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ABSTRACT 

Evaluation of Turbulence Variable Distributions 
 

for Incompressible Fully Rough Pipe Flows 
 

 
by 

 
 

Emilie B. Fowler, Doctor of Philosophy 
 

Utah State University, 2012 
 
 

Major Professors: Dr. Warren F. Phillips and Dr. Robert E. Spall 
Department: Mechanical and Aerospace Engineering 
 
 
 The specific turbulent kinetic energy, root-mean-square fluctuating vorticity, and mean-vortex-

wavelength distributions are presented for fully rough pipe flow. The distributions of these turbulence 

variables are obtained from a proposed turbulence model. Many of the turbulence models commonly used 

for computational fluid dynamics are based on an analogy between molecular and turbulent transport. 

However, traditional k-ε and k-ω models fail to exhibit proper dependence on the molecular viscosity. 

Based on a rigorous application of the Boussinesq’s hypothesis, Phillips proposed a vorticity-based 

transport equation for the turbulent kinetic energy. The foundation for this vorticity-based transport 

equation is presented. In future development of this model, a transport equation for the fluctuating vorticity 

is needed. In order to assess the model and evaluate closure coefficients, the resulting turbulent vorticity 

distribution must be compared to reference distributions. This dissertation presents reference distributions 

for the mean fluctuating vorticity and mean turbulent wavelength obtained for fully rough pipe flow. These 

distributions are obtained from a turbulence model, which involves the proposed transport equation for the 

turbulent kinetic energy and an empirical relation for the mean vortex wavelength. The empirical relation 

for the mean vortex wavelength requires numerous closure coefficients. These closure coefficients are 

determined through gradient-based optimization techniques. The current model gives excellent agreement 

with well established relations obtained for both the friction factor and velocity distribution.  

(278 pages) 
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NOMENCLATURE 

A  = arbitrary coefficient, used in Eq. (C.16) 

A0-3  = coefficients defined in Eq. (2.56) 

a  = arbitrary constant used in Eq. (2.60) 

Aλ0   = mean-vortex-wavelength coefficient, used in Eq. (2.116), defined inEq. (3.18) 

Aλ10   = mean-vortex-wavelength coefficient, used in Eq. (3.31), defined inEq. (3.19) 

Aλ11   = mean-vortex-wavelength coefficient, used in Eq. (3.31), defined in Eq. (3.20) 

Aλ12   = mean-vortex-wavelength coefficient, used in Eq. (3.31), defined in Eq. (3.20) 

Aλ13   = mean-vortex-wavelength coefficient, used in Eq. (3.31), defined in Eq. (3.22) 

Aλ1   = mean-vortex-wavelength coefficient, used in Eq. (2.116), defined in Eq. (3.31) 

B  = arbitrary coefficient, used in Eq. (C.16) 

Bλ00  = mean-vortex-wavelength coefficient, used in Eq. (3.32), defined in Eq. (3.23)  

Bλ01  = mean-vortex-wavelength coefficient, used in Eq. (3.32), defined in Eq. (3.24) 

Bλ02  = mean-vortex-wavelength coefficient, used in Eq. (3.32), defined in Eq. (3.25) 

Bλ03  = mean-vortex-wavelength coefficient, used in Eq. (3.32), defined in Eq. (3.26) 

Bλ0   = mean-vortex-wavelength coefficient, used in Eq. (2.116), defined in Eq. (3.32) 

Bλ10  = mean-vortex-wavelength coefficient, used in Eq. (3.32), defined in Eq. (3.27) 

Bλ11  = mean-vortex-wavelength coefficient, used in Eq. (3.33), defined in Eq. (3.28) 

Bλ1   = mean-vortex-wavelength coefficient, used in Eq. (3.33) , defined in Eq. (3.33) 

Bλ20  = mean-vortex-wavelength coefficient, used in Eq. (3.34), defined in Eq. (3.29)  

Bλ21  = mean-vortex-wavelength coefficient, used in Eq. (3.34), defined in Eq. (3.30) 

Bλ2   = mean-vortex-wavelength coefficient, used in Eq. (2.116) , defined in Eq. (3.34) 

Cϵ1-2  = turbulence model closure coefficients, used in Eq. (1.89) 

0C   = arbitrary coefficient, used in Eq. (C.16) 

70−C   = closure coefficients for the δ function, used in Eq. (2.89) 

40−C   = arbitrary coefficients, used in Eqs. (3.21), (3.25) and (3.29)  

fC   = Fanning friction factor, defined in Eq. (2.7) 
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λC   = turbulence model closure coefficient, first used in Eq. (1.138) 

μC   = turbulence model closure coefficient, used in Eq. (1.88) 

21 ωω −C  = turbulence model closure coefficients, used in Eq. (4.6) 

31−D   = change of variables used to define the δ function, used in Eq. (2.94) 

e  = specific energy, defined in Eq. (1.9) 

e  = arbitrary coefficient, used in Eq. (C.16) 

f   = force vector per unit volume 

gf   = gravity force per unit volume defined in Eq. (1.5) 

21−f   = turbulence model damping function, used in Eqs. (4.6) and (4.12) 

kf   = turbulence model damping function, used in Eqs. (4.6) and (4.12) 

μf   = turbulence model damping function, used in Eqs. (4.6) and (4.12) 

g  = acceleration of gravity  

og   = acceleration of gravity at standard sea level 

H   = geometric altitude 

i   = unit vector 

J
vv

  = Jacobian tensor of a vector field defined in Eq. (1.67) 

k   = turbulent kinetic energy per unit mass defined in Eq. (1.39) 

+k   = wall-scaled dimensionless turbulent kinetic energy, 2
τukk ≡+  

+
wallk   = value of +k  at the wall 

rk   = dimensionless relative roughness, )2( Rkk sr ≡  

sk   = equivalent sand-grain roughness height 

sk̂   = pipe-scaled dimensionless equivalent sand-grain roughness height, Rkk ss /ˆ ≡ , called 

the roughness ratio 

+
sk   = wall-scaled dimensionless equivalent sand-grain roughness height, ντukk ss ≡+ , 

commonly called the roughness Reynolds number 

l   = mixing length 

+l   = wall-scaled mixing length, ντull ≡+  
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m  = mass 

Ni  = Nikuradse number defined in Eq. (2.22) 

p  = thermodynamic pressure 

+p   = wall-scaled dimensionless pressure gradient, ))(ˆ( 3
τρν udxpdp ≡+  

p̂   = pseudo mean pressure defined in Eq. (1.41) 

p̂  = pseudo hydrostatic pressure defined in Eq. (1.7) 

p̂   = mean pseudo hydrostatic pressure 

p
)~    = term defined in Eq. (1.53) 

Q̂  = pipe-scale volume flow rate, defined in Eq. (1.165) 

q   = heat flux vector used in Eq. (1.16) 

R   = pipe radius 

eR   = Reynolds number, defined in Eq. (2.10) 

sR̂   = nondimensional parameter defined in Eq. (2.13) 

τR   = shear Reynolds number, νττ RuR ≡  

r   = radial distance defined in cylindrical coordinates  

r̂  = pipe-scaled radial coordinate, Rrr ≡ˆ  

S
vv

  = strain rate tensor defined in Eq. (1.4) 

t   = time 

trace() = function trace, sum of the diagonal elements of a tensor 

eU '''
  = volumetric heating per unit volume used in Eq. (1.10) 

eu   = specific internal energy used in Eq. (1.9) 

u  = x-component of velocity 

τu   = friction velocity, ρττ wu ≡  

+u   = wall-scaled dimensionless velocity, τuVu z≡+  

+
mu   = nondimensional bulk velocity 

V  = velocity vector 

V   = velocity magnitude 
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cV   = periodic wave velocity scale, used in Eq. (1.86) 

mV   = bulk velocity 

x  = coordinate measured along the x axis 

y   = coordinate measured along the y axis 

  = nondimensional coordinate measured along the y axis, /  

+y   = wall-scaled dimensionless distance, ντyuy ≡+  

Z   = geopotential altitude 

z   = coordinate measured along the z axis 

γ
vv

  = tensor defined in Eq. (1.54) 

kγ   = trace of  γ
vv

, defined in Eq. (1.62) 

γ   = Nikuradse constant 

δ   = deviation function, defined in Eq. (2.89) 

δ
vv

  = Kronecker delta 

∇   = gradient operator 

ε
vv

  = tensor defined in Eq. (1.56) 

kε   = trace of  ε
vv , defined in Eq. (1.63) 

ε   = approximate turbulent-kinetic-energy dissipation defined in Eq. (1.81) 

ε~  = exact turbulent-kinetic-energy dissipation defined in Eq. (1.131) 

ζ   = turbulence enstrophy  

θ   = azimuth angle defined in cylindrical coordinates 

κ   = Von Kármán constant  

λ  = mean vortex wavelength defined in Eq. (1.138) 

+λ   = wall-scaled mean vortex wavelength, νλλ τu≡+  

λ̂   = pipe-scaled nondimensional mean vortex wavelength, R/ˆ λλ ≡  

λ
ϵ  = mean dissipation wavelength defined in Eq. (4.16) 

λ̂
 ϵ  = pipe-scaled nondimensional mean dissipation wavelength, R/ˆ

εε λλ ≡  

μ   = dynamic viscosity 
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tμ   = dynamic eddy viscosity 

ν   = kinematic viscosity, ρμν ≡  

ν̂   = pipe-scaled dimensionless kinematic viscosity, Ruτνν ≡ˆ  

tν   = turbulent eddy viscosity, ρμν tt ≡  

tν̂   = pipe-scaled dimensionless turbulent eddy viscosity, Rutt τνν ≡ˆ  

tcν̂   = value of the pipe-scaled dimensionless turbulent eddy viscosity at the centerline 

ν+   = ratio of the turbulent eddy viscosity over the molecular viscosity, ννν t≡+  

π
vv   = tensor defined in Eq. (1.57) 

kπ   = trace of π
vv , defined in Eq. (1.65) 

ρ   = fluid density 

σ
vv

  = fluid stress tensor defined in Eq. (1.34) 

kσ   = turbulence model closure coefficient, first used in Eq. (1.83) 

εσ   = turbulence model closure coefficient, first used in Eq. (1.89) 

ωσ   = turbulence model closure coefficient, used in Eq. (1.93) 

τ
vv   = Reynolds stress tensor defined in Eq. (1.35) 

xyτ   = Reynolds shear stress, 
yxxy VV ~~ρτ −≡  

wτ   = wall shear stress, defined in Eq. (2.2) 

χ
vv

  = tensor defined in Eq. (1.55) 

kχ   = trace of  χ
vv

, defined in Eq. (1.64) 

kχ   = change of variable defined in Eq. (4.7) 

Ω   = rotation tensor, defined in Eq. (A.18) 

ω   = turbulence dissipation frequency 

ω~  = turbulent fluctuating vorticity defined in Eq. (1.132) 

ω̂   = dimensionless turbulent fluctuating vorticity, τωω uR≡ˆ  

cω   = periodic wave angular velocity, used in Eq. (1.86) 

Superscripts 

T  = transpose 
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Subscripts 

i  = index variable 

j  = index variable 

k  = associated with the turbulence variable, k 

r  = radial direction 

rms  = root-mean-square 

t  = associated with a turbulent variable 

x  = associated with the x-component or axis 

y  = associated with the y-component or axis 

z  = associated with the z-component or axis 

ε  = associated with the turbulence variable, ε 

ω  = associated with the turbulence variable, ω 

θ   = azimuth direction 

Other notation 

—  = (overbar) ensemble-averaged value 

~  = (tilde) fluctuating value 

′  = (prime) denotes differentiation 

.  = (dot) denotes differentiation with time 

bold  = denotes an array or vector 



CHAPTER 1 

PHILLIPS TURBULENT-KINETIC-ENERGY TRANSPORT EQUATION 

I. Introduction 

 Turbulent fluid motion is one of the most difficult yet fundamental problems encountered in applied 

mathematics. Turbulent flows are time-dependant, three-dimensional, diffusive and dissipative phenomena. 

One of the most challenging aspects in describing and predicting turbulence is that the velocity fluctuates 

over a large range of coupled spatial and temporal scales. The turbulent quantities change so rapidly in 

space and time that experimental data are not easily obtained. Due to its practical importance, many 

scientists have attempted to describe the motion of a turbulent fluid through numerical models. Although 

the basic equations describing turbulence are well known general principles, their solutions are incredibly 

complex and require tremendous computing power. No solution that unconditionally predicts the motion of 

a turbulent fluid has yet been found. 

 The basic equations describing the motion of a turbulent fluid are well known and have been studied 

for many generations. Euler (1757) [1] was one the earliest scientist to describe the motion of inviscid 

fluids. A major step was the development of the Navier-Stokes equations named after the work of 

Navier (1823) [2] and Stokes (1845) [3]. This set of nonlinear coupled partial differential equations 

describes the rate of change of momentum in a viscous fluid. Reynolds (1895) [4] rewrote the Navier-

Stokes equations in a form where the main variables are expressed as a sum of the mean and fluctuating 

components. This approach, known as the Reynolds-Averaged Navier-Stokes equations, set the traditional 

mathematical framework used commonly today. Prandtl (1925) [5] introduced the additional concepts of 

the mixing length and boundary layer derived after the work of Boussinesq (1877) [6] who postulated that 

the momentum transfer caused by turbulent eddies can be modeled as a linear function of the mean strain 

rate. Taylor (1938) [7] was one of the earliest scientists to introduce the Eulerian viewpoint into turbulence 

modeling. The developments of these scientists continue to play significant roles in current turbulence 

research. 

 Turbulent flows are characterized by irregular fluctuations that can be approached through the use of 

statistical models. Turbulence consists of a continuous spectrum of scales ranging from the largest to the 
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smallest. Kolmogorov (1942) [8] developed a theory based on energy spectrum analysis, which describes 

how energy is transferred from larger to smaller eddies. Following earlier work of Kolmogorov on 

statistical turbulence, Kraichnan (1958) [9] developed a field-theory approach to fluid flow.  

 Many turbulence models are based on the Reynolds-averaged Navier-Stokes equations. The Reynolds 

decomposition yields a set of equations governing the average flow field instead of the exact turbulent flow 

field. Although this decomposition has the benefit of reducing the multi-scale problem to a scale of 1 or 2, 

more unknowns have been added (such as the turbulent fluxes and turbulent stresses). Turbulence modeling 

consists of representing the scales of the flow that are not resolved.  

 Most turbulence models are developed by analogy between molecular and turbulent transport. The 

analogy is based on the Boussinesq (1877) [6] approximation, which states that the Reynolds stress can be 

expressed as a linear function of the mean strain rate, in the same way that the molecular stress is expressed 

as a linear function of the total strain rate. The proportionality coefficient between the Reynolds stress and 

the mean strain rate is now commonly called the eddy viscosity. Since the turbulent eddy viscosity is a flow 

property and not a fluid property, Bousinesq-based turbulence modeling consists of devising a model for 

the turbulent eddy viscosity. 

 The Boussinesq approximation [6] published in 1877 was not explicitly expressed in terms of a tensor 

equation and was redeveloped in 1895 by Reynolds [4] who undertook a more rigorous approach and made 

use of a tensor notation from which the name of the “Reynolds stress tensor” was derived. In his 1877 

publication, Boussinesq performed a temporal average of the Navier-Stokes equation. Many of the 

approximations he used are not explicitly stated. He introduced the elements of a stress tensor without 

explicitly identifying it. This stress tensor was identified by Reynolds in 1895. From an approach similar to 

that used in the kinetic theory of gases, Boussinesq proposed an expression for the turbulent stresses. This 

expression is in fact a tensorial closure equation that obeys the Navier-Stokes equations and includes a 

parameter that today is commonly referred to as the turbulent eddy viscosity. Boussinesq did not give a 

name to this parameter but remarked that this parameter is a function of the degree of turbulence in the 

fluid. Boussinesq proposed an expression for this parameter based on a characteristic length and velocity. 

This formed the basis of the mixing length formulation that was later developed in detail by Prandtl. 

Boussinesq’s hypothesis was originally mentioned as a tensorial relation with a justification linked to 
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mixing length arguments. Boussinesq did not mention the name “mixing length” in his publication. 

Boussinesq performed simultaneously an average of the Navier-Stokes equations and a tensor closure of 

the eddy-viscosity type using an analogy to kinetic theory. In fact, Boussinesq did not notice that he was 

assuming a strong hypothesis when he performed his analogy with kinetic theory. Although in his 1895 

publication Reynolds did not cite the 1877 Boussinesq publication, he did use the same method of 

averaging the Navier-Stokes equations and also proposed a tensor notation for the stresses.  

 Zero- and one-equation turbulent models are based on the mixing-length theory developed by 

Prandtl [5, 10]. By analogy with the kinetic theory of gases, which describes the molecular viscosity as 

proportional to the product of a molecular mean free path and the root mean square of the molecular 

velocity, Prandtl postulated that the turbulent eddy viscosity should be equal to the product of a 

characteristic length, called the mixing length, and a characteristic velocity which could be the root mean 

square of the fluctuating velocity. The mixing length can be viewed as the average distance traveled by an 

eddy before it gives up its momentum by mixing with the main flow. One-equation models derive a partial 

differential equation for the turbulent kinetic energy and use the square root of the turbulent kinetic energy 

as the characteristic velocity for the eddy viscosity model. In zero- and one-equation turbulent models, the 

mixing length is determined experimentally. 

 Two-equation models derive a partial differential equation for both the turbulent kinetic energy and a 

second turbulence variable. Jones and Launder (1972) [11] first derived the k-ε model which uses the 

dissipation of the turbulent kinetic energy as a second turbulence variable. The closure coefficients were 

empirically derived based on fully developed flow. Menter (1997) [12] has shown that the model performs 

poorly for complex flows involving severe pressure gradient or separation. Another widely used model, 

which uses the specific dissipation rate as the second turbulence variable is the k-ω model originally 

developed by Kolmogorov [8]. The model demonstrates superior performance for wall-bounded and low 

Reynolds number flows. Wilcox [13, 14] later derived several versions of the k-ω model. Menter’s (1992) 

[15] shear stress transport model combines the original Wilcox k-ω model [16], for use near walls, and the 

traditional k-ε model away from walls using a blending function. External flows, such as aerodynamic flow, 

include models developed by Spalart and Allmaras (1992) [17] and Baldwin and Barth (1990) [18].  
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 More complex models are based on partial differential equations for all of the Reynolds stresses and 

turbulent fluxes and as a result require more computational power. An example is the Reynolds stress 

model (RSM) which involves the modeling of turbulent diffusion, pressure strain correlation and the 

turbulent dissipation rate. This modeling approach originates from the work by Launder (1974) [19]. For a 

discussion on the performance, applicability and limitations of the RSM, see the work of 

Speziale (1990) [20] or Wilcox (2006) [21]. 

 Recent advances in large-scale scientific computing have made Direct Numerical Simulations (DNS) 

of the Navier-Stokes equations possible without incorporating a turbulence model. Direct numerical 

simulation is mainly used for relatively small domains in which the small scales of turbulence are large in 

comparison to the grid element size of the domain of interest because the whole range of spatial and 

temporal scales of the turbulence must be resolved. Even at low Reynolds numbers, the computational cost 

of DNS is always very high. Discussions on DNS involve the work of Bernard and Wallace (2002) [22] or 

Moin and Mahesh (1998) [23]. 

 Retracing the traditional development of the turbulent-kinetic-energy equation, Phillips [24] developed 

an alternative turbulent-kinetic-energy transport equation based on fewer approximations than the 

traditional model and implementing strict definitions of the turbulent-kinetic-energy dissipation and 

molecular transport. This chapter focuses on addressing a few identifiable concerns with the traditional 

turbulence modeling based on two transport equations and proposes an alternate turbulent-kinetic-energy 

transport equation. To set this work in perspective relative to previous work, an overview of traditional 

turbulence modeling is included.  

II. Governing Equation of Fluid Motion 

 The laws that govern fluid motion have been understood since the mid 1800s and the vector 

mathematics needed to fully analyze three-dimensional fluid mechanics was sufficiently understood only a 

few decades later. See for example the work of Navier [2], Stokes [3], Hamilton [25, 26, 27] and Boyer and 

Merzback [28]. The motion of a fluid with Newtonian properties is governed by the conservation of mass 

(continuity equation) and Newton’s second law (or Navier-Stokes equations) combined with the 

appropriate boundary and initial conditions. This section develops the Reynolds-Averaged Navier-Stokes 
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equations (or RANS equations) for a Newtonian fluid which is a mathematical model of the fluid motion 

suitable for use in numerical calculations. A Newtonian fluid is defined as a fluid whose stress versus strain 

rate, or equivalently velocity gradient, curve is linear. The constant of proportionality is the called the 

dynamic viscosity.  

A. Conservation of Mass: The Continuity Equation 

The continuity equation describes the conservation of mass in a closed system. The mass of an isolated 

system cannot be changed as a result of processes acting inside the system. The differential form of the 

continuity equation is given by 

 ( ) 0=⋅∇+
∂
∂ Vρρ

t   (1.1) 

where ρ  is the fluid density, and V the flow velocity vector field. 

B. Conservation of Momentum: Newton’s Second Law 

The law of conservation of linear momentum is a fundamental law of nature, and states that if no 

external force acts on a closed system of objects, the momentum of the closed system is constant. 

Momentum is defined as the mass of an object multiplied by its velocity. The second law states that the 

acceleration of an object is dependent upon the net force acting on the object and the mass of the object. 

After applying the continuity equation, Newton’s second law for a flow field can be stated as 

 ( ) Zg
t

∇−⋅∇=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂

0ρρ σVVV vv

  (1.2) 

where Z  is the geopotential altitude, the acceleration of gravity at sea level is 806645.90 =g m/s2 and σ
vv

 is 

the fluid stress tensor. 

 For Newtonian fluids, the Navier-Stokes equations are a set of nonlinear partial differential equations 

that describe the flow of a fluid whose stress depends linearly on velocity gradients and pressures. The 

Navier-Stokes equations ignore the fact that the fluid is made up of discrete molecules. The unsimplified 

Navier-Stokes equations do not have a general closed-form solution. However, the equations can be 
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simplified in a number of ways for problems with simple geometry, boundary conditions and an initial flow 

field. An example of such flow would be incompressible, inviscid, laminar, steady flow in a pipe. The 

Navier-Stokes equations assume that the fluid is Newtonian and continuum, that is, all length scales are 

large compared to the molecular mean free path. The Navier-Stokes equations developed from Newton’s 

second law given in Eq. (1.2) can be written as follows assuming that the Earth’s gravity is the only body 

force 

   (1.3) 

where p is the thermodynamic pressure, μ  the dynamic viscosity, gf
 
the gravity force vector per unit 

volume, ∇ is the gradient operator and )(VS
vv

 the strain rate tensor which describes the rate at which a fluid 

element is deforming. The strain rate tensor in Cartesian coordinates is 
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The gravity force can be expressed in several different ways  

 ( ) ( )ρρρρ ∇+−∇=∇−=∇−= ZgZgZgHgg 000f  
 (1.5) 

where g is the acceleration of gravity, H  is the geometric altitude, Z  is the geopotential altitude and g0 is 

the acceleration of gravity at sea level. The Navier-Stokes equations given in Eq. (1.2) with the gravity 

force expressed in terms of geopotential altitude given in Eq. (1.5) is 

 ( ) [ ] ( )ρμμρρ ∇+⋅∇+⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇++−∇=⎥⎦

⎤
⎢⎣
⎡ ∇⋅+
∂
∂ ZgZgp

t 00 )(2
3
2 VSVVVV vv

  (1.6) 

( ) [ ] gp
t

fVSVVVV
+⋅∇+⎟

⎠
⎞

⎜
⎝
⎛ ⋅∇+−∇=⎥⎦

⎤
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⎡ ∇⋅+
∂
∂ )(2

3
2 vv

μμρ
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For convenience, we define a change of variables that combines several of the terms on the right-hand side 

of Eq. (1.6) and can be referred to as the total hydrostatic pressure 

 V⋅∇++= μρ
3
2ˆ 0 Zgpp

  (1.7) 

Using Eq. (1.7) in Eq. (1.6), the Navier-Stokes equations for a Newtonian fluid can be written as 

 ( ) [ ] ( )ρμρ ∇+⋅∇+−∇=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂ Zgp

t 0)(2ˆ VSVVV vv

  (1.8) 

C. Conservation of Energy 

 The law of conservation of energy states that the total amount of energy in an isolated system remains 

constant over time. Energy can neither be created nor destroyed. It can only be transformed from one state 

to another. The specific total energy e  is defined as 

 ZgVue e 0
2

2
1

++≡  
 (1.9) 

where ue is the specific internal energy and V is the magnitude of the velocity vector. The first law of 

thermodynamics is an expression of the principle of conservation of energy. It usually can be formulated by 

stating that the change in the internal energy of a system is equal to the amount of heat supplied to the 

system minus the amount of work performed by the system on its surroundings. The first law of 

thermodynamics can be stated as 

 ( ) ( ) '''
eUe

t
e

+⋅⋅∇+⋅−∇=⋅∇+
∂
∂ VσqV

vvρρ

  (1.10) 

where q  is the heat flux vector and '''
eU  includes any other volumetric heating. The second term on the 

right-hand side is the net work per unit volume done on the fluid by the stress tensor. This includes the flow 

work, which is commonly added to the specific internal energy to define the thermodynamic property 

called enthalpy. Applying the vector identities (A.1), (A.3) and (A.5) given in Appendix A to Eq. (1.10) 

yields 
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 ( ) ( )[ ] ( ) ( ) '''
eUe

t
ee

t
e

+⋅∇⋅+∇⋅+⋅−∇=⋅∇+
∂
∂

+∇⋅+
∂
∂ σVVσqVV

vvvvρρρρ   (1.11) 

Applying the continuity equation and substituting the specific total energy, the first law of thermodynamics 

in the Eulerian reference frame results in 

 
( ) ( ) ( ) '''

0
22

2
1

2
1

eee UZgVuVu
t
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∂
∂ σVVσqV

vvvvρ  
 (1.12) 

 Another useful transport equation is obtained by taking the dot product of Newton’s second law with 

the fluid vector. Starting with Newton’s second law given in Eq. (1.2) gives 

 ( ) ( ) ( )Zg
t

∇⋅−⋅∇⋅=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂

⋅ VσVVVVV 0ρρ
vv

  (1.13) 

Applying the vector identity (A.4) from Appendix A to the left-hand side of this equation yields 
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 (1.14) 

Because 0g  is a constant, this equation can be rearranged to obtain what is commonly called the 

mechanical energy equation.  

 
( ) ( )σVV

vv
⋅∇⋅=⎥

⎦
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∂
∂ ZgVV
t 0

22

2
1

2
1ρ  

 (1.15) 

 Subtracting Eq. (1.15) from the first law of thermodynamics as expressed in Eq. (1.12), we can obtain 

another transport equation often referred to as the thermal energy equation 

 
( ) ( ) '''

ee
e Uu
t

u
+∇⋅+⋅−∇=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂
∂

VσqV
vvρ  

 (1.16) 

 The equations of motion that describe the behavior of a system represent the conservation of mass, 

conservation of momentum and conservation of energy and are given in Eqs. (1.1), (1.2) and (1.16), 
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respectively. This set of three equations assumes a Newtonian fluid. Gravitational effect from planets other 

than the Earth, body forces such as electromagnetic, centrifugal and Coriolis forces were neglected. 

III. The Reynolds-Averaged Navier-Stokes Equations 

 Due to the numerous velocity and length scales that are involved in turbulent flows, the numerical 

solution of the Navier-Stokes equations is extremely difficult and require such a fine mesh that the 

computational time becomes significantly infeasible for calculation. As is the case with laminar flows, 

turbulent flows must satisfy the continuity equations and the Navier-Stokes equations at every point in the 

flow field and at every instant in time. Solutions to these equations for turbulent flows can be obtained 

directly from computational fluid dynamics (CFD). However, obtaining such CFD solutions, which are 

commonly referred to as direct numerical simulations (DNS), are computationally very expensive. This is 

because such solutions require a computational grid fine enough to resolve the smallest turbulent eddies 

over the entire computational domain associated with the problem. For a complete review of DNS, see 

Moin and Malesh [23]. With today’s technology, such solutions are computationally prohibitive for all but 

the simplest problems at very low Reynolds numbers. A less costly alternative to DNS is to solve only for 

the mean pressure and mean velocity fields using the Reynolds-Averaged Navier-Stokes equations. In this 

section, the Reynolds-Averaged Navier-Stokes equations of motion for turbulent flows are developed.  

 The Reynolds-Averaged Navier-Stokes equations are time averaged equations for a fluid flow. The 

idea behind the equations is Reynolds decomposition [4] where an instantaneous quantity is decomposed 

into its time-averaged and fluctuating quantities. The fluctuating part is defined such that its time-average is 

zero. The Reynolds decomposition can be viewed in mathematical statistics as the ensemble average of a 

random variable. The concept of an ensemble average is based upon the existence of independent statistical 

events. A random variable is distributed about the mean. Therefore, the ensemble average about the mean is 

zero, whereas, the ensemble average of the square of the fluctuation is not zero. Ensemble average 

properties are given in Eqs. (A.12)–(A.15) from Appendix A. 

 For a homogeneous fluid, the velocity vector and thermodynamic pressure can be written as a sum of a 

mean value and a turbulent fluctuating component 
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 VVV ~
+=   (1.17) 

 ppp ~+=  (1.18) 

where the overscore denotes an ensemble-mean value. It should be noted that  

 ρρ =  (1.19) 

Using Eq. (1.17) we have 

 ( ) VVVVVVV ~~~
+=+=+=   ⇒   0~

=V  (1.20) 

 ppppp ~~ +=+=   ⇒   0~ =p  (1.21) 

Equations (1.20) and (1.21) show that the time-averaged of the fluctuating part is zero. For a detail 

discussion on averaging, see Phillips [24] or Wilcox [29]. 

A. Ensemble Average of the Continuity Equation 

 The ensemble average of the continuity equation given in (1.1) yield 

 ( ) 0=⋅∇+
∂
∂ Vρρ

t  (1.22) 

An equation for the fluctuating components is obtained by substituting Eq. (1.17) in Eq. (1.1) 

 ( ) 0~
=+⋅∇+

∂
∂ VV ρρρ

t  (1.23) 

Subtracting Eq. (1.22) from Eq. (1.23) yields the continuity equation for the fluctuations 

 ( ) 0~
=⋅∇ Vρ  (1.24) 

The ensemble-averaged steady-state incompressible form of the continuity equation is obtained from 

Eq. (1.132) 
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 0=⋅∇ V  (1.25) 

B. Ensemble Average of the Navier-Stokes Equations 

 Similarly to the continuity equation, the Navier-Stokes equations can be simplified using the Reynolds 

decomposition and substituting in the sum of the steady component and perturbations to the velocity profile 

and taking the mean value. The resulting equation contains a nonlinear term, known as Reynolds stresses, 

which gives rise to turbulence. The ensemble average of the linear strain rate tensor is simply 

 
)()( VSVS

vvvv
=  (1.26) 

 The ensemble average of the Navier-Stokes equations given in Eq. (1.6) with the gravity force 

expressed in terms of geopotential altitude is 

 
( ) [ ] ( ) ( )ρρμμρ ∇+∇−⋅∇+⎟

⎠
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⎜
⎝
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⎤
⎢⎣
⎡ ∇⋅+
∂
∂ ZgZgp

t 00)(2
3
2 VSVVVV vv

 (1.27) 

which can be simplified into 
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⎦
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⎢
⎣

⎡
∇⋅+

∂
∂ ZgZgp

t 00 )(2
3
2 VSVVVV vv

 (1.28) 

Equation (1.17) yields the mathematical identity 

 ( ) ( )[ ]( )
( ) ( ) ( ) ( )
( ) ( )VVVV

VVVVVVVV
VVVVVV

~~
~~~~

~~

∇⋅+∇⋅=

∇⋅+∇⋅+∇⋅+∇⋅=
+∇⋅+=∇⋅

 
(1.29) 

Using Eq. (1.29) in Eq. (1.28) gives 

 ( )
[ ] ( ) ( )VVVS

VVVV

~~)(2
3
2

0

0

∇⋅−∇+⋅∇+

⎟
⎠
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⎜
⎝
⎛ ⋅∇++∇−=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂
∂

ρρμ

μρρ

Zg

Zgp
t

vv

 
(1.30) 
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The last term in Eq. (1.30) is the only term that involves the turbulent fluctuations. Using the mathematical 

identity (A.1) from Appendix A, this last term can be rewritten as 

 ( ) ( ) ( ) ( ))~(~~~~~~~ VVVVVVVV ρρρρ ⋅∇−⋅∇=∇⋅=∇⋅  (1.31) 

where VV~~
 is a second order tensor given in Cartesian coordinates by 

 

⎥
⎥
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⎦
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⎢
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⎡

=

zzyzxz

zyyyxy

zxyxxx

VVVVVV
VVVVVV
VVVVVV

~~~~~~
~~~~~~
~~~~~~

~~VV

 
(1.32) 

From the continuity equation for the fluctuations given in Eq. (1.24), Eq. (1.31) becomes 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛⋅∇=∇⋅ VVVV ~~~~ ρρ

 (1.33) 

For a Newtonian fluid, the pseudo molecular stress tensor resulting from the mean fluid motion can be 

expressed as 

 
δVVSσ
vvvvvv

 
3
2)( 2 ⎟

⎠
⎞

⎜
⎝
⎛ ⋅∇+−= μμ p  

(1.34) 

where δ
vv

 is the kronecker delta.  

 First suggested by Reynolds (1895) [4], the symmetric turbulent stress tensor is defined in Cartesian 

coordinates as 

 

⎥
⎥
⎥
⎥
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⎤

⎢
⎢
⎢
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⎣

⎡

−=−=

zzyzxz

zyyyxy

zxyxxx

VVVVVV

VVVVVV

VVVVVV

~~~~~~

~~~~~~

~~~~~~

~~ ρρτ VV
vv

 

(1.35) 

The turbulent stresses jiVV ~~
 
are called the Reynolds stresses. The Reynolds stress tensor is the stress tensor 

due to random turbulent fluctuations in fluid momentum. The stress is obtained from an average over these 

fluctuations. The Reynolds stress tensor is a symmetric tensor whose six components are unknown. Many 



13 
 

 

scientists have tried to model the Reynolds stress in various different ways and a transport equation for the 

Reynolds stress is often proposed. See the work of Jones and Launder [30] or Wilcox [16]. Substituting 

Eq. (1.35) in Eq. (1.33), the turbulent momentum becomes 

 ( ) τVV
vv
⋅−∇=∇⋅

~~ ρ  (1.36) 

Using Eq. (1.36) in Eq. (1.30), the Reynolds-averaged momentum equations, or RANS equations are 

 ( )
[ ] ( )ρτμ

μρρ
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⎡
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Zg

Zgp
t

0

0

)(2
3
2

vvvv
VS

VVVV

 
(1.37) 

 Combining the RANS equations given in Eq. (1.37) with the mean continuity equation will not 

produce a complete formulation for the mean velocity and pressure fields, unless one has some method by 

which to express the six unknown components of the symmetric Reynolds stress tensor in terms of the 

mean flow. The purpose of a turbulence model is to provide mathematical relations that express the 

components of the Reynolds stress tensor in terms of the mean flow.  

IV. Traditional Turbulence Closure  

 The nonlinear Reynolds stress term from the convective acceleration requires additional modeling to 

close the RANS equation and has led to the creation of many different turbulent models. The most 

sophisticated turbulence models commonly available today are based on the use of separate modeled 

transport equations for each of the six unknown components of the Reynolds stress tensor. Turbulence 

models of this type are classified as stress-transport models. Because of their complexity and the large 

number of differential equations involved, stress-transport models impose a large computational burden. 

Furthermore, the stress-transport models that have been developed to date have not shown the significant 

improvements in accuracy over simpler models, which was originally anticipated. For these reasons, such 

detailed turbulence models are not extensively used for CFD analysis at the present time. A simpler model 

consists in relating the Reynolds stresses to the mean velocity gradients, a common practice based on the 

Boussinesq’s hypothesis. 
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A. Modeling the Reynolds Stress Tensor from the Boussinesq’s Hypothesis 

 Commonly employed turbulence models, such as the k-ω or k-ε models, are based on a simplifying 

hypothesis for the Reynolds stress tensor, which was first introduced by Boussinesq (1877) [6]. The fact 

that turbulence transport seems to be diffusive in nature suggest that we might express the Reynolds stress 

tensor as a linear function of the mean strain rate tensor. Boussinesq was one of the earliest scientists to 

propose an equation that relates what are now called the Reynolds stresses to the mean flow and close the 

system of equation. Boussinesq postulated that the momentum transfer caused by turbulent eddies can be 

modeled using a parameter that is now called the turbulent eddy viscosity. This is in direct analogy with 

how the momentum transfer caused by the molecular motion in a gas can be described by a molecular 

viscosity. Boussinesq’s hypothesis in its general form states that the Reynolds stress tensor is given by 

 ( )δVVSτ
vvvvvv  

3
2)(2 ⋅∇+−= tt k μρμ  (1.38) 

where the coefficient tμ is called the dynamic eddy viscosity and k is the turbulent kinetic energy per unit 

mass and is traditionally defined as one half of the mean square magnitude of the turbulent velocity 

fluctuations 

 2222 ~
2
1~~~

2
1~~

2
1 VVVVk zyx =⎟

⎠
⎞⎜

⎝
⎛ ++=⋅≡ VV  

(1.39) 

 The Boussinesq hypothesis is sometimes presented in the literature in a form that includes only the first 

term on the right-hand side of Eq. (1.38). However, this is not consistent with the fundamental definition in 

Eq. (1.35). The trace of the turbulent stress tensor τ
vv   given in Eq. (1.35) is kρ2− . The trace of the strain 

rate tensor  )(VS
vv

  given in Eq. (1.4) is ( ) VVS ⋅∇=)(trace
vv

. The trace of the right-hand side of Eq. (1.38) is

)  trace(2222 τVV
vv

=−=⋅∇−−⋅∇ kk tt ρμρμ . The additional diagonal term in Eq. (1.38) must be included 

to make the two definitions consistent. Boussinesq’s hypothesis can be viewed as an analogy between the 

Reynolds stress tensor and a relation for the molecular stress tensor obtained from the kinetic theory of 

gases. The molecular stress tensor in an ideal gas can be related statistically to the molecular velocity 
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components in precisely the same way that the Reynolds stress tensor was related to the turbulent velocity 

fluctuations.  

 According to Boussinesq’s hypothesis, the turbulent eddy viscosity is assumed to be a scalar like the 

molecular viscosity. Originally, Boussinesq assumed only that the turbulent eddy viscosity was 

directionally independent. However, in the application of his theory, he assumed that the eddy viscosity 

was spatially constant as well. Such a constant value for the turbulent eddy viscosity could occur only if the 

turbulence were homogeneous. A constant eddy viscosity is not expected in general. For example, in 

turbulent shear flows near a smooth wall the eddy viscosity cannot be constant, because both the mean and 

fluctuating components of fluid velocity must vanish at a no-slip surface. Hence, the Reynolds stress tensor 

must vanish at a no-slip surface, in spite of the fact that the mean-strain-rate tensor remains finite. 

 The eddy viscosity is not a thermodynamic property of the fluid in the same way that molecular 

viscosity is. The eddy viscosity is a function of the turbulent motion just as the molecular viscosity is a 

function of the molecular motion. However, the random motion of molecules in an ideal gas depends only 

on the absolute temperature. For many flows of practical interest, the temperature variations within the flow 

are small compared with the level of temperature above the absolute zero. Hence, the molecular viscosity is 

often approximated as being constant throughout the flow. In contrast, the eddy viscosity can seldom be 

treated as a constant. The turbulent velocity fluctuations will always vanish in the laminar region of a shear 

flow immediately adjacent to a smooth surface, whereas the random molecular motion in an ideal gas 

would cease at a solid wall only if the temperature of the gas went to absolute zero at the surface. In this 

dissertation, the eddy viscosity is assumed to be isotropic but not necessarily homogeneous. This is not to 

say that the turbulence itself is isotropic because the mean-strain-rate tensor is not isotropic. We are simply 

assuming that the eddy viscosity at any given point in space and time is independent of direction. 

 Using Eq. (1.38) in Eq. (1.37), the Boussinesq-RANS equations are 

 ( ) ( )

( )[ ] ρμμ

μμρρρ

∇++⋅∇+

⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇++++∇−=⎥

⎦

⎤
⎢
⎣

⎡
∇⋅+

∂
∂

 )( 2 

 
3
2

3
2

0

0

Zg

kZgp
t

t

t

VS

VVVV

vv
 

(1.40) 

For convenience, we define a change of variables that combines several of the terms on the right-hand side 

of Eq. (1.40) to form the pseudo mean pressure 
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 ( ) V⋅∇++++=  
3
2

3
2ˆ

0 tkZgpp μμρρ  (1.41) 

The steady-state incompressible Boussinesq-RANS equations become 

 ( ) ( )[ ])(  2 ˆ1 VSVV
vv

tp νν
ρ

+⋅∇+∇−=∇⋅  
(1.42) 

 The Boussinesq hypothesis allows us to express the six independent components of the Reynolds stress 

tensor in terms of the mean velocity vector and two scalars; the eddy viscosity tν  and the turbulent kinetic 

energy per unit mass k . Both of these scalars are unknown functions of space and time. In order to close 

the formulation with the Boussinesq’s hypothesis, the dynamic eddy viscosity and the turbulent kinetic 

energy per unit mass must be related to other flow properties. Several methods have been suggested for 

closing the formulation based on Boussinesq’s hypothesis and are commonly classified as zero, one, or 

two-equation models, based on the number of differential equation used. 

 Most zero-equation models, also known as algebraic models, are based on a hypothesis first made by 

Prandtl [5]. This hypothesis is referred to as the mixing-length theory. Prandtl hypothesized that the 

turbulence characteristics were related to a characteristic length and velocity scale associated with the 

turbulent fluctuations. Thus, the closing equations are simply algebraic relationships between the 

turbulence parameters. Zero-equations models are classified as incomplete models because they require 

properties of the turbulent flow field to be known a priori. 

 Most one-equation models are based on a subsequent hypothesis by Prandtl [10]. In his development, 

Prandtl hypothesized that the eddy viscosity was proportional to the product of the square root of the 

turbulent kinetic energy per unit mass and a characteristic length scale. Prandtl used a modeled version of 

the turbulent-kinetic-energy transport equation and related the eddy viscosity to the turbulent kinetic energy 

algebraically. The length scale was also calculated algebraically from the mean flow. The distinguishing 

factors of most one-equation models is that they model the turbulent kinetic energy per unit mass by a 

differential equation, they express the eddy viscosity as a function of the turbulent kinetic energy per unit 

mass and they calculate some type of length scale from the mean fluid flow. Many one-equation models 

have been proposed including those by Emmons [31], Glushko [32] and Wolfshtein [33]. Feriss and Atwell 
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[34] also proposed a one-equation model based on the turbulent kinetic energy but do not use the 

Boussinesq’s hypothesis. Other one-equation models that are based on some transport property other than 

turbulent kinetic energy include models by Nee and Kovasznay [35], Sekundov [36], Baldwin and Barth 

[18], Spalart and Allmaras [17] and Menter [37]. 

 Widely used turbulence models are two-equation models based on an approach to turbulence modeling 

that was originally proposed by Kolmogorov [8]. Kolmogorov employed a modeled differential equation 

for the transport of turbulent kinetic energy and also developed a modeled differential transport equation 

for the second scalar turbulence variable, for which he used a symbol ω. This turbulence variable is a 

frequency characteristic of the turbulent-kinetic-energy dissipation process and it is sometimes said to be 

proportional to the root-mean-square magnitude of the fluctuating turbulent vorticity. Researchers have 

since built upon Kolmogorov’s two-equation approach, refining the modeled transport equations and 

solving for other turbulence parameters such as the turbulent-kinetic-energy dissipation rate. The feature 

common to all two-equation turbulence models is that the eddy viscosity is modeled as a function of two 

scalar turbulence variables, which are both computed from differential transport equations. Many two-

equation models can be classified as either k-ω or k-ε models, where k is the turbulent kinetic energy per 

unit mass, ω is a characteristic turbulence frequency and ε is the turbulent-kinetic-energy dissipation rate 

per unit mass. Two-equation models do not require an algebraic relation that describes any turbulence 

variable in a prescribed manner from the mean flow. Two-equation models that are based on transport 

properties other than ε or ω include models suggested by Rotta [38, 39], Zeierman and Wolfshtein [40] and 

Speziale et al. [20]. 

B. Reynolds Stress Transport 

 Traditional turbulence models are based on a differential transport equation for the Reynolds stress 

tensor. The equations of motion for turbulent flow, comprising the continuity equation and the three 

components of the momentum equation, can be expressed in terms of the three components of the mean 

velocity vector, the mean pressure and the Reynolds stress tensor. To complete this formulation, we need 

some means of relating the six independent components of the symmetric Reynolds stress tensor to the 

mean velocity and pressure fields. A differential transport equation for the Reynolds stress tensor can be 

developed from the Navier-Stokes equation. Assuming constant viscosity, we have 
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 ( ) ( ))( 2)( 2 VSVS
vvvv

⋅∇=⋅∇ μμ  (1.43) 

The mathematical identity (A.2) from Appendix A gives 

 ( ) ( )( )VVVS ⋅∇∇+∇=⋅∇ 2 2 )(  2 μμ
vv

 (1.44) 

With constant viscosity, the Navier Stokes equation given in Eq. (1.6) expressed using the geopotential 

altitude for the gravitational and the two above equations give 

 ( ) ρμμρρ ∇+∇+⎟
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2

0 3
1 VVVVV

 (1.45) 

Multiplying Eq. (1.45) by the fluctuating components of the velocity V~ , applying Eqs. (1.17)–(1.18) and 

taking the ensemble average yield 
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(1.46) 

Equation (1.46) can be reduced using the equality 0~
=V given in Eq. (1.20) 
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(1.47) 

Each term in Eq. (1.47) is a second order tensor containing nine scalar components. Applying the following 

mathematical identities  
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The Reynolds stress transport equation given in Eq. (1.47) can be rewritten as 

 
( ) ( )

)~(~~~~~~

~~~)~()~,(~~~~

2 VεVVVV

VVVVχVVγVVVVV

vv))

vvvv

μμ

ρ

−∇+⎟
⎠
⎞⎜

⎝
⎛ ∇−∇−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅∇++−∇⋅+

∂
∂

T
pp

t
 

(1.52) 

where 

 
V~ 

3
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)
 (1.53) 

and the following definition are used 
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Notice that the tensor γ
vv

 depends only on the components of VV~~
 and the spatial derivatives of the mean 

velocity field. On the other hand, the tensors ε
vv , π

vv  and χ
vv

 involve other unknown correlations of the 

velocity and pressure fluctuations. After rearranging Eq. (1.52) and using Eqs. (1.54)–(1.57), we obtain the 

Reynolds-stress-transport equation 
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−−∇+−=∇⋅+
∂

∂ νν  (1.58) 

where ν is the kinematic viscosity ρμν /= . The tensor VV~~
is the negative of the specific Reynolds stress 

tensor, as given in Eq. (1.35) 

 

ρ
τVV
vv

−=
~~  (1.59) 

 The tensor equation given by Eq. (1.59) provides scalar transport equations for the components of the 

specific Reynolds stress tensor. Because this tensor is symmetric, there are only six independent scalar 

equations. However, many of the scalar terms that make up the components of the tensors on the right-hand 

side of Eq. (1.58) are new unknowns. Counting these unknowns reveals that we have added more 

unknowns than equations. This is the essence of the turbulence closure problem. We could develop 

additional transport equations for the new unknowns in Eq. (1.58) by taking other moments of the Navier-

Stokes equations. However, each time we add new equations in this manner, we also add more unknowns. 

