which parses the log to create XML-format test cases.

The XML test cases can then be prioritized using a particular test prioritization method.

6.1 Logger for Apache

The logger for Apache was implemented in C as a module. The module was generically

designed to deploy on Apache that is running on both Windows or Linux platforms. The

module logs the HTTP GET and POST requests. The HTTP GET requests are typically

logged by default in most web servers. HTTP POST requests generally transmit form

data as part of the HTTP request body, instead of being appended to the URL. Therefore,

additional methods were necessary to gather the date associated with an HTTP POST

request. This module should be included with other Apache modules and can be enabled

by setting the Apache server’s configuration file.

6.2 XML Test Case Generation

The test case generation utilizes previously used heuristics to convert a usage log into

test cases. Specifically, the cookie information, the IP address, and the time stamp of each
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Figure 6.2. CPUT screen with options to load log file into database.

request are used to assign a request with a test case [37, 38]. The usage log and the test

cases are stored in a PostGreSQL database. Figure 6.2 shows the CPUT screen when a user

specifies options to load the log file into the database. Storing the logs and test cases in a

database allows for efficient storage and retrieval. The test cases from the database table

are then converted into test cases in XML format. Figure 6.3 shows the CPUT screen with

all the XML test cases parsed from the log file. An XML format was chosen because of the

extensible and easily parsable nature of XML. Figure 6.4 shows a sample test case. The

important tags include: testSuite denotes the test suite, session id represents the unique

ID of a test case within the test suite, and url represents a page that the test case accesses

and has an associated request with a request type of GET or POST. Within a request, a

baseurl incudes the specific page that is accessed and parameters (denoted as param) that

have names for parameters and values that are assigned to the parameter.
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Figure 6.3. CPUT: Screenshot.

6.3 Prioritization Criteria

The test prioritization engine allows a user to select one of several prioritization meth-

ods shown to be effective in [8]. The options include:

1. Length (GETS/POSTS): Order test cases in descending order of the number of

GET/POST requests in each test case.

2. Number of parameters: Order test cases in descending order of the number of

parameters that are assigned values in each test case, i.e., set a parameter called

“shipment type” to the value “overnight” on a page of an on-line store.

3. Two-way combinatorial: Order test cases in descending order of the number of

unique two-way parameter-value interactions between windows in each test case. Once
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<testSuite>
<session id=“1.XML”>
<url>
<request type>GET</request type>

</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php<baseurl>
<param>
<name>username</name>
<value>johndoe</value>

</param>
<param>
<name>password</name>
<value>myUnsecurePassword!</value>

</param>
<param>
<name>login</name>
<value>1</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php<baseurl>
<param>
<name>logout</name>
<value>1</value>

</param>
</url>
</session>
</testSuite>

Figure 6.4. Sample test case in XML format of a user that logs in and out of a web site.

a t-tuple is covered in a test, we mark it as “covered” and only count unique t-tuples

that have not been covered in previously selected test cases.

4. Three-way combinatorial: Order test cases in descending order of the number of

unique three-way parameter-value interactions between windows in each test case.

Once a t-tuple is covered in a test, we mark it as “covered” and only count unique
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t-tuples that have not been covered in previously selected test cases.

5. Random: Prioritize using the random function in Java. This option is only recom-

mended for use as a baseline in empirical studies.

Depending on the user’s selection, CPUT applies the prioritization criteria and gener-

ates a test ordering. The ordered test cases are displayed to the user and written to a file. A

tester can apply some prioritization criteria, export the test order, and then replay the test

cases using a test execution engine. CPUT also generates test statistics, such as the number

of parameters in the test case, the length of the test case in terms of GET/POST requests,

and the two-way score which is the number of previously uncovered two-way interactions in

the test case. Figure 6.3 shows the CPUT screen when the three-way prioritization criterion

is selected. The tests in the bottom-left pane are ordered by the three-way prioritization

criterion. The test order can be exported to a file that the tester can use when replaying

the tests. We implemented CPUT and tested the tool with the deployment and collection

of logs for an open-source PHP application, SchoolMate. We include our SchoolMate log

as an example for users that download CPUT.
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CHAPTER 7

CONCLUSIONS

Algorithms for combinatorial interaction testing provide systematic coverage of t-way

interactions in a system. Our application of t-way combinatorial coverage for test suite

prioritization of user-session-based testing differs in that the test suite already exists and

may not contain all possible t-way interactions in a system, since test cases are generated

by users that visit a website. It is unlikely that users of many systems will exhaustively

cover all t-way interactions during their visits, particularly when users have unique user ids,

passwords, and personal information that they enter into a system. This raises the need for

an algorithm that does not enumerate all possible t-tuples to track and instead only stores

the valid t-tuples in the test suite in order to save memory. Our experiments show that our

approach scales well for a medium-sized web application and user base in which we capture

test cases for 15 days and then double the log. Further, our empirical study examines the

application of three-way inter-window parameter-value interaction coverage applied to the