At no point will this procedure produce a number of equations equal to the number of unknowns. 

 The most commonly used method for closing the Reynolds-averaged formulation is to use some type 

of approximation to model the unknown terms on the right-hand side of Eq. (1.59). One possible approach 

is to model the unknown terms on the right-hand side of Eq. (1.58) and then use the resulting Reynolds-

stress-transport model to evaluate the Reynolds stresses. On the other hand, we could return to the 

Reynolds-averaged Navier-Stokes equations given by Eq. (1.37) and make some approximations that 
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would allow us to model the Reynolds stress tensor directly. The Boussinesq hypothesis is commonly used 

for this purpose. 

 However, Boussinesq’s hypothesis alone does not close the Reynolds-averaged formulation. To 

complete any Boussinesq-based turbulence model, we must develop additional equations that allow us to 

relate the eddy viscosity and the turbulence kinetic energy per unit mass to the mean flow. Although the 

Reynolds-stress-transport equation is not required for Boussinesq-based models, Eq. (1.58) can provide 

significant insight into how the turbulence kinetic energy per unit mass depends on the mean flow. 

C. Traditional Kinetic Energy Transport Equation 

 A transport differential equation for the turbulent kinetic energy is developed to account for the 

turbulent transport of momentum. The turbulent kinetic energy associated with turbulent velocity 

fluctuations is generated directly from velocity gradients in the mean flow, i.e. fluid shear and friction. 

However, turbulent kinetic energy is also dissipated with time as a result of molecular viscosity and is 

transported from one location to another by the mean fluid motion, the turbulent velocity fluctuations and 

the molecular diffusion. Thus, the specific turbulent kinetic energy is not expected to be a function of only 

local gradients in the mean flow. Instead, the level of kinetic energy associated with the turbulent 

fluctuations at any point in space and time must depend on the history of flow, i.e. the specific turbulent 

kinetic energy at any point in the flow field depends on where the fluid has been as well as the local 

gradients in the mean motion. To account for such effects, the specific turbulent kinetic energy must be 

related to the mean flow through a differential transport equation. 

 The transport of turbulent kinetic energy results from the transfer down the turbulence energy cascade. 

The total specific turbulent kinetic energy associated with the turbulence was defined in Eq. (1.39) to be 

one-half of the mean squared magnitude of the turbulent fluctuations. This specific turbulent kinetic energy 

can also be expressed in terms of one half of the trace of the negative of the specific Reynolds stress tensor 

defined in Eq. (1.35) 
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For a Newtonian fluid, a transport equation for turbulent kinetic energy per unit mass is typically developed 

directly from the trace of the Reynolds-stress-transport equation given in Eq. (1.58) 
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with 
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where the Jacobian tensor )(VJ
vv

 can be expanded in Cartesian coordinates as 
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Equation (1.63) can be expressed as  
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This last equation can be rewritten in several other forms 
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where )~( VΩ
vv

is the rotation tensor. Using the continuity equation for incompressible flows, the last terms 

of Eq. (1.72) is zero. The relations for kε , which are given in Eqs. (1.68)–(1.73), involve three tensors that 

are important in many aspect of turbulence modeling. These are the strain-rate tensor, the Jacobian tensor 

and the rotation tensor. These three tensors are related through the important mathematical identity 

 )()()( VVSVJ Ω+=
vvvvvv

 (1.74) 

Equation (1.64) can be expanded in Cartesian coordinates 
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Equation (1.65) can be rewritten as 
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 Using Eqs. (1.66) for kγ , Eq. (1.68) for kε , Eq. (1.75) for kχ , Eq. (1.76) for kπ and the assumption 

of constant viscosity in Eq. (1.59), which represents the turbulent-kinetic-energy transport equation for a 

Newtonian fluid yields 
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 The left-hand side of Eq. (1.77) represents the mean substantial derivative of k , which is the time rate 

of change of the specific turbulent kinetic energy for a fluid element as it moves with the mean flow. The 

term ( ) )(: 1 VJτ
vvvvρ  represents the production because it is the rate at which specific kinetic energy is 

transferred from the fluid flow to the turbulent fluctuations. The term )~(:)~( VJVJ
vvvv

ν− is commonly referred 

to as the dissipation per unit mass, because it is usually approximated as being the rate at which the specific 

kinetic energy is converted to thermal energy through viscous dissipation. The term 

( ) ( ) ( ) ( )2~31~~1 VV ⋅∇−⋅∇ νρ p  is called dilatation because it accounts for interchange between turbulent 

kinetic energy and thermal energy resulting from fluid expansion or compression. The term k2∇ν  arises 

from molecular diffusion, which is the transport of specific turbulent kinetic energy resulting from the 

molecular motions within the fluid. The term ( ) ( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛ ⋅∇−+⋅∇− VVVV ~~31~~~~211 2 μρρ pV  is usually 

called the turbulent transport term because it includes the transport of specific turbulent kinetic energy that 

results from the turbulent fluctuations. 

 Equation (1.77) provides an additional differential equation for the unknown specific turbulent kinetic 

energy. However, as was the case with the Reynolds-stress-transport equation, Eq. (1.77) also introduces 

additional unknowns associated with the turbulent fluctuations.  Thus, turbulence models that use  

Eq. (1.77) must also include closure approximation for those unknown terms.  The production term 
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( ) )(:1 VJτ
vvvvρ  in Eq. (1.77) can be expressed in terms of the eddy viscosity, the mean velocity and specific 

turbulent kinetic energy by using the Boussinesq hypothesis given in Eq. (1.38), which yields 

 
)(: 

3
2)(:)(2)(:1 VJδVVJVSVJτ

vvvvvvvvvvvv
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∇+−=

ρ
μ

ρ
μ

ρ
tt k  

(1.78) 

The kinematic eddy viscosity tν  is defined as  

 
ρ
μ
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 (1.79) 

Using the mathematical identity (A.5) from Appendix A and the kinematic eddy viscosity tν  given in Eq. 

(1.77), we can rewrite the production term given in Eq. (1.78) as 
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The term V⋅∇  is identically 0 for incompressible flow and is sometimes neglected even for compressible 

flow. The approximate dissipation term )~(:)~( VJVJ
vvvv

ν−  in Eq. (1.77) has been modeled in many different 

ways depending on the turbulence model selected. In fact, the primary difference between the turbulent 

energy equation models in common use today is the manner in which the second term on the right-hand 

side of Eq. (1.77) is determined. This term is still an unknown function of the turbulent velocity 

fluctuations and is typically denoted as ε . Using Eq.(1.68), the approximate dissipation term ε  can be 

written as 
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 (1.81) 

The dilatation term ( ) ( ) ( ) ( )2~31~~1 VV ⋅∇−⋅∇ νρ p of Eq. (1.77) is zero for incompressible flow, and even for 

compressible flow they are commonly assumed to be negligible for the case of flows with high supersonic 
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mean Mach numbers [41]. Accordingly, the third and fourth terms on the right-hand side of Eq. (1.77) are 

usually neglected for turbulence models in common use today. 

 ( ) ( ) 0~
3
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 (1.82) 

The turbulent transport term ( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⋅∇−+⋅∇− VVVV ~~ 31~~~~21 1 2 μρρ pV  in Eq. (1.75) is typically 

combined and modeled as a pure gradient-diffusion process, which is analogous to the molecular diffusion 

term in Eq. (1.77). The traditional modeled version of the turbulent-kinetic-energy-transport equation is 
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 Equation (1.83)  is the turbulence-energy-transport equation that is used with most turbulent-kinetic-

energy models in common use today [13, 17, 18, 19]. When this last equation is combined with the mean 

continuity equation and the three components of the Boussinesq approximation for the Reynolds-averaged 

Navier-Stokes equations, those five scalar differential equations involve several unknowns. For the case of 

incompressible flow with density and molecular viscosity known, these five transport equations involve 

seven unknown scalar variables; the three components of the mean velocity vector, the mean pressure and 

the three turbulence variables (eddy viscosity, turbulence kinetic energy and dissipation). To close this 

formulation, two additional independent equations relating these seven variables are required. The 

additional required equations could be either algebraic relations or differential transport equations. For one-

equation turbulence models, both of the additional relations are algebraic. Most two-equation turbulence 

models provide one additional transport equation together with an algebraic equation relating the eddy 

viscosity to the other turbulence variables.  

 Assuming a constant molecular viscosity, as it was the case to generate the Reynolds-stress-transport 

equation, the traditional modeled version of the turbulent-kinetic-energy transport equation expressed in 

Eq. (1.83) can be rearranged as 
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 Equation (1.84) is the traditional modeled version of the turbulent-kinetic-energy transport equation 

used in most of the turbulence models, such as Jones and Launder [30], Wilcox [16] and Menter [15]. It 

assumes the fluid is Newtonian with constant density and constant viscosity. The unknowns are the three 

components of the mean velocity vector, the mean pressure, and the three turbulence variables (eddy 

viscosity, turbulent kinetic energy and turbulent dissipation rate).  

 One of the main concerns in the development of the turbulent kinetic energy equation is the 

assumption of constant viscosity. In the derivation of the k-ε model, it was assumed that the flow is fully 

turbulent, and the effects of molecular viscosity are negligible. The traditional k-ε model is therefore valid 

only for fully turbulent flows. Phillips [24] suggested an alternative equation for the turbulent-kinetic-

energy transport equation that does not assume constant viscosity. The turbulent-energy dissipation per unit 

mass used in the development of the traditional turbulent energy transport equation is not equal to the true 

dissipation of turbulent kinetic energy per unit mass as Wilcox [14] mentioned. Phillips [24] showed that a 

part of the molecular transport was neglected in the development of the traditional turbulent-kinetic-energy 

transport equation. This resulted in neglecting a portion of the turbulent transport term when applying 

Boussinesq’s analogy between molecular and turbulent transport. Phillips [24] proposed an alternate model 

for the turbulent transport energy equation that does not neglect part of the molecular transport term and 

does not assume a constant viscosity at any place. Phillips’s turbulence kinetic energy transport equation is 

based on a rigorous application of the Boussinesq approximation. 

D. Traditional Energy-Dissipation Turbulence Models  

 Most turbulence models use an algebraic relation for the eddy viscosity, obtained from dimensional 

analysis. By using the Boussinesq hypothesis, the Reynolds stress tensor was expressed in terms of the 

mean velocity vector and two additional scalar variables, the turbulent eddy viscosity and the specific 

turbulent kinetic energy. However, both tν  and k are unknowns functions of space and time. The turbulent-

energy-transport equation provides one additional equation. However, this transport equation also 

introduces at least one additional unknown. In the forms of the equation considered to this point, the 
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additional unknown introduced by the turbulent-energy-transport equation is one of the following: the 

approximate dissipation, the exact dissipation or the RMS fluctuating vorticity. To close the formulation 

from this point, one of these unknown scalar functions has to be related to the other turbulence variables 

and the mean flow. This is accomplished by observing the length and velocity scales of turbulence.  

 The algebraic relation for the eddy viscosity is based on dimensional analysis first suggested by 

Prandtl [5, 10]. From the kinetic theory of gases, the molecular kinematic viscosity is found to be 

proportional to the product of molecular mean free path and the square root of the total specific molecular 

kinetic energy. In a similar manner, Prandtl [5] hypothesized that the kinematic eddy viscosity was 

proportional to the product of a characteristic length l , called the mixing length, and some suitable 

characteristic velocity. In a later development, Prandtl [10] proposed a more direct analogy between 

turbulence and kinetic theory, assuming that the kinematic eddy viscosity was proportional to the product 

of a turbulence mixing length l  and the square root of the total specific kinetic energy associated with the 

fluctuating velocity field.  

 kt l∝ν  (1.85) 

 The turbulence energy give information about the strength of the turbulent eddies. However it says 

nothing about their size. Predicting turbulent transport requires the knowledge of the characteristic length 

associated with the turbulent fluctuations as well as their energy. Turbulence consists of the superposition 

of various sized eddies, all having kinetic energy determined by the intensity of their velocity fluctuations. 

The distribution of kinetic energy among turbulent eddies of various size is called the turbulence energy 

spectrum. Taylor [42] was the first to present a mathematical relationship between the energy spectrum and 

the velocity fluctuations. An extensive discussion of their energy spectrum was presented by Hinze [43]. 

The characteristic length associated with the turbulent transport should be some kind of weighted average 

of the characteristic lengths for all eddies that make up the energy spectrum. 

 The kinetic energy results from superimposed periodic motions of various frequencies. Such a motion 

can be characterized in two different ways, either in terms of a characteristic velocity cV  and a 
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characteristic frequency cω , or in terms of a characteristic velocity and a characteristic wavelength. A 

wavelength for turbulent motion is commonly called a length scale and is usually denoted by l .  

 

c

cV
ω

≡l  
(1.86) 

The exact physical interpretation of the characteristic angular velocity has been a matter of some 

controversy. The characteristic angular velocity is often taken to be the proportional to the approximate 

dissipation divided by the specific kinetic energy. 

 
k
εω ∝  

(1.87) 

This definition links the characteristic length of the turbulent flow field to the characteristic length of 

turbulent dissipation, not to the characteristic length of the eddies in which the most energy is found. 

Substituting Eqs. (1.166) and (1.86) in Eq. (1.85) yield an expression for the turbulent eddy viscosity 
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ν μ
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where μC  is a closure coefficient. This relationship provides one algebraic relation for the k-ε turbulence 

model.  

 The modeled transport equation for the turbulent dissipation ε is usually developed by analogy with 

Eq. (1.84) and can be written for incompressible flows as 
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where 1εC , 2εC  and εσ  are closure constants. Note that the turbulent dissipation equation is traditionally 

constructed by dimensional analysis and is not developed rigorously from the Navier-Stokes equations. 

Wilcox [21] makes mention of this concern and gives what he terms an “exact” equation for the turbulent 

dissipation by taking a moment of the Navier-Stokes equations using the definition of the turbulent 
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dissipation. However, the resulting equation is extremely complicated and Wilcox submits that closure 

coefficients for the resulting differential equation are all but impossible to measure at this point. Thus the 

modeled version of the dissipation transport equation is traditionally used for lack of a useful version of a 

more rigorously derived equation. 

 The traditional k-ε model is a semi-empirical model based on transport equations for the turbulence 

kinetic energy and its dissipation rate. The model transport equation for k is derived from the Navier-Stokes 

equations, while the model transport equation for ε was obtained using physical reasoning and bears little 

resemblance to its counterpart. In the derivation of the model, it was assumed that the flow is fully-

turbulent and the effects of molecular viscosity are negligible. The traditional k-ε model is given in Eqs. 

(1.84), (1.88) and (1.89). 

 The k-ϵ model can be reparametrized with a simple change of variable to eliminate the so-called 

dissipation per unit mass, ϵ, in favor of the dissipation frequency, ω, which is defined by Eq. (1.87). From 

this definition, ϵ is proportional to the k-ω product and choosing the proportionality constant to be Cμ yields 

the change of variables 

 
kCμ

εω ≡  
(1.90) 

Applying Eq. (1.90) to Eqs. (1.84), (1.88) and (1.89) produces the k-ω turbulence model for incompressible 

flow. The algebraic equation for the kinematic eddy viscosity is given by 
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The turbulent-energy-transport equation is given by 
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The dissipation-frequency-transport equation is obtained by analogy with the transport equation for the 

turbulent kinetic energy 
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where Cμ, Cω1, Cω2, σk and σω are closure coefficients.  

V. Phillips’ Turbulent-Kinetic-Energy Equation 

A. Main Concerns with the Traditional Turbulence Models 

 At this point, several concerns with the traditional k-ε or k-ω turbulence models can be identified. The 

dissipation length scale is that associated to the smaller turbulent eddies having the highest strain rates per 

unit kinetic energy, However, the larger turbulent eddies carry more energy and are primarily responsible 

for the transport of momentum energy in a fluid. The transport equations for the second turbulence 

variables were obtained simply from dimensional analysis and analogy with the turbulent-energy-transport 

equation. They were not developed in a rigorous manner from the Navier-Stokes equations. The so-called 

turbulent-energy dissipation per unit mass is not equal to the true dissipation of turbulent kinetic energy per 

unit mass. Because the approximate turbulent-energy dissipation per unit mass that is used in the traditional 

k-ε or k-ω turbulence models includes a portion of the total molecular transport, the so-called molecular 

transport terms do not include the total molecular transport of turbulent kinetic energy per unit mass. 

Because a part of the molecular transport was neglected, subsequent application of Boussinesq’s analog 

between molecular and turbulent transport also results in neglecting a portion of the turbulent transport of 

turbulent kinetic energy per unit mass. Using the dissipation length scale to define the eddy viscosity 

predicts a Reynolds stress tensor that is inversely proportional to the molecular viscosity, whereas the 

Reynolds stress tensor should not depend directly on molecular viscosity. 

 The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The 

transport equation for the second turbulence variable is traditionally constructed by dimensional analysis 

and analogy with the turbulent-energy transport equation. It is not developed in a rigorous manner from the 

Navier-Stokes equations. This transport equation has no basis in physics. Wilcox [14] mentions this 

concern and gives what he terms an exact equation for the turbulent dissipation by taking a moment of the 

Navier-Stokes equation using the definition of the turbulent dissipation. However, the resulting equation is 



32 
 

 

extremely complicated and Wilcox submits that closure coefficients for the resulting differential equation 

are all but impossible to measure at this point. Thus a simplified dissipation equation modeled based on the 

transport equation of the turbulent-kinetic energy is traditionally used for lack of a useful version of a more 

rigorously derived equation.   

 In the original development of the k-ε turbulence model and in many subsequent presentations of the 

turbulent-energy-transport equation, the parameter ε is presented as being exactly the turbulent energy 

dissipation per unit mass. With this misinterpretation, the molecular diffusion term k2∇ν  is commonly 

presented as being the total molecular transport of turbulent energy per unit mass. Although it is now 

generally recognized that ε is not precisely the turbulent-energy dissipation per unit mass, its continued use 

is typically justified on the grounds that the additional terms are small compared with the turbulent 

transport terms. In fact for most turbulent flows, all molecular transport can be neglected in comparison 

with the turbulent transport. The most significant concern with the traditional k-ε or k-ω turbulence models 

is not the lack of precision in defining the dissipation or the molecular transport. A more significant 

concern is that associated with the application of the Boussinesq analogy between molecular and turbulent 

transport to a molecular transport term that has been less than rigorously developed.  

 The traditional k-ε or k-ω turbulence models are all based on approximating the turbulent transport of 

turbulent kinetic energy as pure gradient diffusion. For the case of incompressible flow, these models all 

assume a turbulent kinetic energy flux given by ( ) kkt ∇σν / . A more rigorous development suggests that 

the improved results for incompressible flow might be obtained by using a turbulent kinetic energy flux 

that is specified by ( ) ( ) ( )[ ]{ } 23/5  / VS
vv

tkt k νσν ⋅∇−∇ . This is based on a more direct analogy between 

turbulent and molecular transport.  

 Perhaps the greatest concern with traditional turbulence models is that they all fail to exhibit proper 

dependence on molecular viscosity. From the definition of the Reynolds stress tensor, we see that the 

Reynolds stresses depend only on the fluid density and turbulent velocity fluctuations. They are 

independent of the other natural fluid properties such as the molecular viscosity. Hence if the Boussinesq 

analogy between turbulent and molecular transport is strictly followed, the dynamic eddy viscosity should 

be related to only the fluid density and turbulent velocity fluctuations. The eddy viscosity should not 

depend directly on molecular viscosity. 
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B. Phillips Turbulent-kinetic-energy transport equation 

Phillips’s turbulent-kinetic-energy transport equation [24] does not originate from the trace of the 

Reynolds stress transport equation as the traditional model does. Phillips bases his transport equation on the 

direct application of the Navier-Stokes and RANS equations. Phillips uses a rigorous application of the 

Boussinesq’s hypothesis and defines an alternate algebraic relation for the turbulent eddy viscosity. 

1. Dot Product of the Navier-Stokes Equations with the Velocity Vector 

 The turbulent-kinetic-energy transport equation can be developed directly from the mechanical energy 

equation, which is obtained by taking the dot product of the fluid velocity vector with the Navier-Stokes 

equations. The Navier Stokes equations expanded using the geopotential altitude for the gravity force as 

given in Eq. (1.8) is 
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(1.94) 

where p̂  represents the total hydrostatic pressure, and was define in Eq. (1.7). Taking the dot product of 

Eq. (1.94) with the fluid velocity vector yields 

 ( ) [ ] ( )[ ]ρμρ ∇+∇−⋅∇⋅=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂

⋅ Zgp
t 0ˆ)(2 VSVVVVV

vv

 (1.95) 

Using the mathematical identity (A.4) from Appendix A in the left-hand side of Eq. (1.95) yields 
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The first term of Eq. (1.96) can be expanded as given in the mathematical identity proven in (A.7)  

 ( )[ ] ( ) ( )[ ]( ) )(:)(2)(2 2
2
1 VSVSVVVSV

vvvvvv
μμμ −∇⋅+∇⋅∇=⋅∇⋅ V  (1.97) 

Hence, the dot product of the Navier-Stokes equations with the fluid velocity vector, which represents the 

mechanical energy equation for a Newtonian fluid is 
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The term ( ) ( )[ ]( )  2
2
1 VV ∇⋅+∇⋅∇ Vμ  in Eq. (1.98) accounts for the molecular transport of mechanical 

energy. The term ( )[ ]ρ∇−∇⋅− Zgp 0ˆV  in Eq. (1.98) describes the rate at which the mechanical energy is 

transported from one point to another within the fluid as a result of molecular motion. The term 

)(:)( 2 VSVS
vvvv

μ−  in Eq. (1.98) is the viscous dissipation of mechanical energy per unit volume. It 

represents the volumetric rate at which mechanical energy is converted into thermal energy through the 

process of viscous dissipation. Using the velocity Reynolds decomposition given in Eq. (1.17) yields 
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Using Eq. (1.99) and (1.17)–(1.18) in Eq. (1.98) gives 
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Taking the ensemble average of the right-hand side of Eq. (1.100) yields 
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where k  is the turbulent kinetic energy defined in Eq. (1.39). Taking the ensemble average of the first term 

on the left-hand side of Eq. (1.100) gives 
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Taking the ensemble average of the last two terms on the left-hand side of Eq. (1.89) gives 
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where p̂  represents the mean value of the hydrostatic pressure p̂  defined in Eq. (1.7).  

 
V⋅∇++= μρ

3
2 ˆ 0 Zgpp  (1.104) 

Similarly p
~
ˆ  represents the fluctuating component of the hydrostatic pressure p̂  . 
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 (1.105) 

Substituting Eqs.(1.101)–(1.102) in Eq. (1.100) gives the mechanical energy equation 
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2. Dot Product of the RANS Equations with the Mean Velocity Vector 

 The Reynolds-Averaged Navier-Stokes equations can be written from Eqs. (1.36)–(1.37) using the 

definition of p̂  given in Eq. (1.104) as 
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Taking the dot product of this equation with the mean velocity vector gives the mean mechanical energy 

equation 
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Using the mathematical identity given in Eq. (A.7) expanded in terms of V  in place of V  yields 
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Using the mathematical identity given in Eq. (1.109) in Eq. (1.108) gives 
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Using the mathematical identity (A.4) yields 
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After applying the mathematical identity (A.8) to Eq. (1.111) yields 
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Taking the ensemble average of the mathematical identity (A.9) yields 
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After applying the Eq. (1.113) to Eq. (1.112) gives 
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This last equation, Eq. (1.114), represents the mean mechanical energy equation. 

3. Turbulent-kinetic-energy transport equation 

 The turbulent-kinetic-energy transport equation is based on the difference between the ensemble 

average of the dot product of the Navier-Stokes equations with the velocity vector and the dot product of 

the RANS equations with the mean velocity vector. Subtracting the mean mechanical energy equation 

given in Eq. (1.114) from the mechanical energy equation given in Eq. (1.106) yields 
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Applying the continuity equation for the fluctuations given in Eq. (1.24) to the mathematical identity 

(A.10) and taking the ensemble average yields 
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Taking the ensemble average of the mathematical identity (A.11) yields 
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Applying the definition of the turbulent stress tensor given in Eq. (1.35) and the turbulent momentum 

transport term expressed in Eq. (1.36) to Eq. (1.115) gives 
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Applying the definition of the fluctuating hydrostatic pressure given in Eq. (1.105) to Eq. (1.118) yields 
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(1.119) 

After simplifying Eq. (1.119) yields the turbulent energy transport equation 
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accounts for the volumetric turbulent transport of kinetic energy. The only approximation that was made in 

the development of Eq. (1.120) is that of a Newtonian fluid.  

 The molecular transport of turbulent kinetic energy is not a simple gradient diffusion process. The term 

k∇ μ is gradient diffusion. However, the contribution from τν
vv⋅∇ is not necessarily gradient diffusion. 

Accordingly, even if we accept the Boussinesq analogy between molecular and turbulent transport, we 

should not expect turbulent transport of kinetic energy to be a simple gradient diffusion process in general. 

4. Boussinesq’s Approximation 

 Applying the Boussinesq analogy between molecular and turbulent transport to the turbulent transport 

term ( )VVVV ~ ~~~~~ 
3
22

2
1 ⋅∇++ μρ pV in Eq. (1.120) suggests 
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For this Boussinesq model, the Reynolds stress tensor is given by Eq. (1.38) 
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Using Eqs. (1.121)–(1.122) the new transport kinetic energy equation given in Eq. (1.120) becomes 
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(1.123) 

 The production term in this new model is the same as the production term in the traditional model, 

which was given in Eq. (1.79). Applying Eq. (1.79) to Eq. (1.123), the Boussinesq based turbulent energy 

transport equation is 
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(1.124) 

This last equation can be simplified by denoting 2S and 2~S  the magnitude of the mean and fluctuating 

components of the strain rate tensor, respectively 
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Using Eqs. (1.125)–(1.126) in Eq. (1.124) yields 
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For incompressible flow ( ) kk ∇=∇ ρρ  and the Boussinesq based turbulent energy transport equation given 

in Eq. (1.127) reduces to 
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The term 2~ 2 Sμ−  in Eq. (1.128) for incompressible flow or the term ( ) ⎟⎟
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for 

compressible flow in Eq. (1.127) represents the exact volumetric dissipation of turbulent kinetic energy. It 

is an unknown function of the turbulent velocity fluctuations. To close the formulation, there needs to be an 

additional equation to relate this dissipation to the other turbulence parameters and the mean flow. If 
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Eq. (1.127) is to be used as part of the conventional k-ε turbulence model, this volumetric dissipation can be 

written in terms of the unknown dissipation per unit mass 
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Using Eq. (1.129) to model the dissipation in Eq. (1.127) and neglecting the pressure dilatation term, as it 

was done in the development of the traditional model, yields the turbulent-energy transport equation that 

can be used to replace the traditional turbulent-energy transport equation given in Eq. (1.84) 
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(1.130) 

 The symbol ε~ in Eq. (1.130) is simply used to indicate that this is the exact dissipation per unit mass, 

as defined in Eq. (1.129) and not the approximate dissipation per unit mass, defined in Eq. (1.80). 

Nevertheless, conventional models are based on the assumption that ε  is the dissipation per unit mass. 

Thus, ε  and ε~ can be interchanged in conventional k-ε and k-ω turbulence models. 

 The difference between Eq. (1.84) and (1.130) resides only in the last term on the right-hand side, 

which accounts for the molecular and turbulent transport of kinetic energy. Eq. (1.84) is based on the 

approximation that the turbulence parameter ε , defined in Eq. (1.80), includes only the viscous dissipation. 

This approximation results in neglecting a portion of the molecular transport. Although the neglected 

molecular transport term is small, subsequent application of the Boussinesq analogy between molecular and 

turbulent transport results in also neglecting a portion of the turbulent transport, which may not be 

insignificant. The more rigorous development used to obtain Eq. (1.130) produces a molecular transport 

term that is based only on the assumption of a Newtonian fluid. Thus, one might expect the Boussinesq 

analogy applied to this molecular transport term to be more realistic. For the traditional term used in 

Eq. (1.84), both the molecular and turbulent transports are modeled as pure gradient diffusion. However, 

the more rigorous development of Eq. (1.130) shows that, in general, this transport is not pure gradient 

diffusion.  
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 The exact dissipation term defined in Eq. (1.129) can be written as 
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where ω~ is the root-mean-square fluctuating vorticity. 
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Equation (1.120) can be rewritten in terms of the turbulent vorticity 
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(1.133) 

The only approximation that was made in the development of Eq. (1.133) is that of a Newtonian fluid. 

Applying Boussinesq’s analogy between molecular and turbulent transport gives 
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(1.134) 

Using Eq. (1.122) for the Reynolds stress tensor and Eq. (1.38) for the Reynolds stress tensor in Eq. (1.134) 

produces the Boussinesq transport equation 
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 Huang et al. [41] have shown that the dilatational dissipation rate and other terms involving the 

divergence of the fluctuating velocity are negligibly small, at least up to supersonic mean Mach 3. Hence 

Eq. (1.135) is closely approximated as 
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The three lines on the right-hand side of Eq. (1.136) are production, dissipation and the combination of 

molecular and turbulent transport, respectively. For steady-state incompressible flow, the continuity 

equation defined in Eq. (1.25) substituted in Eq. (1.136) yields 
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Based on the dimensional analysis given in Eq. (1.86), the mean vortex wavelength, λ, is defined in terms 

of the ratio of the mean square magnitude of the fluctuating velocity to the mean square magnitude of the 

fluctuating vorticity. 
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In terms of the turbulent kinetic energy defined in Eq. (1.39) and the root-mean-square fluctuating vorticity 

2~ω , the mean vortex wavelength is  
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Substituting Eq. (1.166) in Eq. (1.137) yields 
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The algebraic relation for the turbulent eddy viscosity is 

 2/1kt λν =  (1.141) 

 The continuity equation defined in Eq. (1.25), the Boussinesq-RANS equations defined in Eq. (1.42), 

the algebraic equation for the kinematic eddy viscosity given in Eq. (1.143) with the turbulent-energy-

transport equation from Eq. (1.142) and a closing equation for the mean vortex wavelength λ define a 

system of equations for an incompressible steady-state fluid. Eventually, the model will derive a transport 

equation for the second turbulence variable. To assess the accuracy of the new turbulent model, the 

resulting velocity, turbulent kinetic energy and vorticity will be compared to reference distributions. 

Because of the high frequencies of the turbulent fluctuations, it is not possible to measure the vorticity at 

high Reynoldds numbers. Therefore, the vorticity has to be compared to an algebraic relation. This 

dissertation is aimed at developing a reference distribution for the second turbulence variable at fully rough 

flows.  

C. Fully Developed Flow in a Circular Pipe 

 Fully developed flow in a pipe has historically been the foundational case and has been studied in great 

detail. This flow scenario is one of the easiest cases to evaluate the closure coefficients. 

 For fully developed axisymmetric flow in a circular pipe of radius R, there can be no θ -velocity 

component, no change in the mean velocity or pseudo mean pressure with respect to θ , and no change in 

the mean velocity with respect to z, 
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The mean strain-rate tensor is in cylindrical coordinates 
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1. Continuity Equation 

 For steady incompressible flow, the ensemble averaged continuity equation expressed in Eq. (1.22) 

becomes 

 0=⋅∇ V  (1.144) 

Using Eqs. (1.142), the continuity equation becomes 
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The no-slip boundary condition at the pipe wall requires 

 ( ) 0=RVr  (1.146) 

Integrating Eq. (1.145) subject to Eq. (1.146) results in 

 ( ) 0=rVr  (1.147) 

2. Boussinesq RANS Equations 

 Applying Eqs. (1.142) and Eq. (1.147) to the steady-state, incompressible Boussinesq RANS equations 

given in Eq. (1.42) results in 
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The r-component of Eq. (1.148) yields 
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The pseudo mean pressure depends only on the axial coordinate z and the mean velocity depends only on 

the radial coordinate r. Thus, the z component of Eq. (1.148) can be written as an ordinary differential 

equation. 
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The symmetry boundary condition at the pipe centerline and the no-slip boundary condition at the pipe wall 

require 
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 ( ) 0==RrVz  (1.152) 

The right-hand side of Eq. (1.150) is a function of only z, whereas the left-hand side is a function of only r. 

Thus both sides of Eq. (1.150)  must be constant. Integrating this equation once with respect to r and 

applying Eq. (1.151) gives 
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The left-hand side of Eq. (1.153) evaluated at the wall is the negative of the shear velocity squared. Thus, 

 
( ) R

dz
pdu

dr
Vd w

Rr

z
t

ˆ1
2
12

ρρ
τ

νν τ =−=−=⎥
⎦

⎤
⎢
⎣

⎡
+

=

    or     
dz
pdRu
ˆ

2
1
ρτ −=  

(1.154) 

Hence, Eq. (1.153) can be written as 
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3. Turbulent-Kinetic-Energy Equation 

 For fully developed axisymmetric flow, there can be no change in the turbulent energy with respect to 

either θ  or z 
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Using Eqs. (1.142)–(1.143) and (1.156)–(1.158) in Eq. (1.140) yields 
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 The left-hand side of Eq. (1.159) is the net outflow of turbulent kinetic energy per unit volume 

resulting from the combined effects of molecular and turbulent diffusion. The two terms on the right-hand 

side of Eq. (1.159) are the generation and the dissipation, respectively. If the molecular viscosity is 

constant, a portion of the dissipation term can be combined with the molecular diffusion to yield 
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4. Nondimensional Form 

 The formulation can be nondimensionalized using the following dimensionless parameters 
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The once integrated Boussinesq RANS equation and the no-slip boundary condition becomes 

 

t

r
rd

du
νν ˆˆ

ˆ
ˆ +

−=
+

,      ( ) 01ˆ ==+ ru  
(1.162) 

The algebraic equation for the kinematic eddy viscosity becomes 
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Substituting Eqs. (1.161) in Eq. (1.160), the turbulent energy transport equation is non-dimensionalized as 
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Defining 
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and using this definition along with the Boussinesq-RANS relation for the velocity gradient, the second-

order k-transport equation can be written as two first order transport equations with associated boundary 

conditions 

 

r

Q
rd

dk

k

t ˆ
3

ˆ5
3
ˆ

ˆ

ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
+

σ
νν

 ,     +

=

+ = wall1ˆ
kk

r
 

rkCr
rd

du
rd
Qd

t
t ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
2

22

ν
νν λ

++

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ,     0ˆ

0ˆ ==rQ  

(1.166) 

 This gives a system of equations for the turbulent transport equation based on a fourth order 

Runga-Kutta algorithm, along with the two boundary conditions. However, the equation for the second 
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turbulence variable is still missing and the value of the turbulent kinetic energy at the wall is unknown. An 

algebraic relation for the second turbulence variable will be proposed in the following chapter. 

D. Closing the Phillips Energy-Vorticity Turbulence Model 

 A closure problem arises in the Phillips energy-vorticity turbulence model because the second 

turbulence variable is unknown. The second turbulence variable could be represented by the root mean 

square fluctuating vorticity or the mean vortex wavelength. A relation between these two variables exists 

and is given in Eq. (1.139). Two-equation turbulence models give a differential equation for the second 

turbulence variable. This differential equation is traditionally obtained by analogy to the turbulent kinetic 

energy and dimensional analysis. This differential equation is dimensionally correct and has no physical 

basis.  

 Hunsaker [44] proposed several closure methods for the energy vorticity turbulence model in the 

traditional two-equation method. However, all these attempts were unsuccessful. Hunsaker mainly 

investigated a transport equation for the root mean square fluctuating vorticity to close the model. Several 

versions were given for the transport equation of the root mean square fluctuating vorticity featuring 

different closure coefficients. However, the closure coefficients could not be found to match experimental 

data.  

VI. Summary and Conclusions 

 The turbulent-energy-transport equation is usually developed directly from the trace of the Reynolds-

stress-transport equation. Subsequently, the turbulent-energy dissipation per unit mass is modeled using 

some approximations, although it is often referred to incorrectly as the exact dissipation. This modeling of 

the dissipation has led to omitting some elements in the molecular transport term. The molecular transport 

term is not a pure gradient diffusion process as is currently assumed with traditional models.  

 The dissipation of turbulent energy has been studied in great detail and it is now generally recognized 

that the traditional definition for ε is not precisely the turbulent-energy dissipation per unit mass. However, 

the continued use of this traditional definition for ε has been justified on the grounds that the additional 

terms are small [41]. It is not surprising that these terms have been shown to be small, because they actually 

arise from the fluctuating compressibility effects and molecular transport, not from viscous dissipation. 
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Because compressibility effects are negligible for Mach numbers less than 0.3 and turbulent fluctuations 

are typically on the order of 10 percent of the mean flow, fluctuating compressibility effects are usually 

negligible for Mach numbers less than three. Furthermore, for most turbulent flows, molecular transport is 

negligible compared to turbulent transport. Thus, the most significant concern with the traditional k-ε and 

k-ω turbulence models is not in the lack of precision in defining the energy dissipation.  

 Molecular transport of turbulent energy has not been studied in such detail. There has been little or no 

discussion in the literature of the fact that the molecular diffusion term, k2∇ν , is not the total molecular 

transport of turbulent energy per unit mass. Little interest has been shown in molecular transport of 

turbulent kinetic energy because molecular transport is typically recognized as being negligible compared 

to turbulent transport. What seems to have been overlooked in literature is the fact that we cannot 

adequately apply the Boussinesq analogy between molecular and turbulent transport without a thorough 

understanding of molecular transport. The alternate turbulent-kinetic-energy transport equation, which is 

developed from moments of the Navier-Stokes equations, provides this requisite understanding. The most 

important contribution in the development of the proposed turbulent-kinetic-energy transport equation is 

the inclusion of the last term in Eq. (1.140), which has not been included in any other turbulence models.  

 Based on fewer assumptions, Phillips developed a turbulent-kinetic-energy transport equation that 

could significantly improve the accuracy of turbulence modeling and its understanding. The continuity 

equation defined in Eq. (1.25), the Boussinesq-RANS equations defined in Eq. (1.42), the algebraic 

equation for the kinematic eddy viscosity given in Eq. (1.143) and the Phillips turbulent-energy-transport 

equation given in Eq. (1.142) define a system of equations for an incompressible steady-state fluid. 

However, the equation describing the transport of the second turbulent variable is missing.  

 With traditional two-equation energy-dissipation turbulence models like the k-ϵ and k-ω models, the 

transport equations for the second turbulence variable were obtained simply from dimensional analysis and 

analogy with the turbulent-kinetic-energy transport equation. They were not developed in a rigorous 

manner from the Navier-Stokes equations. These transport equations have no basis in physics. About all 

that can be said concerning the validity of these dissipation transport equations is that they are 

dimensionally correct. Nevertheless, some success has been achieved using this approach. The Phillips 

energy-vorticity turbulence model could be closed in a similar manner. However, Hunsaker [44] has 
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examined this approach in considerable detail with no success. It now seems apparent that a more rigorous 

approach to the development of a turbulent-vorticity transport equation must be taken.  

 Eventually, the Phillips energy-vorticity model will encompass a transport equation for the root-mean-

square fluctuating vorticity. Once this transport equation is developed, the model must be compared to 

experimental data or established relations for the mean velocity, turbulent kinetic energy, and fluctuating 

vorticity distributions. However, the fluctuating vorticity cannot be measured directly, and at high 

Reynolds numbers, the fluctuating components of velocity include frequencies too high to be measured 

accurately. Because experimental data for the fluctuating variables are unobtainable for fully rough flow 

and there are currently no established relations for the distributions of the turbulence variables, a relation 

for the second turbulent variable needs to be developed. This algebraic relation has to be derived such that 

the mean velocity distribution and the friction factor obtained from the resulting model match the well 

established relations obtained for fully rough flow. The following chapter will present an algebraic relation 

for the mean turbulent wavelength, which has been developed for fully rough pipe flow. The 

mean-fluctuating-vorticity distribution can be obtained directly from this mean-turbulent-wavelength 

distribution and the turbulent-kinetic-energy transport equation by applying the algebraic relation given in 

Eq. (1.139). 
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CHAPTER 2 

EMPIRICAL RELATION FOR THE MEAN VORTEX WAVELENGTH 

I. Introduction 

 Modeling turbulent behavior near perfectly smooth walls can present significant difficulties. All 

available experimental data have been taken near walls with some degrees of roughness. Because at high 

roughness Reynolds numbers, certain flow properties become independent of roughness Reynolds numbers, 

the argument has been made that developing a model for fully rough flow may be more straightforward 

than developing a model that exhibits the correct behavior near a perfectly smooth wall. Such a rough-wall 

model could then be extended to lower roughness Reynolds numbers and eventually to the hydraulically 

smooth surface, which is simply a low-roughness-Reynolds-number asymptote. The first step in this 

process is to develop a turbulence model that is consistent for high roughness Reynolds numbers.  

 In most practical applications, the surface over which flow occurs is significantly rough, and in spite of 

extensive studies, there is still much to be learned. The significant effects created by surface roughness on 

skin friction and velocity distributions have led many investigators to study this problem. Data on velocity 

distributions for wall-bounded flow over hydraulically smooth surfaces are available and laws controlling 

the resistance or friction factor are well established and widely accepted, see the work of Prandtl [45] and 

Nikuradse [46]. However, similar experimental data obtained from rough surfaces are sparser. The most 

widely accepted correlations for pipe flow are all fundamentally based on the work of Nikuradse [47]. 

Nikuradse proposed an empirical formula based on thorough experimental investigations to predict the 

friction factor over a wide range of Reynolds numbers covering both laminar and turbulent flows having 

either hydraulically smooth or rough surfaces. 

 Traditionally turbulence models have been developed for the case of hydraulically smooth walls and a 

select few have been subsequently modified to model rough walls. At present, the rough wall option is only 

a secondary feature with ω-based turbulence models, such as k-ω [13, 48], shear stress transport [15, 49] 

and ω-Reynolds stress models [50] or for the case of laminar flow. For rough walls, the logarithmic 

velocity profile still exists but moves closer to the wall. Roughness effects are accounted for by modifying 

the wall functions based on an equivalent sand-grain roughness. In fact, the roughness height specified in 
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turbulence models is not exactly equal to the roughness height of the surface under consideration. Wall 

friction depends not only on roughness height but also on the type of roughness such as shape and 

distribution. Guidance can be obtained from White [51] and Schlichting [52, 53]. The k-ω model [14] has 

been accepted as the most capable of modeling rough-wall effects without implementing wall functions. 

The effects of surface roughness are commonly incorporated into the k-ω model by simply altering the 

surface boundary condition on ω. 

 Many two-equation turbulence models have been proposed on the basis of two transport equations, one 

for the turbulent kinetic energy and one for the dissipation. Although the k-ϵ and k-ω models are often 

thought to be fundamentally different, both models are based on a transport equation for a dissipation 

parameter, either ϵ or ω, which can be related through a change of variables. Robinson et al. [54] developed 

a k-ζ model based on a transport equation for the enstrophy. The model was further developed by Robinson 

and Hasen [55]. The enstrophy is defined as the mean square magnitude of the fluctuating vorticity. 

However, the approximate turbulent-energy dissipation term is defined in their model through a change of 

variables, which contradicts their definition for the enstrophy.  

 The Phillips energy vorticity turbulence model is intended to be a two-equation model, which will 

combine the turbulent-kinetic-energy transport equation given in Eq. (1.140) with a turbulent-vorticity 

transport equation. To evaluate closure coefficients and assess the model, the distribution of the turbulence 

variables resulting from the model must be compared to reference distributions. For fully rough pipe flow, 

there are no accurate experimental data available which describe the fluctuating velocity components. 

Therefore, the distributions of the turbulent kinetic energy and the fluctuating vorticity are not available.  

 This chapter presents an overview of some of the fundamental work on rough pipe flow and develops 

an algebraic relation for the mean vortex wavelength, which is one possible choice for the second 

turbulence variable. Another possible choice for the second turbulence variable is the RMS fluctuating 

vorticity, which can be determined directly from the mean vortex wavelength and the turbulent kinetic 

energy using the algebraic relation given in Eq. (1.139). The development presented in this chapter is based 

primarily on the work of Nikuradse [47], who performed a series of experiments on rough pipes that will be 

used to derive algebraic relations for the velocity profiles and the turbulent eddy viscosity in rough pipes.   
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II. Fully Developed Rough Pipe Flow 

A. Fundamental Relations and Definitions 

Fully developed pipe flow has been investigated by many researchers over the past centuries and is a 

common case study to evaluate a new turbulence model. When the fluid enters a pipe, its velocity will often 

be uniform across the pipe cross-section. Near the entrance, the fluid near the center of the pipe is not 

affected by the friction between fluid and pipe walls, but as the flow proceeds down the pipe, the effect of 

the wall friction moves in toward the pipe center until the velocity profile becomes constant. At the end of 

the entrance length, the flow enters the fully developed region and the governing equations of motion can 

be greatly simplified. This section presents a few of the most relevant relations for fully developed flow in 

a circular pipe. 

For fully developed axisymmetric flow in a circular pipe, gradients in the flow properties with respect 

to the flow direction disappear and the profiles of flow properties become only dependent on the coordinate 

normal to the wall. The Boussinesq-RANS can be reduced to a one-dimensional problem. 
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(2.1) 

The left-hand side of Eq. (2.1) evaluated at the wall is the negative of the shear velocity τu  squared. Thus, 

the wall shear stress is related to the pressure drop according to 

 

dz
pdR

dr
Vd

Rr

z
w

ˆ

2
−=−≡

=

μτ
 

 (2.2) 

There are many ways to nondimensionalize the Boussinesq-RANS equations: wall-scaled variables and 

relative variables, or pipe-scaled variables.  
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The parameter Rτ is commonly referred to as the shear Reynolds number and is the reciprocal of the 

nondimensional molecular viscosity ̂  . Using these definitions, the wall-scaled Boussinesq-RANS 

formulation for fully developed axisymmetric flow in a circular pipe including the no-slip boundary 

condition can be written in nondimensional form as 
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Equation (2.4) applies over the domain 0≤ y+ ≤ Rτ   . Near the wall, the ratio y+ /Rτ   is small compared to 

unity, so the left-hand side of Eq. (2.4) remains approximately constant in the near-wall region. Hence, this 

near-wall region is commonly referred to as the constant stress layer or the Couette flow region. Neglecting 

the term y+ /Rτ  , Eq. (2.4) can be closely approximated near the pipe wall as  
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 (2.5) 

In the case of fully rough flow, the molecular viscosity is much less than the turbulent eddy viscosity 

throughout the flow field, so the non-dimensional eddy viscosity ν+ is large compared to unity. Hence in 

the near-wall fully rough limit, Eq. (2.5) can be closely approximated as 
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The mean wall shear stress for fully developed flow in a pipe is traditionally characterized in terms of 

the Darcy friction factor, which is four times the Fanning friction factor Cf often called the skin-friction 

coefficient. The Darcy friction factor is a very important parameter in pipe study as it provides a means of 

estimating the head loss. The pressure drop can be easily measured along the length of the pipe and then the 
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wall shear stress can be directly computed. The wall shear stress is generally expressed in terms of the 

Darcy friction factor  
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Equation (2.7) may be rewritten in terms of the pressure drop per unit length ( )dzpd /ˆ− , the pipe 

diameter D and the dynamic pressure of the average flow ( ) 22/1 mVρ   all of which are readily available from 

experimental data. Substituting Eq. (2.3) in Eq. (2.7) yields 
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The characteristic velocity mV  used to define the Darcy friction factor is the spatial-mean velocity, which 

is also commonly called the bulk velocity, 
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The Darcy friction factor and Reynolds number can be expressed in terms of the bulk velocity as 
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 Because of the frequent occurrence of rough pipes in practice, the study of rough pipes is just as 

important as the study of flow along smooth surfaces. Darcy [56] made comprehensive and careful tests on 

21 pipes of cast iron, lead, wrought iron, asphalt covered cast iron and glass. He noticed that the friction 

factor was dependent upon the type of surface and upon the diameter of the pipe. The type of surface is 
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commonly described in terms of a wall roughness rk , which is characterized in terms of the ratio of the 

equivalent sand-grain roughness sk  to the pipe diameter 
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The roughness Reynolds number is defined as 
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For convenience, we define the ratio 
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By combining Eqs. (2.9) and (2.12), the roughness Reynolds number can be determined from the bulk 

Reynolds number, the roughness height and the friction factor 
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The surface roughness has an effect on friction resistance. For laminar flow, this effect is negligible. 

However, a turbulent flow is strongly affected by roughness. In fact, three regions can be characterized by 

their roughness Reynolds number: hydraulically smooth walls, transitional roughness and fully rough flow. 

Darcy [56] noticed that for certain roughness at some high Reynolds numbers, his experimental data 

indicate that the friction factor is independent of the Reynolds number. He noticed that at a constant 

Reynolds number, the friction factor increases markedly for an increasing relative roughness. Nikuradse’s 

[47] experiments on rough pipes confirmed those statements.  

B. The Nikuradse Number 

 Nikuradse [47] studied the effect of coarse and fine roughness for a wide range of Reynolds numbers 

to determine the friction factor laws for six different degrees of relative roughness. Through careful 
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measurements, Nikuradse determined the dynamic pressure by means of Pitot tubes. The diameter of the 

pipe was determined from the weight of the water enclosed in the pipe. The static pressure gradients and 

resulting pressure drop were measured using a hooked tube placed at half the radius of the pipe. Nikuradse 

used sand grains of uniform roughness. The sand grains were sifted and spread on a flat plate. The 

diameters of the individual grains were measured by sliding the plate and the arithmetical average was 

computed. The pipes were first coated with a lacquer and then artificially roughened.  

 Nikuradse computed the friction factor from Eq. (2.8) for a wide range of Reynolds numbers and for 

six different degrees of roughness ratios. Nikuradse observed that three different ranges could be 

considered, depending upon the Reynolds number, namely laminar, transition and turbulent flows. 

Nikuradse’s experimental friction factors obtained from experiments on hydraulically smooth-wall pipes 

[46] and on rough pipes [47] are shown in Fig. 2.1. 

 
Fig. 2.1 Nikuradse’s experimental friction factor.  

 Within the first range, that of low Reynolds number, the roughness has no effect on the resistance (or 

friction factor), and for all values of inverse roughness ratio skR / , the friction factor is the same as for a 

hydraulically smooth-wall pipe. In this first range, the thickness of the laminar sublayer is still larger than 
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the average roughness element. Therefore energy losses due to roughness are no greater than those for a 

smooth-wall pipe. In this range, Blasius [57] represented the friction factor by the law 

 
Re
644 =fC

  (2.15) 

For setting up this friction factor formula, Blasius used the experiments of Saph and Schoder [58] who 

worked with water and Nusselt [59] who worked with air. This formula was later verified by Ombeck [60], 

Stanton and Pannell [61], Lees [62] and Jakob and Erk [63]. They all found insignificant deviations from 

Eq. (2.15) 

 The critical Reynolds number, separating laminar from turbulent flows, occurs at about the same 

position for all degrees of roughness ratios as for the smooth-wall pipe for a Reynolds number between 

2150 and 2500. Within the first portion of turbulent flow in smooth pipes for a Reynolds number of up to 

510Re= , the Blasius resistance law holds, as shown in Fig. 2.1.  

 
4/1Re

316.04 =fC
  (2.16) 

 Within the second range, called the transition range, the influence of roughness becomes more 

noticeable. The friction factor increases with an increase in Reynolds number. The resistance factor 

depends on the Reynolds number as well as the roughness ratio. In this transition range, the thickness of the 

laminar sublayer is of the same magnitude as the average roughness element. Individual roughness 

elements extend through the laminar sublayer and cause vortices, which produce an additional loss of 

energy. As the Reynolds number increases, an increasing number of projections pass through the laminar 

sublayer because of the reduction in thickness. The additional energy loss becomes greater as the Reynolds 

number increases. This is expressed by the rise of the friction factor. For a given roughness type, the 

behavior in the transitional roughness regime is known only from experiment, see for example the work of 

Jimenez [64].    

 Within the third range, the friction factor is independent of the Reynolds number and depends only on 

the roughness ratio, so that the friction factor curves become parallel to the horizontal axis. In this range, 

the thickness of the laminar sublayer has become so small that all the roughness elements extend through it. 
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The energy loss due to the vortices has now attained a constant value and an increase in the Reynolds 

number no longer increases the resistance. In this range, Nikuradse [47] expressed the friction factor as 
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Equation (2.17) provided a key result in the development of our current capability to predict the 

pressure losses of turbulent flow through rough pipes, and it will be referred to herein as the Nikuradse 

equation. Equation (2.17) was the starting point for the development of the Colebrook equation [65] and the 

associated Moody chart [66]. Hence, both the Colebrook equation and the Moody chart assume the validity 

of the Nikuradse equation. 

The Nikuradse equation is often presented in a form that differs slightly from Eq. (2.17). In the original 

work by Nikuradse [47], and its subsequent presentation by Schlichting [52], the pipe roughness was 

characterized using the dimensionless inverse roughness ratio skR / . Using Eq. (2.11), the Nikuradse 

equation given in Eq. (2.17) might be rearranged as 
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Represented to two significant digits, Nikuradse’s fully rough limit empirical equation is given by 
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In terms of the relative roughness Dks / , where D is the pipe diameter, the most widely accepted form of 

the Nikuradse equation becomes 
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Equations (2.15)–(2.17) are shown on Fig. 2.1 along with Nikuradse’s experimental friction factors. 

Nikuradse, in his 1932 paper [46], plotted the parameter ( ) 2/1
10 )4/(1/7.3log0.2 fr Ck +−  versus the 

roughness Reynolds number. Although Nikuradse did not give a name to this parameter, a possible name 

that would give him the credit for his work could be the Nikuradse number. A possible definition for the 

Nikuradse number can be 
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 (2.21) 

Nikuradse [47] noticed that the entire field of Reynolds numbers from his experiments could be covered by 

plotting Eq. (2.21) as a function of the roughness Reynolds number +
sk , as shown in Fig. 2.2. 

Schlichting [67] suggested that the data of Nikuradse deviate from the smooth-wall asymptote at about 

5≈+
sk  and from the fully rough asymptote at about 70≈+

sk . Thus, flows with roughness Reynolds 

numbers greater than 70 are traditionally termed “fully rough” flows because the friction factor appears 

independent of the roughness Reynolds number in this region. Flows with roughness Reynolds numbers 

smaller than 5 have traditionally been termed “hydraulically smooth” because roughness effects appear to 

be negligible in this region. The question of when the roughness effects first become important was 

discussed by Perry and Abell [68], McKeon et al. [69, 70]. This discussion hinges on the influence of 

roughness in the transitional regime. It also touches on how the characteristic roughness height can be 

determined for an arbitrary roughness distribution, and whether a single length scale is an adequate 

description. The limit of 5 for the roughness Reynolds number for a hydraulically smooth-wall pipe is 

supported by Zaragola and Smits [71] and Schockling et al. [72]. 

 The Nikuradse number for the fully rough limit is obtained from Eqs. (2.19)–(2.21). 
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Fig. 2.2 Nikuradse number as a function of roughness Reynolds number for rough pipe flow. 

In the limit of a smooth-wall pipe that is for low roughness Reynolds number, the friction factor is 

unaffected by the roughness such that all pipes have a behavior similar to that of a smooth-wall pipe. Based 

on the experimental data for rough pipes, Nikuradse [47] suggested the following expression 
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Using Eqs. (2.11) and (2.14) in Eq. (2.23), Eq. (2.23) may be written equivalently as 
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Closer agreement is obtained if the constants are slightly modified to 

 ( ) 80.04Relog0.2
4
1

10 −= f
f

C
C

  (2.25) 

10
0

10
1

10
2

10
3

10
4

−1

−0.5

0

0.5

1

1.5

2

Roughness Reynolds number

N
ik

ur
ad

se
 N

um
be

r

 

 

R/k
s
 = 15

R/k
s
 = 30.6

R/k
s
 = 60

R/k
s
 = 126

R/k
s
 = 252

R/k
s
 = 507

Rough limit
Smooth limit



63 
 

 

It can be seen from Eq. (2.25) that the friction factor for the smooth-wall limit is independent of the relative 

roughness because the roughness elements are within the laminar sublayer. Therefore, the friction factor 

depends on the Reynolds number only. Equation (2.25) may be written in the form 
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In terms of the Nikuradse number, the smooth-wall limit given in Eq. (2.26) becomes 
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Only Nikuradse’s rough pipe flow experimental data [47] were used in Fig. 2.2. All six inverse roughness 

ratios in the range 15–507 are included. The figure includes the asymptotes for fully rough and smooth-wall 

limits as given in Eqs. (2.22) and (2.27), respectively. 

 Three different regions can be seen from Fig. 2.2, smooth-wall, transition and fully rough regions. 

Schlichting [52] suggested using  5≤+
sk  as the region of pure laminar friction. In this range, the 

contribution from turbulent friction may be neglected when compared to laminar friction. At low velocities 

in the laminar flow region, the laminar layer is much thicker than the depth of the irregularities. Therefore 

the actual texture has no effect on the nature of the flow. The flow is comparable to laminar flow and is 

said to be hydraulically smooth. Schlichting [53] proposed the range of roughness Reynolds number 

70≥+
sk  as the limit of pure turbulent friction. In this region where the laminar contribution is negligible 

compared to the turbulent friction, the friction factor is independent of the Reynolds number and the flow is 

said to be hydraulically rough.  

 It should be emphasized that Nikuradse based all of his experiments on pipes artificially roughened 

with sand grains of uniform roughness. Commercial pipes have an irregular texture but are still 

characterized by using an equivalent sand-grain roughness, which represents the average value for the 

irregularity heights.  
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C. The Colebrook Equation and Moody Diagram 

 Colebrook [65] carried out experiments on commercial pipes of different size and made of various 

materials including drawn brass, galvanized-coated, cast and wrought iron, bitumen-lined pipes and 

concrete-lined pipes and determined the friction factor for a wide range of Reynolds numbers. The surface 

of a commercial pipe differs from that of an artificially roughened pipe and cannot be described in terms of 

a single roughness size. An average equivalent particle size together with a shape factor and a size 

distribution should be used to characterize the surface accurately. Colebrook determined an equivalent 

roughness size for each of the commercial pipes he used during his experiments by comparing the friction 

factor at high Reynolds numbers and fully rough flow, to those obtained from his experiments with the 

Nikuradse friction factor obtained using pipes coated with uniform roughness elements. 

 Colebrook proposed an empirical correlation to determine the friction factor of commercial pipes, 

which covers the hydraulically smooth, transition and rough flow regions. Nikuradse [47] suggested 

empirical correlations for the cases of perfectly smooth-wall pipes given by Eq. (2.23)  and for rough pipes 

where the flow is fully turbulent given by Eq. (2.19). No empirical correlations based on Nikuradse’s 

experimental data were satisfactorily developed for the transition zone, between hydraulically smooth and 

rough pipes, which would match the friction factor obtained on commercial pipes. Colebrook [65] proposed 

an empirical correlation for the transition zone based on his commercial pipe experiments.  

 2

10
4Re
51.2

7.3
log0.24

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+−=

f

r
f

C
k

C

 
 (2.28) 

 This equation is known as the Colebrook formula and gives results very close to experimental values 

for transitional behavior when using the effective roughness for commercial pipes as calculated by 

Colebrook. This equation is implicit, i.e., if the bulk Reynolds number and the roughness ratio are known, 

one must iterate to evaluate the Darcy friction factor. By setting the roughness Reynolds number rk  to 0, 

Eq. (2.28) reduces to Eq. (2.26), which represents the smooth-wall limit. Similarly, in the fully rough limit, 

as the Reynolds number increases, Eq. (2.28) reduces to Eq. (2.19). 
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 The Colebrook equation given in Eq. (2.28) might be rearranged in terms of the Nikuradse number to 

yield 
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 Colebrook plotted experimental friction factor data in the same form as Fig. 2.2 as shown in Fig. 2.3. 

From Fig. 2.3, it is obvious that the data taken by Nikuradse do not match the data obtained from 

Colebrook in the transition region. Commercial pipes have a roughness that is uneven both in size and 

spacing and do not correspond to the pipes artificially roughened by Nikuradse.  

 
Fig. 2.3 Nikuradse number for commercial and artificially roughened pipes. 

 Initially Colebrook carried out experiments to determine the effect of non-uniform roughness as found 

on commercial pipe. Colebrook showed that the transition from hydraulically smooth to rough was in fact 

gradual. An artificially roughened surface is characterized by a very low standard deviation, which 

indicates that the roughness height of each individual element tends to be very close to the mean roughness 

height, whereas a commercial pipe is expected to have a much higher standard deviation, indicating that the 
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roughness height is spread out over a wider range. In the transition region, the thickness of the laminar 

sublayer is of the order of the roughness element height. Elements that extend through the laminar sublayer 

will tend to trigger the transition from hydraulically smooth to rough at a lower roughness Reynolds 

number for a surface with a high standard deviation than for a surface with a low standard deviation. 

Nikuradse defined the transition region as 0.70k5.0 s ≤≤ + . For commercial pipes, this region should be 

adjusted to 0.100k2.0 s ≤≤ + . 

 Moody [66] presented a diagram to evaluate the friction factor of commercial pipe based on the 

Colebrook equation given in Eq. (2.28) which has been extensively used for practical applications. The 

Moody diagram is the graphical solution of the Colebrook equation. Because of Moody’s work and the 

demonstrated applicability of the Colebrook equation over a wide range of Reynolds numbers and relative 

roughness, Eq. (2.28) has become the accepted standard for calculating the friction factors. It suffers 

however from being an implicit equation and thus requires an iterative solution. A very accurate initial 

estimate can be obtained from the explicit relation 
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 Moody [66] used the relation developed by Colebrook [65] to generate the well known Moody chart; 

he used the symbol ε  to denote Nikuradse’s sand-grain roughness. In this dissertation, we will continue to 

use sk  to signify the equivalent sand-grain roughness. The Moody chart is presented in Fig. 2.4 along with 

Nikurdase’s experimental data on hydraulically smooth and rough pipes [47] as well as Shockling’s 

experimental data [72]. Shockling et al. [72] carried out experiments for fully developed turbulent pipe 

flow over a wide range of Reynolds numbers where the flow exhibits hydraulically smooth, transitionally 

rough and fully rough behaviors. The surface of the pipe was prepared with a honing tool. As can be seen 

on Fig. 2.4 in the transitionally rough regime, the friction factor follows the same inflection point pattern as 

Nikuradse [47] observed, rather than the monotonic pattern Colebrook obtained from his commercial pipe 

experiments [65]. More recent experiments carried on prepared pipes support this inflection point pattern. 

See for example the work of Ligrani and Moffat [73] and Perry et al. [74]. 
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Fig. 2.4 The Moody diagram compared with experimental data from Nikuradse and Shockling. 

 In the transition region, the Moody diagram should be used with caution and the uniformity of the 

surface should be taken in consideration when evaluating the friction factor. Part of the difficulty in 

comparing roughness functions in the transitionally rough regime is that the roughness height is not well 

defined. It seems obvious that an arbitrary surface would need more than one characteristic scale to 

describe its effects on the near-wall flow (such as at least an equivalent sand-grain roughness and a 

standard deviation). Nevertheless, in order to compare different type of surfaces, it is usual to prescribe an 

equivalent sand-grain roughness that relates the root mean square roughness height for a given surface to a 

particular sand-grain roughness height. The equivalent sand-grain roughness is found by comparing the 

friction factor of the surface in question to Nikuradse’s sand grain data in the fully rough regime, 

independent from the particular form of the roughness function in the transitional rough regime. As an 

example, Hama [75] suggests that for a machined surface with an approximately Gaussian distribution of 

roughness elements the equivalent sand grain roughness is five times the root mean square roughness 

height.  

 The most widely accepted correlation for the friction factor in pipes is based on Nikuradse and 

Colebrook empirical correlations. Nikuradse’s work on fully rough limit has set a reference for estimating 
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the equivalent sand-grain roughness that characterized the pipe geometry. The validity of Nikuradse’s fully 

rough limit given in Eq. (2.19) is so widely accepted that it has become the definition of the surface 

roughness. Any turbulence model capable of predicting rough flow behavior should yield a friction factor 

coefficient that matches the experimental data obtained by either Colebrook [65], Nikuradse [47] or 

Shockling et al. [72] in the fully rough region.  

D. Mixing-Length Theory 

 Prandtl [5] recognized that the turbulent eddy viscosity has units of length times velocity and 

suggested that the turbulent eddy viscosity was proportional to the product of a distance, referred to as the 

mixing length ℓ, and a turbulent vertical velocity scale. Analogous to the mean free path of a molecule, 

Prandtl assumed that the fluid element conserves its properties over the characteristic length ℓ  before being 

mixed with the surrounding fluid. Prandtl suggested that turbulent vertical motions were caused by the 

collision of fluid elements moving horizontally at different speeds. This results in a turbulent vertical 

velocity being proportional to a turbulent horizontal velocity. Prandtl suggested to use 
dy
Vd zl  as a 

turbulent velocity scale. From Prandtl’s mixing length theory, the turbulent eddy viscosity is equal to the 

product of the mixing length squared and the absolute value of the velocity gradient.  

 
dy
Vd z

t
2l=ν

  (2.31) 

 The turbulent eddy viscosity given in Eq. (2.31) can be non-dimensionalized in terms of the wall-

scaled dimensionless variables +u  and +y  given in Eq. (2.3) to yield 
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Substituting the dimensionless form of the eddy viscosity given in Eq. (2.32)  into the wall-scaled 

Boussinesq-RANS formulation formulated in Eq. (2.4) yields 
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An exact analytical solution to Eq. (2.33) is not available, and accurate numerical solutions were not 

practical when the foundation for modeling rough wall turbulent flow was laid. Van Driest [76] proposed a 

near-wall empirical relation for the mixing length that matches experimental data very well. Using the non-

dimensional turbulent eddy viscosity given in Eq. (2.32)  in the near-wall fully rough limit formulation 

given in Eq. (2.6) yields an important nondimensional relation between Prandtl’s mixing length and the 

mean velocity gradient, which applies to the near-wall fully rough limit 
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 Prandtl’s mixing length cannot be measured directly. Hence, empirical correlations for the mixing 

length must be inferred from measurements of the mean velocity profile and the mean wall shear stress or 

pressure gradient. From measured mean velocity profiles, Nikuradse [47] used this procedure to calculate 

and plot the variation of mixing length along the wall coordinate y/R. In the fully rough limit near the pipe 

wall, the mixing-length profiles obtained by Nikuradse were found to vary linearly with the distance from 

the pipe wall. Furthermore, the proportionality constant between the mixing length ℓ and the wall 

coordinate y was shown to be independent of both the Reynolds number and the surface roughness. In this 

near-wall region, the results obtained by Nikuradse for the fully rough limit are in excellent agreement with 

the empirical correlation 

 ( )sky  γκ +=l   (2.35) 

where κ  and γ are two empirical constants. The coefficient sk  is known as the roughness height first 

introduced by Nikuradse [47] who sifted sand into groups of known diameters and artificially roughened 

hydraulically smooth-wall pipes to determine the effect of surface roughness on the pressure drop of the 

fluid flow through the pipe. The constant κ  is traditionally called the Von Kármán constant after Ludwig 
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Prandtl’s student Theodore Von Kármán [77]. In a similar manner, the constant γ will be referred to as the 

Nikuradse constant.  

E. Fully Rough Flow Velocity Profile  

 A sensitive indicator for the effect of roughness in a pipe is given by the behavior of the velocity 

profile. Nikuradse proposed a very simple law for the velocity distribution in rough pipes based on his 

experiments [47] that is similar to the well-known law of the wall first proposed by Von Kármán [77]. 
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Using only two significant digits and the natural logarithm, Eq. (2.36) can be rewritten as 

 
5.8ln5.2 +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+
+

sk
yu

 
 (2.37) 

 Obviously, Eq. (2.38) cannot apply over the entire flow field from the wall to the centerline because it 

does not satisfy the no-slip boundary condition at the pipe wall or the symmetry boundary condition at the 

pipe centerline. However, the deviation from Eq. (2.38) was traditionally assumed to be sufficiently small 

so that the bulk velocity could be approximated from the integral of Eq. (2.38). 

 Using Eq. (2.35)  in Eq. (2.34) and rearranging yields the near-wall fully rough limit based on 

Prandtl’s mixing length theory 
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where the dimensionless parameter +
sk , defined in Eq. (2.12) is commonly called the roughness Reynolds 

number. Equation (2.38) can be integrated easily subject to the no-slip wall boundary to yield 
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 The empirical constants κ  and γ can be evaluated by comparing Eq. (2.37) and (2.39) in the core 

region. To make this comparison, we must recognize that the roughness elements are much smaller than the 

pipe diameter and the empirical constant γ is much less than unity. Hence, the wall coordinate y is large 

compared with the product sk γ , except in an extremely thin layer near the pipe wall where y is on the 

order of sk . With this knowledge, we can neglect the 1 in the natural log term of Eq. (2.39). The near-wall 

layer where this 1 is significant is much too thin to permit experimental measurements, so this layer was 

not captured in Nikuradse’s data nor in the associated empirical correlation given by Eq. (2.37). Using the 

approximation sky  γ>> , Eq. (2.39) can be written as 
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 Comparing Eq. (2.37) with Eq. (2.40), we see that the velocity profile measurements of Nikuradse 

yield values for both the Von Kármán constant and the Nikuradse constant 

 400.0
5.2

1
==κ ,     0334.05.8 == − κγ e   

(2.41) 

 A comparison among Eq. (2.39), Eq. (2.37) and experimental data collected by Nikuradse is shown in 

Fig. 2.5. The dashed line is obtained from Eq. (2.39) whereas the solid line is obtained from Eq. (2.37) 

using κ = 0.4 and γ = 0.0334 as obtained from Eq. (2.41). Nikuradse’s experimental velocities used to 

generate Fig. 2.5  are given in Appendix BI. Only the data with the highest roughness Reynolds number 

were used for each of the relative roughness presented in Fig. 2.5. 
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Fig. 2.5 Velocity profiles in rough pipes at high Reynolds numbers. 

 Using the near-wall fully rough limit for the velocity given in Eq. (2.39)  in the bulk velocity defined 

in Eq. (2.9) results in 
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After performing the indicated integration in the nondimensional bulk velocity, Eq. (2.42) yields 
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Because the pipe radius R is always very large compared with the roughness element height sk , the sum 

( )skR  /1 γ+   may be reduced to ( )skR  / γ . Schlichting [52] approximated the bulk velocity given in 

Eq. (2.43) to 
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Using the near-wall fully rough limit from Eq. (2.39) in the approximated bulk velocity given in Eq. (2.44), 

the Darcy friction factor for fully rough pipe flow is reduced to 

 

( )
2

2 2
31ln1ln18

/

84
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

γκκ
τ sm

f k
R

uV
C

 
(2.45) 

The relation given by Eq. (2.45) is commonly written in terms of the base-10 logarithm, i.e., 
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Using the values for κ  and γ that are given in Eq. (2.41), the relations given in Eqs. (2.44) and (2.46) may 

be written as 
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which exhibits the expected quadratic relation between wall shear stress and bulk velocity for fully rough 

flow. Although based on the same experimental data, Eqs. (2.17) and (2.48) are slightly different. Proposed 

by Nikuradse, Eq. (2.17) was obtained graphically by plotting fC4/1  against ( )skR /log10  and by 

fitting a line through the experimental data. Equation  (2.48) was obtained based on the approximated bulk 

velocity and the definition of the friction factor.  
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 Comparing the Nikuradse equation given in Eq. (2.19) with Eq. (2.46), the empirical constants κ  and γ 

can be reevaluated. After rounding these constants to two significant digits, the result yields 
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 Although the values for κ and γ given in Eq. (2.49) are commonly used, it should be reemphasized that 

Eq. (2.46) was obtained from the approximate evaluation of the bulk velocity given by Eq. (2.44). This 

result is based on assuming that the near-wall velocity profile obtained from Eq. (2.39) applies over the 

entire flow field from the wall to the centerline. Nikuradse was forced to use this approximation because 

accurate solutions to the complete mixing-length formulation were not available in 1933. Today, accurate 

evaluation of the bulk velocity is possible using numerical integration of the complete mixing-length 

formulation obtained from Eq. (2.33). When the bulk velocity is evaluated in this manner and the empirical 

constants κ and γ are adjusted to minimize the difference between the numerical results for the fully rough 

limit and results obtained from Eq. (2.20), the resulting constants rounded to three significant digits are 

  κ = 0.403 ,    γ = 0.0324 (2.50) 

Notice that these results are closer to those obtained from Nikuradse’s velocity-profile measurements than 

they are to the results presented in Eq. (2.49).  

 Expressed equivalently in Eqs. (2.17) and (2.20), the Nikuradse equation provides an accurate means 

for predicting the Darcy friction factor when the Reynolds number is large enough so that the friction factor 

becomes independent of the molecular viscosity. However, the Nikuradse equation alone provides no 

information regarding how large the Reynolds number must be to make this empirical correlation valid. 

From Nikuradse data on artificially roughened pipes, it is commonly accepted that this correlation for fully 

rough flow is valid whenever the roughness Reynolds number is greater than about 70. However, by 

definition, the fully rough flow approximation is valid only when the molecular viscosity is negligible 

compared to the eddy viscosity throughout the flow field. 
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III. Fully Rough Flow Empirical Turbulent Eddy Viscosity 

A. Turbulent Eddy Viscosity Profile Obtained from Prandtl’s Mixing-Length Theory 

Fully rough pipe flow is defined to be the asymptotic solution to the wall-scaled Boussinesq RANS 

formulation given in Eq. (2.4) in the limit as the nondimensional eddy viscosity +ν  becomes large 

compared to unity throughout the flow field. Because the eddy viscosity +ν  is smallest near the wall, the 

limit for application of the fully rough flow approximation can be evaluated by examining the near-wall 

behavior of ν+ as predicted from the fully rough solution. From Prandtl’s mixing-length theory, ν+  is 

related to the wall-scaled dimensionless variables and the mixing length through Eq. (2.32). In the near-

wall fully rough limit, the mixing length is given by the empirical correlation Eq. (2.35) and, based on this 

empirical correlation, the wall-scaled velocity gradient can be obtained from Eq. (2.38). Hence, substituting 

Eq. (2.35) for the mixing length and Eq. (2.38) for the velocity gradient into Eq. (2.32), we find that the 

ratio of the turbulent eddy viscosity tν  to the molecular viscosity ν  in the near-wall fully rough limit is 

given by 

 ( )+++ +=≡ s
t ky  γκ
ν
ν

ν  
(2.51) 

The empirical constants κ and γ obtained from the Nikuradse equation as expressed in Eq. (2.20) are given 

in Eq. (2.50). Therefore, the near-wall eddy viscosity relation that is consistent with the Nikuradse equation 

is  

 ( ) +++++ +=≡ s
t

s kyky 012.041.0,
ν
ν

ν
 (2.52) 

From Eq. (2.51), we see that when the roughness Reynolds number +
sk  is 70, the ratio of the turbulent 

eddy viscosity at the wall to the molecular viscosity is predicted to be 84.0=+ν , which is obviously not 

large compared to unity. Clearly, we should not necessarily expect the general solution to the wall-scaled 

Boussinesq RANS formulation expressed in Eq. (2.4) to match the fully rough asymptote when the 

roughness Reynolds number +
sk  is 70. At a roughness Reynolds number of 1000=+

sk , Eq. (2.51) 
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evaluated at the wall yields 12=+ν , which is a more reasonable criterion for applying the fully rough 

flow approximation 1>>+ν . The molecular viscosity is not reduced to 1 percent of the turbulent eddy 

viscosity at the wall, until a roughness Reynolds number +
sk  of more than 8000 is reached. 

 However, it was previously shown that the molecular viscosity agrees closely with experimental data 

when the roughness Reynolds number +
sk  is 70 and above. In fact, the fully rough flow approximation not 

only neglects the molecular viscosity ν  compared with the turbulent eddy viscosity tν , but it also neglects 

the existence of a viscous sublayer. Because including the molecular viscosity ν  in the turbulent portion of 

the flow tends to increase the friction factor fC , and the presence of the viscous sublayer tends to decrease 

this friction factor fC , the tradeoff between these two opposing effects tends to make the Nikuradse 

equation agree with experimental data when the roughness Reynolds number is lower than would be 

expected based on only a comparison of the eddy viscosity at the wall with the molecular viscosity. 

A near-wall fully rough limit may be obtained for the mixing length. From Nikuradse’s experimental 

data for the friction factor in artificially roughened pipes, it has been shown that Prandtl’s mixing length in 

the near-wall fully rough limit is given by Eq. (2.35). Furthermore, the empirical constants κ  and γ  can be 

evaluated directly from Nikuradse’s friction-factor data. Dividing Eq. (2.35) through by the pipe radius R, 

in the near-wall fully rough limit we have 
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This empirical correlation applies only near the pipe wall where the ratio Ry /  is much less than unity. 

Hence, it should not be used over the majority of the pipe diameter where curvature is important.  

 Prandtl [5] suggested an empirical correlation for the mixing length for smooth-wall pipes. Nikuradse 

collected data on mean-velocity profiles in both hydraulically smooth [46] and artificially roughened 

pipes [47]. The local mean velocity was measured in radial increments from the pipe centerline to a point 

near the wall where 02.0/ =Ry . From these measured velocity profiles, Nikuradse calculated and plotted 
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the variation of Prandtl’s mixing length with the ratio Ry /  and found that the mixing length distribution 

could be represented by the same curve Prandtl suggested for smooth-wall pipes [5] 
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Within experimental uncertainty, there exists the same mixing-length distribution in rough pipes as in 

hydraulically smooth-wall pipes. This leads to the conclusion that the mechanics of turbulence are 

independent of the type of wall surface except in a very thin near-wall layer.  

 A more general correlation for the mixing-length can be developed to encompass both the near-wall 

limit given by Eq. (2.53) and the mixing-length distribution obtained in the core region and given by Eq. 

(2.54). A general form for the empirical correlation proposed in Eq. (2.54) is given by 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

4

3

2

20 R
rA

R
rAA

R
κl

 
(2.55) 

The empirical correlation given by Eq. (2.55) is not consistent with that given by Eq. (2.53), because  

Eq. (2.55) shows no dependence on surface roughness in the near-wall region. However, near the pipe 

centerlines, Nikuradse’s velocity-profile data show a mean value for R/l  of about 0.138 and scatter in 

these data indicate an uncertainty on the order of ±0.004. At the points nearest the pipe walls, Nikuradse’s 

data show a value for R/l  on the order of 0.008 with an indicated uncertainty on the order of ±0.002. The 

roughest pipe for which Nikuradse obtained velocity-profile data had an inverse roughness ratio of

0.15/ =skR . At this inverse roughness ratio, the value of the second term on the right-hand side of Eq. 

(2.53) is approximately 0008.0/ =Rksκγ . Because this value is less than one half the uncertainty 

indicated by the scatter in Nikuradse’s mixing-length-profile data, the second term on the right-hand side of 

Eq. (2.53) Rks / κγ  could not have been captured in the mixing-length-profile data obtained by 

Nikuradse. Combining results obtained from Nikuradse’s velocity-profile data with results obtained from 

his friction-factor data suggests a fairly general relation for fully rough pipe flow, which could be used over 

the entire pipe diameter 
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Note that Eq. (2.55) is a special case of Eq. (2.56) for which 0/ =Rks , 01 =A  and a = 0. A near-wall 

expansion of Eq. (2.56) gives 
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Comparing Eq. (2.57) with the near-wall limit given by Eq. (2.53) requires 
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and 
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Therefore, from Eq. (2.56), Prandtl’s mixing-length profile over the entire pipe diameter could be written 

for fully rough pipe flow in terms of only the two empirical coefficients 0A  and a  
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An empirical fit to Nikuradse’s mixing-length-profile data can be obtained using 01 =A  and a = 0. The 

empirical constant 0A  is found to be approximately 0.345 to within an indicated uncertainty on the order 

of ±0.01. A comparison among Eq. (2.53), Eq. (2.60) and data obtained from Nikuradse is shown in  

Fig. 2.6. The dashed line is obtained from Eq. (2.53). The solid line is obtained from Eq. (2.60). The 

mixing-length empirical data were obtained from Nikuradse’s tabulated velocity gradient given in 

Appendix B. Experimental research by Anderson et al. [78] has shown that the turbulent mixing length 
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varies linearly in the near-wall region of the flow. This agrees with Nikuradse’s experimental data shown in 

Fig. 2.6. 

 
Fig. 2.6 Mixing-length profiles in rough pipes at high Reynolds numbers. 

 The velocity distribution may be deduced from the mixing lengths empirical correlation. Starting with 

the Boussinesq-RANS formulation expressed in Eq. (2.4), employing the fully rough flow approximation to 

eliminate the molecular viscosity ν  in comparison with the turbulent eddy viscosity tν , and writing the 

result in terms of the wall coordinate y gives 
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Using the turbulent eddy viscosity expressed in Eq. (2.31) in the Boussinesq-RANS equations expressed in 

Eq. (2.62) yields 
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Applying Eq. (2.56) to Eq. (2.62) results in a complete mixing-length formulation for fully rough pipe flow 
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Using Eq. (2.63) in Eq. (2.61), the turbulent eddy viscosity profile over the entire pipe diameter as 

predicted from Prandtl’s mixing-length theory could be written for fully rough pipe flow as 
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(2.64) 

A comparison between Nikuradse’s experimental data and Eq.  (2.64) with 345.00 =A , 01 =A  and a = 0 

is shown in Fig. 2.7. Notice that in the limit as Ry /  approaches zero, Eq. (2.64) approaches the linear 

asymptote 
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Prandtl’s mixing-length theory is in excellent agreement with experimental data in the near-wall region 

but fails to predict the turbulent eddy viscosity accurately in the centerline region. From Eq. (2.31) 

combined with the symmetry boundary condition at the centerline, we see that mixing-length theory always 

predicts 0=tν  at the pipe centerline, which seems implausible. In fact, the symmetry boundary condition at 

the pipe centerline requires that the change in tν  with respect to the radial coordinate  r must be zero at the 

pipe centerline, whereas Eq. (2.64) with 01 =A  and a = 0  predicts an infinite value for this derivative. 

Hence, Eq. (2.64) with 01 =A  and a = 0  cannot be used in the core region near the center of the pipe. 
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Fig. 2.7 Eddy viscosity profiles in hydraulically smooth- and rough-wall pipes at high Reynolds 

number. 

Experimental data taken by Reichardt [79] on hydraulically smooth pipes suggest that the turbulent 

eddy viscosity may remain nearly constant in the central core of the pipe. From these data Reichardt [80] 

proposed the empirical correlation 
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(2.66) 

which remains fairly constant from about  y/R = 0.3 to the pipe centerline. Notice that as and y/R → 0,  

Eq. (2.66) yields 
R
y

Ru
t κ

ν

τ
→ , which is the same result obtained from Eq. (2.65) when 0/ =Rks . 

Reichardt’s empirical correlation for the turbulent eddy viscosity in circular pipes with hydraulically 

smooth walls is easily modified to agree with the well established near-wall behavior for the fully rough 

limit, which comes from the empirical correlation expressed in Eq. (2.64) 
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(2.67) 

Because RRks <</ γ , for all practical purposes Eqs. (2.67) and (2.66) are identical, except in a thin layer 

near the pipe wall where y is on the order of sk . 

The velocity distribution may be obtained from the near-wall limit given in Eq. (2.39). As seen in  

Fig. 2.5, Eq. (2.39) provides a good fit to the mean-velocity-profile data collected by Nikuradse in the fully 

rough limit and it satisfies the no-slip boundary condition at the pipe wall. Reichardt’s velocity-profile data 

are also in good agreement with this empirical correlation. Equation (2.39) is easily rearranged to give 
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Differentiating Eq. (2.67) and substituting in the Boussinesq-RANS formulation results in 
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Results obtained from Eq. (2.69) are also shown in Fig. 2.7. Clearly, Eq. (2.69) cannot be applied over the 

entire flow field from the wall to the pipe centerline, because the symmetry boundary condition at the 

centerline is not satisfied. The same can be said of Eq. (2.65). 

As seen in Fig. 2.5, it is important to notice that there is a very significant difference between the 

correlations given by Eq. (2.64) and Eq. (2.69), and it is important to recall that these two correlations came 

from exactly the same experimental data. For each pipe and Reynolds number, Nikuradse measured the 

local mean velocity in radial increments from the pipe centerline to a point near the wall where y/R=0.02. 

From these measurements he tabulated both the local mean velocity and the local mean-velocity gradient as 

obtained from the mean velocity at neighboring points. The correlation given by Eq. (2.64)  was obtained 

directly from Nikuradse’s tabulated velocity gradient profiles. On the other hand, the correlation given by 

Eq. (2.69) was obtained from the analytical derivative of Eq. (2.39), which is an empirical correlation 
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obtained from Nikuradse’s tabulated velocity profiles. Clearly, the mean velocity profiles and the mean-

velocity gradient profiles tabulated by Nikuradse are inconsistent. 

 It is not surprising to learn that there is considerable uncertainty associated Nikuradse’s tabulated 

velocity gradients near the pipe centerline, because turbulent mean-velocity gradients are extremely small 

near the center of a pipe at high Reynolds numbers. For example, in Nikuradse’s tabulated velocity profiles, 

the velocity changes over the three points nearest the pipe centerlines are on the order of 3 to 4 parts 

per 1000. If central difference were used to extract the velocity gradients from these measured velocities 

and the experimental uncertainty in the velocity data was ±0.2%, the uncertainty in the estimated velocity 

gradients would be on the order of ±100%. Because the eddy viscosity values obtained from Nikuradse’s 

data and shown in Fig. 2.5 are determined directly from the estimated velocity gradients, the uncertainty in 

these values must be at least ±100% near the pipe centerlines. This same level of uncertainty can be 

attributed to the eddy-viscosity values obtained from Reichardt’s data and shown in Fig. 2.5. 

This experimental uncertainty could easily explain the difference between Nikuradse’s and Reichardt’s 

results shown in Fig. 2.5. About all that can be said concerning the eddy viscosity at the pipe centerline 

based on the experimental results shown in Fig. 2.5 is that Rut τν /  most likely falls somewhere 

between 0.0 and about 0.1. 

 To estimate the eddy viscosity near the pipe centerline more accurately, we could correlate velocity-

profile data over the entire pipe diameter and estimate the eddy-viscosity profile from the derivative of the 

correlation equation. This eliminates amplification of experimental uncertainty that results from numerical 

differentiation. The empirical correlation traditionally used for this purpose is Eq. (2.37), which is 

compared with Nikuradse’s velocity-profile data in Fig. 2.5. However, Eq. (2.37) does not satisfy the 

symmetry condition at the pipe centerline or the no-slip condition at the wall. As seen in Fig. 2.5, Eq. (2.39) 

does satisfy the no-slip condition at the pipe wall and it agrees with Nikuradse’s velocity-profile data as 

well as Eq. (2.37). Even so, Eq. (2.39) still does not satisfy the symmetry condition at the pipe centerline. 

B. Corrective Function to Nikuradse’s Experimental Velocity Data 

 A thorough analysis of Nikuradse’s experimental data shows a regular deviation from the log law.  

When Nikuradse’s velocity-profile data are plotted with τuV z /  as a function of sky /  as shown in  
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Fig. 2.1, the correlation with the near-wall fully rough limit given in Eq. (2.39) appears to be quite accurate, 

and the deviation from Eq. (2.39) appears to be quite random. However, when exactly the same data are 

plotted with mz VV /  as a function of Ry /  as shown in Fig. 2.8, it can be seen that the deviation from 

Eq. (2.39) is not entirely random. The solid lines shown in Fig. 2.8 are obtained from Eq. (2.39) by dividing 

through by its bulk velocity as obtained from Eq. (2.43), i.e., 
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Fig. 2.8 Radial velocity profiles in rough pipes at high Reynolds numbers. 

 To satisfy the symmetry condition at the centerline and provide better agreement with Nikuradse’s 

velocity profile data [47], an empirical correction function could be added to Eq. (2.70) expressed in terms 

of the relative coordinates defined in Eqs. (2.3) and (2.13) 
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C. Constraints Imposed on the Corrective δ Function 

In addition to correlating Nikuradse’s velocity-profile data, mathematics and physics imposes several 

constraints on the empirical function δ defined in Eq. (2.72). The symmetry boundary condition at the pipe 

centerline requires 
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Similarly, the no-slip boundary condition at the pipe wall demands 

 00ˆ =
=yδ   

(2.73) 

Because Eq. (2.70)  exhibits the correct near-wall behavior as expressed in Eq. (2.38), for the fully rough 

limit we must also enforce the relation 
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To maintain the definition of bulk velocity, the integral of the product     ̂    from the centerline to the pipe 

wall must be unity. Hence, the empirical function δ  defined in Eq. (28) must satisfy the relation 
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A final constraint on the empirical function δ  comes from applying the symmetry boundary condition on 

the eddy viscosity at the pipe centerline. From the fully rough Boussinesq-RANS equations, the eddy-

viscosity profile is related to the velocity profile according to 
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and 
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Because the velocity profile is also symmetric about the pipe centerline, Eq. (2.77) is indeterminate at the 

centerline. Applying l’Hospital’s rule to Eq. (2.77) yields 
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which is also indeterminate. Applying l’Hospital’s rule a second time results in 
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Because the velocity profile is symmetric about the pipe centerline, Eq. (2.79) reduces to 
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Hence, because the eddy-viscosity profile must be symmetric about the pipe centerline, Eq. (2.80) provides 

another constraint on the velocity profile, i.e., 
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Using the corrected nondimensional velocity given in Eq. (2.71) in Eq. (2.81) provides an additional 

mathematical constraint on the empirical function δ, 
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In terms of the δ function 
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In view of the definition of the bulk velocity from Eq. (2.9) and Eq. (2.75), the empirical function δ will 

have no effect on the bulk velocity. Thus, the bulk velocity associated with Eq. (2.71) will be exactly the 

same as that associated with Eq. (2.39). The dimensionless wall-scaled bulk velocity for fully rough pipe 

flow given by Eq. (2.43) can be written as 
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Multiplying Eq. (2.71) through by this velocity ratio, the wall-scaled velocity profile can be written as 
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Using Eq. (2.84) in the definition of the Darcy friction factor given in Eq. (2.7), the corresponding fully 

rough relation for the friction factor is 
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 Hence, we see that as a result of Eq. (2.75), the friction factor obtained from the velocity profile given 

by Eq. (2.71) is completely independent of the empirical function δ. The fully rough friction factor 

predicted from Eq. (2.86) depends only on the dimensionless inverse roughness ratio skR /  and the two 

dimensionless closure constants κ  and γ. Experimental data for the fully rough friction factor are known to 

correlate very well with the Nikuradse equation given in Eq. (2.20), which can also be written in terms of 

the dimensionless roughness ratio 
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By minimizing the difference between Eqs. (2.86) and (2.87), the dimensionless closure constants κ  and γ 

can be reevaluated independent of the empirical function δ . The resulting constants rounded to three 

significant digits are 

 0.403 0.0324 (2.88) 

Appendix CI presents the detailed optimization procedure used to evaluate the Von Kármán and Nikuradse 

constants based on the friction factor obtained from the well-accepted Nikuradse equation and the friction 

factor based on the fully rough limit of Prandtl’s mixing length.  

D. Corrective δ Function 

  A polynomial function could be used for the function δ to fit Nikuradse’s velocity-profile data while 

satisfying Eqs. (2.72)–(2.75) and Eq. (2.83). Because there are five constraints on the velocity profile that 

must be satisfied independent of the experimental data, a seventh-order polynomial is necessary to provide 

three degrees of freedom for correlating the experimental data. For example, we could use a seventh-order 

polynomial in term of the relative coordinate  ̂ /  
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From the constraints imposed by Eqs. (2.72) and (2.83), the constants 1C  and 3C  can be evaluated 

independent of the experimental data, 
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and 
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Because this correlation is being developed to estimate the eddy viscosity near the pipe centerline, it is 

useful to express the coefficient 2C  in terms of the eddy viscosity at the centerline. Although Eq. (2.76) is 

indeterminate at the centerline, applying l’Hospital’s rule yields 

 

1ˆ
2

21ˆ

ˆ
ˆ

ˆ

=

=

−
=

y

m
yt

yd
ud

V
uτ

ν

  

(2.92) 

Using Eqs. (2.71), (2.84) and (2.89) in Eq. (2.92) and solving for the coefficient 2C  results in 
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Choosing the centerline eddy viscosity combined with 0C  and 7C  as the unknown correlation 

coefficients, the constraints imposed by Eqs. (2.72)–(2.75) can be used to evaluate 4C , 5C  and 6C  
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Using Gauss elimination, Eq. (2.94) can be rearranged easily to yield 
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The remaining unknown coefficients 0C  and 7C  and the centerline eddy viscosity could be obtained from 

an empirical correlation with Nikuradse’s velocity profile data. 

 Notice that the dimensionless velocity profiles for fully rough flow, which are obtained from Eq. (2.71) 

combined with Eqs. (2.89)–(2.95), depend only on the inverse roughness ratio skR / . They are independent 

of the roughness Reynolds number +
sk , as should be expected for fully rough limit. The maximum 

deviation from Eq. (2.70) for each of Nikuradse’s velocity profiles is on the order of 1 to 6 percent of the 

mean velocity, which is likely the same order of magnitude as the experimental uncertainty. Nevertheless 

this small deviation from Eq. (2.70) is quite important because Eq. (2.70) does not satisfy the symmetry 

boundary conditions at the pipe centerline and the centerline symmetry has a significant effect on the eddy 

viscosity in the pipe core. 

 The coefficients 0C , 7C and 1ˆ
ˆ

=ytν  are selected based on Nikuradse’s velocity data . The coefficient 

0C  describes the δ function at the centerline and is therefore a function of the roughness ratio. Although 

there are considerable scatter in Nikuradse’s velocity data, an adequate correlation is provided by the 

relation 
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Similarly, Eq. (2.89) provides good agreement with the mean of Nikuradse’s velocity profile data in the 

region near the pipe centerline defined as 5.0/ ≤Rr  if we use the empirical coefficients 
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(2.97) 

Appendix CII gives more details on the δ  function and shows the correlation between the experimental 

data and the near-wall fully rough limit. Notice that the dimensionless centerline eddy viscosity,

( )Rutt τνν /ˆ ≡ , obtained from this empirical correlation is significantly less than the value 0.067 obtained 

from the empirical correlation proposed by Reichardt [79] 
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The turbulent eddy viscosity can be deduced from the dimensionless velocity given in Eq. (2.71). Using 

Eqs. (2.70) and (2.84) in Eq. (2.75), the dimensionless eddy-viscosity profile for fully rough pipe flow 

could be written as 
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Because the velocity profile is symmetric about the pipe centerline, Eqs. (2.75) and (2.99) are indeterminate 

at the centerline. Applying l’Hospital’s rule to Eq. (2.99) yields 
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and applying Eq. (2.88) to Eq. (2.100) results in 
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 In summary, using the definitions Ryy /ˆ ≡ , mz VVu /ˆ ≡ , τuVu z /≡+ , ( )Rutt τνν /ˆ ≡  and Rkk ss /ˆ ≡ , 

the following algorithm provides empirical relations for the velocity and eddy viscosity profiles that satisfy 

Eqs. (2.71)–(2.74) and (2.82) while correlating Nikuradse’s velocity profile data to within experimental 

uncertainty. The three parameters 7C , tcν̂  and 0C  that are used in the δ function were optimized to give 

the closest match to Nikuradse experimental data for fully rough flow. A detailed overview of the 

optimization process is given in Appendix CI. 