SchoolMate web application that was seeded with 66 faults. We collected test suites for each

of the three user types for SchoolMate, prioritized the test suites, and compared the rate

of fault detection with five prioritization criteria. Prioritization by two-way and three-way

criteria were most effective, both performing within 1% of each other. However, two-way

prioritization provided a slightly better rate of fault detection. A closer look at the data

revealed that the system contained more faults triggered by two-way than by three-way

inter-window parameter-value interactions. These results are similar to previous work by

Kuhn et al. The authors report that systems typically have more faults triggered by lower

strength interaction coverage [18].

Future work may examine a larger set of empirical studies with applications in which

faults may potentially be triggered by higher strength interactions. Future work may also
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look at intra-window event interactions. Finally, we envision that future work may examine

rich internet applications (RIAs), specifically RIAs with many AJAX type requests to the

server. Another area would be to have a slight variation on the way the t-way scores are

calculated. For instance, weights may be applied for preference to specific pages, parameters,

or values. Finally, other algorithmic techniques such as heuristic searches may be used to

prioritize test suites.
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Appendix A

Test Suites

The following figures show a test case from the test suite used in the experiment

described in Chapter 4. The test case has 12 GETS/POSTS, 50 parameters, a two-way

score of 500 and a three-way score of 623.
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<testSuite>
<session id=“1000091.XML”>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>username</name>
<value>star</value>

</param>
<param>
<name>password</name>
<value>wars</value>

</param>
<param>
<name>page</name>
<value>0</value>

</param>
<param>
<name>login</name>
<value>1</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>semester</name>
<value>3</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>teacherid</name>
<value>3</value>

</param>
</url>
<url>
<request type>POST</request type>

Figure A.1. Sample test case (part 1) from test suite described in Section 4.2
.
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<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>0</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>semester</name>
<value>1</value>

</param>
<param>
<name>page2</name>
<value>1</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
<param>
<name>teacherid</name>
<value>3</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>8</value>

</param>

Figure A.2. Sample test case (part 2) from test suite described in Section 4.2.
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<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>1</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>2</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
</url>
<url>
<request type>POST</request type>

Figure A.3. Sample test case (part 3) from test suite described in Section 4.2.
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<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>delete%5B%5D</name>
<value>31</value>

</param>
<param>
<name>delete%5B%5D</name>
<value>29</value>

</param>
<param>
<name>delete%5B%5D</name>
<value>30</value>

</param>
<param>
<name>delete%5B%5D</name>
<value>28</value>

</param>
<param>
<name>delete%5B%5D</name>
<value>32</value>

</param>
<param>
<name>deleteassignment</name>
<value>0</value>

</param>
<param>
<name>selectassignment</name>
<value>5</value>

</param>
<param>
<name>page2</name>
<value>2</value>

</param>
<param>
<name>onpage</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
<param>
<name>page</name>

Figure A.4. Sample test case (part 4) from test suite described in Section 4.2.
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<value>2</value>
</param>

</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>deleteassignment</name>
<value>0</value>

</param>
<param>
<name>page2</name>
<value>2</value>

</param>
<param>
<name>onpage</name>
<value>3</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>deleteassignment</name>
<value>0</value>

</param>
<param>
<name>page2</name>
<value>2</value>

</param>
<param>
<name>onpage</name>
<value>3</value>

</param>

Figure A.5. Sample test case (part 5) from test suite described in Section 4.2.
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<param>
<name>selectclass</name>
<value>4</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>3</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
</url>
<url>
<request type>POST</request type>
<baseurl>/SchoolMate/index.php</baseurl>
<param>
<name>page2</name>
<value>9</value>

</param>
<param>
<name>page</name>
<value>2</value>

</param>
<param>
<name>selectclass</name>
<value>4</value>

</param>
</url>
</session>
</testSuite>

Figure A.6. Sample test case (part 6) from test suite described in Section 4.2.
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Appendix B

Code Coverage

The following tables summarize the code coverage in terms of lines of code and percent

covered for the entire test suite used for the experiment described in Chapter 4.
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Table B.1. Summary (Part 1) of Percent Code Coverage and Number of Lines Covered by
Each Individual Test Case.