 The following constants are used 
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The coefficients 0D – 3D  and 0C – 6C  are calculated from 
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The δ and its derivative with respect to ŷ  are obtained from 
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Finally the dimensionless velocity can be computed from 
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The dimensionless turbulent eddy viscosity is obtained from 
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 The velocity profiles obtained from this nondimensional turbulent eddy viscosity defined in 

Eqs. (2.105) and (2.106) are shown in Fig. 2.9 and are compared with the velocity profiles given by the log 

law in Eq. (2.40) from which the Colebrook equation and the Moody chart are based on using the constants 

given in Eq. (2.49). It can be seen in Fig. 2.9 that the velocity profiles obtained using the empirical 

function δ from Eq. (2.105) deviate slightly from the law of the wall but satisfy the symmetry boundary 

condition at the centerline. 

 The experimental dimensionless velocity profiles displayed in Fig. 2.9  are based on Nikuradse 

experimental data [47] carried out at six inverse roughness ratio ]507 ,252 ,126 ,60 ,6.30 ,15[/ =skR  and at 

the different roughness Reynolds numbers shown in Table 2.1. The experiments carried out at an inverse 

roughness ratios of 252 and 507 do not qualify as fully rough flow because the roughness Reynolds number 

is less than 70, which is already a low limit for fully rough flow. Nevertheless, the empirical correlation 

given in Eq. (2.105) still gives satisfactory velocity profiles when compared to Nikuradse experimental 

data. There is a wide uncertainty in Nikuradse velocity data close to the wall. Therefore, only the points 

corresponding to 5.0/ ≥Ry  where taken into consideration when optimizing the coefficients of the 

empirical δ  function to fit Nikuradse experimental velocity profiles. 
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Fig. 2.9 Dimensionless velocity profiles as predicted by Eq. (2.105).  
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Table 2.1 Nikuradse’s experiments roughness Reynolds numbers 

skR / 15.0 30.6 60.0 126.0 252.0 507.0 

+
sk  

1248 790 378 277 67 49 
584 456 244 152 
320 242 151 99 
125 129 

 

 The nondimensional turbulent eddy viscosity obtained from the empirical δ function given in 

Eqs. (2.104)–(2.106) and corresponding to the velocity profiles shown in Fig. 2.9 is displayed in Fig. 2.10 

and corresponds to the same range of roughness ratio. It is compared to hydraulically-smooth-wall pipe 

experimental data taken by Reichardt [79]. 

 
Fig. 2.10 Dimensionless Turbulent Eddy Viscosity Obtained From Eqs. (2.102)–(2.106). 
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turbulent eddy viscosity equivalence. At this point, the turbulent-kinetic-energy wall boundary condition 

and the two closure coefficients kσ  and λC  are still unknown for fully rough pipe. 

IV. Fully Rough Flow Algebraic-Mean-Vortex-Wavelength Function 

 The turbulent wavelength profile may be written in terms of the turbulent kinetic energy and the 

turbulent eddy viscosity. 

 
2/1k

tνλ =
 (2.107) 

Using the nondimensional parameters 
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Equation (2.107) may be written in nondimensional form as 

 
+

=
k

tνλ
ˆˆ

 (2.109) 

Reichardt [79] proposed the following empirical correlation for the turbulent eddy viscosity in 

hydraulically-smooth-wall pipes 

 ( )( )22 ˆ21 ˆ1
6

ˆ rrt +−=
κν  

(2.110) 

Or in terms of the wall coordinate ŷ  
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The turbulent eddy viscosity derivative is then 
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In this form, it can easily be seen that as ŷ  approaches zero, tν̂  approaches ŷκ . It can also be seen that as  

ŷ  approaches unity, tν̂  approaches κ/6 and the derivative of tν̂  with respect to ŷ  approaches zero. 

 Reichardt’s empirical correlation for the turbulent eddy viscosity in circular pipes with hydraulically 

smooth walls is easily modified to agree closely with the well established near-wall behavior for the fully 

rough limit, which comes from Prandtl’s mixing length empirical correlation ( )sky  γκ +=l . Using the 

notation Rkk ss /ˆ =  and applying this near-wall correction to Eq. (2.111) yields 
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Because Rks << γ , for all practical purposes Eqs. (2.111) and (2.113) are identical, except for flow within 

a very thin layer near the pipe wall where y is on the order of sk .  

 A similar but somewhat more flexible relation might be used for the mean vortex wavelength. For 

example, the limiting expressions for smooth-wall pipes might be 
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with a derivative 
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Note that at the pipe wall where 0ˆ =y  and ̂ 1, λ̂  approaches yA ˆ1λ . At the pipe centerline where 1ˆ =y  

and ̂ 0, 2
ˆ 0

1
λ

λλ
B

A=  and the derivative of λ̂  with respect to ŷ  is zero. Following the development of 

Eq. (2.113), for fully rough walls, the following expression might be used for λ̂  
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The five coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 are closure coefficients and need to be evaluated. 

V. Closure Coefficients  

 The present turbulence model is composed of a transport equation for the turbulent kinetic energy and 

an algebraic equation for the second turbulence variable, the mean vortex wavelength. The k-λ model 

presents two closure coefficients associated with the turbulent-kinetic-energy transport equation and one 

algebraic relation for the mean vortex wavelength. The turbulent-kinetic-energy transport equation reduced 

to axisymmetric pipe flow is given by 
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There are two closure coefficients associated to this turbulent kinetic energy equation: λC  and kσ . The 

turbulent eddy viscosity is related to the turbulent kinetic energy and the mean vortex wavelength through 

an algebraic relation 

 += kt λν ˆˆ  (2.118) 

The empirical mean turbulent wavelength function for fully rough flow is 
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This empirical mean turbulent wavelength features five closure coefficients: Aλ0, Aλ1, Bλ0, Bλ1, Bλ2. The 

symmetry boundary condition at the centerline is 
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One additional boundary condition is required. Experimental data show that the turbulent eddy viscosity 

remains finite at a fully rough surface. From Eq. (2.118), both the specific turbulent kinetic energy and the 

mean vortex wavelength remain finite at a fully rough surface. From Eq. (2.119), the mean vortex 

wavelength at the wall is proportional to the equivalent sand-grain roughness 

 
sRr kA 0λλ =

=  
(2.121) 

From Eq. (2.65), the fully rough eddy viscosity at the pipe wall is 
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From Eqs. (2.118), (2.121) and (2.122), the turbulent kinetic energy at the wall is 
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A more general form is 

 2
wall τukk Rr
+

=
=  (2.124) 

where  is a dimensionless proportionality coefficient. We find that the specific turbulent kinetic energy 

is proportional to the shear velocity squared. 

VI. Summary and Conclusions 

 An algebraic relation for the mean-vortex-wavelength distribution in fully rough pipe flow was 

proposed and is given in Eq. (2.119). This equation has five unknown coefficients, Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2, 
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which can be tuned in order to match experimental data and empirical relations for the friction factor and 

mean velocity profile. 

 An algebraic relation for the mean velocity profile in fully rough pipe flow was obtained and is given 

in Eq. (2.105). This algebraic relation is based on a deviation from the log law, which is given in Eq. (2.40). 

The log law does not satisfy the centerline symmetry boundary condition or the no-slip boundary condition 

at the pipe wall. In order to better agree with the Nikuradse velocity profile data for fully rough flows and 

in order to satisfy physical constraints, a deviation from the log law was proposed as a seventh order 

polynomial function.  

 From this algebraic relation for the mean velocity distribution, the turbulent eddy viscosity profile can 

be deduced analytically for fully rough flow. The resulting turbulent eddy viscosity profile, which is given 

in Eq. (2.106), was compared to turbulent eddy viscosity profiles estimated by other authors directly from 

experimental data. The turbulent eddy viscosity cannot be measured directly. Instead, it has been 

traditionally estimated from numerical derivatives of experimental velocity data. The velocity gradients are 

extremely small near the center of the pipe. It was shown that, if central difference were used to extract the 

velocity gradients from the measured velocity profiles, and the experimental uncertainty in the velocity data 

was ± 0.2%, the uncertainty in the estimated velocity gradients would be on the order of ± 100% near the 

pipe centerline. From previously published results estimated from experimental data, about all that can be 

said concerning the turbulent eddy viscosity near the pipe centerline is that the pipe-scaled dimensionless 

kinematic eddy viscosity, tν̂ , most likely falls somewhere between 0.0 and about 0.1. 

 Substituting the algebraic expressions developed in this chapter for the velocity distribution and the 

turbulent eddy viscosity profiles, the turbulent-kinetic-energy profile can be deduced from the turbulent 

kinetic-energy transport equation given in Eq. (2.117). Once the turbulent-kinetic-energy profile has been 

found, the second turbulent variable, the mean vortex wavelength, can be deduced from Eq. (2.109). This is 

the foundation of the proposed algebraic relation for the mean vortex wavelength.  

 Eventually, the Phillips k-λ model will be a two-equation turbulence model based on two transportable 

turbulence variables, the mean turbulent kinetic energy and the mean fluctuating vorticity. At the present 

time, the transport equation describing the mean fluctuating vorticity has not yet developed. Once it is 

developed, the resulting fluctuating vorticity distribution must be compared to a reference distribution for 
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closure coefficient evaluation and model assessment. The work presented in this dissertation is aimed at 

developing reference distributions for the mean fluctuating vorticity and mean turbulent wave length. 

 The proposed k-λ models feature several unknown coefficients. The turbulent-kinetic-energy transport 

equation given in Eq. (2.117) has two closure coefficients kσ  and λC . The rough wall boundary condition 

given in Eq. (2.124) contains the proportionality coefficient, , between the turbulent kinetic energy and 

at the wall and the shear velocity squared. The algebraic relation for the mean turbulent wavelength given 

in Eq. (2.119) has five unknown coefficients Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2. These eight coefficients need to be 

evaluated in order to find the distribution of the second turbulence variable. The closure coefficients might 

be evaluated by minimizing the deviations in the predicted friction factor from the Nikuradse equation 

given in Eq. (2.17), which is the the fully rough limit of the Colebrook equation, and the deviations in the 

predicted velocity profile from the well established law of the wall. There are no experimental data 

available for the velocity fluctuations at very high Reynolds number as it is not possible to obtain the 

instantaneous components of velocity accurately. Therefore, the closure coefficients will need to be 

evaluated by minimizing the differences in the friction factor and the velocity distribution when compared 

to the well established relation for fully rough pipe flow. 
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CHAPTER 3 

PHILLIPS K-Λ TURBULENCE MODEL CLOSURE COEFFICIENTS EVALUATION 

I. Introduction 

 The proposed k-λ model is based on a transport equation for the turbulent kinetic energy and an 

algebraic relation for the mean vortex wavelength. The turbulent-kinetic-energy transport equation for 

axisymmetric fully developed pipe flow is given by 
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where / . This equation contains two unknown closure coefficients σk and Cλ. These two closure 

coefficients should be dimensionless universal constants. Equation (3.1) requires a wall boundary condition 

for the turbulent kinetic energy. In Chapter 2, it was shown that, for fully rough flow, the specific turbulent 

kinetic energy at the wall is proportional to the shear velocity squared, 
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(3.2) 

where  is a dimensionless proportionality coefficient. The algebraic function for the mean vortex 

wavelength that was developed in the previous chapter is given by 
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where . This equation contains five unknown coefficients Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2. At the wall, 

the mean-vortex-wavelength equation reduces to 

 
sRr kA 0λλ =

=  
(3.4) 

For fully rough pipe flow, the value of the mean vortex wavelength at the wall should depend only on the 

surface roughness sk . Therefore, the coefficient Aλ0 should be a constant. The remaining four coefficients 
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of the mean vortex wavelength Aλ1, Bλ0, Bλ1 and Bλ2 need not be constants, but could be functions of the 

flow parameters such as the Reynolds number and roughness ratio.  

 This chapter is aimed at evaluating eight coefficients: two closure coefficients σk and Cλ from the 

turbulent-kinetic-energy transport equation, the proportionality coefficient  from the wall boundary 

condition and five coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 from the algebraic relation for the mean-vortex-

wavelength empirical relation. The values for these eight coefficients have a significant impact on the 

accuracy of the model and therefore need to be evaluated carefully.  

II. Optimization Process 

 The eight coefficients σk, Cλ, , Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 were evaluated based on a computer 

optimization program. The model is first evaluated for a given set of closure coefficients. By solving the 

differential equations and comparing the resulting solution with a desired solution, the computer program 

returns a fitness parameter that quantifies how well the solution matches the desired solution. This fitness 

parameter is a single real number and is used in the value to be minimized in the optimization code. The 

optimization program calculates a gradient vector for each of the variables to be optimized. This gradient 

vector represents the rate of change of the fitness value with respect to each variable being optimized. In 

order to minimize the difference to the desired solution, the optimization program uses the negative of the 

gradient vector as the search direction at the each iteration.  

A. Fitness Parameter 

 The first step in any optimization program is to define a fitness parameter, which, if minimized, results 

in the optimal solution. A fitness parameter is returned based on a comparison of velocity distributions 

obtained for fully rough pipe flows and their corresponding friction factor. The friction factor can be 

obtained experimentally by measuring the pressure drop. Instantaneous velocity distribution may be 

acquired via hot wire anemometry.  However, no experimental data can be obtained at very high Reynolds 

numbers because the frequency of the fluctuating components of the velocity is of the same order of 

magnitude or greater than the internal frequency of the hot wire anemometers used to capture the velocity 

profile during the experiments. Therefore, the fully rough flow model can only be compared with an 
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empirical correlation rather than experimental data. A well established empirical correlation for the friction 

factor is the Colebrook equation, from which the Moody diagram is based. The Colebrook equation can be 

used at high Reynolds numbers and covers the fully rough flow region. Some of Nikuradse 

experiments [47] were carried out at roughness Reynolds numbers +
sk  greater than 100 and could be used 

to compare the velocity distribution against.  

 The friction factor for fully rough flow is compared to the limit of the Colebrook equation at high 

Reynolds numbers which is given by the Nikuradse equation. The Nikuradse equation can be expressed as 
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For fully rough flows, the friction factor is independent of the Reynolds number and depends only on the 

roughness ratio. Equation (2.17) is used as a reference for the friction factor for fully rough flow.  

 The velocity distribution is compared with an empirical relation based on Nikuradse’s [47] rough flow 

experiments. A corrective function is superimposed on the log law in order to provide better agreement to 

Nikuradse’s experimental data. The corrective function is selected such that the velocity satisfies the 

symmetry boundary condition at the centerline and the no-slip boundary condition at the wall. The 

reference for the velocity profile for fully rough flow is given by 
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This function was derived in detail in the previous chapter. The δ function is obtained from 

 7
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4
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3
3

2
210 ˆˆˆˆˆˆˆ rCrCrCrCrCrCrCC +++++++=δ  (3.7) 

The eight coefficients C0, C1, C2, C3, C4, C5, C6 and C7 are given by the following system of equation 
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 The velocity profile obtained from the k-λ turbulence model is discretized into twelve points and 

compared at a roughness Reynolds number of 80,000 to the reference distribution given by  

Eqs. (2.105)–(3.8). The choice of the roughness Reynolds number of 80,000 arises from the fact that at this 

high of roughness Reynolds number, the ratio of turbulent eddy viscosity over the molecular viscosity is 

close to one thousand. The flow is said to be fully rough when the molecular viscosity is insignificant 

compared to the turbulent eddy viscosity throughout the flow field, which is the case at a roughness 

Reynolds number of 80,000.  The velocity profile is compared at 12 sample points ranging from the 

centerline to the wall  

 ̂ 0.0 ,   0.05 ,   0.1 ,   0.2 ,   0.3 ,   0.4 ,   0.5 ,   0.6 ,   0.7 ,   0.8 ,    0.9     0.95  (3.9) 

It is not possible to accurately measure the velocity really close to the wall, so the first sample point is only 

located at 5% of the pipe diameter from the wall. At the wall, the no-slip boundary condition imposes a 

zero velocity. The difference between the velocities obtained from the k-λ turbulence model and the 

reference velocities given by Eqs. (3.5)–(3.8) is calculated at each sample points. The sum of the absolute 

value of the difference divided by the reference velocities describes the fitness to the velocity distribution 

for fully rough flow.  

 The friction factor from the current k-λ turbulence model is compared to that obtained from the 

Nikuradse equation while varying the roughness Reynolds number from 100 to a roughness Reynolds 

number that gives a Reynolds number of 108. The moody diagram is usually represented for Reynolds 

numbers up to 108. For this reason, a limit of 108 for the Reynolds number was chosen to be the high limit 

when varying the roughness Reynolds number ks
+. The flow is fully rough when the molecular viscosity 
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can be neglected when compared to the turbulent eddy viscosity. At a roughness Reynolds number of 1000, 

the ratio of the turbulent eddy viscosity to the molecular viscosity is 12. At a roughness Reynolds number 

of 100, this ratio is 1.2, which is obviously not large compared to unity. The model was first evaluated by 

comparing the friction factor for roughness Reynolds numbers higher than 1000. It was found that the 

model could estimate the friction factor and velocity distribution really accurately at given kσ  and λC  

values.  

 The fully rough flow solution is independent of λC . In the k-λ formulation given in Eq. (3.1), the 

coefficient Cλ only occurs as the product of Cλ with the molecular viscosity. By definition, fully rough flow 

is attained when the Reynolds number is independent of the kinematic molecular viscosity. From Eq. (3.1), 

when the solution becomes independent of the molecular viscosity it will also become independent of Cλ. 

Therefore, an estimate for the coefficient Cλ can only be obtained for flow that are not fully rough, that is at 

a lower roughness Reynolds number. In order to estimate the closure coefficients kσ  and λC  the friction 

factor was compared to that obtained from the Nikuradse equation at a roughness Reynolds number as low 

as 100. The logarithm of the roughness Reynolds number is then increased by 0.25 until the Reynolds 

number becomes large enough (108).  

 The fitness parameter is defined as a weighted value between the fit to the Nikuradse equation for fully 

rough flow given in Eq. (2.17) and the fit to the velocity distribution profile given in Eqs. (2.105)–(3.8). 

The weighting factor is 50%.  

 The turbulent kinetic energy, mean turbulent wavelength and turbulent eddy viscosity were not 

weighted when estimating the coefficients. At high Reynolds numbers, the sampling rate of a hot wire 

anemometry has a frequency smaller or of the same order of magnitude as the fluctuating components of 

the velocity. Because the current technology does not allow sampling the fluid velocity at high Reynolds 

numbers, it is not possible to obtain accurate estimates for the turbulent kinetic energy, mean vortex 

turbulent wavelength or turbulent eddy viscosity.  

B. BFGS Algorithm 

 A gradient-based optimization method is used in order to minimize the difference between the desired 

solution and the current model. A gradient based method was chosen for this optimization routine because 
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the fitness function is expected to be continuous throughout the design space. The quasi-Newton’s method 

is based on Newton’s method to find a stationary point of a function where the gradient is 0. Newton’s 

method assumes that the function can locally be approximated as a quadratic region around the optimum 

and use the first and second derivatives to find the stationary point. Quasi-Newton’s methods are a 

generalization of the secant method to find the root of the first derivative for multidimensional problems. 

One of the most common quasi-Newton methods is the BFGS method, suggested independently by 

Broyden [81], Fletcher [82], Goldfarb [83] and Shanno [84]. For details on the implementation of the 

BFGS method, see the work of Hunsaker [85] and Appendix E. 

 The BGFS method does not search for the global minimum. An initial value is provided for the 

variables to be optimized. Because of the complexity of the model, the optimization technique can easily be 

entrapped in a local minimum. To ensure that the solution found is a global minimum, the problem may be 

started from different initial values. If all converge to the same solution, then the optimized variables 

represent a global minimum. In some instances, one of the optimized variables returned from the 

optimization solver present very little variations from its initial estimate, even when started from different 

values. A possible reason is that the solution is independent from this variable. Another possibility is that 

the step gradient is too small and the solution found represents a local minimum. In which case, the step 

gradient was increased. To find the minimum of a function using a step gradient method like the BFGS 

algorithm, one selects a step proportional to the negative of the gradient of the function at the current point. 

This step is called the step gradient. The optimization code is given in Appendix D. 

III. Closure Coefficient Evaluation 

 The eight turbulence model coefficients kσ , Cλ, Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 and  were evaluated over 

the discrete range of the inverse roughness ratios 15.0, 30.6, 60.0, 126.0, 252.0, 507.0, 0.5/0.000058. The 

first six inverse roughness ratios correspond to those used by Nikuradse during his rough flow experiments 

[47]. The last inverse roughness Reynolds number (0.5/0.000058  8621) was used by Shockling et al. [72] 

during their fully rough flow measurements. In order to study the dependancy of the closure coefficients on 

the roughness ratios, those eight closure coefficients were first optimized as a set for each of the 7 

roughness ratios.  
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A. Variations of the Model Coefficients with the Roughness Ratio 

 The two closure coefficients σk and Cλ  from the turbulent-kinetic-energy transport equation should be 

universal constants. The optimization code requires a set of initial values for all of the variables being 

optimized. When the variable σk was being optimized over a range of roughness ratios, the optimized 

returned value was always really close to the initial value. Therefore, this variable was initially not 

optimized and was kept constant. The same phenomenon happened for the value of the proportionality 

coefficient in the wall boundary condition. Therefore those two variables were at first held constants. The 

proportionality coefficient in the wall boundary condition, , was at first expected to be in the range 

0.05 to 2.0. The closure coefficient σk was at first expected to be in the range 0.5 to 8.0.  The coefficient Cλ 

and the other five coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 were all optimized simultaneously for each of the 7 

roughness ratios at a constant σk and constant . This gave an estimate for the closure coefficient Cλ 

(which should be a universal constant).  

 This process of running the optimization code at a given σk and  to optimize the remaining six 

coefficients (Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 and Cλ) was repeated several times over a range of σk and . The 

following section gives an example of the optimization results for σk = 6.0 and  = 0.1.  

 An example of the optimized Cλ coefficient is given in Fig. 3.1. The coefficients σk and  were held 

constant. The optimization code returned the optimal values for Cλ, Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2 for each of the 

seven roughness ratios. The coefficient Cλ should be a universal constant. For the case σk = 6.0 and 

 = 0.1, the coefficient Cλ was selected to be 0.00036. This value is only a rough estimate. It will be 

reoptimized at a later stage. 

 Once an estimate for Cλ is obtained at each σk and  values, the remaining five coefficients Aλ0, Aλ1, 

Bλ0, Bλ1, Bλ2 can be reevaluated. The optimization code was repeatedly used for different values of σk, in the 

range 1.0 to 7.0 and different values of  in the range 0.05 to 1.0 holding Cλ constant. An example is 

shown in Fig. 3.2  for σk = 6.0, Cλ  = 0.00036 and  = 0.1. For other values of  and σk, the five 

coefficients Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 showed a similar trend.  
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Fig. 3.1 Optimized coefficient Cλ at selected roughness ratios using σk = 6.0 and  = 0.1. 

 The coefficient Aλ0 representing the value of the mean turbulent wavelength at the wall and should be a 

constant for fully rough flow. The mean vortex wavelength is given by 

 sRr kA 0λλ =
=

 
(3.10) 

The mean vortex wavelength should only depend on the roughness ratio at the wall. Therefore Aλ0 should be 

a constant. Figure 3.2 shows that the optimized value is not a constant but varies slightly with the 

roughness Reynolds number. Just like it was the case for the Cλ coefficient, a constant is at first selected, to 

be used as a rough estimate. The remaining four coefficients are re-optimized, as shown in Fig. 3.3. 

Comparing Fig. 3.3 to Fig. 3.2, a few differences can be seen in the actual values, but the variations of the 

coefficients with respect to the roughness Reynolds number remain the same. From the dependency of the 

four remaining coefficients Aλ1, Bλ0, Bλ1 and Bλ2 with the roughness ratio that is shown in Fig. 3.3, functions 

were proposed for these four coefficients. A linear function for the coefficients Aλ1, Bλ0, Bλ1 and Bλ2 is 

originally proposed. 
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Fig. 3.2 Optimized Aλ0, Aλ1, Bλ0, Bλ1, Bλ2 coefficients using σk = 6,  = 0.1 and with a non-optimized 

Cλ held constant. 
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Fig. 3.3 Optimized Aλ1, Bλ0, Bλ1, Bλ2 coefficients using σk = 6,  = 0.1 and with a non-optimized Cλ 

and Aλ0 held constant. 
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The coefficient Aλ1 is fitted with a more complex function that asymptotically approaches a linear function 

for high roughness ratios and approaches an exponential function for low roughness ratios. The following 

functions are initially suggested 

 ( ) ( )13ˆexpˆˆ
12111012111

λ
λλλλλλ

A
sss kkAAAkAAA −−−+=  (3.11) 

 
skBBB ˆ

01000 λλλ +=  (3.12) 

 
skBBB ˆ
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21202 λλλ +=  (3.14) 

 

 The BFGS optimization method does not search for the global minimum. Therefore the initial values 

given to the optimization solver are of extreme importance. Initial estimates for the ten coefficients Aλ10, 

Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 are obtained using the build in optimization solver of 

Excel. At σk = 6.0, Cλ  = 0.000036 and  = 0.1, the following initial estimates are used 

 

30.39      ,6674.0        ,27.13
353.1       ,1572.0        ,2694.0         ,3900.0
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(3.15) 

 Figure 3.4 shows the proposed functions given in Eqs. (3.11)‒(3.14) for the four coefficients of the 

mean turbulent wavelength, Aλ1, Bλ0, Bλ1 and Bλ2. The coefficients Aλ0 and Cλ are kept constant. The ten 

coefficients Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 used in Eqs. (3.11)‒(3.14) are given in 

Eq. (3.15). These ten coefficients were obtained by minimizing the fitness parameter at each roughness 

ratio using the BFGS optimization algorithm.  

 The value for the closure coefficient Cλ and the constant Aλ0 used in Figs. 3.2‒3.4 were only rough 

estimates. The ten coefficients Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 given in Eq. (3.15) 

along with the closure coefficient Cλ  and the constant Aλ0 need to be reevaluated when the seven roughness 

ratios are optimized simultaneously.  
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Fig. 3.4 Proposed functions for Aλ1, Bλ0, Bλ1 and Bλ2 using σk = 6 and  = 0.1 and with a non-

optimized Cλ and Aλ0 held constant. 

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
λ0

0.005

0.01

0.015

0.02

0.025

A
λ1

0.05

0.1

0.15

0.2

0.25

0.3

B
λ0

0.2

0.4

0.6

0.8

1

1.2

B
λ1

0 0.02 0.04 0.06
−1

−0.5

0

0.5

1

1.5

B
λ2

k
s
/R

0 0.02 0.04 0.06

1e−5

2e−5

3e−5

4e−5

C
λ

k
s
/R



114 
 

 

 After iterating several times on different σk and , the range of σk and  was slightly decreased. 

Figures 3.5 and 3.6 show the fitness values and the coefficient Cλ for the range of σk  0.5 to 8.0 and based 

on the optimization of the coefficients Cλ, Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 

simultaneously. It can be seen in Fig. 3.6 that the coefficient Cλ clearly converges to 0 for values of σk 

greater than 6. From Fig. 3.5, the fitness decreases as σk increases. Therefore the closure coefficient σk is 

expected to be in the range 2.0 to 6.0. Figures 3.5 and 3.6  were generated for  in the range 0.1 to 2.0. 

For values of σk greater than 2.0, the value of the proportionality coefficient in the wall boundary condition 

does not affect the fitness parameter much. 

 In order to validate the equations suggested in Eqs. (3.11)‒(3.14), the four coefficients Aλ1, Bλ0, Bλ1 and 

Bλ2 are reevaluated for each individual roughness ratios. If after the optimization, the four coefficients do 

not change from their initial values, then the proposed equations given in Eqs. (3.11)‒(3.14) can be 

validated. The coefficients Aλ1, Bλ0, Bλ1 and Bλ2 are computed from the optimized Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, 

Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 coefficients. This serves as an initial estimate in the optimization code. In 

Fig. 3.7, the circles represent the initial estimates and the solid dots the final optimized values.  There are 

very little changes in the Aλ1, Bλ1 and Bλ2 coefficients. However, the optimized Bλ0 coefficient shows a 

nonlinear trend.  

 

 A similar function as for the Aλ1 coefficient is fitted to Bλ0. The coefficient Bλ0 is now written as a 

function that asymptotically approaches a linear function for low roughness ratios and an exponential 

function for high roughness ratios.  

 ( ) ( )03ˆexpˆˆ
02010002010

λ
λλλλλλ

B
sss kkBBBkBBB −−−+=  (3.16) 

 With this new function for Bλ0, the fourteen coefficients Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, 

Bλ10, Bλ1, Bλ20, Bλ21 and Cλ are reoptimizeded all together for all the seven roughness ratios. From the 

optimized coefficients, the Aλ1, Bλ0, Bλ1 and Bλ2 are evaluated for each roughness ratios using Eqs. (3.11), 

(3.13), (3.14) and (3.16). Those four coefficients are then optimized at each roughness ratios.  
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Fig. 3.5 Fitness Values for different  in the range [0.1 – 2.0] resulting from the optimization of 

Cλ, Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 simultaneously.  

 

 
Fig. 3.6 Closure coefficient Cλ for different  in the range [0.1 – 2.0] resulting from the 

optimization of Cλ, Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 simultaneously. 
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Fig. 3.7 Initial estimates and optimized Aλ1, Bλ0, Bλ1 and Bλ2 coefficients obtained at σk = 6 and 

 = 0.1 based on the linear function for Bλ0 given in Eq. (3.12). 
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 Figure 3.8 shows the Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2 coefficients before and after optimization. There are no 

noticeable changes before or after the optimization in any of the coefficients. Therefore, the functions 

proposed in Eqs. (3.11), (3.13), (3.14) and (3.16) can be used for the Aλ1, Bλ0, Bλ1 and Bλ2 coefficients 

respectively. Figure 3.8 was generated based on σk = 6 and = 0.1. Different values of σk in the range 

2.0 to 6.0 and  in the range 0.05 to 2.0 yield similar trends to that shown in Fig. 3.8. 

 The improvement of the function given in Eq. (3.16) compared to that given in (3.12) to model the 

coefficient Bλ0 is shown by the fitness values of Fig. 3.9. This figure was generated at  = 0.1. For any 

value of σk, the fitness parameter is decreased by at least 14%. 

 

 Using Eq. (3.16) for Bλ0, the friction factor obtained from the k-λ turbulence model agrees well with the 

Nikuradse equation for fully rough flow. Figure 3.10 shows the friction factor compared to the Colebrook 

equation. This was generated for σk = 2.0, which has one of the worst fitness values, as seen in Fig. 3.9. The 

coefficients used to generate Fig. 3.8 are the same as those used to generate Fig. 3.10. Figure 3.10 was 

generated starting the roughness Reynolds number  at 100. Equation (3.16) compared to Eq. (3.12) does 

not yield any noticeable differences on a friction factor figure. The open circles shown on Fig. 3.10 

correspond to a friction factor obtained using the linear equation given in Eq. (3.12) for Bλ0. The solid dots 

are based on the nonlinear equation given in Eq. (3.16) for Bλ0. 

 There is a slight improvement in the velocity distribution when using the nonlinear relation for Bλ0.  

Figure 3.12 shows the velocity distribution for a range of roughness ratios using the linear relation for Bλ0. 

Figure 3.13 shows the velocity distribution for a range of roughness ratios using the nonlinear relation for 

Bλ0. Both figures were generated for fully rough flow at a roughness Reynolds number of 80,000. Figures 

3.12 and 3.13 used σk = 2.0 and all the same coefficients as those that were used to generate Fig. 3.10. From 

a comparison between Figs. 3.12 and 3.13, it can be seen that for low roughness ratios, the fit to the log law 

is slightly improved when using the nonlinear relation. Figure 3.11 shows a comparison between the log 

law and the velocity distribution obtained using σk = 2.0. From Figs. 3.10 and 3.11, it can be seen that the 

current k-λ turbulence model for fully rough flow predict the velocity and friction factors very accurately.  
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Fig. 3.8 Initial estimates and optimized Aλ1, Bλ0, Bλ1 and Bλ2 coefficients obtained at σk = 6 and 

 = 0.1 based on the nonlinear function for Bλ0 given in Eq. (3.16). 
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Fig. 3.9 Fitness comparison obtained from the linear and nonlinear relation for Bλ0 given in 

Eqs. (3.12) and (3.16), based on = 0.1. 

 

 
Fig. 3.10 Friction factor obtained from the linear and nonlinear relation for Bλ0 given in Eqs. (3.12) 

and (3.16) and based on σk = 2 and = 0.1. 
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Fig. 3.11 Velocity distribution based on the nonlinear equation for Bλ0 given in Eq. (3.16), using σk = 2 

and = 0.1 and compared with the log law. 

 

 
Fig. 3.12 Velocity distribution based on the linear equation for Bλ0 given in Eq. (3.12) and using σk = 2 

and = 0.1 and compared with a reference velocity distribution. 

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

y / R

V
z / 

u τ

_

 

 
R/k

s
 = 15

R/k
s
 = 30.6

R/k
s
 = 60

R/k
s
 = 126

R/k
s
 = 252

R/k
s
 = 507

R/k
s
 = 1667

R/k
s
 = 8621

Law of the wall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

y / R

V
z / 

u τ

_

 

 

R/k
s
 = 15

R/k
s
 = 30.6

R/k
s
 = 60

R/k
s
 = 126

R/k
s
 = 252

R/k
s
 = 507

R/k
s
 = 1667

R/k
s
 = 8621

Law of the wall



121 
 

 

 
Fig. 3.13 Velocity distribution using the nonlinear equation for Bλ0 given in Eq. (3.16), using σk = 2 

and = 0.1 and compared with a reference velocity distribution. 
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Fig. 3.14 Dependence of Cλ  with σk for the current fully rough flow k-λ model. 

 

 
Fig. 3.15 Dependence of Aλ0  with σk for the current fully rough flow k-λ model. 
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Fig. 3.16 Dependence of Aλ11  with σk for the current fully rough flow k-λ model. 

 

 

 
Fig. 3.17 Dependence of Aλ12  with σk for the current fully rough flow k-λ model. 
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Fig. 3.18 Dependence of Aλ13  with σk for the current fully rough flow k-λ model. 

 

 

 
Fig. 3.19 Dependence of Bλ00  with σk for the current fully rough flow k-λ model. 
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Fig. 3.20 Dependence of Bλ01  with σk for the current fully rough flow k-λ model. 

 

 

 
Fig. 3.21 Dependence of Bλ02  with σk for the current fully rough flow k-λ model. 
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Fig. 3.22 Dependence of Bλ03  with σk for the current fully rough flow k-λ model. 

 

 

 
Fig. 3.23 Dependence of Bλ10  with σk for the current fully rough flow k-λ model. 
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Fig. 3.24 Dependence of Bλ11  with σk for the current fully rough flow k-λ model. 

 

 

 
Fig. 3.25 Dependence of Bλ20  with σk for the current fully rough flow k-λ model. 
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Fig. 3.26 Dependence of Bλ21 with σk for the current fully rough flow k-λ model. 
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The ten constants Aλ10, Aλ11, Aλ12, Aλ13, Bλ0, Bλ01, Bλ10, Bλ11, Bλ20 and Bλ21 are related to the four coefficients 

Aλ1, Bλ0, Bλ1, Bλ2 according to 
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The mean vortex wavelength is given by 
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 The coefficient Aλ0 was chosen to be a constant. In fact, for fully rough flow, the wall value of the 

turbulent kinetic energy should be a constant. The mean vortex wavelength at the wall depends only on the 

roughness ratio. This requires the coefficient Aλ0 to be a constant.  

 The coefficients were optimized one at a time. Hundreds of iterations were performed on the 

coefficients Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, Bλ10, Bλ1, Bλ20, Bλ21, Cλ in order to obtain the 

relations given in Eqs. (3.17)‒(3.30). See Appendix E for details. 
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C. Fitness Value for the Complete Model 

 The fitness parameter for the complete model is shown in Fig.  3.27. This fitness parameter quantifies 

how well the model matches empirical relation established for fully rough pipe flows. The fitness 

parameter was obtained based on the relations given in Eqs. (3.17)‒(3.34). This figure can be compared to 

Fig. 3.9. As an example at σk = 2.0, the fitness shown in Fig. 3.9 was 0.00520. For this same σk, the fitness 

shown in Fig. 3.27 is 0.00527. The increase comes from the fact that the exact optimal values for all the 

coefficients involved in the turbulence model were used to generate Fig. 3.9 whereas a function was used to 

generate Fig.  3.27. The difference in the fitness parameter between Figs. 3.9  and   3.27  is so small that it 

is not noticeable on the friction factor and velocity distribution figures.  

 The total fitness is the sum of the fitness for the friction factor reference equation and the fitness for 

the velocity distribution reference function. These fitnesses are obtained from a RMS of a reference 

function. The fitness for the velocity distribution and the fitness for the friction factor are shown in 

Fig. 3.28. The fitness of the velocity distribution is better than that for the friction factor. At σk = 4.0, the 

fitness to the friction factor equation is 0.536% whereas the fitness to the velocity distribution is 0.223%, 

which is still excellent.  

 
Fig. 3.27 Total fitness parameter versus σk. 
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Fig. 3.28 Velocity distribution and friction factor fitnesses over a range of σk.  

IV. Summary and Conclusion 

 The turbulent-kinetic-energy transport equation proposed by Phillips contains two closure coefficients, 

σk and Cλ, which should be dimensionless universal constants. It has been shown here that excellent 

agreement with experimental data for fully rough pipe flow can be attained over the range of about 

2 < σk < 6 and 0.00001< Cλ < 0.00057, provided that the relation between σk and Cλ, which is given in  

Eq. (3.17) and shown in Fig. 3.14 is maintained.  

 In addition, the turbulent-kinetic-energy transport equation requires a wall boundary condition for the 

specific turbulent kinetic energy. In general, the specific turbulent kinetic energy at a rough surface should 

be proportional to the square of the friction velocity,  
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where +
wallk  is a dimensionless proportionality coefficient, which is expected to be a unique function of the 

roughness Reynolds number, ντ /uks . However, by definition, fully rough flow occurs when the 

roughness Reynolds number is high enough so that the solution becomes independent of molecular 

viscosity. Hence, for fully rough pipe flow, the proportionality coefficient, +
wallk , must be another 

dimensionless universal constant associated with the turbulence model. It has been shown here that 

excellent agreement with experimental data for fully rough pipe flow can be attained over the range of 

about 0.105.0 wall << +k , provided that certain algebraic relations are maintained between the mean vortex 

wavelength, λ, and the proportionality coefficient, +
wallk .  

 From the discussion above, it is important to recognize a significant result that was developed in this 

chapter. Excellent agreement with experimental data for fully rough pipe flow can be attained over a range 

of model constants, which are σk, Cλ and the fully rough limit for +
wallk . In terms of future development, this 

is fortunate, because it provides a great deal of flexibility that can be used when tuning the model to agree 

with experimental data for other turbulent flows.  

 The empirical relation obtained in Chapter 2 for the mean vortex wavelength contains five unknown 

closure coefficients, Aλ0, Aλ1, Bλ0, Bλ1 and Bλ2. Unlike the closure coefficients in the turbulent-kinetic-energy 

transport equation, the closure coefficients in the algebraic relation for the mean vortex wavelength, which 

is given in Eq. (3.3), need not be universal constants. Because Eq. (3.3) was used simply to develop an 

empirical correlation to fit experimental data, the only restriction that must be placed on Aλ1, Bλ0, Bλ1 and 

Bλ2 is that these closure coefficients may not depend on the radial position within the pipe. In general, the 

turbulent eddy viscosity and mean vortex wavelength at a rough surface should be proportional to the 

equivalent sand-grain roughness height.  Therefore, the coefficient Aλ0 should be a constant. It has been 

shown that excellent agreement with experimental data for fully rough pipe flow can be attained, if Aλ0 is a 

constant and Aλ1, Bλ0, Bλ1 and Bλ2 are functions of the roughness ratio, Rks / , as given by 

Eqs. (3.31)‒(3.34). Combining the constant Aλ0 with the 12 constants in Eqs. (3.31)‒(3.34), there are 13 

dimensionless constants, Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, Bλ10, Bλ11, Bλ20 and Bλ21, that must be 

known to determine the variation in the mean vortex wavelength over the pipe radius.  
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 Combining the proposed turbulent-kinetic-energy transport equation and boundary conditions with the 

proposed algebraic relation for the mean vortex wavelength, there are a total of 16 unknown model 

constants for the case of fully rough pipe flow, σk, Cλ, , Aλ0, Aλ10, Aλ11, Aλ12, Aλ13, Bλ00, Bλ01, Bλ02, Bλ03, 

Bλ10, Bλ11, Bλ20 and Bλ21. Using an optimization code, 14 algebraic relations were established among these 16 

constants. The determination of these 14 algebraic relations was based on minimizing a fitness parameter, 

which assesses how close the model solutions are to a target solution set. The target solution set was based 

on a friction factor and a velocity distribution comparison to algebraic relations obtained for fully rough 

flows. The friction factor was compared to the Nikuradse equation, which is the fully rough flow limit of 

the Colebrook equation. The velocity distribution was compared to an algebraic relation derived using a 

deviation from the log law in order to satisfy the symmetry centerline boundary condition and the no-slip 

wall boundary condition.  

 The minimization of the fitness parameter is based on a quasi-Newton, gradient-based algorithm. This 

algorithm uses the BFGS update method. Hundreds of optimization cases were run over a wide range of 

values for the closure coefficients. From those optimization cases, functions were derived for the five 

coefficients of the mean vortex wavelength; Aλ0, Aλ1, Bλ0, Bλ1, Bλ2. These coefficients were found to depend 

on the roughness ratio , the proportionality coefficient  and the closure coefficient σk. 

 Excellent agreement with well established relations for fully rough pipe flow can be obtained provided 

that the relations between the model coefficients are maintained. The fully rough flow model shows that a 

good fitness can be obtained for any value of σk in the range 2.0 to 6.0 and any value of the  in the 

range 0.05 to 1.0. The RMS error is 0.511% at σk = 2.0 and 0.203% at σk = 6.0, when the relations between 

the model coefficients are maintained. The choice of the closure coefficients σk and  could be decided 

based on lower roughness Reynolds numbers because fully rough pipe flow gives good results over a range 

of values for σk and , provided that the relations between the other coefficients are maintained.  

 The model needs to be compared to other turbulence models, which support rough flow. This will be 

presented in the next chapter. The current model gives excellent agreement with the velocity distribution 

and friction factor. Because there are no data available for fully rough pipe flow for the turbulent kinetic 

energy and the second turbulent variable, no comparison is possible. The distribution of the fluctuating 

vorticity and the mean turbulent wavelength will be presented in the next chapter. 
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CHAPTER 4 

PHILLIPS K-Λ TURBULENCE MODEL RESULTS AND CONCLUSIONS 

I. Introduction 

 The closure coefficients associated with the present k-λ one-equation turbulence model for fully rough 

pipe flow were evaluated by minimizing a fitness parameter in order to match algebraic relations obtained 

for the velocity distributions and the friction factor. It was shown that excellent agreement with 

experimental data could be obtained over ranges of model constants, which are 2 < σk < 6,  

0.00001< Cλ < 0.00057 and 0.105.0 wall << +k , provided that certain algebraic relations are maintained 

among the mean vortex wavelength, λ, the two closure coefficients Cλ and σk and the proportionality 

coefficient, +
wallk .  

 During the optimization process, the mean vortex wavelength, turbulent kinetic energy and root-mean-

square fluctuating vorticity were not compared to reference distributions. In fact, no reliable experimental 

data can be obtained at very high Reynolds numbers for the turbulent kinetic energy, fluctuating vorticity 

and mean vortex wavelength because modern experimental systems cannot currently measure the very high 

velocity frequencies. 

 This chapter presents the root-mean-square fluctuating vorticity and the mean-vortex-wavelength 

distributions obtained from the k-λ model for fully rough flow over a range of relative roughness. The 

model is first compared to well established relations for the velocity distribution and resulting friction 

factor. Then the second turbulence variable distribution is presented. The k-λ model is compared to the 

Wilcox 1998 and 2006 models at high Reynolds numbers.  

II. Model Validation 

 In order to assess the model’s ability to predict fully rough flows, the current turbulence model is 

compared to well established relations for the velocity distribution and friction factor. The velocity 

distribution is compared to the log law and experimental data taken from Nikuradse’s rough flow 
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study [46]. The friction factor is compared to the Colebrook equation from which the Moody diagram is 

based on. 

 The friction factor obtained from the current turbulence model is shown in Fig. 4.1 along with 

published experimental results. The first solid dot of each roughness ratio line corresponds to a roughness 

Reynolds number of 100. The flow is considered fully rough for a roughness Reynolds number greater than 

1000, which is the fourth solid dots on each of the roughness ratio lines. The model shows excellent 

agreement with the fully rough limit of the Colebrook equation.   

 

 The model extrapolates well for rough flows having a roughness Reynolds number smaller than 1000. 

The friction factor is well within the scatter of the experimental data for roughness Reynolds number 

greater than 1000.  

 

 
Fig. 4.1 Phillips k-λ turbulence model for σk = 4.0 and = 0.1. 
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Fig. 4.2 Velocity distribution using σk = 4.0 and = 0.1. 

 

 
Fig. 4.3 Velocity profile in rough pipes using σk = 4.0 and = 0.1. 
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 The velocity distribution obtained from the present k-λ turbulence model is compared to the log law for 

fully rough flow in Fig. 4.2. The log law is supported by Nikuradse’s rough flow experiments of 1933. 

Figure 4.2 was generated at a roughness Reynolds number of 80,000. The agreement with the log law is 

excellent. Note that close to the centerline the centerline symmetry boundary condition imposes a deviation 

from the log law. Figure 4.3 shows a different representation of the velocity distribution. It can be seen that 

for any relative roughness number, all curves collapse to the log law curve. From Figs 4.2 and 4.3, the 

turbulence model predicts the velocity distribution for fully rough pipe flow to a high degree of accuracy. 

Both figures were generated using σk = 4.0 and  = 0.1. The model gives similar results to those 

presented in Figs. 4.1‒4.3 for values of σk in the range of 2.0 to 6.0 and values of  in the range of 0.05 

to 1.0.  

III. The Second Turbulence Variable 

 The present turbulence model predicts the velocity distribution and friction factor accurately for fully 

rough pipe flows. The model is currently based on a transport equation for the turbulent kinetic energy and 

an algebraic relation for the mean vortex wavelength. Eventually, the model will be based on a transport 

equation for the root-mean-square fluctuating vorticity as a replacement of the empirical relation for the 

mean vortex wavelength. The square of the mean vortex wavelength is proportional to the turbulent kinetic 

energy over the square of the root-mean-square fluctuating vorticity. 

 
2

2
~ω

λ λ
kC=

 
(4.1) 

 This fully rough pipe flow model will serve as a reference for the turbulent kinetic energy, turbulent eddy 

viscosity and root-mean-square fluctuating vorticity distributions because no experimental data or empirical 

relations are available for these three variables. Using the following nondimensional parameters: 

 
2 
τu
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ωω
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Eq. (4.1) can be written in nondimensional form as 
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 Figures. 4.4‒4.7 show the turbulent kinetic energy, the mean vortex wavelength, the turbulent eddy 

viscosity and the root-mean-square fluctuating vorticity for fully rough flow. These four figures were 

generated using a roughness Reynolds number of 80,000, σk = 4.0 and  = 0.1. Three inverse roughness 

ratios are given: 15, 126 and 507.  The variations of the turbulent kinetic energy and the second turbulence 

variable corresponding to the roughness ratio, results from a variation of the velocity distribution with 

respect to the roughness ratio, as shown in Fig. 4.8. As the inverse roughness ratio is decreased, the friction 

factor decreases as well. The friction factor is inversely proportional to the mean velocity. At low inverse 

roughness ratio (e.g. 15), the mean velocity is smaller than for higher inverse roughness ratio (e.g. 252). 

Therefore the friction factor is greater at high inverse roughness ratio (e.g. 15). Figure 4.8 shows that at 

high inverse roughness ratio, the mean velocity is greater than for low inverse roughness ratio.  

 
Fig. 4.4 Turbulent-kinetic-energy distribution for different inverse roughness ratios σk = 4,  

 = 0.1, ks
+ = 80,000. 
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Fig. 4.5 Mean-vortex-wavelength distribution for different inverse roughness ratios, σk = 4, 

 = 0.1, ks
+ = 80,000. 

 

 
Fig. 4.6 Turbulent eddy viscosity distribution for different inverse roughness ratios, σk = 4, = 0.1, 

ks
+ = 80,000. 
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Fig. 4.7 Root-mean-square fluctuating vorticity distribution for different inverse roughness ratios, 

linear scale, σk = 4, = 0.1, ks
+ = 80,000. 

 

 
Fig. 4.8 Velocity distribution for different inverse roughness ratios, σk = 4, = 0.1, ks

+ = 80,000. 
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Fig. 4.9 Root-mean-square fluctuating vorticity distribution for different inverse roughness ratios, 

log scale, σk = 4, = 0.1, ks
+ = 80,000. 

 

 
Fig. 4.10 Turbulent eddy viscosity distribution based on σk = 4, = 0.1, ks

+ = 80,000 and 

R/ks = [15-507] compared to experimental data. 
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 From Fig. 4.6, the apparent value at the wall of the root-mean-square fluctuating vorticity appears to 

decrease as the inverse roughness ratio increases. As the pipe gets smoother, the apparent wall value of the 

root-mean-square fluctuating vorticity seems to originate at infinity. In fact, looking at the same data on a 

log-log scale proves that for any roughness number, the value of the vorticity at the wall is finite and 

increases slightly and decreases very sharply, as seen in Fig. 4.9. The value of the vorticity at the wall can 

be computed from the ratio of the turbulent kinetic energy at the wall and the square of the mean turbulent 

wavelength.  

 Figure 4.10 shows the turbulent eddy viscosity profile compared to values obtained by Nikuradse and 

Reichardt. The turbulent eddy viscosity obtained by Nikuradse and Reichardt is not expected to match that 

obtained from the current k-λ model. However, the order of magnitude should be close, which is the case. 

The data referring to Nikuradse and Reichardt is not obtained from experiments directly, but it is derived 

from the derivative of the experimental velocity values. Because taking the derivative of experimental 

points accumulates errors, the turbulent eddy viscosity obtained from Nikuradse and Reichardt is not 

expected to match that obtained from the current turbulence model. Note that the turbulent eddy viscosity 

stays fairly constant over the core of the pipe, as observed by Kays and Crawford [86] who suggested using 

a constant value over the central region of the pipe combined with an approximation from mixing-length 

theory near the wall.  

 The variations in the closure coefficient σk of the turbulent kinetic energy, the mean vortex wavelength, 

the turbulent eddy viscosity and the root-mean-square fluctuating vorticity for fully rough flow are shown 

in Figures 4.11‒4.14. Because the turbulent-kinetic-energy transport equation depends on the closure 

coefficient σk, the distribution of the turbulent kinetic energy and the second turbulence variable also 

depend on this closure coefficient. The figures were generated using  = 0.1, an inverse roughness ratio 

number of 252 and a roughness Reynolds number of 80000, which corresponds to fully rough flow. 

Changing the closure coefficient σk greatly impacts the amplitude of the turbulent kinetic energy, mean 

vortex wavelength and fluctuating vorticity. Increasing σk results in a decrease of the transport of the 

turbulent kinetic energy.   

 The variations in the turbulent kinetic energy, the mean vortex wavelength, the turbulent eddy 

viscosity and the root-mean-square fluctuating vorticity with the proportionality coefficient in the wall 
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boundary condition are shown in Figs. 4.15‒4.19. Only slight variations with  can be depicted on 

Figs. 4.15‒4.19. Figure 4.15 shows that only the region very close to the wall is affected by a change 

in .  Those figures were generated using 4 for the closure coefficient σk, an inverse roughness ratio 

of 252 and a roughness Reynolds number of 80,000. The proportionality coefficient in the wall boundary 

condition was only varied from 0.05 to 1.0. 

 The turbulent kinetic energy, mean vortex wavelength, turbulent eddy viscosity and root-mean-square 

fluctuating vorticity variations with the roughness Reynolds number are shown in Figs. 4.20‒4.23. These 

figures were generated using   = 0.1, an inverse roughness ratio of 252 and the closure coefficient σk 

set to 4.  

 There are only slight changes in the amplitude of the turbulent variable distributions between a 

roughness Reynolds number of 1000 and 80,000. Both of the roughness Reynolds numbers can be 

considered to represent fully rough flow. Changes are more noticeable for rough flow having a roughness 

Reynolds number of 100. At this roughness Reynolds number, the ratio of the turbulent eddy viscosity to 

the molecular viscosity is slightly greater than 1.  

 
Fig. 4.11 Turbulent-kinetic-energy distribution for different σk values,  = 0.1, ks

+ = 80,000, 

R/ks = 252. 
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Fig. 4.12 Mean-vortex-wavelength distribution for different σk values, = 0.1, ks

+ = 80,000, 

R/ks = 252. 

 

 
Fig. 4.13 Turbulent eddy viscosity distribution for different σk values, = 0.1, ks

+ = 80,000, 

R/ks = 252. 
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Fig. 4.14 Root-mean-square fluctuating vorticity distribution for different σk values,  = 0.1, 

ks
+ = 80,000, R/ks = 252. 

 

 
Fig. 4.15 Turbulent-kinetic-energy distribution for different  values, logarithmic scale, σk = 4.0, 

ks
+ = 80,000, R/ks = 252. 
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Fig. 4.16 Turbulent-kinetic-energy distribution for different  values, linear scale, σk  = 4.0, 

ks
+ = 80,000, R/ks = 252. 

 

 
Fig. 4.17 Mean-vortex-wavelength distribution for different  values, σk  = 4.0, ks

+ = 80,000, 

R/ks = 252. 
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Fig. 4.18 Turbulent eddy viscosity distribution for different  values, σk  = 4.0, ks

+ = 80,000, 

R/ks = 252. 

 

 
Fig. 4.19 Root-mean-square fluctuating vorticity distribution for different  values, σk  = 4.0, 

ks
+ = 80,000, R/ks = 252. 
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Fig. 4.20 Turbulent-kinetic-energy distribution for different ks

+ values, σk  = 4.0, = 0.1, 

R/ks = 252. 

 

 
Fig. 4.21 Mean-vortex-wavelength distribution for different ks

+ values, σk  = 4.0,  = 0.1, 

R/ks = 252. 
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Fig. 4.22 Turbulent eddy viscosity distribution for different ks

+ values, σk  = 4.0, = 0.1, R/ks = 252. 

 

 

 
Fig. 4.23 Root-mean-square fluctuating vorticity distribution for different ks

+ values, σk  = 4.0, 

 = 0.1, R/ks = 252. 
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The flow is said to be fully rough when the molecular viscosity is negligible with regard to the turbulent 

eddy viscosity. Therefore changes in the distribution of the turbulent variables are expected to be between a 

roughness Reynolds number of 100 and one representing fully rough flow deeming a roughness Reynolds 

number of 1000 or more. 

IV. Comparison to Other Models 

A. Wilcox k-ω Model 

 Traditionally the k-ω model has been accepted as the model most capable of modeling rough-wall 

effects without implementing wall functions. The k-ω model was first attempted by Kolmogorov [8], and 

later revised by Saffman [87], Wilcox [88], Peng et al. [89], Kok [90] and Hellsten [91]. Wilcox 98 

model [13] is the turbulent model implemented in Fluent [92]. Wilcox made a few modifications to his 98 

model and proposed an improved model in 2006. This section compares the current turbulence model to 

both the Wilcox 98 and 2006 models for fully rough flow. 

1. Wilcox 1998 k-ω Model 

 The Wilcox 1998 k-ω model [13] is likely the most widely used model for rough walls. The effects of 

surface roughness are commonly incorporated into the k-ω model by altering the surface boundary 

condition on ω. The Wilcox 1998 k-ω model is comprised of the following equations for incompressible 

flow. The algebraic equation for the eddy viscosity is 

 
ω

ν μ
kft =  

(4.4) 

The turbulent energy transport equation is 
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The dissipation frequency transport equation is 



152 
 

 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅∇+−=∇⋅+

∂
∂ ω

σ
ν

νωωνωω

ω
ωω

t
t fC

k
fC

t
2

2211  )(:)(2 VSVSV
vvvv

 (4.6) 

The functions f1, fμ, fk, f2 are wall damping functions, also called low Reynolds number corrections, 

employed to force the model to agree more closely with near-wall experimental data. The near-wall 

damping functions used in Wilcox 1998 k-ω model are 
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Wilcox suggests using the following relation for ω+ at a rough wall 
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 Along with his book on turbulence modeling [13], Wilcox incorporates a CD with a number of 

computer programs capable of running his model for various flows. One of the programs is a fully 

developed pipe flow code, which allows the user to model roughness effects by specifying the value of ω+ 

at the wall. Multiple cases were run to cover the range of roughness ratios commonly displayed in the 

Moody diagram. The code requires the shear Reynolds number Rτ as input, which is a function of the 

roughness ratio 
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 The fully developed pipe flow code was used to compare the Wilcox 1998 model to the Colebrook 

equation and Nikuradse’s experimental cases. For each R/ks value, the code was run from 210=+
sk  to 

610=+
sk  or until the code no longer converged.  

 

 Figure 4.24 shows the friction factor obtained from Wilcox 1998 k-ω model. For fully rough flow, at 

high Reynolds numbers, the friction factor is within the scatter of experimental data. However, as can be 

seen there is a positive slope for all roughness ratios at high Reynolds numbers. This figure is to be 

compared with Fig. 4.1, which displays the same diagram using data from the current one-equation k-λ 

model. Clearly, the Wilcox 1998 model does not match the Colebrook equation as well as the k-λ 

turbulence model does.  

 

 Figure 4.25 shows the velocity distribution obtained from the Wilcox 1998 k-ω model. It can be seen 

that the velocity distributions are systematical and slightly below the log law curve. Figure 4.25 shows that 

the bulk velocity will be under predicted, which corresponds to an over predicted friction factor at high 

roughness Reynolds numbers, as shown in Fig. 4.24. Figure 4.25 is to be correlated with Fig. 4.2 which 

displays the velocity profiles obtained from the current k-λ model. The current k-λ model predicts the 

velocity to a much higher accuracy and extrapolates better for lower roughness ratios.  

2. Wilcox 2006 k-ω Model 

 In 2006, Wilcox published a revised version [13] of his 1998 model, which has not yet been as widely 

implemented as his 1998 model. The two-equation model is given by the following three equations. The 

algebraic kinematic eddy viscosity function is computed from 
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The turbulent energy transport equation is 
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Fig. 4.24 Darcy friction factors obtained from the Wilcox 1998 k-ω model. 

 

 
Fig. 4.25 Velocity profile obtained from the Wilcox 1998 k-ω model. 
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The dissipation frequency transport equation is 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅∇+−

∇⋅∇
+=∇⋅+

∂
∂ ω

ωσ
νω

ω
ωωωω

ω
ωω

kfCkf
k

C
t

1 )(:)(2 2
2211 VSVSV

vvvv
 (4.12) 

The functions f1 and fk  are wall damping functions defined as 
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Fig. 4.26 Darcy friction factors obtained from the Wilcox 2006 k-ω model. 
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Fig. 4.27 Velocity profile obtained from the Wilcox 2006 k-ω model. 

 Figure 4.26 shows the friction factor obtained from his 2006 code compared to the Colebrook equation 

and the Nikuradse data. The code does not converge for +
sk  values higher than about 1000 depending on 

the roughness ratio. Clearly, the model cannot handle fully rough flow. Figure 4.27 shows the velocity 

profile obtained from the Wilcox 2006 model. The velocity profiles do not follow the law of the wall. The 

bulk velocity is always over-predicted and corresponds to an under-predicted friction factor as was shown 

in Fig. 4.26. 

 A mean dissipation characteristic length can be defined from the turbulent eddy viscosity equation. 

The turbulent eddy viscosity is proportional to the product of a characteristic length times a characteristic 

velocity. The characteristic velocity associated with the vorticity-based turbulence model could be the 

square root of the turbulent kinetic energy. In the traditional k-ϵ model, the turbulent eddy viscosity is given 

by 
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The characteristic length associated with the dissipation is the term in parathensis given in Eq. (4.14). 

Using Eq. (1.90), this characteristic length can be rewritten in terms of the dissipation frequency ω,  
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This suggests that we could define a “mean dissipation wavelength” as  
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The mean dissipation wavelength, λϵ, can be compared to the mean vortex wavelength, λ. In 

nondimensional coordinates, Eq. (4.15) becomes 
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Both terms in brackets of Eq. (4.17) represent the nondimensional mean dissipation length scale which can 

be directly compared to the nondimensional mean vortex wavelength λ/R .  
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Hence, the “pipe-scaled dimensionless mean dissipation wavelength” is given by 
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A comparison between the pipe-scaled dimensionless mean dissipation and mean vortex wavelengths is 

given in Fig. 4.28. The figure is based on a closure coefficient σk = 4.0, a proportionality constant for the 

wall turbulent kinetic energy  = 0.1, a roughness ratio of R/ks = 252 and a roughness Reynolds number 

  of 80,000. From Fig. 4.28, it can be seen that the two dimensionless wavelengths have the same order 

of magnitude. 

 
Fig. 4.28 Pipe-scaled dimensionless mean vortex and mean dissipation wavelengths. 
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closure function and the closure function given in Eqs. (3.17)‒(3.35). The velocity distribution is greatly 

improved. The current model follows the log law.  

 The Hunsaker model gave “a %RMS error of 0.670” for the friction factor [85]. The current model 

gives a %RMS error in the range of 0.731 to 0.256 depending on the closure coefficient σk. As the closure 

coefficient is increased, the RMS error is decreased. The %RMS error of the new model is comparable to 

the 2011 version. 

 
Fig. 4.29 Friction factor results, from the Hunsaker [85] model (reproduced with permission). 
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Fig. 4.30 Hunsaker [85] closure to the k-λ model, velocity-distribution comparison (reproduced with 

permission). 

V. Summary and Conclusions 

 The focus of this work was to determine the distributions of the turbulence variables with the radial 

coordinate for fully rough pipe flows. These distributions were determined based on a one-equation k-λ 

turbulence model derived from a transport equation for the turbulent kinetic energy and an algebraic 

relation for the mean vortex wavelength. Many turbulence models in use today model the dissipation of 

turbulent kinetic energy as a transportable property, which is physically incorrect because dissipation is not 

a transportable property. Phillips’ transport equation for the turbulent kinetic energy is presented in 

Chapter 1. An algebraic relation for a second turbulence variable, the mean vortex wavelength, was added 

to this transport equation to close the turbulence model for fully rough pipe flow. Chapter 2 presents the 

reasoning behind the choice of the mean-vortex-wavelength-profile function. This function features five 

unknown coefficients. The turbulent-kinetic-energy transport equation includes two closure coefficients 

and one unknown proportionality coefficient in the wall boundary condition. Chapter 3 derives functions 

for the unknown coefficients. Provided that certain algebraic relations between the model coefficients are 

   0

   5

  10

  15

  20

  25

10−2 10−1 100 101 102 103

u+

y/ks

Eq. (7.31)

Eq. (7.32)

0.034

0.016
0.0083

0.0039
0.0020

k
r
=0.00098



161 
 

 

maintained, the model gives excellent agreement with well established relations obtained at fully rough 

flow. The evaluation of the coefficients was based on a rigorous optimization method. The algebraic 

relation for the mean vortex wavelength depends on the distance from the wall, the roughness Reynolds 

number, the proportionality coefficient in the wall boundary condition and one of the closure coefficients. 

Finally, Chapter 4 presents the results obtained from the current k-λ model along with a comparison to 

experimental data, well established empirical relations and other rough-wall models. The distribution of the 

turbulent kinetic energy, the mean vortex wavelength and the turbulent eddy viscosity are presented in 

Chapter 4.  

 The relations between the closure coefficients were developed such that the model gives excellent 

agreement for the friction factor and velocity distribution when compared to well established relations 

obtained for fully rough pipe flows. The friction factor was compared to the limit of the Colebrook 

equation from which the Moody diagram is based. The RMS error is less than 1% over the range of 

roughness ratios. The velocity distribution was compared to experimental data and the log law. The 

correlation to fully rough flow is excellent at any roughness ratio both in the core region and in the near-

wall region. The model is significantly more accurate at predicting the friction factor and velocity 

distribution than the Wilcox 1998 and 2006 k-ω models. The closure that was developed here for Phillips’ 

energy-vorticity turbulence model showed a significant improvement in evaluating the velocity 

distributions compared to that developed by Hunsaker [85]. From the mean-vortex-wavelength distribution 

and kinetic-energy-transport equation, the root-mean-square fluctuating vorticity and the turbulent eddy 

viscosity are calculated and presented.  

 The model needs to be extended to hydraulically smooth-wall pipe flow. The current model does not 

set a fixed value for one of the closure coefficients or for the proportionality coefficient in the wall 

boundary condition. Instead, a range of applicability is given for both of these parameters provided that the 

relations between the other coefficients are maintained. Extending the model to hydraulically smooth-wall 

flow might lead to a unique value for these parameters in order to match experimental velocity distributions 

and friction factors at any roughness Reynolds number. Even though the current empirical relation for the 

mean vortex wavelength might be modified for hydraulically smooth-wall flows, the complete model 

should converge to the current empirical function for fully rough pipe flow. The Wilcox 1998 and 2006 
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models predict the velocity distribution and friction factors fairly accurately for smooth-wall pipe flow. The 

resulting mean-vortex-wavelength function from Wilcox’s model might be calculated. A function could be 

fit to this mean vortex wavelength and could be a starting point for developing an expression similar to the 

one currently used for fully rough pipe flow.  

 Once a robust model for flow in a pipe has been developed, a transport equation for the second 

turbulent variable might be developed. The present model, if extended to hydraulically smooth walls, could 

serve as a reference when developing a transport equation for the second turbulent variable. The vorticity is 

a transportable property and might be used as the second turbulent variable. This approach of deriving a 

transport equation for the second turbulent variable and comparing the results to the actual 1-D pipe flow 

model might lead to a more robust and accurate model. Deriving a transport equation would be one way to 

extend the model to 2- and 3-D flows. 



163 
 

 

REFERENCES 

[1] Euler, L., “Principes Généraux de l’Etat d’Equilibre des Fluides,” Mémoire de l’Académie des Sciences 
de Berlin, Vol. 11, 1757, pp. 217–273. 

 
[2] Navier, C. L. M. H., “Mémoire sur les Lois du Mouvement des Fluides,” Mémoire de l’Académie 

Royales des Sciences, Paris, Vol. 6, 1823, pp. 389–416. 
 
[3] Stokes, G. G., “On the Theories of Internal Friction of Fluids in Motion,” Transactions of the Cambridge 

Philosophical Society, Vol. 8, 1845, pp. 287–305. 
 
[4] Reynolds, O., “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the 

Criterion,” Philosophical transactions of the Royal Society of London, Series A, Vol. 186, No. 4, 1895, 
pp. 123. 

 
[5] Prandtl, L., “Über die ausgebildete Turbulenz,” Zeitschrift für Angewandte Mathematik und Mechanik, 

Vol. 5, 1925, pp. 136–139. 
 
[6] Boussinesq, J., “Essai sur la théorie des eaux courantes,” Mémoire présentés par divers savants à 

l'Académie des Sciences XXIII, 1, 1877, pp. 1-680. 
 
[7] Taylor, G. I., “The Spectrum of Turbulence,” Proceedings of the Royal Society of London, Series A, Vol. 

164, 1938, pp. 476–490. 
 
[8] Kolmogorov, A. N., “Equations of Turbulent Motion of an Incompressible Fluid,” Izvestia Academy of 

Sciences, USSR; Physics, Vol. 6, Nos. 1 and 2, 1942, pp. 56–58. 
 
[9] Kraichnan, R., “Higher Order Interactions in Homogeneous Turbulence Theory,” Physics of Fluids, Vol. 

1, 1958, pp. 358. 
 
[10] Prandtl, L., “Über ein neues Formelsystem für die ausgebildete Turbulenz,” Nachrichten Akademie der 

Wissenschaften zu Göttingen, Math-Phys. Klasse, 1945, pp. 6–19. 
 
[11] Launder, B. E., Morse, A., Rodi, W., and Spalding, D. B., “Prediction of Free Shear Flows – A 

Comparison of the Performance of Six Turbulence Models,” Proceedings of NASA Conference on Free 
Turbulent Shear Flows, Langley Research Center, Hampton, VA, Vol. 1, 1972, pp. 361–426. 

 
[12] Menter, F. R., “Eddy Viscosity Transport Equations and Their Relation to the k-ε Model,” Journal of 

Fluids Engineering, Volume 119, Issue 4, 1997, pp. 876–884. 
 
[13] Wilcox, D. C., Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada CA, 

1998, pp. 103-226. 
 
[14] Wilcox D. C., “The k-ω Model,” Turbulence Modeling for CFD, Third Edition, DCW Industries, Inc., La 

Cañada, CA, 2006, pp. 124–128. 
 
[15] Menter, F. R., “Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows,” NASA TM-

103975, 1992. 
 
[16] Wilcox, D. C., “Multiscale Model for Turbulent Flows,” AIAA Journal, Vol. 26, No. 11, 1988, pp. 1311–

1320. 
 
[17] Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA 

92-439, 1992. 
 



164 
 

 

[18] Baldwin, B. S., and Barth, T. J., “A One-Equation Turbulence Transport Model for High Reynolds 
Number Wall-Bounded Flows,” NASA TM-102847, 1990. 

 
[19] Launder, B. E. and Sharma, B. I., “Application of the Energy Dissipation Model of Turbulence to the 

Calculation of Flow Near a Spinning Disc,” Letters in Heat and Mass Transfer, Vol. 1, No. 2, 1974, pp. 
131–138. 

 
[20] Speziale, C. G., Abid, R., and Anderson, E. C., “A Critical Evaluation of Two-Equation Models for Near 

Wall Turbulence,” AIAA 90-1481, 1990. 
 
[21] Wilcox D. C., “One-Equation and Two-Equation Models,” Turbulence Modeling for CFD, Third Edition, 

DCW Industries, Inc., La Cañada, California, 2006, pp. 107–238. 
 
[22] Bernard, P. S., and Wallace J. M., “Turbulent Flow Analyses,” Turbulent Flow, Wiley, New-Jersey, 

2002, pp. 14–16. 
 
[23] Moin, P., and Mahesh, K., “Direct Numerical Simulation – A Tool in Turbulence Research,” Annual 

Review of Fluid Mechanics, Vol. 30, 1998, pp. 539–578. 
 
[24] Phillips, W. F., “Turbulent Flow in Newtonian Fluids,” Aerodynamics of Flight DRAFT, Wiley, 

Hoboken, New Jersey, 2008, pp. 1–51. 
 
[25] Hamilton, W. R., “On Quaternions: Or a New System of Imaginaries in Algebra,” Philosophical 

Magazine, Vol. 25, No. 3, 1844, pp. 489–495. 

[26] Hamilton, W. R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853. 
 
[27] Hamilton, W. R., Elements of Quaternions, Longmans, Green and Co., London, 1866. 
 
[28] Boyer, C. B., and Merzback, U. C., A History of Mathematics, Second Edition, Wiley, New York, 1989, 

pp. 656–762. 
 
[29] Wilcox, D. C., “One-Equation and Two-Equation Models,” Turbulence Modeling for CFD, Third 

Edition, DCW Industries, Inc., La Cañada, California, 2006, pp. 34–38. 

[30]  Jones, W. P. and Launder, B. E., "The Prediction of Laminarization with a Two-Equation Model of 
Turbulence,” International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 301–314. 

 
[31] Emmons, H. W., “Shear Flow Turbulence,” Proceedings of the Second U. S. Congress of Applied 

Mechanics, ASME, 1954. 
 
[32] Glushko, G., “Turbulent Boundary Layer on a Flat Plate in an Incompressible Fluid,” Izvestia Akademiya 

Nauk SSSR, Mekh., No. 4, 1965, pp. 13–30. 
 
[33] Wolfshtein, M., “Convection Processes in Turbulent Impinging Jets,” Heat Transfer Section, Imperial 

College, Report SF/R/2, 1967. 
 
[34] Bradshaw, P., Ferriss, D. H., and Atwell, N. P., “Calculation of Boundary Layer Development Using the 

Turbulent Energy Equation,” Journal of Fluid Mechanics, Vol. 28, Pt. 3, 1967, pp. 593–616. 
 
[35] Nee, V. W., and Kovasznay, L. S. G., “The Calculation of the Incompressible Turbulent Boundary Layer 

by a Simple Theory,” Physics of Fluids, Vol. 12, 1968, pp. 473. 
 
[36] Sekundov, A. N., “Application of the Differential Equation for Turbulent Viscosity to the Analysis of 

Plane Non-Self-Similar Flows,” Akademiya Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, 1971, pp. 
114–127 (in Russian). 



165 
 

 

[37] Menter, F. R., “Eddy Viscosity Transport Equations and Their Relation to the k-ε Model,” Journal of 
Fluids Engineering, Volume 119, Issue 4, 1997, pp. 876–884. 

 
[38] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz,” Zeitschrift für Physik, Vol. 129, 1951, pp. 

547–572. 
 
[39] Rotta, J. C., “Über eine Methode zur Berechnung turbulenter Scherströmungen,” Aerodynamische 

Versuchanstalt Göttingen, Rep. 69 A 14, 1968. 
 
[40] Zeierman, S., and Wolfshtein, M., “Turbulent Time Scale for Turbulent Flow Calculations,” AIAA 

Journal, Vol. 24, No. 10, 1986, pp. 1606–1610. 
 
[41] Huang, P. G., Coleman, G. H., and Bradhsaw, P., “Compressible Turbulent Channel Flows: DNS Results 

and Modeling,” Journal of Fluid Mechanics, Vol. 305, 1995, pp. 185–218. 
 
[42] Taylor, G. I., “The Spectrum of Turbulence,” Proceedings of the Royale Society of London, Series A, 

Vol. 164, 1938, pp. 476-490. 
 
[43] Hinze, J. O., “Isotropic Turbulence,” Turbulence, Second Edition, McGraw-Hill, New York, 1975, pp. 

165–204. 
 
[44] Hunsaker, D. F., Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough 

Pipe Flow, PhD dissertation, Utah State University, pp. 126-154. 
 

[45] Prandtl, L. “Turbulenz und ihre entstehung,” Journal of the Aeronautical Research Insitute, Tokyo 
Imperial University, Nr . 65, 1930. 

 
[46] Nikuradse, J., “Gesetzmassigkeiten der turbulenten stromung in glatten Rohren,” VDI Forschungsheft 

Vol. 356, 1932. 
 
[47] Nikuradse, J., “Strömungsgesetze in rauhen Rohren,” VDI Forschungsheft, Vol. 361, 1933 [see also 

NACA TM-1292, 1950]. 
 
[48] Aupoix, B. and Spalart, P. R., "Extensions of the Spalart-Allmaras Turbulence Model to Account for 

Wall Roughness," International Journal of Heat and Fluid Flow, Vol. 24, 2003, pp. 454-462. 
 
[49] Hellsten, A. and Laine, S., “Extension of the k-ω SST Turbulence Model for Flow over Rough Walls,” 

AIAA Jounal, Vol. 97, No. 6, 1997, pp. 3577. 
 
[50] Launder, B. E., Reece, G. J. and Rodi, W. (1975), "Progress in the Development of a Reynolds-Stress 

Turbulent Closure," Journal of Fluid Mechanics, Vol. 68(3), pp. 537-566. 
 
[51] White, F. M., “Viscous Fluid Flow,” Viscous Fluid Flow, Third Edition, McGraw-Hill, New York, 2006, 

pp. 433–440. 
 
[52] Schlichting, H., “Rough Pipes and Equivalent Sand Roughness,” Boundary Layer Theory, Fourth 

Edition, McGraw-Hill, New York, 1960, pp. 519–527. 
 
[53] Schlichting, H., Grenzschicht-Theorie, vormals G. Braunsche Hofbuchdruckerei und Verlag Gmbh, 

Karlsruhe, Germany, 1951. 
 
[54] Robinson, D. E., Harris, J. E., and Hassan, H. A., “Unified Turbulence Closure Model for Axisymmetric 

and Planar Free Shear Flows,” AIAA Journal, Vol. 33, No. 12, 1995, pp. 2325–2331. 
 
[55] Robinson, D. E. and Hassan, H. A., “Further Development of the k-ζ (Enstrophy) Turbulence Closure 

Model,” AIAA Journal, Vol. 36, No. 10, 1998, pp. 1825–1833. 



166 
 

 

 
[56] Darcy, H., “Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux,” Mémoire de 

l’Académie des Sciences de l’Institut Impérial de France, Bd. 15, 1858, p141. 
 
[57] Blasius, H., “Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten,” Forschungsarbeiten des 

Verein Deutscher Ingenieure, No. 131, Berlin, 1913. 
 
[58] Saph, V. and Schoder, E. H., “An Experimental Study of the Resistance to the Flow of Water in Pipes,” 

Transactions of the American Society of Civil Engineers, Vol. 51, 1903, pp.  944. 
 
[59] Nusselt, W., “Heat Transfer in Pipes,” Verein Deutscher Ingenieure Forschungsheft, No. 89, Berlin, 

1910. 
 
[60] Ombeck, H., “Pressure Loss of Flowing Air in Straight Cylindrical Pipes,” Forschungsarbeiten des 

Verein Deutscher Ingenieure, Vol. 158, Berlin, 1914. 
 
[61] Stanton. T. E. and Pannell, J. R., “Similarity Motion in Relation to the Surface Friction in Fluids,” 

Proceedings of the Royal Society of London, Vol. 214, 1914, pp. 199. 
 
[62] Lees, Ch. H., “On the flow of Viscous Fluids through Smooth Circular Pipes,” Proceedings of the Royal 

Society of London, Vol. 91, 1915, pp. 46. 
 
[63] Jakob, M. and Erk, S., “The Pressure Drop in Smooth Pipes and the Coefficients of Flow of Normal 

Nozzles,” Verein Deutscher Ingenieure Forschungsheft, No. 267, 1924, Berlin. 
 
[64] Jimenez, J., “Turbulent Flow over Rough Walls,” Annual Review of Fluid Mechanics, Vol. 36, 2004, pp. 

173‒196. 
 
[65] Colebrook, C. F., “Turbulent Flow in Pipes with Particular Reference to the Transition Region Between 

the Smooth and Rough Pipe Laws,” Journal of the Institution of Civil Engineers, Vol. 11, 1939, pp. 133–
156. 

 
[66] Moody, L. F., “Friction Factors for Pipe Flow,” Transactions of the A.S.M.E., Vol. 66, 1944, pp. 671–

684. 
 
[67] Schlichting, H., “Experimentelle Untersuchungen zum Rauhigkeitsproblem,” Ingenieure von der 

Architektur, Vol. 7, 1936, pp. 1–34. 
 
[68] Perry, A. E. and Abell, C. J., “Asymptotic Similarity of Turbulence Structures in Smooth and Rough 

Pipes,” Journal of Fluid Mechanics, Vol. 79, 1977, pp. 785‒799. 
 
[69] McKeon, B. J., Li, J., Jiang, W., Morisson, J. F. and Smits, A. J., “Pitot Probe Corrections in the Fully-

Developed Turbulent Pipe Flow,” Journal of Fluid Mechanics, Vol 501, 2005, pp. 135‒147. 
 
[70] McKeon, B. J., Zaragola, M. V., and Smits, A. J., “A New Friction Factor Relationship for Fully 

Developed Pipe Flow,” Journal of Fluid Mechanics, Vol 538, 2005, pp. 429‒443. 
 
[71] Zaragola, M. V., and Smits, A. J., “Mean-Flow Scaling of Turbulent Pipe Flow.” Journal of Fluid 

Mechanics, Vol 373, pp. 33‒79. 
 
[72] Shockling, M. A., Allen, J. J., and Smits, A. J., “Roughness Effects in Turbulent Pipe Flow,” Journal of 

Fluid Mechanics, Vol. 564, 2006, pp. 267–285. 
 
[73] Ligrani, P. M. and Moffat, R. J., “Structure of Transitionally Rough and Fully Rough Turbulent 

Boundary Layers,” Journal of Fluid Mechanics, Vol. 162, 1986, pp. 62‒98. 
 



167 
 

 

[74] Perry, A. E., Hafez, S., and Chong, M. S., “A Theorical and Experimental Study of Wall Turbulence,” 
Journal of Fluid Mechanics, Vol 165, 2001, pp. 395‒401. 

 
[75] Hama, F. R., “Boundary layer characteristics for smooth and rough surfaces,” Transactions of the Society 

of Naval Arcitects and Marine Engineers, Vol. 62, 1954, pp. 333‒358. 
 
[76] Van Driest, E. R., “On Turbulent Flow Near a Wall,” Journal of Aerospace Sciences, Vol. 23, 1956, pp. 

1007–1011. 
 
[77] Von Kármán, “Mechanische Ähnlichkeit und Turbulenz,” Nachrichten von der Gesellschaft der 

Wissenschaften zu Göttingen, Fachgruppe Vol. 5, 1930, pp. 58–76. 
 
[78] Anderson, P. S., Kays, W. M., and Moffat, R. J., “Experimental Results for the Transpired Turbulent 

Boundary Layer in an Adverse Pressure Gradient,” Journal of Fluid Mechanics, Vol. 69, 1975, pp. 353–
375. 

 
[79] Reichardt, H., “Die Grundlagen des turbulenten Wärmeüberganges,” Architektur von der Gesellschaft 

Wärmetechnik 2, 1951, pp. 129–142. 
 
[80] Reichardt, H., Zeitschrift fur angewandte Mathematik and Mechanik, Vol. 20, No. 6, December 1940. 
 
[81] Broyden, C. G., “The Convergence of a Class of Double-rank Minimization Algorithms,” Journal of the 

Institute of Mathematics and Its Applications, Vol. 6, 1970, pp. 76–90. 
 
[82] Fletcher, R., “A New Approach to Variable Metric Algorithms,” The Computer Journal, Vol. 13, 1970, 

pp. 317–322. 
 
[83] Goldfarb, D., “A Family of Variable Metric Methods Derived by Variational Means,” Mathematics of 

Computation, Vol. 24, 1970, pp. 23–16. 
 
[84] Shanno, D. F., “Conditioning of Quasi-Newton Methods for Function Minimization,” Mathematics of 

Computation, Vol. 24, 1970, pp. 647–656. 
 
[85] Hunsaker, D. F., Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough 

Pipe Flow, PhD dissertation, Utah State University, pp. 155-192. 
 
[86] Kays, W. M. and Crawford, M. E., “Momentum Transfer: Turbulent Flow in Tubes,” Convective Heat 

and Mass Transfer, Third Edition, McGraw-Hill, 1993, pp. 244–254. 
 
[87] Saffman, P. G., “A Model for Inhomogeneous Turbulent Flow,” Proceedings of the Royal Society of 

London, Series A, Vol. 317, 1970, pp. 417–433. 
 
[88] Wilcox, D. C., “Reassessment of the Scale Determining Equation for Advanced Turbulence Models,” 

AIAA Journal, Vol. 26, No. 11, 1988, pp. 1299–1310. 
 
[89] Peng, S. H., Davidson, L., and Holmberg, S., “A Modified Low-Reynolds Number k-ω Model for 

Recirculating Flows,” Journal of Fluids Engineering, Vol. 119, 1997, pp. 867–875. 
 
[90] Kok, J. C., “Resolving the Dependence on Freestream Values for the k-ω Turbulence Model,” AIAA 

Journal, Vol. 38, No. 7, 2000, pp. 1292–1295. 
 
[91] Hellsten, A., “New Advanced k-ω Turbulence Model for High-Lift Aerodynamics,” AIAA Journal, Vol. 

43, No. 9, 2005, pp. 1857–1869. 
 
[92] Fluent 6.3, “Standard k-ω Model,” FLUENT 6.3 User’s Guide, Fluent Inc., Lebanon, NH, Sept. 2006, pp. 

12-26–12-31. 



168 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
APPENDICES



169 
 

 

APPENDIX A 

MATHEMATICAL IDENTITIES 

I. Vector Identities 

 )()()( UVVUUV ⋅∇+∇⋅=⋅∇  (A.1) 
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II. Mathematical Operations 
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III. Flowfield Properties 
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IV. Ensemble Averaging Identities 
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V. Flowfield Tensors 

The strain-rate tensor is given by 
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The Jacobian tensor of a vector field is 
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The rotation tensor is 
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APPENDIX B  

EXPERIMENTAL DATA 

I. Nikuradse Experimental Rough Flow Data 

Nikuradse [47] studied the effect of coarse and fine pipe roughness over a wide range of Reynolds 

numbers in view of determining the laws governing the friction factor and the velocity profiles. 

Experimental data were obtained at six different degrees of relative roughness with Reynolds numbers 

ranging from 410Re =  to 610 . Nikuradse measured the pressure drop and the velocity distribution by 

means of pitot tubes. The experiments were conducted on three brass pipes of circular cross-section having 

different diameters. Uniform grain sizes were used to produce a uniform roughness throughout the pipe. 

The derivative dydu/  was obtained graphically from the velocity distribution and was tabulated by 

Nikuradse [47]. 

1. Friction Factor Data 

Table B.1 Nikuradse’s friction factor data [47] for a range of roughness Reynolds number 

507/ =skR  
( )Relog  4.114 4.230 4.322 4.362 4.362 4.462 4.491 4.532 4.568 4.591 4.623 
( )fC4100log ×   0.456 0.438 0.417 0.407 0.403 0.381 0.38 0.366 0.365 0.356 0.347 
( )Relog  4.672 4.69 4.716 4.763 4.806 4.851 4.898 4.94 4.973 5.009 5.025 
( )fC4100log ×  0.333 0.324 0.320 0.307 0.303 0.292 0.286 0.278 0.274 0.274 0.272 
( )Relog  5.049 5.100 5.143 5.199 5.236 5.27 5.281 5.303 5.326 5.377 5.40 
( )fC4100log ×  0.270 0.262 0.26 0.255 0.253 0.255 0.253 0.250 0.252 0.255 0.253 
( )Relog  5.493 5.534 5.574 5.608 5.63 5.668 5.709 5.756 5.792 5.833 5.940 
( )fC4100log ×  0.258 0.26 0.262 0.290 0.272 0.272 0.272 0.278 0.279 0.283 0.286 
( )Relog  5.965 5.929 5.954 5.987 
( )fC4100log ×  0.288 0.289 0.288 0.286 

 

 

252/ =skR  
( )Relog  4.210 4.279 4.465 4.507 4.549 4.597 4.644 4.778 4.820 
( )fC4100log ×  0.4506 0.4349 0.3808 0.3636 0.3579 0.3562 0.3434 0.3257 0.3282 
( )Relog  4.916 4.987 5.057 5.100 5.173 5.210 5.283 5.366 5.494 
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( )fC4100log ×  0.3222 0.3197 0.321 0.3228 0.3197 0.3276 0.3322 0.3416 0.3504 
( )Relog  5.580 5.623 5.702 4.708 5.305 5.544 5.787 4.748 4.869 
( )fC4100log ×  0.3562 0.3602 0.3636 0.3371 0.3328 0.3562 0.3661 0.3335 0.3228 
( )Relog  4.954 5.134 5.255 5.415 5.580 5.748 5.845 5.881 5.924 
( )fC4100log ×  0.321 0.321 0.3294 0.3434 0.3551 0.3608 0.3666 0.3688 0.3727 
( )Relog  5.967 5.991 
( )fC4100log ×  0.3705 0.3716 

 

126/ =skR  
( )Relog  3.630 3.675 3.715 3.760 3.810 3.833 3.895 3.925 3.950 3.965 
( )fC4100log ×  0.594 0.588 0.576 0.566 0.552 0.564 0.532 0.515 0.503 0.498 
( )Relog  4.015 4.111 4.196 4.265 4.330 4.386 4.425 4.470 4.496 4.511 
( )fC4100log ×  0.491 0.471 0.451 0.435 0.424 0.415 0.412 0.400 0.396 0.400 
( )Relog  4.550 4.620 4.697 4.76 4.820 4.910 4.985 5.057 5.121 5.164 
( )fC4100log ×  0.393 0.392 0.391 0.400 0.403 0.408 0.414 0.422 0.424 0.430 
( )Relog  5.591 5.616 5.655 5.675 5.708 5.736 5.756 5.775 5.798 5.831 
( )fC4100log ×  0.450 0.453 0.447 0.450 0.445 0.452 0.445 0.445 0.450 0.45 
( )Relog  5.835 5.874 5.894 5.935 5.961 5.97 5.987 4.950 5.049 5.021 
( )fC4100log ×  0.446 0.450 0.447 0.450 0.444 0.449 0.447 0.430 0.432 0.415 
( )Relog  5.10 5.130 5.179 5.196 5.225 5.225 5.250 5.274 5.290 5.310 
( )fC4100log ×  0.422 0.422 0.430 0.430 0.435 0.430 0.436 0.438 0.438 0.436 
( )Relog  5.330 5.350 5.366 5.393 5.423 5.432 5.455 5.476 5.501 5.525 
( )fC4100log ×  0.439 0.439 0.444 0.444 0.446 0.447 0.450 0.452 0.447 0.447 
( )Relog  5.560 
( )fC4100log ×  0.450 

 

60/ =skR  
( )Relog  3.653 3.700 3.740 3.785 3.851 3.869 3.909 3.849 3.996 4.057 
( )fC4100log ×  0.593 0.571 0.571 0.56 0.544 0.531 0.512 0.512 0.507 0.494 
( )Relog  4.090 4.161 4.236 4.290 4.391 4.412 4.512 4.54 4.553 4.580 
( )fC4100log ×  0.490 0.494 0.487 0.487 0.401 0.489 0.49 0.487 0.498 0.493 
( )Relog  4.609 4.694 4.665 4.699 4.740 4.769 4.813 4.849 4.93 4.954 
( )fC4100log ×  0.507 0.504 0.507 0.509 0.519 0.52 0.528 0.526 0.543 0.534 
( )Relog  5.034 5.155 5.083 5.185 5.231 4.875 4.924 4.954 5.052 5.033 
( )fC4100log ×  0.543 0.543 0.545 0.55 0.537 0.535 0.534 0.542 0.535 0.540 
( )Relog  5.130 5.170 5.196 5.23 5.258 5.283 5.312 5.35 5.408 5.47 
( )fC4100log ×  0.545 0.550 0.547 0.568 0.551 0.555 0.551 0.555 0.550 0.555 
( )Relog  5.497 5.515 5.549 5.554 5.750 5.600 5.621 5.625 5.641 5.655 
( )fC4100log ×  0.543 0.551 0.55 0.558 0.551 0.550 0.560 0.543 0.543 0.550 
( )Relog  5.659 5.668 5.691 5.714 5.748 5.757 5.789 5.836 5.865 5.914 
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( )fC4100log ×  0.551 0.56 0.553 0.551 0.558 0.550 0.551 0.547 0.555 0.553 
( )Relog  5.916 5.945 5.962 
( )fC4100log ×  0.550 0.551 0.555 

 

6.30/ =skR  
( )Relog  3.672 3.708 3.748 3.763 3.785 3.826 3.869 3.881 3.929 3.935 
( )fC4100log ×  0.592 0.59 0.592 0.597 0.583 0.585 0.596 0.578 0.578 0.583 
( )Relog  3.978 4.009 4.049 4.079 4.124 4.130 4.390 4.270 4.290 4.309 
( )fC4100log ×  0.578 0.585 0.583 0.592 0.59 0.599 0.599 0.609 0.618 0.612 
( )Relog  4.584 4.653 4.799 4.900 4.965 5.029 5.068 5.134 5.176 4.425 
( )fC4100log ×  0.639 0.644 0.647 0.656 0.656 0.652 0.650 0.650 0.650 0.637 
( )Relog  4.44 4.56 4.636 4.740 4.830 4.855 4.990 5.100 5.240 5.275 
( )fC4100log ×  0.63 0.637 0.647 0.654 0.654 0.661 0.657 0.652 0.657 0.657 
( )Relog  5.323 5.473 5.655 
( )fC4100log ×  0.647 0.657 0.652 

 

15/ =skR
( )Relog  3.770 3.820 3.855 3.905 3.955 4.000 4.041 4.076 4.079 4.114 
( )fC4100log ×  0.696 0.699 0.707 0.712 0.717 0.730 0.734 0.736 0.744 0.751 
( )Relog  4.133 4.179 4.196 4.270 4.290 4.314 4.34 4.366 4.386 4.410 
( )fC4100log ×  0.740 0.744 0.754 0.76 0.756 0.769 0.763 0.778 0.772 0.772 
( )Relog  4.425 4.466 4.520 4.590 4.630 4.725 4.811 4.865 4.885 4.965 
( )fC4100log ×  0.782 0.785 0.78 0.781 0.777 0.78 0.781 0.777 0.776 0.779 
( )Relog  5.000 5.042 5.098 5.155 5.179 5.285 4.440 4.500 4.540 4.596 
( )fC4100log ×  0.781 0.780 0.781 0.776 0.781 0.779 0.775 0.777 0.778 0.780 
( )Relog  4.685 4.722 4.845 4.869 4.929 4.949 5.002 5.005 5.097 5.139 
( )fC4100log ×  0.781 0.777 0.775 0.778 0.780 0.779 0.777 0.775 0.778 0.783 
( )Relog  5.156 5.220 5.236 5.310 5.360 5.410 5.446 5.455 5.515 5.567 
( )fC4100log ×  0.784 0.777 0.780 0.778 0.775 0.780 0.780 0.777 0.781 0.778 
( )Relog  5.613 5.690 5.834 5.882 5.959 6.008 5.793 5.857 5.93 5.987 
( )fC4100log ×  0.780 0.784 0.781 0.777 0.778 0.780 0.780 0.777 0.778 0.780 

 

B. Velocity Profile Data 

Table B.2 Nikuradse’s velocity profile data 

skR /  15 15 15 15 30.6 30.6 30.6 30.6 
(cm)  D  4.82 2.412 2.412 2.412 9.64 4.87 4.87 2.434 
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bulkV  873 956 524 215 734 796 420 459 
ν  0.0098 0.0117 0.0117 0.0121 0.0111 0.01046 0.0105 0.0107 
Re  430,000 197,000 108,000 43,000 638,000 372,000 195,000 104,000 
τu  76.1 85 46.6 18.87 55.7 60 31.9 34.8 
+
sk  1230 579 319 124 805 458 245 130 

Ry /  zV  

0.00 0 0 0 0 0 0 0 0 
0.02 450 532 270 107 430 461 215 258 
0.04 549 628 320 136 500 535 270 328 
0.07 643 710 367 158 570 610 325 367 
0.10 702 767 406 174 616 660 351 395 
0.15 773 846 456 191 670 718 380 424 
0.20 830 910 492 206 715 766 404 447 
0.30 917 1006 545 228 777 833 440 484 
0.40 978 1080 585 243 819 880 467 509 
0.50 1027 1143 617 253 853 918 489 531 
0.60 1070 1195 647 263 881 950 507 551 
0.70 1107 1237 660 271 904 976 519 568 
0.80 1137 1267 689 277 925 994 530 580 
0.90 1162 1290 701 283 940 1008 539 587 
0.96 1172 1296 704 285 948 1016 541 590 
0.98 1174 1298 706 286 951 1017 542 591 
1.00 1176 1300 707 286.5 952 1018 543 592 

 

 

skR /  60 60 60 126 126 126 
(cm)  D  9.8 9.8 9.8 9.92 9.92 9.92 

bulkV  774 514 309 820 575 374 
ν  0.0112 0.0115 0.0112 0.0085 0.0089 0.0089 
Re  677,000 438,000 271,000 960,000 640,000 417,000 
τu  51.9 34.4 20.72 49 34.3 22.28 
+
sk  370 239 146 230 154 100 

Ry /  zV  

0.00 0 0 0 0 0 0 
0.02 475 316 193 557 383 250 
0.04 557 370 224 619 436 284 
0.07 624 411 245 676 476 312 
0.10 666 442 266 718 506 331 
0.15 714 474 286 760 536 350 
0.20 753 500 300 798 564 366 
0.30 800.5 536 323 852 597 390 
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0.40 848 562 338 887 619 407 
0.50 879 582 353 916 640 419 
0.60 904 600 362 939 657 431 
0.70 925 616 370 959 667 439 
0.80 941 628 378 979 678 448 
0.90 955 636 384 988 690 453 
0.96 962 640 387 994 696 456 
0.98 964 641.4 387.5 996 698 457 
1.00 966 642 388 998 701 458 
 

Table B.3 Nikuradse’s velocity gradient profile data  

skR /  15 30.6 60 
(cm)  D  4.82 9.64 9.8 

bulkV  873 734 774 
ν  0.0098 0.0111 0.0112 
Re  430,000 638,000 677,000 
τu  76.1 55.7 51.9 
+
sk  1230 805 370 

Ry /  u  dyVd z /  u  dyVd z /  u  dyVd z /  

0 0 0 0 
0.02 450 3850 430 1444 475 1240 
0.04 549 1985 500 728 557 640 
0.07 643 1140 570 419 624 373 
0.1 702 830 616 302 666 268 
0.15 773 578 670 209 714 189 
0.2 830 457 715 162 753 146 
0.3 917 321 777 115 800.5 105 
0.4 978 246 819 88 848 80 
0.5 1027 201 853 72 879 65 
0.6 1070 166 881 59 904 54 
0.7 1107 136 904 49 925 43 
0.8 1137 108 925 39 941 35 
0.9 1162 74 940 26 955 24 
0.96 1172 47 948 16.5 962 15 
0.98 1174 33 951 11.7 964 10.7 
1 1176 952 966 
 

skR /  126 252 507 
(cm)  D  9.92 4.924 9.94 
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bulkV  820 1127 838 
ν  0.0085 0.89 0.86 
Re  960,000 624 970 
τu  49 61 41.7 
+
sk  230 70 49 

Ry /  u  dyVd z /  u  dyVd z /  u  dyVd z /  

0 0 0 0 
0.02 557 1670 532 2954 608 1022 
0.04 619 616 794 1526 670 526 
0.07 676 380 875 895 725 309 
0.1 718 262 951 643 761 222 
0.15 760 181 1000 443 803 153 
0.2 798 138 1062 346 832 119 
0.3 852 96 1107 247 874 84 
0.4 887 74 1178 188 912 64 
0.5 916 60 1225 154 940 52.5 
0.6 939 50 1266 127 960 43.6 
0.7 959 41 1303 104 978 35.5 
0.8 979 31 1350 83 992 28.4 
0.9 988 22.5 1366 56 1003 19.2 
0.96 994 14.2 1369 35 1008 12 
0.98 996 10 1372 25 1010 8.7 
1 998 1373 1011 
 

 The dimensionless velocity gradient is obtained from Nikuradse’s tabulated pipe diameter, velocity 

gradient and shear velocity 

 

τu
D

dy
Vd

yd
du z 2/

ˆ
=

+

 (B.1) 

Prandtl’s mixing-length theory states that 

 

dy
Vd

dy
Vd zz2l=

ρ
τ

 (B.2) 

The mixing length is determined from the velocity profiles by 
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The shear stress τ  at any point is linearly related to the wall shear stress according to 
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Using Eqs. (B.1), (B.3) and (B.4), the mixing length expressed only in terms of Nikuradse’s tabulated data 

becomes 

 

τu
D

dy
Vd

R
y

z 2/

1−
=l

 

(B.5) 

Similarly, the eddy viscosity expressed only in terms of Nikuradse’s tabulated data is 
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II. Shockling Experimental Rough Flow Data 

Table B.4 Shockling [72] friction factor data 

000058.0/ =Dks  

Re  56800 68210 80680 92550 116400 150800 181100 224200 
fC4  0.02064 0.01961 0.01894 0.01836 0.0174 0.01653 0.01614 0.0155 

Re  349000 518900 586200 1079000 1556000 2016000 2535000 3138000 
fC4  0.01412 0.01318 0.01283 0.01174 0.01109 0.01084 0.01068 0.01058 

Re  4005000 5270000 6726000 7955000 9265000 11130000 13160000 16290000 
fC4  0.01058 0.01064 0.01071 0.01074 0.01077 0.01084 0.01084 0.01084 

Re  21110000 
fC4  0.01084 

APPENDIX C  
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EMPIRICAL TURBULENT EDDY VISCOSITY FUNCTION 

I. The Von Kármán Constant and the Nikuradse Number Determined from the Friction Factor 

The Von Kármán constant and the Nikuradse number are optimized by comparing the Colebrook 

equation to the friction factor obtained from the near-wall fully rough limit of the law of the wall. 