Test Case ID % Code Covered Number Lines Covered

1000000 14.95% 896

1000001 8.63% 517

1000002 28.50% 1708

1000003 7.74% 464

1000004 9.14% 548

1000005 33.18% 1989

1000006 37.79% 2265

1000007 15.88% 952

1000008 54.20% 3249

1000009 39.66% 2377

1000010 16.95% 1016

1000011 32.52% 1949

1000012 21.04% 1261

1000013 31.75% 1903

1000014 9.18% 550

1000015 10.08% 604

1000016 27.88% 1671

1000017 39.02% 2339

1000018 9.11% 546

1000019 19.84% 1189

1000020 12.93% 775

1000021 16.78% 1006

1000022 37.32% 2237

1000023 34.88% 2091

1000024 27.66% 1658

1000025 12.93% 775

1000026 37.34% 2238

1000027 17.08% 1024

1000028 29.05% 1741

1000029 17.32% 1038

1000030 22.76% 1364
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Table B.2. Summary (Part 2) of Percent Code Coverage and Number of Lines Covered by
Each Individual Test Case.

Test Case ID % Code Covered Number Lines Covered

1000031 11.49% 689

1000032 47.25% 2832

1000033 13.68% 820

1000034 17.08% 1028

1000035 13.81% 828

1000036 12.35% 740

1000037 19.89% 1192

1000038 18.23% 1093

1000039 59.86% 3588

1000040 29.33% 1758

1000041 41.01% 2458

1000042 18.25% 1094

1000043 13.68% 820

1000044 24.57% 1473

1000045 23.31% 1397

1000046 14.28% 856

1000047 20.05% 1202

1000048 13.25% 794

1000049 16.80% 1007

1000050 26.66% 1598

1000051 50.57% 3031

1000052 16.58% 994

1000053 23.59% 1414

1000054 18.15% 1088

1000055 15.28% 916

1000056 22.86% 1370

1000057 11.90% 713

1000058 26.56% 1592

1000059 16.28% 976

1000060 26.56% 1592

1000061 12.48% 748

1000062 17.12% 1026
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Table B.3. Summary (Part 3) of Percent Code Coverage and Number of Lines Covered by
Each Individual Test Case.

Test Case ID % Code Covered Number Lines Covered

1000063 29.23% 1752

1000064 18.17% 1089

1000065 25.34% 1519

1000066 13.16% 789

1000067 26.59% 1594

1000068 11.90% 713

1000069 11.93% 715

1000070 16.03% 961

1000071 17.83% 1069

1000072 18.25% 1094

1000073 23.14% 1387

1000074 12.95% 776

1000075 16.68% 1000

1000076 48.65% 2916

1000077 13.16% 789

1000078 31.61% 1895

1000079 26.04% 1561

1000080 17.10% 1025

1000081 13.00% 779

1000082 12.23% 733

1000083 39.14% 2346

1000084 10.11% 606

1000085 44.23% 2651

1000086 12.38% 742

1000087 13.73% 823

1000088 15.67% 939

1000089 44.91% 2692

1000090 13.70% 821

1000091 14.51% 870

1000092 32.33% 1938

1000093 47.81% 2866

1000094 22.91% 1373

1000095 13.80% 827
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Table B.4. Summary (Part 4) of Percent Code Coverage and Number of Lines Covered by
Each Individual Test Case.

Test Case ID % Code Covered Number Lines Covered

1000096 13.98% 838

1000097 14.30% 857

1000098 14.46% 867

1000099 11.90% 713

1000100 12.50% 749

1000101 32.18% 1929

1000102 42.88% 2570

1000103 13.70% 821

1000104 13.25% 794

1000105 25.83% 1548

1000106 12.31% 738

1000107 15.35% 920

1000108 39.02% 2339

1000109 13.70% 821

1000110 55.29% 3314

1000111 20.19% 1210

1000112 38.89% 2331

1000113 39.32% 2357

1000114 17.50% 1049

1000115 18.80% 1127

1000116 12.51% 750

1000117 20.72% 1242

1000118 28.16% 1688

1000119 17.12% 1026

1000120 31.00% 1858

1000121 21.96% 1316

1000122 13.70% 821

1000123 18.42% 1104

1000124 35.37% 2120
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Appendix C

Seeded Fault Summary

The 66 seeded faults used for the experiment described in Chapter 4 are broken up by

fault category and user type. In addition, the logic fault category is broken down into five

sub-categories.
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Figure C.1. Fault category distribution for 66 seeded faults discussed in Chapter 4.
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Figure C.2. User type distribution for 66 seeded faults discussed in Chapter 4.
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Figure C.3. Logic fault sub-category distribution for 20 seeded logic faults.
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