Nikuradse [47] noticed that the friction factor is independent of the Reynolds number and depends only on 

the roughness height for fully rough flow. The most widely accepted form of the Nikuradse equation is 
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Equation (C.1) can be rewritten in terms of the pipe radius R  in place of the pipe diameter D  
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Based on Prandtl’s mixing length theory [5], the near-wall fully rough limit formulation is  

 
1=

+

+

dy
duu

ν
τ l ,       ( ) 00 ==++ yu  

(C.3) 

In the near-wall region, the results obtained by Nikuradse for the fully rough limit are in excellent 

agreement with the empirical correlation 

 ( )sky  γκ +=l  
(C.4) 

Substituting Eq. (C.3) into Eq. (C.4) and integrating the result yields the fully rough near-wall expression 

for the dimensionless velocity 
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The wall-scaled dimensionless velocity +u  may be rewritten in terms of the relative dimensionless velocity 

++≡ muuu /ˆ  . Adding a function δ  to satisfy the symmetry boundary condition at the pipe centerline and to 

provide better agreement with Nikuradse’s velocity profile data yields 
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In terms of the wall-scaled variable +u , this last equation may be rewritten as 
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The Darcy friction factor corresponding to this fully rough velocity profile is 
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 An optimization program is run to estimate the Von Kármán constant κ  and the Nikuradse number γ  

by minimizing the difference between Eq. (C.1) and (C.8) over a range of roughness ratio skR / . This 

optimization code was developed by Hunsaker [85] and is derived from a BFGS method, named after the 

work of Broyden [81], Fletcher [81], Goldfarb [81] and Shanno [81] who each derived the same method 

independently in the same year. Nikuradse provides experimental data for the following six roughness ratio 

values [ ]507  ;  252  ;  126  ;  60  ;  6.30  ;  15/ =skR . This same range was used during the optimization. The 

scalar to minimize is defined as the root mean square of the difference between the Darcy friction factors 

obtained from Eqs. (C.1) and (C.8). 
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This gave the following values for the Von Kármán constant κ  and the Nikuradse number γ   

 
862811980.03234777
49222970.40312017

=
=

γ
κ

 (C.10) 

The residual defined in Eq. (B.9) that minimizes the differences between Eq.  (C.1) and Eq. (C.8) over the 

discrete range [ ]507  ;  252  ;  126  ;  60  ;  6.30  ;  15/ =skR  is found to be 0.0000410661935. However when 

only 3 significant digits are used for κ  and γ , the minimum yields the following constants  

 
0.0324
0.403

=
=

γ
κ

 (C.11) 

For 0.403=κ  and 0.0324=γ , the residual defined in Eq. (C.9) is 0.0000412132063896745. For 

0.403=κ  and 0.0323=γ , the residual defined in Eq. (C.9) is 0.000059565297143975. Therefore, 

truncated to 3 significant digits, the values for κ  and γ  that minimize the difference between the friction 

factors obtained from the Nikuradse equation given in Eq. (C.1) and from that given in Eq. (C.8) based on 

the fully rough mixing-length theory are 0.403=κ  and 0.0324=γ . 

II. Deviation Between the Near-wall Fully Rough Limit and Nikuradse’s Experimental Data 

The function δ  represents a velocity deviation added to the near-wall fully rough limit in order to 

match Nikuradse’s experimental data [47] better. It satisfies the symmetry boundary condition at the 

centerline and obtains a friction factor that correlates to the Colebrook equation in the fully rough limit. 

The near-wall fully rough limit velocity is based on an empirical correlation derived from Prandtl’s mixing 

length 
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The nondimensional bulk velocity is obtained by integrating Eq. (C.12) 
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The Von Kármán constant κ  and the Nikuradse number γ  used in Eq. (C.12) that minimize the difference 

in the friction factor obtained from the Colebrook equation and that based on Eq. (C.13) are given in  

Eq. (C.11). 

Although based on careful measurements, it was found that Nikuradse’s tabulated results present some 

slight inconsistencies in the bulk velocity that had to be corrected in order to determine the deviation 

between the experimental results and the near-wall fully rough limit .Although Nikuradse does provide the 

value of the bulk velocity for each of his experiments exp
bulku , this value is not used in the calculation of the 

function δ  but is instead calculated calc
bulku  based on a trapezoidal integration of the experimental data. Table 

C.1 presents the deviations between Nikuradse’s experimental velocities and the velocities obtained from 

the near-wall fully rough limit at a roughness ratio R/ks=15. Table C.1 is based on the constants 0.403=κ  

and 0.0324=γ . The dimensional velocity  expu  refers to the dimensional experimental velocity tabulated 

by Nikuradse. The column  
F.R.
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+

mu
u

 refers to the near-wall fully rough limit and is the ratio of Eq. (C.12) 

with Eq. (C.13). The function δ  is defined as the difference between the nondimensional experimental 

velocities and the nondimensional near-wall fully rough limit velocities obtained from the ratio of Eq. 

(C.12) with Eq. (C.13). The trapezoidal numerical integrals are second-order accurate. When 1/ =Ry , the 

trapezoidal integral of 
calc
bulku

u exp
 and 

F.R.
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+

mu
u

 does not give 1.0 but 0.901106438707911. Because both 

integrands are concave down functions without inflection points, both integral are underestimated because 
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there is a systematic area unaccounted for under the curve. A correction to the trapezoidal integration of 

these concave down functions needs to be applied. The three trapezoidal integrals are all corrected by 

dividing each column by the factor: 0.901106438707911. 

Table C.1  Deviation between Nikuradse’s experimental velocities and the near-wall fully rough limit 

skR / 15 
(cm)  D 4.82 

exp
bulku 873 
calc
bulku 871.2296 

ν 0.0098 
Re 430000 
τu 76.1 
+
sk 1230.26910 9.3 =
+
bulku  from Eq. (C.13) 11.57369 

 

r
R
y ˆ1−=

 
expu  
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bulku

u exp
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0.10 702 0.805758 0.826816 -0.02106 
0.15 773 0.887252 0.912231 -0.02498 
0.20 830 0.952677 0.973147 -0.02047 
0.30 917 1.052535 1.059314 -0.00678 
0.40 978 1.122551 1.120609 0.001942 
0.50 1027 1.178794 1.16822 0.010573 
0.60 1070 1.228149 1.207156 0.020993 
0.70 1107 1.270618 1.240096 0.030522 
0.80 1137 1.305052 1.268643 0.036409 
0.90 1162 1.333747 1.293831 0.039916 
0.96 1172 1.345225 1.307636 0.037589 
0.98 1174 1.347521 1.312047 0.035474 
1.00 1176 1.349816 1.316369 0.033447 

 

Trapezoidal Numerical Integrals 

r
R
y ˆ1−=

 
∫
=

ir

r

rdru
ˆ

0ˆ

exp ˆˆ2 ∫
=

ir

r
calc
bulk

rdr
u
u

ˆ

0ˆ

exp
ˆˆ2 ∫

=
+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ir

r m
rdr

u
u

ˆ

0ˆ F.R.

ˆˆ2
 

0.10 18.95400 0.021755 0.022324 
0.15 83.39650 0.095723 0.098301 
0.20 149.4490 0.171538 0.175996 
0.30 280.0390 0.321430 0.328000 
0.40 402.9090 0.462460 0.469389 
0.50 512.9390 0.588753 0.595036 
0.60 607.0890 0.696819 0.701733 
0.70 683.0990 0.784063 0.787222 
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0.80 739.0490 0.848283 0.849798 
0.90 773.4090 0.887721 0.888109 
0.96 783.1938 0.898952 0.899011 
0.98 784.6010 0.900567 0.900582 
1.00 785.0706 0.901106 0.901106 

 

Corrected Numerical Integrals 
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corrected 
0.10 21.03414 0.024143 0.024774 
0.15 92.54900 0.106228 0.109089 
0.20 165.8506 0.190364 0.195311 
0.30 310.7724 0.356705 0.363997 
0.40 447.127 0.513214 0.520902 
0.50 569.2324 0.653367 0.660339 
0.60 673.7151 0.773292 0.778746 
0.70 758.0669 0.870112 0.873618 
0.80 820.1573 0.941379 0.943061 
0.90 858.2882 0.985146 0.985577 
0.96 869.1468 0.997609 0.997674 
0.98 870.7085 0.999402 0.999418 
1.00 871.2296 1.000000 1.000000 

 

Nikuradse’s experimental velocities [47] for fully rough flow defined as 100≥+
sk  are given in Table 

C.2 along with the deviation from the near-wall fully rough limit velocities. The limit 100≥+
sk  

corresponds to the ratio of the turbulent eddy viscosity and molecular viscosity greater than 1.  

Table C.2  Deviation between Nikuradse’s experimental velocities and the near-wall fully rough limit 

skR /  15 15 15 15 
(cm)  D  4.82 2.412 2.412 2.412 

exp
bulku  873 956 524 215 
calc
bulku  871.2295976 962.5939431 519.5674783 215.1930024 

ν  0.0098 0.0117 0.0117 0.0121 
Re  430000 197000 108000 43000 
τu  76.1 85 46.6 18.87 
+
sk  1230.268771 579.4286964 319.1537855 124.4514612 

y/R expu  Deviation δ  expu Deviation δ  expu Deviation δ  expu  Deviation δ  
0.10 702 -0.021058 767 -0.03001 406 -0.0454 174 -0.01824 
0.15 773 -0.024979 846 -0.03336 456 -0.03458 191 -0.02466 
0.20 830 -0.020471 910 -0.02779 492 -0.02621 206 -0.01587 
0.30 917 -0.006778 1006 -0.01422 545 -0.01036 228 0.0002 
0.40 978 0.001942 1080 0.001359 585 0.005327 243 0.00861 
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0.50 1027 0.010573 1143 0.019196 617 0.019306 253 0.007468 
0.60 1070 0.020993 1195 0.034281 647 0.03811 263 0.015002 
0.70 1107 0.030522 1237 0.044973 660 0.030191 271 0.019238 
0.80 1137 0.036409 1267 0.047592 689 0.05746 277 0.018574 
0.90 1162 0.039916 1290 0.046298 701 0.055368 283 0.021267 
0.96 1172 0.037589 1296 0.038726 704 0.047337 285 0.016756 
0.98 1174 0.035474 1298 0.036393 706 0.046776 286 0.016993 
1.00 1176 0.033447 1300 0.034149 707 0.044378 286.5 0.014994 
 

skR /  30.6 30.6 30.6 30.6 
(cm)  D  9.64 4.87 4.87 2.434 

exp
bulku   734 796 420 459 
calc
bulku   738.29902 793.09555 420.9104 462.178 

ν  0.0111 0.01046 0.0105 0.0107 
Re  638000 372000 195000 104000 
τu  55.7 60 31.9 34.8 
+
sk  805.37844 458.14189 244.9063 130.017 

y/R expu Deviation δ  expu Deviation δ  expu Deviation δ  expu  Deviation δ  
0.10 616 -0.015314 660 -0.01748 351 -0.01576 395 0.004985 
0.15 670 -0.017095 718 -0.01927 380 -0.02178 424 -0.00719 
0.20 715 -0.009438 766 -0.01204 404 -0.01806 447 -0.01072 
0.30 777 -0.000708 833 -0.00281 440 -0.00777 484 -0.00591 
0.40 819 0.002722 880 0.002992 467 0.002916 509 -0.00528 
0.50 853 0.007281 918 0.009412 489 0.01369 531 0.000831 
0.60 881 0.011289 950 0.015844 507 0.022538 551 0.010187 
0.70 904 0.013757 976 0.019941 519 0.022362 568 0.018284 
0.80 925 0.017347 994 0.017784 530 0.023642 580 0.019394 
0.90 940 0.015737 1008 0.01351 539 0.023098 587 0.012614 
0.96 948 0.014558 1016 0.011581 541 0.015834 590 0.007089 
0.98 951 0.014782 1017 0.009003 542 0.014371 591 0.005414 
1.00 952 0.012375 1018 0.006502 543 0.012985 592 0.003816 
 

skR /  60 60 60 
(cm)  D  9.8 9.8 9.8 

exp
bulku  774 514 309 
calc
bulku  771.5091217 512.9097565 309.0379227 

ν  0.0112 0.0115 0.0112 
Re  677000 438000 271000 
τu  51.9 34.4 20.72 
+
sk  369.8281798 238.7811283 145.881426 

y/R expu  Deviation δ  expu Deviation δ  expu  Deviation δ  
0.10 666 -0.00325 442 -0.00474 266 -0.00576 
0.15 714 -0.00795 474 -0.00927 286 -0.00796 
0.20 753 -0.00495 500 -0.00613 300 -0.0102 
0.30 800.5 -0.01045 536 -0.00301 323 -0.00285 
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0.40 848 0.003501 562 6.56E-05 338 -0.00193 
0.50 879 0.006734 582 0.002111 353 0.009663 
0.60 904 0.008942 600 0.007009 362 0.00859 
0.70 925 0.010628 616 0.01267 370 0.008943 
0.80 941 0.009245 628 0.013945 378 0.012709 
0.90 955 0.007878 636 0.010028 384 0.01261 
0.96 962 0.006258 640 0.007134 387 0.011624 
0.98 964 0.005434 641.4 0.006447 387.5 0.009826 
1.00 966 0.004679 642 0.004269 388 0.008097 
 

skR /  126 126 126 
(cm)  D  9.92 9.92 9.92 

exp
bulku  820 575 374 
calc
bulku  816.4728933 571.950574 374.448781 

ν  0.0085 0.0089 0.0089 
Re  960000 640000 417000 
τu  49 34.3 22.28 
+
sk  229.6148648 154.1700453 100 

y/R expu  Deviation δ  expu Deviation δ  expu  Deviation δ  
0.10 718 -0.00181 506 0.003488 331 0.002763 
0.15 760 -0.01013 536 -0.00382 350 -0.00626 
0.20 798 -0.00602 564 0.002702 366 -0.00596 
0.30 852 0.000289 597 0.000572 390 -0.00169 
0.40 887 0.000695 619 -0.00342 407 0.001246 
0.50 916 0.003273 640 0.000352 419 0.000352 
0.60 939 0.004525 657 0.003157 431 0.005481 
0.70 959 0.00626 667 -0.00212 439 0.004086 
0.80 979 0.011039 678 -0.0026 448 0.008404 
0.90 988 0.00467 690 0.000985 453 0.004365 
0.96 994 0.002488 696 0.001945 456 0.002847 
0.98 996 0.001893 698 0.002397 457 0.002473 
1.00 998 0.001359 701 0.004659 458 0.00216 
 

 The δ function is represented using a seventh-order polynomial function whose coefficients were 

selected based on mathematical and physical constraints and in order to match Nikuradse experimental data 

for fully rough flow.  The three coefficients 0C , 1ˆ
ˆ

=ytν  and 7C  are not based on mathematical or physical 

constraints and were tuned to provide the best visual fit for the δ  function through the discretized deviation 

given in Table C.2. Only the points close to the centerline ( 5.0/ ≥Ry ) were taken into consideration. The 

closure coefficients were found to be 
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Figure C.1 shows the deviation between Nikuradse’s experimental velocities and the near-wall fully rough 

velocity at different roughness ratios and also displays the δ function. It can be seen that the δ function is 

within the experimental scatter. The δ function is defined as 
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210 ˆˆˆˆˆˆˆ rCrCrCrCrCrCrCC +++++++=δ   (C.15) 
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Fig. C.1 Experimental deviation between Nikuradse’s velocities and the near-wall fully rough 

velocity along with the δ function at different roughness ratio. 
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III. Turbulent Eddy Viscosity Empirical Function  

A δ function is added to the near-wall fully rough velocity correlation in order to match Nikuradse’s 

experimental data, satisfy the symmetry boundary condition and provide a friction factor, which 

corresponds to the Colebrook fully rough limit. The near-wall fully rough velocity equation yields a friction 

factor that matches the experimental pressure drop observed relatively well. However, this velocity 

equation does not satisfy the centerline symmetry boundary condition. A function δ  is added to the near-

wall fully rough limit equation such that the bulk velocity is conserved and the velocity distribution is 

slightly modified to satisfy the centerline boundary condition and match experimental data for a range of 

roughness ratio and Reynolds number corresponding to fully rough flow. A seventh-order polynomial is 

used for the δ  function, as shown in Eq. (C.15).  

The δ  function features eight coefficients that need to be evaluated. Five of them ( 1C , 3C , 4C , 5C , 6C ) 

are obtained from constraints imposed to satisfy the wall and symmetry boundary conditions, the near-wall 

fully rough limit behavior, the bulk velocity and the eddy viscosity symmetry boundary condition. The 

remaining three coefficients, not determined by mathematical or physical constraints, are 0C , 2C  and 7C . 

It is possible to express 2C  in terms of the centerline dimensionless eddy viscosity tcν̂ . Therefore, the 

three coefficients that needs to be determined based on Nikuradse’s experimental data [47] are 0C , 7C  and 

tcν̂ . 

The first coefficient evaluated based on Nikuradse experimental data is 0C . From Eq. (C.15), the 

coefficient 0C  is determined from the value of the δ  function at the centerline for which 0ˆ =r . Because 

Nikuradse’s centerline data depends on the roughness ratio Rks / , the coefficient 0C  is proposed to be  
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  (C.16) 

where the three coefficients A , B  and e  need to be evaluated. Table C.3 gives the centerline deviation δ  

between Nikuradse’s experimental data and the near-wall fully rough limit. Nikuradse’s experimental 

centerline velocities are given in Table B.2. 
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Table C.3  Centerline Deviation between the near-wall fully rough limit and Nikuradse’s 

experimental velocities. 

skR / Rks /γ δ
15.0 2.16000E-03 3.34474E-02 
15.0 2.16000E-03 3.41485E-02 
15.0 2.16000E-03 4.43782E-02 
15.0 2.16000E-03 1.49940E-02 
30.6 1.05882E-03 1.23749E-02 
30.6 1.05882E-03 6.50244E-03 
30.6 1.05882E-03 1.29853E-02 
30.6 1.05882E-03 3.81617E-03 
60.0 5.40000E-04 4.67867E-03 
60.0 5.40000E-04 4.26937E-03 
60.0 5.40000E-04 8.09654E-03 
126.0 2.57143E-04 1.35941E-03 
126.0 2.57143E-04 4.65895E-03 
126.0 2.57143E-04 2.15980E-03 

 

 

 

Fig. C.2 Nikuradse’s experimental data deviation at the pipe centerline along with the empirical 

function C0 for A = 1.2, B = 0.0 and e = 1.4. 
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Figure C.2 shows the coefficient 0C  obtained from Eq. (C.16)  having 2.1=A , 0.0=B  and 4.1=e . This 

set of coefficients fits the data points with high roughness ratio (15 and 30.6) relatively well and is in the 

range of uncertainty for the lowest Reynolds roughness ratio (60 and 126). 

The two other coefficients from the empirical δ  function given in Eq. (C.15)  that need to be 

determined from Nikuradse’s experimental data [47] are the centerline eddy viscosity tcν̂  and the 

coefficient 7C . An exhaustive search is used in place of an optimization code for the remaining two 

coefficients tcν̂  and 7C  due to the numerous local minimum present in the function minimizing the 

difference between Nikuradse’s experimental velocities and the near-wall fully rough limit velocity profile. 

The dimensionless eddy viscosity tcν̂  is discretized every 0.005 ranging from 0.03 to 0.06. For each of 

those points, the coefficient 7C  is varied from -12.0 to 2.0 with a step of 0.01. The empirical eddy viscosity 

and velocity may now be computed at each of these points. The nondimensional velocity û  is then 

compared with Nikuradse’s corrected nondimensional velocity profiles at each of the 14 cases available for 

fully rough flow (4 cases for 15/ =skR , 4 for 6.30/ =skR , 3 for 60/ =skR  and 3 for 126/ =skR ). 

These corrected velocities are given in Table C.2. A fitness function is defined to be the square of the 

difference between the corrected experimental velocities with the velocities obtained from the empirical 

eddy viscosity and discretized at the eight available experimental points located at the relative coordinate

5.0/ ≥Ry . The points closer to the wall tabulated by Nikuradse present a lot more experimental 

uncertainty and were ignored during this optimization process. For each of the discretized turbulent eddy 

viscosities tcν̂ , the value of 7C  that gives the minimum fitness is selected by fitting a parabola through 

three of the discretized 7C  points, which surround the minimum. The fitness function is then plotted 

against tcν̂ over the range 0.03 to 0.06. A fourth order function is fit through the points and features a 

systematic minimum in the neighborhood of  04.0ˆ =tcν . The coefficient 7C  is plotted as a function of the 

centerline eddy viscosity  tcν̂  and a cubic spline is fit through the data. It should be noted that the point of 

minimum fitness features several inflection points in the corresponding nondimensional turbulent eddy 

viscosity and is therefore ignored. The 7C  coefficient is increased from its minimum value so that the 

turbulent eddy viscosity features only one inflection point in the core region over the range of roughness 
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ratio [ ]12615/ −=skR  and even extended to smooth pipes featuring a roughness ratio 000,10/ =skR . 

Table C.4 gives the optimum 7C  coefficients obtained at each discretized centerline turbulent eddy 

viscosity along with its respective fitness value. 

Table C.4  Deviation function coefficients. 

A  B  e  tcν̂  7C  Fitness 
1.2 0 1.4 0.03 -11.19015 0.00920869 
1.2 0 1.4 0.035 -7.938638 0.00840393 
1.2 0 1.4 0.04 -5.500003 0.00815821 
1.2 0 1.4 0.045 -3.603288 0.00820237 
1.2 0 1.4 0.05 -2.085915 0.00838489 
1.2 0 1.4 0.055 -0.844429 0.00862570 
1.2 0 1.4 0.06 0.190144 0.00888425 
 

Figures C.3 and C.4 show the variations of the coefficients 7C  and tcν̂ given in Table C.4. Even though the 

fitness shows a minimum value at 041.0ˆ =tcν , the turbulent eddy viscosity shows several inflection points, 

as shown in Fig. C.5. The value of  tcν̂  that gives satisfactory results over the range of roughness ratios 

15/ =skR  to 126/ =skR  is 056.0ˆ =tcν . 

 
Fig. C.3 Coefficient C7 variations as a function of the centerline turbulent eddy viscosity. 

0.03 0.035 0.04 0.045 0.05 0.055 0.06
−12

−10

−8

−6

−4

−2

0

2

ν
tc

 / (uτ R)

C
7

 

 

Optimal C
7

Cubic fit



193 
 

 

 

Fig. C.4  Fitness function variations with the centerline turbulent eddy viscosity. 

 

Fig. C.5  Turbulent eddy viscosity profiles when varying the centerline turbulent eddy viscosity.  
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 This process of finding the optimum tcν̂  and 7C  coefficients, which give satisfactory results for the 

turbulent eddy viscosity was repeated over a range of A , B  and e values . Because the coefficient B , 

which gave the best fitness was quite small, the coefficient B  was set to 0. 
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APPENDIX D 

COMPUTER CODE 

I. Code to Solve the k-λ Model for Fully Rough Pipe Flow 

program main 
    use solver 
    implicit none 
    CHARACTER*(50):: filename 
    integer :: case_num,ierror,i 
    real :: case_fitness,case_fitness_Moody,fitness,weighting,fitness_uprofile,fitness_Moody 
    real :: Roverks_(8) 
 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
    call set_solver_vals() 
 
    call solver_allocate() 
    call create_grid() 
     
     
    write(*,*)Fully Rough Flow k-Lambda Model' 
 
    write(*,*) 'Roverks (',Roverks,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) Roverks    
    if( Roverks==1667) Roverks=0.5/0.0003 
    if( Roverks==8621) Roverks=0.5/0.000058 
    RoverksUser = Roverks 
     
    weighting = 0.5 
    kwall = 0.05 
    A0 = 0.0025  
    A10 = 0.012 
    A11 = 0.05 
    A12 = 0.09 
    A13 = 0.39 
    B00 = 0.0713244976729399 
    B01 = 0.25 
    B10 = 1.37 
    B11 = -14.0 
    B20 = -0.7 
    B21 = 40. 
 
!    write(*,*) 'Cnu (',Cnu ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) Cnu  
     
    write(*,*) 'sigmak (',sigmak ,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) sigmak  
     
    write(*,*) 'kwall (',kwall ,' ):' 
    read(5,'(a)') rec 
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    if(rec .ne. ' ') read(rec,*) kwall  
 
 
     
!    write(*,*) 'A0 (',A0 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) A0  
!     
!    write(*,*) 'A10 (',A10 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) A10  
! 
!    write(*,*) 'A11 (',A11 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) A11  
 
    write(*,*) 'B00 (',B00 ,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) B00  
     
!    write(*,*) 'A13 (',A13 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) A13  
             
!    write(*,*) 'B00 (',B00 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B00 
 
!    write(*,*) 'B01 (',B01 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B01 
! 
!    write(*,*) 'B02 (',B02 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B02 
     
!    write(*,*) 'B03 (',B03 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B03 
     
!    write(*,*) 'B10 (',B10 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B10  
! 
!    write(*,*) 'B11 (',B11 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B11 
!     
!    write(*,*) 'B20 (',B20 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B20  
! 
!    write(*,*) 'B21 (',B21 ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) B21 
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    write(*,*) 'weighting (',weighting ,' ):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) weighting  
 
 
    call update_variable_vRoverks() 
 
    
    case_num = 0 
    write(*,*) 'Enter integer for case (',case_num,'):' 
    read(5,'(a)') rec 
    if(rec .ne. ' ') read(rec,*) case_num 
     
 
 
    fitness_uprofile = case_fitness(case_num)  ! done at ksp = 80000 
     
    if (weighting/=0.0) then 
        fitness_Moody = case_fitness_Moody(case_num)  ! ksp varies 
    endif 
     
    fitness = weighting*fitness_Moody+(1.-weighting)*fitness_uprofile 
     
    write(filename,*) case_num 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(unit = 20, File = filename, status="replace", action = "write", iostat = ierror) 
    write(20,*) fitness,' = case fitness' 
    close(20) 
    write(*,*) 
 
 
    write(*,*) 
    write(*,*) ' -----------------------------------------' 
    write(*,*) ' Fitness u+ =', fitness_uprofile 
    write(*,*) ' Fitness Moody =', fitness_Moody     
    write(*,*) ' Fitness TOTAL =', fitness  
    write(*,*) ' -----------------------------------------' 
    write(*,*) 
     
!    open(unit=15,file = 'fitness.txt') 
!        write(15,'(20ES24.14)')Roverks,kwall,A0,A1,B0,B1,B2,weighting,fitness 
!    close(15) 
 
    if (RoverksUser<0) then 
        open(unit=10,file = 'indiv_fitness.txt') 
        do i=1,8 
            write(10,*) Roverks_(i),fitness_Moody_(i),fitness_uprofile_(i),weighting*fitness_Moody_(i)+(1.-
weighting)*fitness_uprofile_(i) 
        enddo 
        write(10,*) 
        write(10,*) 
RoverksUser,sum(fitness_Moody_)/8.,sum(fitness_uprofile_)/8.,weighting*sum(fitness_Moody_)/8.+(1.-
weighting)*sum(fitness_uprofile_)/8. 
        close(10) 
    else 
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        open(unit=10,file = 'indiv_fitness.txt') 
            write(10,*) Roverks,fitness_Moody,fitness_uprofile,fitness 
        close(10) 
    endif 
     
end program main 
 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
real function case_fitness_Moody(case_num) 
    use solver 
    integer :: ngood,total,ierror,i,jj,case_num 
    real :: results(7),local_Roverks,Roverks_(7) 
    character*(50) :: filename 
    results(:) = 0.0 
    total = 0 
    local_Roverks = Roverks 
 
    !Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.000058 /) 
 
 
    100 FORMAT (1X, 1000ES22.14) 
    write(filename,*) case_num 
    filename = 'caseMoody_'//trim(adjustl(filename))//'.txt' 
!    open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror) 
!    write(10,*) '  Roverks             Re_bulk             4CF                 Colebrook           ' 
 
    if(RoverksUser.gt.0.0) then 
        Roverks = RoverksUser 
        call run_case( Roverks,  ngood,results(1)); total = total + ngood 
!        do i=1,ngood 
!            write(10,100) Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)) 
!        end do 
!        write(10,*) 
        fitness_Moody_(1) = sqrt(results(1)/ngood) 
        case_fitness_Moody = fitness_Moody_(1) 
    else 
        do jj=1,7 
            Roverks = Roverks_(jj) 
            call update_variable_vRoverks() 
            call run_case( Roverks,  ngood,results(jj)); total = total + ngood 
!            do i=1,ngood 
!                write(10,100) 
Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)),(func_Colebrook(vRebulk(i)) - vCF(i))**2  
!            end do 
!            write(10,*) 
            fitness_Moody_(jj) = (results(jj)/ngood) 
        enddo 
 
        case_fitness_Moody = sum(fitness_Moody_)/7. 
    end if 
 
    !case_fitness_Moody =  sqrt(sum(results)/real(total)) 
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!    write(10,*) '  kappa = ',kappa 
!    write(10,*) '  gamma = ',gamma 
!    write(10,*) 
!    do jj=1,8 
!        write(10,*) Roverks_(jj),results(jj) 
!    enddo 
!    write(10,*) 
!    write(10,*) case_fitness_Moody, ' = case fitness' 
!    close(10) 
 
end function case_fitness_Moody 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
subroutine run_case(Roverks_val,ngood,error) 
    use solver 
    integer :: ngood 
    real :: Roverks_val,error 
 
   Roverks = Roverks_val 
   call update_variable_vRoverks() 
 
 
    call p_vksp(1,ngood,error) 
    write(*,*) 'ngood = ',ngood 
    write(*,*) 'fitness Moody chart = ',error 
end subroutine run_case 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
 
 
real function case_fitness(case_num) 
    use solver 
    integer :: ngood,ierror,i,jj,case_num 
    real,dimension(14) :: results,local_Roverks 
    real :: Roverks_(8) 
    character*(50) :: filename 
    results(:) = 0.0 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
 
    100 FORMAT (1X, 1000ES22.14) 
!    write(filename,*) case_num 
!    filename = 'caseUprofile_'//trim(adjustl(filename))//'.txt' 
!    open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror) 
!    write(10,*) '  R/ks                Fitness' 
 
    if(RoverksUser.gt.0.0) then 
        Roverks = RoverksUser 
        call update_variable_vRoverks() 
        call run_case_Velocity( Roverks,1,results(1)) 
!        write(10,100) Roverks,results(1) 
!        write(10,*) 
        total = 1 
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        fitness_uprofile_ = results(1) 
    else 
        do jj=1,8 
            Roverks = Roverks_(jj) 
            call update_variable_vRoverks() 
            call run_case_Velocity( Roverks,1,results(jj)) 
!            write(10,100) Roverks,results(jj) 
!            write(10,*) 
            fitness_uprofile_(jj) = results(jj) 
        enddo 
        total = 8 
    end if 
 
    case_fitness = sum(results)/real(total) 
 
    !write(*,*) 'fitness Velocity TOTAL = ',case_fitness 
     
!    write(10,*) '        A0 = ',A0 
!    write(10,*) '        A1 = ',A1 
!    write(10,*) '        B0 = ',B0 
!    write(10,*) '        B1 = ',B1 
!    write(10,*) '        B2 = ',B2  
!    write(10,*) '     kwall = ',kwall  
!!    write(10,*) 'lambdaWall = ',lambdaWall 
!    !write(10,*) 'lambdaWallSlope = ',lambdaWallSlope  
!!    write(10,*) 'R/ks used =',local_Roverks(1:nb_of_sets)  
!    write(10,*)  
!    write(10,*) case_fitness, ' = case fitness (Nikuradse u+ exp data)' 
!    close(10) 
    
 
end function case_fitness 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
subroutine run_case_Velocity(Roverks_val,case_number,error) 
    use solver 
    integer, intent(in) :: case_number ! can only be 1 through 6 
    real :: Roverks_val,error 
     
    call update_variable_vRoverks() 
             
    call p_getu(case_number,kshat,error) 
 
end subroutine run_case_Velocity 
 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine set_solver_vals() 
    use solver 
    real :: RC_ltxt(50) 
    real :: a,b,c,d,e,f 
 
      Roverks = 15.0 
          kr = 0.5/Roverks 
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         Cnu = 0.006 
        Clam = Cnu**2 
      sigmak = 2.0 
         ksp = 80000.0 
 
       kappa = 0.403 
       gamma = 0.0324 
        beta = 1.000002 
           n = 3201 
       nplot = 51 
            
       nuhat = 2.*kr/ksp 
        Rtau = 1./nuhat 
        kshat = 2.*kr  
         
 
        a = 0.00233 
        b = 0.659 
        c = 0.0307 
        d = 0.00551 
        e = 0.209 
        f = 0.0421 
 
                            
   
end subroutine set_solver_vals 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
 
 
module solver 
    IMPLICIT NONE 
    integer :: n,nb_of_sets,nb_pts_per_set,nplot,nstat 
    integer :: FullyRough,FullySmooth 
 
    real :: Rtau,kr,ksp,beta,nuhat,kshat,Rshat,Roverks,qkguess 
    real :: kappa,RoverksUser,fitness_Moody_(7),fitness_uprofile_(8) 
    real :: Cnu, sigmak,Clam 
    real :: kwall,lambdaWallSlope,lambdaWall,lambdaCenter  
    real :: Re,Df,um,km    
    real :: gamma  
    real :: 
A0,A1,B0,B1,B2,A10,A11,A12,A13,B00,B01,B02,B03,B10,B11,B12,B20,B21,B22,A1_exp,A1_cst 
 
    CHARACTER*(80):: rec,init,file_r 
    CHARACTER(LEN=100)::fn 
 
    real, allocatable, dimension(:)::r_hat,yplus 
    real, allocatable, dimension(:)::k,kprime 
    real, allocatable, dimension(:)::qk,qkprime 
    real, allocatable, dimension(:)::u,uprime 
    real, allocatable, dimension(:)::nu 
    real, allocatable, dimension(:)::h,lambda 
     
    real, allocatable, dimension(:)::vCF,vRebulk 
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contains 
 
subroutine solver_allocate() 
    !Allocate Memory 
    ALLOCATE(r_hat(n)); ALLOCATE(yplus(n)) 
    ALLOCATE(k(n));     ALLOCATE(kprime(n)); 
    ALLOCATE(qk(n));     ALLOCATE(qkprime(n)); 
    ALLOCATE(u(n));     ALLOCATE(uprime(n)); 
    ALLOCATE(nu(n)); 
    ALLOCATE(h(n)); ALLOCATE(lambda(n)); 
    ALLOCATE(vRebulk(nplot)); ALLOCATE(vCf(nplot)) 
end subroutine solver_allocate 
 
subroutine solver_deallocate() 
    !Deallocate Memory 
    DEALLOCATE(r_hat); DEALLOCATE(yplus); 
    DEALLOCATE(k);     DEALLOCATE(kprime); 
    DEALLOCATE(qk);     DEALLOCATE(qkprime); 
    DEALLOCATE(u);     DEALLOCATE(uprime); 
    DEALLOCATE(nu); 
    DEALLOCATE(h); DEALLOCATE(lambda); 
    DEALLOCATE(vRebulk);DEALLOCATE(vCf); 
end subroutine solver_deallocate 
 
 
subroutine create_grid() 
    integer :: j 
    real :: eta,cbeta,dzeta 
 
    if (beta>0) then 
        dzeta = 1.0/real(n-1) 
        !Create Grid 
        do j=1,n,1 
            eta = real(n-j)/real(n-1) 
            cbeta = ((beta+1.0)/(beta-1.0))**(1.0-eta) 
            if(beta .eq. 0.0) then 
                r_hat(j) = 1.0 - real(j-1)*dzeta 
            else 
                r_hat(j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta) 
            end if 
        end do 
        r_hat(1) = 0.0 
    else ! uniform grid, same spacing  
        do j=1,n 
            r_hat(j) = real(j-1) / real(n-1) 
        enddo 
    endif 
     
end subroutine create_grid 
 
subroutine update_variable_vRoverks() 
    real :: C_0,C_1,C_2,C_3,C_4,C_5 
    real :: sigma_k, k_wall 
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    real :: 
A_lam0,A_lam10,A_lam11,A_lam12,A_lam13,B_lam00,B_lam01,B_lam02,B_lam03,B_lam10,B_lam11,
B_lam20,B_lam21 
  
     
    kshat = 1./Roverks 
    kr = kshat/2. 
    nuhat = 2.*kr/ksp 
    Rtau = 1./nuhat  
    Rshat = 1./(gamma*kshat) 
    sigma_k = sigmak 
    k_wall = kwall 
 
         Cnu    =   1.1430803817E-04*sigma_k**4 - 2.1568032682E-03*sigma_k**3                       & 
                   + 1.5454411906E-02*sigma_k**2 - 5.3147683089E-02*sigma_k + 8.3648609370E-02       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam0  = - 5.4806699600E-06*sigma_k**4 + 1.0829889892E-04*sigma_k**3                       & 
                   - 5.8824903497E-04*sigma_k**2 + 6.4266598213E-05*sigma_k + 7.0559295507E-03       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam10 =   6.0548405176E-06*sigma_k**4 - 1.7464041639E-04*sigma_k**3                       & 
                   + 1.7083135016E-03*sigma_k**2 - 7.8015697237E-03*sigma_k + 2.3620283331E-02       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam11 =   1.6430210539E-04*sigma_k**4 - 3.2876048062E-03*sigma_k**3                       & 
                   + 2.3668508652E-02*sigma_k**2 - 7.4817705811E-02*sigma_k + 1.3742572373E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
             C_4 = - 3.6249854255E-04*k_wall**2  - 2.3771783095E-04*k_wall  + 3.1811391789E-04       !                         
<<<<<<<<<< 
             C_3 =   6.7456577268E-03*k_wall**2  + 3.5031152723E-03*k_wall  - 7.6039769524E-03       !                         
<<<<<<<<<< 
             C_2 = - 4.3056163634E-02*k_wall**2  - 2.0050955122E-02*k_wall  + 5.7370834148E-02       !                         
<<<<<<<<<< 
             C_1 =   1.1098738361E-01*k_wall**2  + 5.7323021287E-02*k_wall  - 1.5770938564E-01       !                         
<<<<<<<<<< 
             C_0 = - 9.7888362645E-02*k_wall**2  - 7.6772775598E-02*k_wall  + 1.6397877418E-01       !                         
<<<<<<<<<< 
         A_lam12 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL CHANGED FROM V8.1 <<<<<<<<<< 
! 
         A_lam13 =   2.1775071643E-04*sigma_k**4 - 4.6125648020E-03*sigma_k**3                       & 
                   + 3.2004745006E-02*sigma_k**2 - 7.6059412219E-02*sigma_k + 2.6786227707E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
         !B_lam00 =   1.5571555961E-03*sigma_k**4 - 3.7455015562E-02*sigma_k**3                       & 
         !          + 3.0085113473E-01*sigma_k**2 - 9.7875053089E-01*sigma_k + 1.1002011812E+00       ! 
V 2.5 NO CHANGE FROM V8.1 
B_lam00 = B00 
! 
         B_lam01 = - 1.7611480539E-03*sigma_k**4 + 3.3472445299E-02*sigma_k**3                       & 
                   - 2.1562199190E-01*sigma_k**2 + 4.9483981773E-01*sigma_k + 4.4081967221E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
             C_4 =   4.5958241000E-03*k_wall**2  + 2.0834333483E-03*k_wall  - 1.3277370846E-02 
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             C_3 = - 9.3116503886E-02*k_wall**2  - 2.8569790820E-02*k_wall  + 2.7587164438E-01 
             C_2 =   6.0395589241E-01*k_wall**2  + 1.8761243453E-01*k_wall  - 2.0079111202E+00 
             C_1 = - 1.4946016082E+00*k_wall**2  - 7.3780887177E-01*k_wall  + 6.0340918034E+00 
             C_0 =   1.2142113765E+00*k_wall**2  + 1.2696368571E+00*k_wall  - 7.2873561012E+00 
         B_lam02 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL NO CHANGE FROM V8.1 
! 
         B_lam03 =   6.3453858956E-04*sigma_k**4 - 1.7156286122E-02*sigma_k**3                       & 
                   + 1.4904850864E-01*sigma_k**2 - 5.3187100685E-01*sigma_k + 7.9782349433E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
         B_lam10 = - 1.0134626360E-03*sigma_k**4 + 1.9147367622E-02*sigma_k**3                       & 
                   - 1.2222170912E-01*sigma_k**2 + 2.5530412815E-01*sigma_k + 1.4355452292E+00       ! 
FINAL NO CHANGE FROM V8.1 
! 
         B_lam11 =                               - 6.6206887937E-03*sigma_k - 1.3830728894E+01       ! V 2   NO 
CHANGE FROM V8.1 
             C_4 = - 2.0201876364E-03*k_wall**2  + 4.3279392861E-03*k_wall  - 1.3949382336E-03 
             C_3 =   2.6570830671E-02*k_wall**2  - 6.4136620678E-02*k_wall  + 2.3621757343E-02 
             C_2 = - 1.1989031734E-01*k_wall**2  + 3.3373664338E-01*k_wall  - 1.3864710895E-01 
             C_1 =   2.1942375688E-01*k_wall**2  - 7.0814005373E-01*k_wall  + 3.0315634574E-01 
             C_0 = - 1.4066477454E-01*k_wall**2  + 4.5837394149E-01*k_wall  - 8.0853545298E-01 
         B_lam20 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL NO CHANGE FROM V8.1 
! 
         B_lam21 =                               - 2.6815510578E-03*sigma_k + 4.0037296283E+01       ! V 2   NO 
CHANGE FROM V8.1 
 
       
      A0 = A_lam0 
      A1  =   A_lam11 + A_lam12*kshat + (A_lam10 - A_lam11 - A_lam12*kshat)*exp(-
(kshat**A_lam13)) 
      B0  =   B_lam01 + B_lam02*kshat + (B_lam00 - B_lam01 - B_lam02*kshat)*exp(-(kshat**B_lam03)) 
      B1  =   B_lam10 + B_lam11*kshat 
      B2  =   B_lam20 + B_lam21*kshat 
 
    
end subroutine 
 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Compare velocity with Nikuradse exp data 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine p_getu(case_number,ksoverR_in,error) 
    integer :: iprint, niter,icompare,i,j 
    integer, intent(in) :: case_number 
    real :: error,junk,pRMS,RMS 
    real, intent(in) :: ksoverR_in 
    real :: uplus_reference(12),uhat_reference(12),r_hat_discretized(12),u_fromEmpLambda(12) 
    real :: a,b,u1,u2,r1,r2 
   
     
    do i = 1,n 
        lambda(i) = lambdahat(r_hat(i)) 
    enddo 
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    call integrate_k_fromWall() 
 
    write(*,*) 
    write(*,*) '  Re (um) = ' , Re  
    write(*,*) ' 4Cf      = ' , Df 
    write(*,*) 'Colebrook = ', func_Colebrook(Re) 
    write(*,*) 
    write(*,*) '        B0 = ',B0 
    write(*,*) '        B1 = ',B1 
    write(*,*) '        B2 = ',B2 
    write(*,*) '        A0 = ',A0 
    write(*,*) '        A1 = ',A1  
    write(*,*) 'lambdaWall = ', lambdaWall 
    write(*,*) '     kwall = ',kwall 
    write(*,*) 
        
       
!    open(unit=10,file='data.txt') 
!        do i=n,1,-1 
!            write(10,*) r_hat(i),1.-r_hat(i),u(i),k(i),lambda(i),nu(i), r_hat(i)/( nuhat+nu(i) ) 
!        enddo 
!    close(10)      
     
       
     ! Compare u+ ( u+ from empirical nut vs. u+ from RK4 with empirical lambda_hat) 
     r_hat_discretized = (/ 0.0,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 /) 
      
          
    j=1 
    u_fromEmpLambda(1) = u(1) 
    call get_uplus_uhat(0.0,uplus_reference(1),junk) 
 
 
    do icompare=2,12 
        do while ((j<=n).and. (r_hat(j)-r_hat_discretized(icompare)<=0.)  ) 
            j=j+1 
        enddo 
        j=j-1         
         
        if (r_hat_discretized(icompare)-r_hat(j)> r_hat(j+1)-r_hat_discretized(icompare)) then  
!r_hat_discretized(icompare) closer to r_hat(j+1) 
            call get_uplus_uhat(r_hat(j+1),uplus_reference(icompare),junk) 
            u_fromEmpLambda(icompare) = u(j+1) 
            pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare)) 
        else 
            call get_uplus_uhat(r_hat(j),uplus_reference(icompare),junk) 
            u_fromEmpLambda(icompare) = u(j) 
            pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare)) 
        endif 
         
    enddo 
 
  
    error = sum( abs(uplus_reference-u_fromEmpLambda)/uplus_reference)/12. 
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end subroutine p_getu 
 
 
 
! ------------------------------------------------------------------------------------------ 
! uplus/uhat when nut = Eq. 106 
! ------------------------------------------------------------------------------------------ 
 
subroutine get_uplus_uhat(r_hat,u_plus,u_hat) 
    real :: yhat,r_hat 
    real :: delta,deltap 
    real :: u_plus,u_hat 
    real :: D0,D1,D2,D3,D4,D5,C0,C1,C2,C3,C4,C5,C6,C7,Acoeff,Bcoeff,ecoeff,nutc 
     
        Acoeff = 1.2 
        Bcoeff = 0.0 
        ecoeff = 1.4 
        nutc = 0.053 
        C7 = -1.3 
         
        D0 = (Rshat+1.)**2*(log(Rshat+1.)-3./2.)+2.*Rshat+3./2. 
        C0 = Acoeff*kshat**ecoeff+Bcoeff 
        C1 = Rshat**3./((Rshat+1.)*D0) 
        C2 = Rshat**2.*(Rshat**2/((Rshat+1.)**2)-kappa/nutc)/(2.*D0) 
        C3 = Rshat**5./(3.*(Rshat+1.)**3*D0) 
        D1 = -C0-C1-C2-C3-C7 
        D2 = -C1-2.*C2-3.*C3-7.*C7 
        D3 = -C0/2.-C1/3.-C2/4.-C3/5.-C7/9. 
        C4 = -39.*D1+3.*D2+168.*D3 
        C5 = 84.*D1-7.*D2-336.*D3 
        C6 = -44.*D1+4.*D2+168.*D3 
 
 
        yhat = 1.-r_hat 
         
        delta = C0 + C1*r_hat + C2*r_hat**2 + C3*r_hat**3 + C4*r_hat**4 + C5*r_hat**5 + C6*r_hat**6 
+ C7*r_hat**7 
        deltap = -(C1 + 2.*C2*r_hat + 3.*C3*r_hat**2 + 4.*C4*r_hat**3 + 5.*C5*r_hat**4 + 
6.*C6*r_hat**5 + 7.*C7*r_hat**6) 
         
        u_hat = Rshat**2*log(Rshat*yhat+1.)/D0+delta 
        u_plus = log(Rshat*yhat+1.)/kappa+D0*delta/(kappa*Rshat**2) 
 
end subroutine 
 
 
 
! ------------------------------------------------------------------------------------------ 
! Lambda_hat Empirical Function 
! ------------------------------------------------------------------------------------------ 
 
function lambdahat(r_hat) 
    real :: r_hat,lambdahat,yhat 
     
    yhat = 1.-r_hat       
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    lambdahat = (A0*kshat+A1*yhat)*(1.-.5*yhat)*(B0+B1*r_hat**2+B2*r_hat**4+(1.-B0-B1-
B2)*r_hat**6) 
   
end function 
 
 
! ------------------------------------------------------------------------------------------ 
!   INTEGRATE from WALL 
! ------------------------------------------------------------------------------------------ 
 
subroutine integrate_k_fromWall() 
    integer :: i,niter,nitermax 
    real :: t0,y0(5),dt,y(5),qwall(3),qcenter(3) 
 
    ! integrates from the wall, shoots to the centerline to have Q+ = 0 at the centerline 
    !kwall = 6120.1*kshat**3-1503.6*kshat**2+144.43*kshat-0.0309 
     
    !write(*,*) 'kwall = ', kwall 
     
    niter = 1 
    nitermax = 200 
    nstat = 0 
    qkguess = 2.0 
 
    !write(*,*) 'Iterate on Q...' 
 
 
    do while ((qkguess>=-1.).and.(nstat==0) ) 
    niter = 1 
     
        ! GUESS 1 ON Q 
        ! --------------- 
        t0 = 0. 
        k(n) = kwall 
        qk(n) = qkguess   ! initial guess for q(wall) 
        qwall(1) = qk(n) 
        y0(1) = k(n) 
        y0(2) = qk(n)    
        !write(*,*) i,k(n),qk(n) 
         
        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i)  ! dt is equivalent of dy, not dr_hat 
            call RK4_fromWall(2,t0,y0,dt,y) 
            t0 = t0+dt 
            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
        enddo 
        qcenter(1) = qk(1) 
         
        !write(*,*) niter, qk(1) 
         
         
        ! GUESS 2 ON Q 
        ! --------------- 
        niter = niter + 1 
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        t0 = 0. 
        k(n) = kwall 
        if (qkguess<0) then 
            qk(n) = qkguess*.95   ! initial guess for q(wall) 
        else 
            qk(n) = qkguess*1.05 
        endif 
        qwall(2) = qk(n) 
        y0(1) = k(n) 
        y0(2) = qk(n)    
 
        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i) 
            call RK4_fromWall(2,t0,y0,dt,y) 
            t0 = t0+dt 
            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
        enddo  
        qcenter(2) = qk(1)    
        !write(*,*) niter, qk(1) 
         
         
        ! ITERATE ON Q (secant method) 
        ! ------------------------------ 
        do while ((abs(qk(1))>1.0e-12).and.(niter<nitermax)) 
            niter = niter + 1 
            t0 = 0. 
            k(n) = kwall 
            qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) ) 
            qwall(3) = qk(n) 
            y0(1) = k(n) 
            y0(2) = qk(n)    
 
            do i = n-1,1,-1 
                dt = r_hat(i+1)-r_hat(i) 
                call RK4_fromWall(2,t0,y0,dt,y) 
                t0 = t0+dt 
                y0 = y 
                k(i) = y(1) 
                qk(i) = y(2) 
            enddo  
            qcenter(3) = qk(1)    
            !write(*,*) niter, qk(1),qk(n) 
             
            qwall(1) = qwall(2) 
            qwall(2) = qwall(3) 
            qcenter(1) = qcenter(2) 
            qcenter(2) = qcenter(3) 
             
        enddo 
         
         
        niter = niter + 1 
        t0 = 0. 
        k(n) = kwall 



209 
 

 

        qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) ) 
        qwall(3) = qk(n) 
        y0 = 0. 
        y0(1) = k(n) 
        y0(2) = qk(n)   
        u(n) = 0.  
 
        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i) 
            call RK4_fromWall(5,t0,y0,dt,y) 
            t0 = t0+dt 
            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
            u(i) = y(3) 
        enddo  
        qcenter(3) = qk(1)   
        km = y(5)  
        um = y(4) 
        !write(*,*) niter, Roverks,qk(1),qwall(3) 
        nu = lambda*sqrt(k) 
        h = Cnu*k /nuhat 
        Df =  8./um**2.  
        Re = 2.*um/nuhat 
                
        if (isnan(Re)) then 
            qkguess = qkguess-0.1 
            nstat = 0 
        else 
            nstat =1 
        endif 
 
    enddo 
 
     
    if ((niter>=nitermax).or.(isnan(Re))) then  
        nstat = 0 
    else  
        nstat = 1 
        write(*,*) niter, Roverks,qk(1),qwall(3) 
    endif 
     
     
end subroutine 
 
  
 
 
subroutine RK4_fromWall(nn,t0,y0,dt,y) 
    ! solve a system of n first order differential equations 
    ! dy(i)/dt = f(i,t,y) 
    ! calls the function f 
     
    integer, intent(in) :: nn ! number of equation to be solved 
    real, dimension(nn,4) :: k_ ! table of coefficient (k1, k2, k3 k4); 4 coeffs per equation 
    real, intent(inout) :: t0, y0(nn),dt 
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    real :: coeff(4),Rtau 
    real, intent(out) :: y(nn) 
    integer :: i,j 
     
    if (t0+dt>1.) dt=1.-t0 
    coeff = (/ 1./6., 1./3., 1./3., 1./6. /) 
    do j=1,nn 
         k_(j,1)=f_fromWall(j,t0,y0)*dt 
         y(j)=y0(j)+k_(j,1)/2. 
    end do 
    do j=1,nn 
         k_(j,2)=f_fromWall(j,t0+dt/2.,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j)+k_(j,2)/2. 
    end do 
    do j=1,nn 
        k_(j,3)=f_fromWall(j,t0+dt/2.,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j)+k_(j,3) 
    end do 
    do j=1,nn 
        k_(j,4)=f_fromWall(j,t0+dt,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j) 
        do i=1,4 
           y(j)=y(j)+coeff(i)*k_(j,i) 
        end do 
    end do 
       
end subroutine 
 
 
function f_fromWall(i,zeta,y) 
    integer, intent(in) :: i 
    real, intent(in) :: zeta,y(*)   ! y(1) = k, y(2) = q 
    real :: f_fromWall,r_hat 
    ! input zeta = 0 at wall, 1 at centerline 
    !if (zeta<0.) zeta=0. 
     
    r_hat = 1. - zeta ! r_hat = 0 at centerline, 1 at wall 
    if (i==1) then  ! dk/dr_hat 
        if (r_hat <= 10**(-16./6.)) then   !(r_hat <= 10**(-16./6.)) then  ! at the centerline, exception /0 
            f_fromWall = 0.   
        else 
            f_fromWall = -y(2)/r_hat*3./( nuhat+5.*(lambdahat(r_hat)*sqrt( abs(y(1)) ) )/sigmak) ! corresponds 
to dk/dr_hat 
            !write(*,*) nut(r_hat),y(2) 
        endif 
    elseif (i==2) then   ! dq/dr_hat 
        f_fromWall =  (lambdahat(r_hat)*sqrt(abs(y(1))))*r_hat**3./(nuhat+ 
(lambdahat(r_hat)*sqrt(abs(y(1)))) )**2. - 
Cnu**2.*nuhat/(lambdahat(r_hat)*sqrt(abs(y(1))))**2.*y(1)**2.*r_hat   
        !if  ((nut(r_hat)==0.).and.(r_hat==0) )  f_fromWall=0. 
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    elseif (i==3) then   ! du/dr_hat 
        f_fromWall = -r_hat/( nuhat+(lambdahat(r_hat)*sqrt(y(1))) ) 
    elseif (i==4) then   ! dum/dr_hat 
        f_fromWall = -y(3)*r_hat*2.    
    elseif (i==5) then   ! dkm/dr_hat 
        f_fromWall = -y(1)*r_hat*2.    
    end if 
    f_fromWall = -f_fromWall  ! gives the variables in terms of d_/dy 
    !if (f_fromWall=='NaN') pause 
end function 
 
 
 
subroutine p_vksp(iprint,ngood,error) 
    integer :: iprint,ngood,niter 
    real :: error,power 
 
    power = 2.0 
    ksp = 10**power 
    Re = 0.0 
    ngood = 1 
    error = 0.0 
    Rshat = Roverks/(gamma) 
 
    if(iprint.eq.1) write(*,*) '     ngood   R/ks                      ksp                        Re                       4CF          & 
                               &             4Cf Reference             error                      ' !num_iter' 
    do while (((Re<1.0e8).and.(ngood<=nplot)).or.(ngood<5)) 
        nuhat = 2.*kr/ksp 
        Rtau = 1./nuhat 
 
        call integrate_k_fromWall() 
        vRebulk(ngood) = Re 
        vCF(ngood) = Df 
         
        if((Re<1.0e8).or.(ngood<4)) error = error + abs(reference_4Cf(Re,Roverks) - 
vCF(ngood))/reference_4Cf(Re,Roverks) 
!       if((Re<1.0e8).or.(ngood<4)) error = error + ((reference_4Cf(Re,Roverks) - 
vCF(ngood))/func_Colebrook(Re))**2 ! % RMS 
        if(iprint.eq.1) write(*,*) ngood,Roverks,ksp,Re,Df,reference_4Cf(Re,Roverks),error !,niter 
        ngood = ngood + 1 
        power = power + 0.25 
        ksp = 10.0**power 
    end do 
    ngood = ngood - 2 
end subroutine p_vksp 
 
real function func_Colebrook(Re) 
    implicit none 
    real :: Re,old,new 
    if(Re<100.0) then 
        func_Colebrook = 64.0/Re 
    else 
        new = (-1.8*log10((kr/3.7)**(1.11) + 6.9/Re))**(-2.0) 
        old = 10.0 
        do while(abs((new-old)/new) .gt. 1.0e-5) 
            old = new 
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            new = (-2.0*log10(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0) 
        end do 
        func_Colebrook = new 
    end if 
return; end function func_Colebrook 
 
 
real function reference_4Cf(Re,Roverks) 
    real :: Re,Roverks 
    integer :: i,indix 
    
    reference_4Cf = (2.0*log10(Roverks)+1.74)**(-2.0) 
     
end function 
 
end module solver 

 
 

II. Optimization Code 

program main 
    use bfgs 
    implicit none 
    character*(50) :: rec,fn 
    integer :: i,ierror 
 
    !Defaults 
    iter = 0 
    default_alpha = 1.0e-8 
    diff_delta = 1.0e-8 
    diff_scheme = 1 
    stop_delta = 1.0e-12 
    nsearch = 8 
 
    fn = 'none' 
!    write(*,*) 'Enter filename (none=use interactive console instead of file) (',fn,' ) :' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) fn 
    fn = 'bfgs_start.txt' 
     
    if(fn.ne.'none') then 
        open(unit = 10, File = fn, action = "read", iostat = ierror) 
        read(10,*) nvars 
        read(10,*) !names of variables 
 
        call opt_allocate() 
 
        read(10,*) vars(1:nvars) 
        read(10,*) opton(1:nvars) 
        read(10,*) default_alpha 
        read(10,*) diff_delta 
        read(10,*) diff_scheme 
        read(10,*) stop_delta 
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        read(10,*) nsearch 
        close(10) 
    else 
        write(*,*) 'Enter number of variables :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) nvars 
 
        call opt_allocate() 
         
        do i=1,nvars 
            write(*,*) 'Enter variable ',i,' :' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) vars(i) 
            write(*,*) 'Optimize this variable? (1=yes,0=no) (',opton(i),') :' 
            read(5,'(a)') rec 
            if(rec .ne. ' ') read(rec,*) opton(i) 
        end do 
     
        write(*,*) 'Enter default line search alpha (',default_alpha,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) default_alpha 
 
        write(*,*) 'Enter delta step size used for gradient calculations (',diff_delta,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) diff_delta 
 
        write(*,*) 'Enter differencing scheme (1=central diff, 0=forward diff) (',diff_scheme,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) diff_scheme 
 
        write(*,*) 'Enter stop delta (',stop_delta,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) stop_delta 
 
        write(*,*) 'Enter number of simultaneous cases in the line search (',nsearch,') :' 
        read(5,'(a)') rec 
        if(rec .ne. ' ') read(rec,*) nsearch 
    end if 
 
    fn = 'bfgs_start.txt'; call write_bfgs_file(fn) 
    call opt_run() 
    fn = 'bfgs_end.txt'; call write_bfgs_file(fn) 
 
    call opt_deallocate() 
end program main 
 
module bfgs 
    implicit none 
    integer :: nvars 
    integer :: diff_scheme !1 = central difference. 0 = forward difference 
    integer :: iter 
    integer :: nsearch 
 
    real :: default_alpha 
    real :: diff_delta 
    real :: fitness_curr 
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    real :: stop_delta 
    real :: alpha 
 
    integer,allocatable :: opton(:) 
    real,allocatable :: grad(:) 
    real,allocatable :: vars(:) 
    real,allocatable :: s(:) 
     
contains 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine opt_allocate() 
    allocate(opton(nvars)) 
    allocate(grad(nvars)) 
    allocate(vars(nvars)) 
    allocate(s(nvars)) 
    opton = 0; vars = 0.0; grad = 0.0; s = 0.0 
end subroutine opt_allocate 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine opt_deallocate() 
    deallocate(opton) 
    deallocate(grad) 
    deallocate(vars) 
    deallocate(s) 
end subroutine opt_deallocate 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine opt_run() 
    integer :: i_iter,o_iter,i,ierror 
    real :: vars_orig(nvars),vars_old(nvars),grad_old(nvars) 
    real :: dx(nvars,1),NG(nvars,1),N(nvars,nvars),gamma(nvars,1) 
    real :: mag_dx,denom 
    character(LEN=50)::fn,command 
    110 format (1X, I10, 100ES22.13) 
 
    fn = 'optimization.txt' 
    open(unit = 1001, File = fn, action = "write", iostat = ierror) 
    write(1001,*) 'iter o_it i_it   R/ks                  sigmak                kwall                 & 
                                   &coef                  & 
                                   &weighting             & 
                                   &Fitness               alpha                 mag(dx)' 
    close(1001) 
    open(unit = 1001, File = 'gradient.txt', action = "write", iostat = ierror) 
    write(1001,*) 'iter o_it i_it   R/ks                  sigmak                kwall                 & 
                                   &coef                  & 
                                   &weighting             & 
                                   &Fitness               alpha                 mag(dx)' 
    close(1001) 
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    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
 
    write(*,*) 'Beginning Optimization Routine' 
    write(*,*) 'Optimization Variables: ' 
    do i=1,nvars 
        write(*,110) opton(i),vars(i) 
    end do     
    write(*,*) '      default alpha : ',default_alpha 
    write(*,*) 'differenceing delta : ',diff_delta 
    write(*,*) 'differencing scheme : ',diff_scheme 
    write(*,*) '     stopping delta : ',stop_delta 
    write(*,*) 'simultaneous search : ',nsearch 
 
    o_iter = 0 
    mag_dx = 1.0 
    do while(mag_dx > stop_delta) 
        vars_orig = vars 
        i_iter = 0 
 
        do while(mag_dx > stop_delta) 
            call gradient() 
            call append_file(fn,o_iter,i_iter,mag_dx) 
             
            if(i_iter .eq. 0) then !set N=identity 
                N = 0.0 
                do i=1,nvars 
                    N(i,i) = 1.0 !N = identity matrix 
                end do 
            else 
                dx(:,1) = vars(:) - vars_old(:) 
                gamma(:,1) = grad(:) - grad_old(:) 
                NG(:,1) = matmul(N,gamma(:,1)) 
                denom = dot_product(dx(:,1),gamma(:,1)) 
        !        N = N + matmul(dx-NG,transpose(dx-NG))/dot_product(dx(:,1)-NG(:,1),gamma(:,1)) !Rank 
One Hessian Inverse Update 
                N = N + (1.0+dot_product(gamma(:,1),NG(:,1))/denom)*(matmul(dx,transpose(dx))/denom) & 
!BFGS Update 
                    & - ( matmul(dx,matmul(transpose(gamma),N)) + matmul(NG,transpose(dx)))/denom 
            end if 
            s(:) = -matmul(N,grad) 
            vars_old = vars 
            grad_old = grad 
         
            call line_search() 
 
            dx(:,1) = vars(:) - vars_old(:) 
            mag_dx = sqrt(dot_product(dx(:,1),dx(:,1))) 
            i_iter = i_iter + 1 
            iter = iter + 1 
        end do 
 
        call append_file(fn,o_iter,i_iter,mag_dx) 
 
        dx(:,1) = vars(:) - vars_orig(:) 
        mag_dx = sqrt(dot_product(dx(:,1),dx(:,1))) 
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        o_iter = o_iter + 1 
    end do 
     
    call sleep(1) 
    fitness_curr = case_fitness_single(0) 
    call append_file(fn,o_iter,i_iter,mag_dx) 
end subroutine opt_run 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine write_bfgs_file(fn) 
    character(50) :: fn 
    integer :: ierror 
    110 format (100ES22.13) 
    120 format (100I22) 
    fn = trim(adjustl(fn)) 
    write(*,*) 'writing ',fn 
    open(unit = 200, File = fn, status = "replace", action = "write", iostat = ierror) 
    write(200,*) nvars,'       num vars' 
    write(200,*) '   R/ks                  sigmak                kwall                 & 
                                   &coef                  & 
                                   &weighting             ' 
 
    write(200,110) vars(:) 
    write(200,120) opton(:) 
    write(200,*) default_alpha, '   default line search alpha' 
    write(200,*) diff_delta, '   delta step size used for gradient calculations' 
    write(200,*) diff_scheme,'   differencing scheme (1=central diff, 0=forward diff)' 
    write(200,*) stop_delta,'   stop delta' 
    write(200,*) nsearch,'     number of simultaneous cases in the line search' 
    close(200) 
end subroutine write_bfgs_file 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine append_file(fn,o_iter,i_iter,mag_dx) 
    character(50) :: fn 
    real :: mag_dx 
    integer :: o_iter,i_iter,ierror 
    110 format (3I5, 100ES22.13) 
    write(* ,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx 
    open(unit = 1001, File = fn, status = "OLD", access = "append", iostat = ierror) 
    write(1001,110) iter,o_iter,i_iter,vars(:),fitness_curr,alpha,mag_dx 
    close(1001) 
    open(unit = 1001, File = 'gradient.txt', status = "OLD", access = "append", iostat = ierror) 
    write(1001,110) iter,o_iter,i_iter,grad(:),fitness_curr,alpha,mag_dx 
    close(1001) 
end subroutine append_file 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
real function case_fitness(case_num) 
    integer :: case_num,ierror 



217 
 

 

    character(50)::filename 
     
    write(filename,*) case_num 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(unit = 10, File = filename, action = "read", iostat = ierror) 
    read(10,*) case_fitness 
    close(10) 
end function case_fitness 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine forward_diff() 
    integer :: i 
    character(50) :: command 
    real :: vars_orig(nvars) 
    vars_orig(:) = vars(:) 
     
    grad = 0.0 
    call start_case(0) 
    do i=1,nvars 
        if(opton(i).eq.1) then 
            vars(i) = vars(i) + diff_delta 
            call start_case(i) 
            vars(:) = vars_orig(:) 
        end if 
    end do     
 
    do while(.not.all_done()) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure all files are totally written 
 
    fitness_curr = case_fitness(0) 
    do i=1,nvars 
        if(opton(i).eq.1) grad(i) = (case_fitness(i) - fitness_curr)/diff_delta 
    end do 
     
    call sleep(1) 
    command = 'mv case_0.txt curr_case.txt' 
    call system(command) 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
     
end subroutine forward_diff 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine gradient() 
    real :: temp(nvars) 
    call forward_diff() 
    if(diff_scheme.eq.1) then 
        temp(:) = grad(:) 
        diff_delta = -diff_delta 
        call forward_diff() 
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        grad(:) = 0.5*(grad(:) + temp(:)) 
        diff_delta = -diff_delta 
    end if 
end subroutine gradient 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine line_search() 
    real :: local_fitness,f1,f2,f3,a1,a2,a3,da 
    real :: xval(0:nsearch),yval(0:nsearch),vars_orig(nvars) 
    integer :: i,j,mincoord 
    write(*,*) 'line search --------------------------------------------------------------------------------------------------' 
 
    alpha = max(default_alpha,1.1*stop_delta/sqrt(dot_product(s(:),s(:)))) 
    vars_orig(:) = vars(:) 
 
    xval(0) = 0.0; yval(0) = fitness_curr 
    do 
        call run_mult_cases(nsearch,alpha,vars_orig,xval(1:nsearch),yval(1:nsearch)) 
        do j=0,nsearch 
            write(*,*) j,xval(j),yval(j) 
        end do 
        if(yval(1)>yval(0)) then 
            if(alpha*sqrt(dot_product(s(:),s(:))) < stop_delta) then 
                write(*,*) 'Line search within stopping tolerance : alpha = ',alpha 
                return 
            end if 
            write(*,*) 'Too big of a step. Reducing Alpha' 
            alpha = 0.5*alpha 
        else 
            mincoord = minimum_coordinate(nsearch+1,yval)-1 
            write(*,*) 'mincoord = ',mincoord 
            if(mincoord.ne.nsearch) exit 
            alpha = 2.0*alpha 
        end if 
    end do 
    a1 = xval(mincoord-1) 
    a2 = xval(mincoord) 
    a3 = xval(mincoord+1) 
    f1 = yval(mincoord-1) 
    f2 = yval(mincoord) 
    f3 = yval(mincoord+1) 
 
    da = a2-a1 
    alpha = a1+da*(4.0*f2-f3-3.0*f1)/(2.0*(2.0*f2-f3-f1)) 
    if((alpha > a3).or.(alpha < a1)) then !For parabolas whose min is not in bounds 
        alpha = a2 
        if(f2 > f1) alpha = a1 
    end if 
    vars(:) = vars_orig(:) + alpha*s(:) 
    write(*,*) 'final alpha = ',alpha 
end subroutine line_search 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
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integer function minimum_coordinate(num,vals) 
    integer :: num,i 
    real :: vals(num),minval 
    minval = vals(1) 
    minimum_coordinate = 1 
    do i=2,num 
        if(vals(i)<minval) then 
            minval = vals(i) 
            minimum_coordinate = i 
        else 
            exit 
        end if 
    end do 
end function minimum_coordinate 
     
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine run_mult_cases(ncases,start_alpha,vars_orig,x,y) 
    integer :: ncases,i 
    real :: start_alpha,vars_orig(nvars) 
    real ::x(ncases),y(ncases) 
    character(50) :: command 
 
    do i=1,ncases 
        x(i) = real(i)*start_alpha 
        vars(:) = vars_orig(:) + x(i)*s(:) 
        call start_case(i) 
    end do     
    vars(:) = vars_orig(:) 
    do while(.not.mult_done(ncases)) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure all files are totally written 
 
    do i=1,ncases 
        y(i) = case_fitness(i) 
    end do 
    call sleep(1) 
 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
end subroutine run_mult_cases 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
logical function mult_done(ncases) 
    implicit none 
    integer :: ncases,ios(ncases),i 
    character(50)::filename 
 
    do i=1,ncases 
        write(filename,*) i 
        filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
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        open(i*100,file=filename,status='old',iostat=ios(i)) 
    end do 
    if(count(ios==0)==size(ios)) then 
        mult_done = .true. 
    else 
        mult_done = .false. 
    end if 
     
    do i=1,ncases 
        if(ios(i)/=0) cycle 
        close(i*100) 
    end do 
end function mult_done 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
real function case_fitness_single(case_num) 
    integer :: case_num,ierror 
    character(50)::filename,command 
     
    call start_case(case_num) 
    do while(.not.one_done(case_num)) 
        call sleep(1) 
    end do 
    call sleep(1)   !one more time to ensure file is totally written 
 
    case_fitness_single = case_fitness(case_num) 
    command = 'rm input_* output_* case_* fitness_*' 
    call system(command) 
end function case_fitness_single 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
subroutine start_case(case_num) 
    implicit none 
    integer :: case_num,ierror,i 
    character(50)::file_i,file_o,command 
     
    write(file_o,*) case_num 
    file_i = 'input_'//trim(adjustl(file_o))//'.txt' 
    file_o = 'output_'//trim(adjustl(file_o))//'.txt' 
    open(unit = 10, File = file_i, status="replace", action = "write", iostat = ierror) 
    do i=1,nvars 
        write(10,*) vars(i) 
    end do 
    write(10,*) case_num 
    close(10) 
    command = './a.out < '//trim(adjustl(file_i))//' > '//trim(adjustl(file_o))//' &' 
!    write(*,*) command 
    call system(command) 
end subroutine start_case 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
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logical function one_done(case_num) 
    implicit none 
    integer::case_num,ios 
    character(50)::filename 
     
    write(filename,*) case_num 
    filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
    open(100,file=filename,status='old',iostat=ios) 
    if(ios==0) then 
        one_done = .true. 
        close(100) 
    else 
        one_done = .false. 
    end if 
end function one_done 
 
!--------------------------------------------------------------------------------------------------------------------------------
- 
 
logical function all_done() 
    implicit none 
    integer ::ios(nvars+1),i 
    character(50)::filename 
     
    !Check for 0_ file 
    open(100,file="fitness_0.txt",status='old',iostat=ios(nvars+1)) 
    if(ios(nvars+1)==0) close(100) 
 
    do i=1,nvars 
        if(opton(i).eq.1) then 
            write(filename,*) i 
            filename = 'fitness_'//trim(adjustl(filename))//'.txt' 
            open(i*100,file=filename,status='old',iostat=ios(i)) 
        else 
            ios(i)=0 
        end if 
    end do 
    if(count(ios==0)==size(ios)) then 
        all_done = .true. 
    else 
        all_done = .false. 
    end if 
     
    do i=1,nvars 
        if(ios(i)/=0) cycle 
        close(i*100) 
    end do 
end function all_done 
 
end module bfgs 
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III. Code Iterate Over Different Variables 

program main 
    use solver 
    implicit none 
    CHARACTER*(50):: filename 
    integer :: case_num,ierror,i,j 
    real :: case_fitness,case_fitness_Moody,fitness,weighting,fitness_uprofile,fitness_Moody 
    real :: Roverks_(8) 
    real :: sigmak_(5),kwall_(4) 
 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
    kwall_ = (/ 1.0,0.5,0.1,0.05 /) 
    sigmak_ = (/ 2.,3.,4.,5.,6. /) 
    call set_solver_vals() 
 
    call solver_allocate() 
    call create_grid() 
     
     
    write(*,*) 'Phillips Rough Flow k-lambda Model' 
 
!    write(*,*) 'Roverks (',Roverks,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) Roverks    
!    if( Roverks==1667) Roverks=0.5/0.0003 
!    if( Roverks==8621) Roverks=0.5/0.000058 
!    RoverksUser = Roverks 
     
    weighting = 0.5 
    kwall = 0.05 
!    A0 = 0.0025  
!    A10 = 0.012 
!    A11 = 0.05 
!    A12 = 0.09 
!    A13 = 0.39 
!    B00 = 0.0713244976729399 
!    B01 = 0.25 
!    B10 = 1.37 
!    B11 = -14.0 
!    B20 = -0.7 
!    B21 = 40. 
 
     
!    write(*,*) 'sigmak (',sigmak ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) sigmak  
!     
!    write(*,*) 'kwall (',kwall ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) kwall  
 
!    write(*,*) 'weighting (',weighting ,' ):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) weighting  
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!    case_num = 0 
!    write(*,*) 'Enter integer for case (',case_num,'):' 
!    read(5,'(a)') rec 
!    if(rec .ne. ' ') read(rec,*) case_num 
     
open(unit = 20, File = 'fitness.txt') 
    write(20,*) '      sigmak                   kwall                    fitness                  fitness_uprofile         fitness_4Cf' 
close(20) 
             
 
    do i = 1,5 
     
        sigmak = sigmak_(i) 
         
        do j=1,4 
            kwall = kwall_(j) 
            fitness_uprofile = case_fitness(case_num)  ! done at ksp = 80000 
            fitness_Moody = case_fitness_Moody(case_num)  ! ksp varies 
            fitness = weighting*fitness_Moody+(1.-weighting)*fitness_uprofile 
             
            open(unit = 20, File = 'fitness.txt', status = "OLD", access = "append", iostat = ierror) 
            write(20,'(100ES25.12)') sigmak,kwall,fitness,fitness_uprofile,fitness_Moody 
            close(20) 
 
        enddo 
        write(*,*) 'sigmak = ', sigmak 
    enddo 
 
     
!    open(unit=15,file = 'fitness.txt') 
!        write(15,'(20ES24.14)')Roverks,kwall,A0,A1,B0,B1,B2,weighting,fitness 
!    close(15) 
 
!    if (RoverksUser<0) then 
!        open(unit=10,file = 'indiv_fitness.txt') 
!        do i=1,8 
!            write(10,*) Roverks_(i),fitness_Moody_(i),fitness_uprofile_(i),weighting*fitness_Moody_(i)+(1.-
weighting)*fitness_uprofile_(i) 
!        enddo 
!        write(10,*) 
!        write(10,*) 
RoverksUser,sum(fitness_Moody_)/8.,sum(fitness_uprofile_)/8.,weighting*sum(fitness_Moody_)/8.+(1.-
weighting)*sum(fitness_uprofile_)/8. 
!        close(10) 
!    else 
!        open(unit=10,file = 'indiv_fitness.txt') 
!            write(10,*) Roverks,fitness_Moody,fitness_uprofile,fitness 
!        close(10) 
!    endif 
     
end program main 
 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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real function case_fitness_Moody(case_num) 
    use solver 
    integer :: ngood,total,ierror,i,jj,case_num 
    real :: results(7),local_Roverks,Roverks_(7) 
    character*(50) :: filename 
    results(:) = 0.0 
    total = 0 
    local_Roverks = Roverks 
 
    !Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.000058 /) 
 
 
    100 FORMAT (1X, 1000ES22.14) 
    write(filename,*) case_num 
    filename = 'caseMoody_'//trim(adjustl(filename))//'.txt' 
!    open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror) 
!    write(10,*) '  Roverks             Re_bulk             4CF                 Colebrook           ' 
 
    if(RoverksUser.gt.0.0) then 
        Roverks = RoverksUser 
        call run_case( Roverks,  ngood,results(1)); total = total + ngood 
!        do i=1,ngood 
!            write(10,100) Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)) 
!        end do 
!        write(10,*) 
        fitness_Moody_(1) = sqrt(results(1)/ngood) 
        case_fitness_Moody = fitness_Moody_(1) 
    else 
        do jj=1,7 
            Roverks = Roverks_(jj) 
            call update_variable_vRoverks() 
            call run_case( Roverks,  ngood,results(jj)); total = total + ngood 
!            do i=1,ngood 
!                write(10,100) 
Roverks,vRebulk(i),vCF(i),func_Colebrook(vRebulk(i)),(func_Colebrook(vRebulk(i)) - vCF(i))**2  
!            end do 
!            write(10,*) 
            fitness_Moody_(jj) = (results(jj)/ngood) 
        enddo 
 
        case_fitness_Moody = sum(fitness_Moody_)/7. 
    end if 
 
    !case_fitness_Moody =  sqrt(sum(results)/real(total)) 
 
!    write(10,*) '  kappa = ',kappa 
!    write(10,*) '  gamma = ',gamma 
!    write(10,*) 
!    do jj=1,8 
!        write(10,*) Roverks_(jj),results(jj) 
!    enddo 
!    write(10,*) 
!    write(10,*) case_fitness_Moody, ' = case fitness' 
!    close(10) 
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end function case_fitness_Moody 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
subroutine run_case(Roverks_val,ngood,error) 
    use solver 
    integer :: ngood 
    real :: Roverks_val,error 
 
   Roverks = Roverks_val 
   call update_variable_vRoverks() 
 
 
    call p_vksp(0,ngood,error) 
!    write(*,*) 'ngood = ',ngood 
!    write(*,*) 'fitness Moody chart = ',error 
end subroutine run_case 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
 
 
real function case_fitness(case_num) 
    use solver 
    integer :: ngood,ierror,i,jj,case_num 
    real,dimension(14) :: results,local_Roverks 
    real :: Roverks_(8) 
    character*(50) :: filename 
    results(:) = 0.0 
    Roverks_ = (/ 15.,30.6,60.,126.,252.,507.,0.5/0.0003,0.5/0.000058 /) 
    ksp = 80000. 
 
    100 FORMAT (1X, 1000ES22.14) 
!    write(filename,*) case_num 
!    filename = 'caseUprofile_'//trim(adjustl(filename))//'.txt' 
!    open(unit = 10, File = filename, status="replace", action = "write", iostat = ierror) 
!    write(10,*) '  R/ks                Fitness' 
 
    if(RoverksUser.gt.0.0) then 
        Roverks = RoverksUser 
        call update_variable_vRoverks() 
        call run_case_Velocity( Roverks,1,results(1)) 
!        write(10,100) Roverks,results(1) 
!        write(10,*) 
        total = 1 
        fitness_uprofile_ = results(1) 
    else 
        do jj=1,8 
            Roverks = Roverks_(jj) 
            call update_variable_vRoverks() 
            call run_case_Velocity( Roverks,1,results(jj)) 
!            write(10,100) Roverks,results(jj) 
!            write(10,*) 
            fitness_uprofile_(jj) = results(jj) 
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        enddo 
        total = 8 
    end if 
 
    case_fitness = sum(results)/real(total) 
 
    !write(*,*) 'fitness Velocity TOTAL = ',case_fitness 
     
!    write(10,*) '        A0 = ',A0 
!    write(10,*) '        A1 = ',A1 
!    write(10,*) '        B0 = ',B0 
!    write(10,*) '        B1 = ',B1 
!    write(10,*) '        B2 = ',B2  
!    write(10,*) '     kwall = ',kwall  
!!    write(10,*) 'lambdaWall = ',lambdaWall 
!    !write(10,*) 'lambdaWallSlope = ',lambdaWallSlope  
!!    write(10,*) 'R/ks used =',local_Roverks(1:nb_of_sets)  
!    write(10,*)  
!    write(10,*) case_fitness, ' = case fitness (Nikuradse u+ exp data)' 
!    close(10) 
    
 
end function case_fitness 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
subroutine run_case_Velocity(Roverks_val,case_number,error) 
    use solver 
    integer, intent(in) :: case_number ! can only be 1 through 6 
    real :: Roverks_val,error 
     
    call update_variable_vRoverks() 
             
    call p_getu(case_number,kshat,error) 
 
end subroutine run_case_Velocity 
 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
subroutine set_solver_vals() 
    use solver 
    real :: RC_ltxt(50) 
    real :: a,b,c,d,e,f 
 
      Roverks = 15.0 
          kr = 0.5/Roverks 
         Cnu = 0.006 
        Clam = Cnu**2 
      sigmak = 2.0 
         ksp = 80000.0 
 
       kappa = 0.403 
       gamma = 0.0324 
        beta = 1.000002 
           n = 3201 



227 
 

 

       nplot = 51 
            
       nuhat = 2.*kr/ksp 
        Rtau = 1./nuhat 
        kshat = 2.*kr  
         
 
        a = 0.00233 
        b = 0.659 
        c = 0.0307 
        d = 0.00551 
        e = 0.209 
        f = 0.0421 
 
                            
   
end subroutine set_solver_vals 
! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! 
module solver 
    IMPLICIT NONE 
    integer :: n,nb_of_sets,nb_pts_per_set,nplot,nstat 
    integer :: FullyRough,FullySmooth 
 
    real :: Rtau,kr,ksp,beta,nuhat,kshat,Rshat,Roverks,qkguess 
    real :: kappa,RoverksUser,fitness_Moody_(7),fitness_uprofile_(8) 
    real :: Cnu, sigmak,Clam 
    real :: kwall,lambdaWallSlope,lambdaWall,lambdaCenter  
    real :: Re,Df,um,km    
    real :: gamma  
    real :: 
A0,A1,B0,B1,B2,A10,A11,A12,A13,B00,B01,B02,B03,B10,B11,B12,B20,B21,B22,A1_exp,A1_cst 
 
    CHARACTER*(80):: rec,init,file_r 
    CHARACTER(LEN=100)::fn 
 
    real, allocatable, dimension(:)::r_hat,yplus 
    real, allocatable, dimension(:)::k,kprime 
    real, allocatable, dimension(:)::qk,qkprime 
    real, allocatable, dimension(:)::u,uprime 
    real, allocatable, dimension(:)::nu 
    real, allocatable, dimension(:)::h,lambda 
     
    real, allocatable, dimension(:)::vCF,vRebulk 
 
         
contains 
 
subroutine solver_allocate() 
    !Allocate Memory 
    ALLOCATE(r_hat(n)); ALLOCATE(yplus(n)) 
    ALLOCATE(k(n));     ALLOCATE(kprime(n)); 
    ALLOCATE(qk(n));     ALLOCATE(qkprime(n)); 
    ALLOCATE(u(n));     ALLOCATE(uprime(n)); 
    ALLOCATE(nu(n)); 
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    ALLOCATE(h(n)); ALLOCATE(lambda(n)); 
    ALLOCATE(vRebulk(nplot)); ALLOCATE(vCf(nplot)) 
end subroutine solver_allocate 
 
subroutine solver_deallocate() 
    !Deallocate Memory 
    DEALLOCATE(r_hat); DEALLOCATE(yplus); 
    DEALLOCATE(k);     DEALLOCATE(kprime); 
    DEALLOCATE(qk);     DEALLOCATE(qkprime); 
    DEALLOCATE(u);     DEALLOCATE(uprime); 
    DEALLOCATE(nu); 
    DEALLOCATE(h); DEALLOCATE(lambda); 
    DEALLOCATE(vRebulk);DEALLOCATE(vCf); 
end subroutine solver_deallocate 
 
 
subroutine create_grid() 
    integer :: j 
    real :: eta,cbeta,dzeta 
 
    if (beta>0) then 
        dzeta = 1.0/real(n-1) 
        !Create Grid 
        do j=1,n,1 
            eta = real(n-j)/real(n-1) 
            cbeta = ((beta+1.0)/(beta-1.0))**(1.0-eta) 
            if(beta .eq. 0.0) then 
                r_hat(j) = 1.0 - real(j-1)*dzeta 
            else 
                r_hat(j) = 1.0 - (beta+1.0 - (beta-1.0)*cbeta)/(1.0 + cbeta) 
            end if 
        end do 
        r_hat(1) = 0.0 
    else ! uniform grid, same spacing  
        do j=1,n 
            r_hat(j) = real(j-1) / real(n-1) 
        enddo 
    endif 
     
end subroutine create_grid 
 
subroutine update_variable_vRoverks() 
    real :: C_0,C_1,C_2,C_3,C_4,C_5 
    real :: sigma_k, k_wall 
    real :: 
A_lam0,A_lam10,A_lam11,A_lam12,A_lam13,B_lam00,B_lam01,B_lam02,B_lam03,B_lam10,B_lam11,
B_lam20,B_lam21 
  
     
    kshat = 1./Roverks 
    kr = kshat/2. 
    nuhat = 2.*kr/ksp 
    Rtau = 1./nuhat  
    Rshat = 1./(gamma*kshat) 
    sigma_k = sigmak 
    k_wall = kwall 
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         Cnu    =   1.1430803817E-04*sigma_k**4 - 2.1568032682E-03*sigma_k**3                       & 
                   + 1.5454411906E-02*sigma_k**2 - 5.3147683089E-02*sigma_k + 8.3648609370E-02       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam0  = - 5.4806699600E-06*sigma_k**4 + 1.0829889892E-04*sigma_k**3                       & 
                   - 5.8824903497E-04*sigma_k**2 + 6.4266598213E-05*sigma_k + 7.0559295507E-03       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam10 =   6.0548405176E-06*sigma_k**4 - 1.7464041639E-04*sigma_k**3                       & 
                   + 1.7083135016E-03*sigma_k**2 - 7.8015697237E-03*sigma_k + 2.3620283331E-02       ! 
FINAL NO CHANGE FROM V8.1 
! 
         A_lam11 =   1.6430210539E-04*sigma_k**4 - 3.2876048062E-03*sigma_k**3                       & 
                   + 2.3668508652E-02*sigma_k**2 - 7.4817705811E-02*sigma_k + 1.3742572373E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
             C_4 = - 3.6249854255E-04*k_wall**2  - 2.3771783095E-04*k_wall  + 3.1811391789E-04       !                         
<<<<<<<<<< 
             C_3 =   6.7456577268E-03*k_wall**2  + 3.5031152723E-03*k_wall  - 7.6039769524E-03       !                         
<<<<<<<<<< 
             C_2 = - 4.3056163634E-02*k_wall**2  - 2.0050955122E-02*k_wall  + 5.7370834148E-02       !                         
<<<<<<<<<< 
             C_1 =   1.1098738361E-01*k_wall**2  + 5.7323021287E-02*k_wall  - 1.5770938564E-01       !                         
<<<<<<<<<< 
             C_0 = - 9.7888362645E-02*k_wall**2  - 7.6772775598E-02*k_wall  + 1.6397877418E-01       !                         
<<<<<<<<<< 
         A_lam12 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL CHANGED FROM V8.1 <<<<<<<<<< 
! 
         A_lam13 =   2.1775071643E-04*sigma_k**4 - 4.6125648020E-03*sigma_k**3                       & 
                   + 3.2004745006E-02*sigma_k**2 - 7.6059412219E-02*sigma_k + 2.6786227707E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
         B_lam00 =   1.5571555961E-03*sigma_k**4 - 3.7455015562E-02*sigma_k**3                       & 
                   + 3.0085113473E-01*sigma_k**2 - 9.7875053089E-01*sigma_k + 1.1002011812E+00       ! V 
2.5 NO CHANGE FROM V8.1 
! 
         B_lam01 = - 1.7611480539E-03*sigma_k**4 + 3.3472445299E-02*sigma_k**3                       & 
                   - 2.1562199190E-01*sigma_k**2 + 4.9483981773E-01*sigma_k + 4.4081967221E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
             C_4 =   4.5958241000E-03*k_wall**2  + 2.0834333483E-03*k_wall  - 1.3277370846E-02 
             C_3 = - 9.3116503886E-02*k_wall**2  - 2.8569790820E-02*k_wall  + 2.7587164438E-01 
             C_2 =   6.0395589241E-01*k_wall**2  + 1.8761243453E-01*k_wall  - 2.0079111202E+00 
             C_1 = - 1.4946016082E+00*k_wall**2  - 7.3780887177E-01*k_wall  + 6.0340918034E+00 
             C_0 =   1.2142113765E+00*k_wall**2  + 1.2696368571E+00*k_wall  - 7.2873561012E+00 
         B_lam02 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL NO CHANGE FROM V8.1 
! 
         B_lam03 =   6.3453858956E-04*sigma_k**4 - 1.7156286122E-02*sigma_k**3                       & 
                   + 1.4904850864E-01*sigma_k**2 - 5.3187100685E-01*sigma_k + 7.9782349433E-01       ! 
FINAL NO CHANGE FROM V8.1 
! 
         B_lam10 = - 1.0134626360E-03*sigma_k**4 + 1.9147367622E-02*sigma_k**3                       & 
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                   - 1.2222170912E-01*sigma_k**2 + 2.5530412815E-01*sigma_k + 1.4355452292E+00       ! 
FINAL NO CHANGE FROM V8.1 
! 
         B_lam11 =                               - 6.6206887937E-03*sigma_k - 1.3830728894E+01       ! V 2   NO 
CHANGE FROM V8.1 
!B_lam11 = B11  
             C_4 = - 2.0201876364E-03*k_wall**2  + 4.3279392861E-03*k_wall  - 1.3949382336E-03 
             C_3 =   2.6570830671E-02*k_wall**2  - 6.4136620678E-02*k_wall  + 2.3621757343E-02 
             C_2 = - 1.1989031734E-01*k_wall**2  + 3.3373664338E-01*k_wall  - 1.3864710895E-01 
             C_1 =   2.1942375688E-01*k_wall**2  - 7.0814005373E-01*k_wall  + 3.0315634574E-01 
             C_0 = - 1.4066477454E-01*k_wall**2  + 4.5837394149E-01*k_wall  - 8.0853545298E-01 
         B_lam20 =   C_4*sigma_k**4 + C_3*sigma_k**3 + C_2*sigma_k**2 + C_1*sigma_k + C_0            
! FINAL NO CHANGE FROM V8.1 
! 
         B_lam21 =                               - 2.6815510578E-03*sigma_k + 4.0037296283E+01       ! V 2   NO 
CHANGE FROM V8.1 
 
       
      A0 = A_lam0 
      A1  =   A_lam11 + A_lam12*kshat + (A_lam10 - A_lam11 - A_lam12*kshat)*exp(-
(kshat**A_lam13)) 
      B0  =   B_lam01 + B_lam02*kshat + (B_lam00 - B_lam01 - B_lam02*kshat)*exp(-(kshat**B_lam03)) 
      B1  =   B_lam10 + B_lam11*kshat 
      B2  =   B_lam20 + B_lam21*kshat 
 
    
end subroutine 
 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Compare velocity with Nikuradse exp data 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine p_getu(case_number,ksoverR_in,error) 
    integer :: iprint, niter,icompare,i,j 
    integer, intent(in) :: case_number 
    real :: error,junk,pRMS,RMS 
    real, intent(in) :: ksoverR_in 
    real :: uplus_reference(12),uhat_reference(12),r_hat_discretized(12),u_fromEmpLambda(12) 
    real :: a,b,u1,u2,r1,r2 
   
     
    do i = 1,n 
        lambda(i) = lambdahat(r_hat(i)) 
    enddo 
 
    call integrate_k_fromWall() 
 
!    write(*,*) 
!    write(*,*) '  Re (um) = ' , Re  
!    write(*,*) ' 4Cf      = ' , Df 
!    write(*,*) 'Colebrook = ', func_Colebrook(Re) 
!    write(*,*) 
!    write(*,*) '        B0 = ',B0 
!    write(*,*) '        B1 = ',B1 
!    write(*,*) '        B2 = ',B2 
!    write(*,*) '        A0 = ',A0 
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!    write(*,*) '        A1 = ',A1  
!    write(*,*) 'lambdaWall = ', lambdaWall 
!    write(*,*) '     kwall = ',kwall 
!    write(*,*) 
        
       
!    open(unit=10,file='data.txt') 
!        do i=n,1,-1 
!            write(10,*) r_hat(i),1.-r_hat(i),u(i),k(i),lambda(i),nu(i), r_hat(i)/( nuhat+nu(i) ) 
!        enddo 
!    close(10)      
     
       
     ! Compare u+ ( u+ from empirical nut vs. u+ from RK4 with empirical lambda_hat) 
     r_hat_discretized = (/ 0.0,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 /) 
      
          
    j=1 
    u_fromEmpLambda(1) = u(1) 
    call get_uplus_uhat(0.0,uplus_reference(1),junk) 
 
 
    do icompare=2,12 
        do while ((j<=n).and. (r_hat(j)-r_hat_discretized(icompare)<=0.)  ) 
            j=j+1 
        enddo 
        j=j-1         
         
        if (r_hat_discretized(icompare)-r_hat(j)> r_hat(j+1)-r_hat_discretized(icompare)) then  
!r_hat_discretized(icompare) closer to r_hat(j+1) 
            call get_uplus_uhat(r_hat(j+1),uplus_reference(icompare),junk) 
            u_fromEmpLambda(icompare) = u(j+1) 
            pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare)) 
        else 
            call get_uplus_uhat(r_hat(j),uplus_reference(icompare),junk) 
            u_fromEmpLambda(icompare) = u(j) 
            pRMS = abs((uplus_reference(icompare)-
u_fromEmpLambda(icompare))/uplus_reference(icompare)) 
        endif 
         
    enddo 
 
  
    error = sum( abs(uplus_reference-u_fromEmpLambda)/uplus_reference)/12. 
     
end subroutine p_getu 
 
 
 
! ------------------------------------------------------------------------------------------ 
! uplus/uhat when nut = Eq. 106 
! ------------------------------------------------------------------------------------------ 
 
subroutine get_uplus_uhat(r_hat,u_plus,u_hat) 
    real :: yhat,r_hat 
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    real :: delta,deltap 
    real :: u_plus,u_hat 
    real :: D0,D1,D2,D3,D4,D5,C0,C1,C2,C3,C4,C5,C6,C7,Acoeff,Bcoeff,ecoeff,nutc 
     
        Acoeff = 1.2 
        Bcoeff = 0.0 
        ecoeff = 1.4 
        nutc = 0.053 
        C7 = -1.3 
         
        D0 = (Rshat+1.)**2*(log(Rshat+1.)-3./2.)+2.*Rshat+3./2. 
        C0 = Acoeff*kshat**ecoeff+Bcoeff 
        C1 = Rshat**3./((Rshat+1.)*D0) 
        C2 = Rshat**2.*(Rshat**2/((Rshat+1.)**2)-kappa/nutc)/(2.*D0) 
        C3 = Rshat**5./(3.*(Rshat+1.)**3*D0) 
        D1 = -C0-C1-C2-C3-C7 
        D2 = -C1-2.*C2-3.*C3-7.*C7 
        D3 = -C0/2.-C1/3.-C2/4.-C3/5.-C7/9. 
        C4 = -39.*D1+3.*D2+168.*D3 
        C5 = 84.*D1-7.*D2-336.*D3 
        C6 = -44.*D1+4.*D2+168.*D3 
 
 
        yhat = 1.-r_hat 
         
        delta = C0 + C1*r_hat + C2*r_hat**2 + C3*r_hat**3 + C4*r_hat**4 + C5*r_hat**5 + C6*r_hat**6 
+ C7*r_hat**7 
        deltap = -(C1 + 2.*C2*r_hat + 3.*C3*r_hat**2 + 4.*C4*r_hat**3 + 5.*C5*r_hat**4 + 
6.*C6*r_hat**5 + 7.*C7*r_hat**6) 
         
        u_hat = Rshat**2*log(Rshat*yhat+1.)/D0+delta 
        u_plus = log(Rshat*yhat+1.)/kappa+D0*delta/(kappa*Rshat**2) 
 
end subroutine 
 
 
 
! ------------------------------------------------------------------------------------------ 
! Lambda_hat Empirical Function 
! ------------------------------------------------------------------------------------------ 
 
function lambdahat(r_hat) 
    real :: r_hat,lambdahat,yhat 
     
    yhat = 1.-r_hat       
    lambdahat = (A0*kshat+A1*yhat)*(1.-.5*yhat)*(B0+B1*r_hat**2+B2*r_hat**4+(1.-B0-B1-
B2)*r_hat**6) 
   
end function 
 
 
! ------------------------------------------------------------------------------------------ 
!   INTEGRATE from WALL 
! ------------------------------------------------------------------------------------------ 
 
subroutine integrate_k_fromWall() 
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    integer :: i,niter,nitermax 
    real :: t0,y0(5),dt,y(5),qwall(3),qcenter(3) 
 
    ! integrates from the wall, shoots to the centerline to have Q+ = 0 at the centerline 
    !kwall = 6120.1*kshat**3-1503.6*kshat**2+144.43*kshat-0.0309 
     
    !write(*,*) 'kwall = ', kwall 
     
    niter = 1 
    nitermax = 200 
    nstat = 0 
    qkguess = 2.0 
 
    !write(*,*) 'Iterate on Q...' 
 
 
    do while ((qkguess>=-1.).and.(nstat==0) ) 
    niter = 1 
     
        ! GUESS 1 ON Q 
        ! --------------- 
        t0 = 0. 
        k(n) = kwall 
        qk(n) = qkguess   ! initial guess for q(wall) 
        qwall(1) = qk(n) 
        y0(1) = k(n) 
        y0(2) = qk(n)    
        !write(*,*) i,k(n),qk(n) 
         
        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i)  ! dt is equivalent of dy, not dr_hat 
            call RK4_fromWall(2,t0,y0,dt,y) 
            t0 = t0+dt 
            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
        enddo 
        qcenter(1) = qk(1) 
         
        !write(*,*) niter, qk(1) 
         
         
        ! GUESS 2 ON Q 
        ! --------------- 
        niter = niter + 1 
        t0 = 0. 
        k(n) = kwall 
        if (qkguess<0) then 
            qk(n) = qkguess*.95   ! initial guess for q(wall) 
        else 
            qk(n) = qkguess*1.05 
        endif 
        qwall(2) = qk(n) 
        y0(1) = k(n) 
        y0(2) = qk(n)    
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        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i) 
            call RK4_fromWall(2,t0,y0,dt,y) 
            t0 = t0+dt 
            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
        enddo  
        qcenter(2) = qk(1)    
        !write(*,*) niter, qk(1) 
         
         
        ! ITERATE ON Q (secant method) 
        ! ------------------------------ 
        do while ((abs(qk(1))>1.0e-12).and.(niter<nitermax)) 
            niter = niter + 1 
            t0 = 0. 
            k(n) = kwall 
            qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) ) 
            qwall(3) = qk(n) 
            y0(1) = k(n) 
            y0(2) = qk(n)    
 
            do i = n-1,1,-1 
                dt = r_hat(i+1)-r_hat(i) 
                call RK4_fromWall(2,t0,y0,dt,y) 
                t0 = t0+dt 
                y0 = y 
                k(i) = y(1) 
                qk(i) = y(2) 
            enddo  
            qcenter(3) = qk(1)    
            !write(*,*) niter, qk(1),qk(n) 
             
            qwall(1) = qwall(2) 
            qwall(2) = qwall(3) 
            qcenter(1) = qcenter(2) 
            qcenter(2) = qcenter(3) 
             
        enddo 
         
         
        niter = niter + 1 
        t0 = 0. 
        k(n) = kwall 
        qk(n) = qwall(2)-qcenter(2)*( qwall(2)-qwall(1) ) / ( qcenter(2)-qcenter(1) ) 
        qwall(3) = qk(n) 
        y0 = 0. 
        y0(1) = k(n) 
        y0(2) = qk(n)   
        u(n) = 0.  
 
        do i = n-1,1,-1 
            dt = r_hat(i+1)-r_hat(i) 
            call RK4_fromWall(5,t0,y0,dt,y) 
            t0 = t0+dt 
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            y0 = y 
            k(i) = y(1) 
            qk(i) = y(2) 
            u(i) = y(3) 
        enddo  
        qcenter(3) = qk(1)   
        km = y(5)  
        um = y(4) 
        !write(*,*) niter, Roverks,qk(1),qwall(3) 
        nu = lambda*sqrt(k) 
        h = Cnu*k /nuhat 
        Df =  8./um**2.  
        Re = 2.*um/nuhat 
                
        if (isnan(Re)) then 
            qkguess = qkguess-0.1 
            nstat = 0 
        else 
            nstat =1 
        endif 
 
    enddo 
 
     
    if ((niter>=nitermax).or.(isnan(Re))) then  
        nstat = 0 
    else  
        nstat = 1 
        !write(*,*) niter, Roverks,qk(1),qwall(3) 
    endif 
     
     
end subroutine 
 
  
 
 
subroutine RK4_fromWall(nn,t0,y0,dt,y) 
    ! solve a system of n first order differential equations 
    ! dy(i)/dt = f(i,t,y) 
    ! calls the function f 
     
    integer, intent(in) :: nn ! number of equation to be solved 
    real, dimension(nn,4) :: k_ ! table of coefficient (k1, k2, k3 k4); 4 coeffs per equation 
    real, intent(inout) :: t0, y0(nn),dt 
    real :: coeff(4),Rtau 
    real, intent(out) :: y(nn) 
    integer :: i,j 
     
    if (t0+dt>1.) dt=1.-t0 
    coeff = (/ 1./6., 1./3., 1./3., 1./6. /) 
    do j=1,nn 
         k_(j,1)=f_fromWall(j,t0,y0)*dt 
         y(j)=y0(j)+k_(j,1)/2. 
    end do 
    do j=1,nn 
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         k_(j,2)=f_fromWall(j,t0+dt/2.,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j)+k_(j,2)/2. 
    end do 
    do j=1,nn 
        k_(j,3)=f_fromWall(j,t0+dt/2.,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j)+k_(j,3) 
    end do 
    do j=1,nn 
        k_(j,4)=f_fromWall(j,t0+dt,y)*dt 
    end do 
    do j=1,nn 
        y(j)=y0(j) 
        do i=1,4 
           y(j)=y(j)+coeff(i)*k_(j,i) 
        end do 
    end do 
       
end subroutine 
 
 
function f_fromWall(i,zeta,y) 
    integer, intent(in) :: i 
    real, intent(in) :: zeta,y(*)   ! y(1) = k, y(2) = q 
    real :: f_fromWall,r_hat 
    ! input zeta = 0 at wall, 1 at centerline 
    !if (zeta<0.) zeta=0. 
     
    r_hat = 1. - zeta ! r_hat = 0 at centerline, 1 at wall 
    if (i==1) then  ! dk/dr_hat 
        if (r_hat <= 10**(-16./6.)) then   !(r_hat <= 10**(-16./6.)) then  ! at the centerline, exception /0 
            f_fromWall = 0.   
        else 
            f_fromWall = -y(2)/r_hat*3./( nuhat+5.*(lambdahat(r_hat)*sqrt( abs(y(1)) ) )/sigmak) ! corresponds 
to dk/dr_hat 
            !write(*,*) nut(r_hat),y(2) 
        endif 
    elseif (i==2) then   ! dq/dr_hat 
        f_fromWall =  (lambdahat(r_hat)*sqrt(abs(y(1))))*r_hat**3./(nuhat+ 
(lambdahat(r_hat)*sqrt(abs(y(1)))) )**2. - 
Cnu**2.*nuhat/(lambdahat(r_hat)*sqrt(abs(y(1))))**2.*y(1)**2.*r_hat   
        !if  ((nut(r_hat)==0.).and.(r_hat==0) )  f_fromWall=0. 
    elseif (i==3) then   ! du/dr_hat 
        f_fromWall = -r_hat/( nuhat+(lambdahat(r_hat)*sqrt(y(1))) ) 
    elseif (i==4) then   ! dum/dr_hat 
        f_fromWall = -y(3)*r_hat*2.    
    elseif (i==5) then   ! dkm/dr_hat 
        f_fromWall = -y(1)*r_hat*2.    
    end if 
    f_fromWall = -f_fromWall  ! gives the variables in terms of d_/dy 
    !if (f_fromWall=='NaN') pause 
end function 
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subroutine p_vksp(iprint,ngood,error) 
    integer :: iprint,ngood,niter 
    real :: error,power 
 
    power = 2.0 
    ksp = 10**power 
    Re = 0.0 
    ngood = 1 
    error = 0.0 
    Rshat = Roverks/(gamma) 
 
    if(iprint.eq.1) write(*,*) '     ngood   R/ks                      ksp                        Re                       4CF          & 
                               &             4Cf Reference             error                      ' !num_iter' 
    do while (((Re<1.0e8).and.(ngood<=nplot)).or.(ngood<5)) 
        nuhat = 2.*kr/ksp 
        Rtau = 1./nuhat 
 
        call integrate_k_fromWall() 
        vRebulk(ngood) = Re 
        vCF(ngood) = Df 
         
        if((Re<1.0e8).or.(ngood<4)) error = error + abs(reference_4Cf(Re,Roverks) - 
vCF(ngood))/reference_4Cf(Re,Roverks) 
!       if((Re<1.0e8).or.(ngood<4)) error = error + ((reference_4Cf(Re,Roverks) - 
vCF(ngood))/func_Colebrook(Re))**2 ! % RMS 
        if(iprint.eq.1) write(*,*) ngood,Roverks,ksp,Re,Df,reference_4Cf(Re,Roverks),error !,niter 
        ngood = ngood + 1 
        power = power + 0.25 
        ksp = 10.0**power 
    end do 
    ngood = ngood - 2 
end subroutine p_vksp 
 
real function func_Colebrook(Re) 
    implicit none 
    real :: Re,old,new 
    if(Re<100.0) then 
        func_Colebrook = 64.0/Re 
    else 
        new = (-1.8*log10((kr/3.7)**(1.11) + 6.9/Re))**(-2.0) 
        old = 10.0 
        do while(abs((new-old)/new) .gt. 1.0e-5) 
            old = new 
            new = (-2.0*log10(kr/3.7 + 2.51/(Re*sqrt(old))))**(-2.0) 
        end do 
        func_Colebrook = new 
    end if 
return; end function func_Colebrook 
 
 
real function reference_4Cf(Re,Roverks) 
    real :: Re,Roverks 
    integer :: i,indix 
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    reference_4Cf = (2.0*log10(Roverks)+1.74)**(-2.0) 
     
end function 
 
end module solver 
 
 
 
program readOUtput 
 
real :: junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
integer:: ierr 
 
open(unit=10,file='output.txt') 
    open(unit=99,file='sk1kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
 
    open(unit=99,file='sk1kw05//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
 
    open(unit=99,file='sk1kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
 
    open(unit=99,file='sk1kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk2kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
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        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk2kw05//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk2kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk2kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk3kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk3kw05//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk3kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
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    open(unit=99,file='sk3kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk4kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk4kw05//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk4kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk4kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk5kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk5kw05//optimization.txt') 
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    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk5kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk5kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk6kw1//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk6kw05//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk6kw01//optimization.txt') 
    read(99,*) 
    ierr=1 
        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
     
    open(unit=99,file='sk6kw005//optimization.txt') 
    read(99,*) 
    ierr=1 
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        do while (ierr/=-1) 
            read(99,*,iostat=ierr) junk,junk,junk,Roverks,sigmak,kwall,coef1,coef2,weighting,fitness, junk,junk 
        enddo 
        write(10,*) Roverks,sigmak,kwall,coef1,coef2,weighting,fitness 
    close(99) 
         
close(10) 
 
 
 
end program 
 
 
program createCase 
real :: sk1_ini,sk2_ini,sk3_ini,sk4_ini,sk5_ini,sk6_ini 
real :: sk1_ini0,sk2_ini0,sk3_ini0,sk4_ini0,sk5_ini0,sk6_ini0 
 
sk1_ini0 = 0.04 
sk2_ini0 = 0.04 
sk3_ini0 = 0.04 
sk4_ini0 = 0.04 
sk5_ini0 = 0.04 
sk6_ini0 = 0.04 
 
 
sk1_ini = -0.06 
sk2_ini = -0.06 
sk3_ini = -0.06 
sk4_ini = -0.06 
sk5_ini = -0.06 
sk6_ini = -0.06 
 
call createFiles(8,'sk1kw005',1.,0.05,sk1_ini0,sk1_ini) 
call createFiles(7,'sk1kw01',1.0,0.1,sk1_ini0,sk1_ini) 
call createFiles(7,'sk1kw05',1.0,0.5,sk1_ini0,sk1_ini) 
call createFiles(6,'sk1kw1',1.0,1.0,sk1_ini0,sk1_ini) 
write(*,*) 'sk1' 
 
call createFiles(8,'sk2kw005',2.0,0.05,sk2_ini0,sk2_ini) 
call createFiles(7,'sk2kw01',2.0,0.1,sk2_ini0,sk2_ini) 
call createFiles(7,'sk2kw05',2.0,0.5,sk2_ini0,sk2_ini) 
call createFiles(6,'sk2kw1',2.0,1.0,sk2_ini0,sk2_ini) 
write(*,*) 'sk2' 
 
call createFiles(8,'sk3kw005',3.0,0.05,sk3_ini0,sk3_ini) 
call createFiles(7,'sk3kw01',3.0,0.1,sk3_ini0,sk3_ini) 
call createFiles(7,'sk3kw05',3.0,0.5,sk3_ini0,sk3_ini) 
call createFiles(6,'sk3kw1',3.0,1.0,sk3_ini0,sk3_ini) 
write(*,*) 'sk3' 
 
call createFiles(8,'sk4kw005',4.0,0.05,sk4_ini0,sk4_ini) 
call createFiles(7,'sk4kw01',4.0,0.1,sk4_ini0,sk4_ini) 
call createFiles(7,'sk4kw05',4.0,0.5,sk4_ini0,sk4_ini) 
call createFiles(6,'sk4kw1',4.0,1.0,sk4_ini0,sk4_ini) 
write(*,*) 'sk4' 
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call createFiles(8,'sk5kw005',5.0,0.05,sk5_ini0,sk5_ini) 
call createFiles(7,'sk5kw01',5.0,0.1,sk5_ini0,sk5_ini) 
call createFiles(7,'sk5kw05',5.0,0.5,sk5_ini0,sk5_ini) 
call createFiles(6,'sk5kw1',5.0,1.0,sk5_ini0,sk5_ini) 
write(*,*) 'sk5' 
 
call createFiles(8,'sk6kw005',6.0,0.05,sk6_ini0,sk6_ini) 
call createFiles(7,'sk6kw01',6.0,0.1,sk6_ini0,sk6_ini) 
call createFiles(7,'sk6kw05',6.0,0.5,sk6_ini0,sk6_ini) 
call createFiles(6,'sk6kw1',6.0,1.0,sk6_ini0,sk6_ini) 
write(*,*) 'sk6' 
 
end program 
 
 
 
subroutine createFiles(len,myDir,sk,kw,initialGuess1,initialGuess2) 
integer :: len 
character(len) :: myDir 
real :: initialGuess1,initialGuess2,sk,kw 
 
 
    call system('mkdir ' // trim(myDir) ) 
    call system('cp commonFiles/bfgs.f90 ./' // trim(adjustl(myDir)) ) 
    call system('cp commonFiles/main_bfgs.f90 ./' // trim(myDir) ) 
    call system('cp commonFiles/solver.f90 ./' // trim(myDir) ) 
    call system('cp commonFiles/main_solve.f90 ./' // trim(myDir) ) 
    call system('cp commonFiles/Makefile ./' // trim(myDir) ) 
 
    open(unit=99,file='job') 
        write(99,*) '#PBS -q sawtooth' 
        write(99,*) '#PBS -S /bin/bash' 
        write(99,*) '#PBS -l nodes=1:ppn=8' 
        write(99,*) '#PBS -l walltime=72:00:00' 
        write(99,*) '#PBS -N ' // trim(myDir)  
        write(99,*) '#PBS -j oe' 
        write(99,*)  
        write(99,*) 'WORK_DIR=/home/A01208071/TRANSITION/122811/currentRun/' // trim(myDir)  
        write(99,*)  
        write(99,*) 'cd $WORK_DIR' 
        write(99,*) 'make' 
        write(99,*) './bfgs.out ' 
        write(99,*) 'rm *.o*' 
    close(99) 
    call system('cp job ./' // trim(myDir) ) 
    call system('rm job') 
 
    open(unit=99,file='bfgs_start.txt') 
      write(99,*) '         6        num vars' 
      write(99,*) '  R/ks                  sigmak                kwall                 B00                   B20                   
weighting '             
      write(99,*) '-1.0000000000000E+00   ',sk,kw,initialGuess1,initialGuess2 ,'5.0000000000000E-01' 
      write(99,*) '                   0                     0                     0                     1                     1                     0' 
      write(99,*) '1.00000000000000000E-008    default line search alpha' 
      write(99,*) '1.00000000000000000E-005    delta step size used for gradient calculations' 
      write(99,*) '         1    differencing scheme (1=central diff, 0=forward diff)' 
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      write(99,*) '1.00000000000000000E-012    stop delta' 
      write(99,*) '         8      number of simultaneous cases in the line search' 
 
    close(99) 
    call system('cp bfgs_start.txt ./' // trim(myDir) ) 
    call system('rm bfgs_start.txt') 
 
end subroutine 

 

IV. Matlab Code 

 
function moody() 
  
clc;clear all;format compact;close all 
  
set(0,'DefaultTextFontsize',8, ... 
'DefaultTextFontname','Times New Roman', ... 
'DefaultTextFontWeight','normal', ... 
 'DefaultAxesFontsize',10, ... 
 'DefaultAxesFontname','Times New Roman',... 
 'DefaultLineLineWidth',0.4) 
  
% ------------------------------------------------------------------------- 
% COLEBROOK EQUATION 
% ------------------------------------------------------------------------- 
  
xmax = 9; 
xstart = log10(3500); 
Ncolebrook = 101; 
backgroundColor = [1 1 1]*.2; 
symbolWidth = 0.05; 
  
dlog=(xmax-xstart)/real(Ncolebrook); 
for i=1:Ncolebrook; 
    ReSmooth(i)=10^(xstart+i*dlog); 
    DfSmooth(i)=get_Df_Colebrook(0.0,ReSmooth(i)); 
end 
  
  
figure; 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .85]) 
  
  
smooth = loglog(ReSmooth,DfSmooth,'color',backgroundColor); 
set(get(get(smooth,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
ylabel('Darcy Friction Factor'); 
xincr = [10^3 10^4 10^5 10^6 10^7 10^8 10^9]; 
yincr = [0.01 0.02 0.04 0.06 0.08 0.1]; 
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xlim([610 2.*10^xmax]); 
ylim([0.008 0.1]); 
ax1=gca; 
set(gca,'ytick',yincr); 
set(gca,'xtick',xincr); 
xlabel('Bulk Reynolds Number'); 
  
hold on 
  
%kr_ = [0.05*2 1/15 1/30.6 1/60 1/126 1/252 1/507 0.0003*2 0.000058*2]/2.; 
kr_ = [1/15 1/30.6 1/60 1/126 1/252 1/507 0.0003*2 0.000058*2]/2.; 
  
for j=1:length(kr_); 
    for i=1:Ncolebrook; 
        Re(i) = 10^(xstart+real(i)*dlog); 
        Df(i) = get_Df_Colebrook(kr_(j),Re(i)); 
    end 
    Re(end)=2.*10^9; 
    Df(end) = get_Df_Colebrook(kr_(j),Re(end)); 
    rough = loglog(Re,Df,'color',backgroundColor); 
    set(get(get(rough,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
end    
     
  
  
% ------------------------------------------------------------------------- 
% EXPERIMENTAL DATA 
% ------------------------------------------------------------------------- 
  
nikuradse15 = load('nikuradse15.txt'); 
nikuradse30p6 = load('nikuradse30p6.txt'); 
nikuradse60 = load('nikuradse60.txt'); 
nikuradse126 = load('nikuradse126.txt'); 
nikuradse252 = load('nikuradse252.txt'); 
nikuradse507 = load('nikuradse507.txt'); 
shockling8621 = load('shockling8621.txt'); 
  
loglog(nikuradse15(:,1),nikuradse15(:,2),'o','Markersize',3,'MarkerEdgeColor',backgroundColor,'LineWidth
',symbolWidth); 
loglog(nikuradse30p6(:,1),nikuradse30p6(:,2),'^','Markersize',3,'MarkerEdgeColor',backgroundColor,'Line
Width',symbolWidth); 
loglog(nikuradse60(:,1),nikuradse60(:,2),'s','Markersize',3,'MarkerEdgeColor',backgroundColor,'LineWidth
',symbolWidth); 
loglog(nikuradse126(:,1),nikuradse126(:,2),'v','Markersize',3,'MarkerEdgeColor',backgroundColor,'LineWi
dth',symbolWidth); 
loglog(nikuradse252(:,1),nikuradse252(:,2),'d','Markersize',3,'MarkerEdgeColor',backgroundColor,'LineWi
dth',symbolWidth); 
loglog(nikuradse507(:,1),nikuradse507(:,2),'p','Markersize',3,'MarkerEdgeColor',backgroundColor,'LineWi
dth',symbolWidth); 
loglog(shockling8621(:,1),shockling8621(:,2),'d','Markersize',3,'MarkerEdgeColor',backgroundColor,'Mark
erFaceColor',backgroundColor,'LineWidth',symbolWidth); 
  
  
% ------------------------------------------------------------------------- 
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% ADD OTHER DATA 
% ------------------------------------------------------------------------- 
moody = load('moody.txt'); 
  
loglog(moody(:,2),moody(:,3),'o','Markersize',3,'MarkerEdgeColor','k','MarkerFaceColor','k'); 
%loglog(moody(:,2),moody(:,3),'o','Markersize',6,'MarkerEdgeColor','k'); 
%loglog(moody_dataOLD(:,2),moody_dataOLD(:,3),'o','Markersize',2,'MarkerEdgeColor','k','MarkerFace
Color','k'); 
  
  
% ------------------------------------------------------------------------- 
% ADD LEGEND  
% ------------------------------------------------------------------------- 
  
legend_handle = legend('\itR/k_s\rm = 15','\itR/k_s\rm = 30.6','\itR/k_s\rm = 60', ... 
    '\itR/k_s\rm = 126','\itR/k_s\rm = 252','\itR/k_s\rm = 507', ... 
    '\itR/k_s\rm = 8621','Phillips model','Location','southwest'); 
legend('boxoff') 
set(legend_handle, 'fontsize', 7) 
  
  
  
% ------------------------------------------------------------------------- 
% SAVE PLOT 
% ------------------------------------------------------------------------- 
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'moody.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% FUNCTIONS 
% ------------------------------------------------------------------------- 
    function [Df] = get_Df_Colebrook(kr,Re); 
     
    Df=(-1.8*log10((kr/3.7)^1.11 + 6.9/Re))^(-2); 
    R=Df-(-2.0*log10((kr/3.7) + 2.51/(Re*sqrt(Df))))^(-2); 
     
    while(abs(R)>1e-8) 
        Df=(-2.0*log10((kr/3.7) + 2.51/(Re*sqrt(Df))))^(-2); 
        R=Df-(-2.0*log10((kr/3.7) + 2.51/(Re*sqrt(Df))))^(-2); 
         
    end 
    end 
     
end 
 
clc;clear all;close all 
  
data15_fromEmpLambda = load('data15_fromEmpLambda.txt'); 
data30p6_fromEmpLambda = load('data30p6_fromEmpLambda.txt'); 
data60_fromEmpLambda = load('data60_fromEmpLambda.txt'); 
data126_fromEmpLambda = load('data126_fromEmpLambda.txt'); 
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data252_fromEmpLambda = load('data252_fromEmpLambda.txt'); 
data507_fromEmpLambda = load('data507_fromEmpLambda.txt'); 
data1667_fromEmpLambda = load('data1667_fromEmpLambda.txt'); 
data8621_fromEmpLambda = load('data8621_fromEmpLambda.txt'); 
  
backgroundColor=[1 1 1]*0; 
yhat = data15_fromEmpLambda(1:2:end,2); 
  
f1 = figure; 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .85]) 
kappa=0.403; 
gamma=0.0324; 
  
Roverks = [15 30.6 60 126 252 507 0.5/0.0003 0.5/0.000058]; 
  
nsymbol15 = 161; 
nsymbol30 = 158; 
nsymbol60 = 155; 
nsymbol126 = 152; 
nsymbol252 = 149; 
nsymbol507 = 145; 
nsymbol1667 = 141; 
nsymbol8621 = 135; 
  
semilogx(data15_fromEmpLambda(nsymbol15,2),data15_fromEmpLambda(nsymbol15,3),'-
ok','MarkerFaceColor','k');hold on 
emp = semilogx(data15_fromEmpLambda(1:2:end,2),data15_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(1))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data30p6_fromEmpLambda(nsymbol30,2),data30p6_fromEmpLambda(nsymbol30,3),'-ok'); 
emp = semilogx(data30p6_fromEmpLambda(1:2:end,2),data30p6_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(2))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data60_fromEmpLambda(nsymbol60,2),data60_fromEmpLambda(nsymbol60,3),'-
dk','MarkerFaceColor','k'); 
emp = semilogx(data60_fromEmpLambda(1:2:end,2),data60_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(3))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data126_fromEmpLambda(nsymbol126,2),data126_fromEmpLambda(nsymbol126,3),'-dk'); 
emp = semilogx(data126_fromEmpLambda(1:2:end,2),data126_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
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lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(4))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data252_fromEmpLambda(nsymbol252,2),data252_fromEmpLambda(nsymbol252,3),'-
sk','MarkerFaceColor','k'); 
emp = semilogx(data252_fromEmpLambda(1:2:end,2),data252_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(5))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data507_fromEmpLambda(nsymbol507,2),data507_fromEmpLambda(nsymbol507,3),'-sk'); 
emp = semilogx(data507_fromEmpLambda(1:2:end,2),data507_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(6))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data1667_fromEmpLambda(nsymbol1667,2),data1667_fromEmpLambda(nsymbol1667,3),'-
>k','markersize',8,'MarkerFaceColor','k'); 
emp = semilogx(data1667_fromEmpLambda(1:2:end,2),data1667_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(7))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
semilogx(data8621_fromEmpLambda(nsymbol8621,2),data8621_fromEmpLambda(nsymbol8621,3),'-
>k','markersize',8); 
emp = semilogx(data8621_fromEmpLambda(1:2:end,2),data8621_fromEmpLambda(1:2:end,3),'-k'); 
set(get(get(emp,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
lawWall = 
semilogx(yhat,1/kappa*log(yhat*Roverks(8))+1/kappa*log(1/gamma),':','color',backgroundColor,'linewidt
h',1); 
set(get(get(lawWall,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 
  
%annotation(f1,'textarrow',[0.3 0.4] ,[0.5,0.4],'String','All k_r values','FontSize',10,'TextEdgeColor','none'); 
  
%xlim([10^xstart 10^xend]) 
xlabel('\ity / R') 
ylabel('\itV_z / u_\tau') 
text(10^-5.57,14.6,'_','rotation',90) 
ylim([0 32]) 
xlim([10^-5.1 1]) 
  
legend_handle = legend('\itR/k_s\rm = 15','\itR/k_s\rm = 30.6','\itR/k_s\rm = 60','\itR/k_s\rm = 126'... 
    ,'\itR/k_s\rm = 252','\itR/k_s\rm = 507','\itR/k_s\rm = 1667'... 
    ,'\itR/k_s\rm = 8621','location','northwest') 
legend('boxoff') 
set(legend_handle, 'fontsize', 7) 
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% ------------------------------------------------------------------------- 
% SAVE semilogx 
% ------------------------------------------------------------------------- 
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'alluplus.eps','epsc') 
  
 
clc;close all;clear all 
  
data15_fromEmpLambda = load('data15_fromEmpLambda.txt'); 
data30p6_fromEmpLambda = load('data30p6_fromEmpLambda.txt'); 
data60_fromEmpLambda = load('data60_fromEmpLambda.txt'); 
data126_fromEmpLambda = load('data126_fromEmpLambda.txt'); 
data252_fromEmpLambda = load('data252_fromEmpLambda.txt'); 
data507_fromEmpLambda = load('data507_fromEmpLambda.txt'); 
data1667_fromEmpLambda = load('data1667_fromEmpLambda.txt'); 
data8621_fromEmpLambda = load('data8621_fromEmpLambda.txt'); 
  
backgroundColor=[1 1 1]*0; 
  
f1 = figure; 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .85]) 
  
Roverks = [15 30.6 60 126 252 507 0.5/0.0003 0.5/0.000058]; 
  
xstart=-2; 
xend=3; 
  
dx=xend-xstart; 
npts=100; 
kappa=0.403; 
gamma=0.0324; 
for i=1:npts 
    yoverks(i)=10^(xstart+(i-1)/(npts-1)*dx); 
    uplus_emp(i) = 1/kappa*log(yoverks(i))+1/kappa*log(1/gamma); 
    uplus_ml_nrWll_fllrgh(i)=1/kappa*log(yoverks(i)/gamma+1); 
end 
  
  
semilogx(yoverks,uplus_emp ,':','color',backgroundColor,'linewidth',1); 
hold on 
semilogx(yoverks,uplus_ml_nrWll_fllrgh ,'-','color',backgroundColor); 
  
semilogx(data15_fromEmpLambda(:,2)*Roverks(1),data15_fromEmpLambda(:,3),'-k'); 
semilogx(data30p6_fromEmpLambda(:,2)*Roverks(2),data30p6_fromEmpLambda(:,3),'-k'); 
semilogx(data60_fromEmpLambda(:,2)*Roverks(3),data60_fromEmpLambda(:,3),'-k'); 
semilogx(data126_fromEmpLambda(:,2)*Roverks(4),data126_fromEmpLambda(:,3),'-k'); 
semilogx(data252_fromEmpLambda(:,2)*Roverks(5),data252_fromEmpLambda(:,3),'-k'); 
semilogx(data507_fromEmpLambda(:,2)*Roverks(6),data507_fromEmpLambda(:,3),'-k'); 
%semilogx(data1667_fromEmpLambda(:,2)*Roverks(7),data1667_fromEmpLambda(:,3),'-k'); 
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%semilogx(data8621_fromEmpLambda(:,2)*Roverks(8),data8621_fromEmpLambda(:,3),'-k'); 
  
x = [yoverks(npts/2) 1000]; 
y = [uplus_emp(npts/2) 20]; 
%annotation(f1,'textarrow',ds2nfu(x, y),ds2nfu(x, y),'String','All k_r 
values','FontSize',10,'TextEdgeColor','none'); 
%annotation(f1,'textarrow',ds2nfu(x, y),'TextEdgeColor','none',... 
%    'String',{'here'}); 
  
  
% xPlot=yoverks(npts/2); 
% yPlot=uplus_emp(npts/2); 
%  
% axPos = get(gca,'Position'); 
% xMinMax = xlim; 
% yMinMax = ylim; 
% xAnnotation(1) = axPos(1) + ((xPlot - xMinMax(1))/((xMinMax(2)-xMinMax(1))-xMinMax(1))) * 
axPos(3) 
% yAnnotation(1) = axPos(2) + ((yPlot - yMinMax(1))/((yMinMax(2)-yMinMax(1))-yMinMax(1))) * 
axPos(4) 
%  
% xAnnotation(2) = xAnnotation(1)+0.1; 
% yAnnotation(2) = yAnnotation(1)+0; 
  
%annotation(f1,'textarrow',[xAnnotation(1) yAnnotation(1)],[xAnnotation(2) yAnnotation(2)],'String','All 
k_r values','FontSize',10,'TextEdgeColor','none'); 
annotation(f1,'textarrow',[0.3 0.36] ,[0.5,0.32],'String',char({'\itk_r\rm values','in the range','[0.0020-
0.034]'}),'FontSize',10,'TextEdgeColor','none'); 
  
  
  
xlim([10^xstart 10^xend]) 
ylim([0 25]) 
xlabel('\ity / k_s') 
ylabel('\itV_z / u_\tau') 
text(10^-2.45,11.3,'_','rotation',90) 
  
legend(sprintf('Log Law'),'location','southeast') 
legend('boxoff') 
  
  
% ------------------------------------------------------------------------- 
% SAVE PLOT 
% ------------------------------------------------------------------------- 
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'allkr.eps','epsc') 
 
 
clc;close all;clear all 
  
Nikuradse = load('Nikuradse.txt'); 
Phillips = importdata('vRoverks.txt'); 
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Reichardt = load('Reichardt.txt'); 
yoverR = [0:0.01:1]'; 
kappa = 0.404; 
gamma = 0.0341; 
  
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .85]) 
  
plot(Nikuradse(1:90,1),Nikuradse(1:90,2),'dk','MarkerSize',4); 
hold on; 
xlabel('\ity / R') 
ylabel('\it\nu_t / (u_\tau R)') 
  
plot(Reichardt(:,1),Reichardt(:,2),'>k','MarkerSize',4); 
  
  
A0=0.345; 
A1=0; 
a=0; 
ksoverR = 1/30.6; 
  
yoverRP69 = [0:0.01:0.17]'; 
nearWall = kappa*(gamma*ksoverR+(1-gamma/2*ksoverR)*yoverRP69); 
plot(yoverRP69,nearWall,'k-.'); 
plot(Phillips.data(1:201,2),Phillips.data(1:201,7),'k-'); 
plot(Phillips.data(202:402,2),Phillips.data(202:402,7),'k-'); 
  
legend_handle = legend('Nikuradse','Reichardt',... 
    'Near-wall fully rough limit','Phillips','Location','Best') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
% ------------------------------------------------------------------------- 
% SAVE PLOT 
% ------------------------------------------------------------------------- 
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'compareNut.eps','epsc') 
  
  
return 
 
 
clc;close all;clear all 
  
data = importdata('vksp.txt'); 
  
symbolWidth = 0.05; 
n= 201; 
%r^ y^ u+ k+ w+ lambda^ nu+ 
  
% ------------------------------------------------------------------------- 
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% OMEGA 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 5; 
nbegin = 1; 
nend = n; 
semilogx(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
semilogx(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),':k','MarkerSize',5,'
LineWidth',2); 
semilogx(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'k-
.','MarkerSize',7); 
xlabel('\ity/R') 
ylabel('\it\omegaR/u_\tau') 
  
legend_handle = legend('\itk_s^+ = \rm80,000','\itk_s^+ =\rm 1000','\itk_s^+ = 
\rm100','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'omega_vksplog.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% k 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 4; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),':k','MarkerSize',5,'Line
Width',2); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'k-
.','MarkerSize',7); 
xlabel('\ity/R') 
ylabel('\itk/u_\tau^2') 
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legend_handle = legend('\itk_s^+ = \rm80,000','\itk_s^+ =\rm 1000','\itk_s^+ = 
\rm100','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'k_vksp.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% OMEGA 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 5; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\it\omegaR/u_\tau') 
ylim([0 1000]) 
legend_handle = legend('\itk_s^+ = \rm80,000','\itk_s^+ =\rm 1000','\itk_s^+ = 
\rm100','location','northeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'omega_vksp.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% lambda 
% ------------------------------------------------------------------------- 
figure 
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set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 6; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\it\lambda/R') 
  
legend_handle = legend('\itk_s^+ = \rm80,000','\itk_s^+ =\rm 1000','\itk_s^+ = 
\rm100','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'lambda_vksp.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% nu 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 7; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'k:','MarkerSize',4,'Line
Width',2); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'k-
.','MarkerSize',7); 
xlabel('\ity/R') 
ylabel('\it\nu/(u_\tau R)') 
  
legend_handle = legend('\itk_s^+ = \rm80,000','\itk_s^+ =\rm 1000','\itk_s^+ = 
\rm100','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
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%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'nut_vksp.eps','epsc') 
  
return 
 
 
clc;close all;clear all 
  
data = importdata('vkwall.txt'); 
  
symbolWidth = 0.05; 
n= 201; 
%r^ y^ u+ k+ w+ lambda^ nu+ 
  
% ------------------------------------------------------------------------- 
% kwall 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 4; 
nbegin = 1; 
nend = n; 
semilogx(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
semilogx(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),':k','MarkerSize',5,'
LineWidth',2); 
semilogx(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'k-
.','MarkerSize',7); 
xlabel('\ity/R') 
ylabel('\itk/u_\tau^2') 
xlim([10^-5 1]) 
legend_handle = legend('\itk^+_{\rmwall} \rm= 0.05','\itk^+_{\rmwall} \rm= 0.1','\itk^+_{\rmwall} \rm= 
1.0','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'k_vkwalllog.eps','epsc') 
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% ------------------------------------------------------------------------- 
% k 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 4; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\itk/u_\tau^2') 
  
legend_handle = legend('\itk^+_{\rmwall} \rm= 0.05','\itk^+_{\rmwall} \rm= 0.1','\itk^+_{\rmwall} \rm= 
1.0','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'k_vkwall.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% OMEGA 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 5; 
nbegin = 1; 
nend = n; 
  
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
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plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\it\omegaR/u_\tau') 
ylim([0 1000]) 
legend_handle = legend('\itk^+_{\rmwall} \rm= 0.05','\itk^+_{\rmwall} \rm= 0.1','\itk^+_{\rmwall} \rm= 
1.0','location','northeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'omega_vkwall.eps','epsc') 
  
  
% ------------------------------------------------------------------------- 
% lambda 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 6; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\it\lambda/R') 
  
legend_handle = legend('\itk^+_{\rmwall} \rm= 0.05','\itk^+_{\rmwall} \rm= 0.1','\itk^+_{\rmwall} \rm= 
1.0','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'lambda_vkwall.eps','epsc') 
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% ------------------------------------------------------------------------- 
% nu 
% ------------------------------------------------------------------------- 
figure 
set(gcf, 'Units','inches','Position', [2 2 6.5 4]) 
set(gca,'fontsize',10,'position',[0.1 0.12 .88 .8]) 
xColumn = 2; 
yColumn = 7; 
nbegin = 1; 
nend = n; 
plot(data.data(nbegin:nend,xColumn),data.data(nbegin:nend,yColumn),'-
k','MarkerSize',2,'markerfacecolor','k','LineWidth',symbolWidth); 
hold on; 
plot(data.data(nbegin+n:nend+n,xColumn),data.data(nbegin+n:nend+n,yColumn),'ok','MarkerSize',2,'Line
Width',symbolWidth,'markerfacecolor','k'); 
plot(data.data(nbegin+2*n:nend+2*n,xColumn),data.data(nbegin+2*n:nend+2*n,yColumn),'ko','MarkerSiz
e',7); 
xlabel('\ity/R') 
ylabel('\it\nu/(u_\tau R)') 
  
legend_handle = legend('\itk^+_{\rmwall} \rm= 0.05','\itk^+_{\rmwall} \rm= 0.1','\itk^+_{\rmwall} \rm= 
1.0','location','southeast'); 
% legend_handle = legend('k^+_{wall} = 1.0','k^+_{wall} = 0.5','k^+_{wall} = 0.1','k^+_{wall} = 
0.05','location','northeast') 
%     '\itR/k_s\rm = 126','\itR/k_s\rm = 126','\itR/k_s\rm = 507',... 
%     char({'Near-wall fully','rough limit'}),char({'Fully rough','empirical fit'}),... 
%     'Location','SouthEast') 
legend('boxoff') 
set(legend_handle, 'fontsize', 10) 
  
  
set(gcf,'paperpositionmode','auto') 
saveas(gcf,'nut_vkwall.eps','epsc') 
  
return 
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