
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2012 

Acute Effects of Antagonist Stretching on Jump Height and Knee Acute Effects of Antagonist Stretching on Jump Height and Knee 

Extension Peak Torque Extension Peak Torque 

John B. Sandberg 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Physiology Commons 

Recommended Citation Recommended Citation 
Sandberg, John B., "Acute Effects of Antagonist Stretching on Jump Height and Knee Extension Peak 
Torque" (2012). All Graduate Theses and Dissertations. 1156. 
https://digitalcommons.usu.edu/etd/1156 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=digitalcommons.usu.edu%2Fetd%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1156?utm_source=digitalcommons.usu.edu%2Fetd%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


ACUTE EFFECTS OF ANTAGONIST STRETCHING ON JUMP HEIGHT AND 

KNEE EXTENSION PEAK TORQUE  

by 
 

John B. Sandberg 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree 

 
of 

 
MASTER OF SCIENCE 

 
in 

 
Health and Human Movement 

 
 
Approved: 
 
                                                                                            
                                                                                                                                     
Dale Wagner, Ph.D.                  Jeffrey M.Willardson, Ph.D.  
Major Professor                 Committee Member 
 
 
                                                                                                    
Gerald Smith, Ph.D.                 Phillip J. Waite, Ph.D.  
Committee Member                 Committee member 
 
 
                                                                                                                        

Mark R. McLellan, Ph.D. 
          Vice President for Research and  

                       Dean of  the School of Graduate Studies 
 
 

UTAH STATE UNIVERSITY 
Logan, UT 

 
2011 



 

 
 

ii
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © John B. Sandberg 2011 
All Rights Reserved 



 

 
 

iii
ABSTRACT 

Acute Effects of Antagonist Stretching on Jump Height and Knee Extension Peak Torque  

 
by 

John B. Sandberg, Master of Science 

Utah State University, 2011 

Major Professor: Dr. Dale R. Wagner 
Department: Health, Physical Education and Recreation 

A great deal of research has shown decrements in force and power following static 

stretching.  There has been little research investigating the acute effects of static 

stretching of the antagonist on the expression of strength and power.  The purpose of this 

study was to investigate the effects of static stretching of the antagonist muscles on a 

variety of strength and power measures.  Sixteen active males were tested for vertical 

jump height and isokinetic torque production in a slow knee extension (KES) at 60°/s and 

a fast knee extension (KEF) at 300°/s.  Electromyography was taken during knee 

extension tests for the vastus lateralis and the biceps femoris muscles.  Participants 

performed these tests in a randomized counterbalanced order with and without prior 

antagonist stretching.  All variables for stretching and non-stretching treatments were 

compared using paired t tests at an alpha of .05.  Paired samples t tests revealed a 

significant (p = .034) difference between stretch KEF and non-stretch KEF conditions.  
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There was no significant (p > .05) difference between KES stretch and non-stretch 

conditions.  Vertical jump height was significantly (p = .011) higher for the stretching 

treatment than the non-stretching treatment.  Vertical jump power was also significantly 

higher (p = .005) in the stretch versus the non-stretch condition.  Paired samples t test 

indicated no significant (p > .05) difference between testing conditions for 

electromyography, represented as a percentage of maximal voluntary contraction (MVC). 

These results suggest that stretching the antagonist hamstrings prior to high speed 

isokinetic knee extension increases torque production.  It also demonstrated that 

stretching the hip flexors and dorsi flexors may enhance jump height and power.  

Practitioners may use this information to acutely enhance strength and power 

performances.   

(61 pages) 
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 PUBLIC ABSTRACT 

Acute Effects of Antagonist Stretching on Jump Height and Knee Extension Peak Torque  

 
by 

John B. Sandberg 

 There has been a great deal of research investigating the effects of stretching 

preceding strength training, jumping and running.   Static stretching, as the name implies, 

involves stretching a muscle and holding the stretch with minimal or no movement for a 

given duration.  Several studies have shown that static stretching before strength training 

or jumping can actually result in poorer performances.  Static stretching may reduce the 

nervous system’s ability to recruit muscles or it may reduce the ability of the muscle to 

produce force directly.   

 All major skeletal muscles have an opposing or antagonist muscle that acts in 

opposition to it.  For example the quadriceps muscles extend (increase the angle between 

the foot and upper thigh) the knee and the hamstrings perform the opposite movement 

(knee flexion).  Previous research has investigated the effects of stretching on the muscle 

primarily involved in the movement.  No known research has attempted to determine the 

effects of stretching the antagonist muscle for a given movement.  Because antagonist 

muscles provide a braking force to the movement of their opposing muscles, stretching 

the antagonist muscle could reduce this braking force.  This could potentially enhance 
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strength and power following antagonist stretching.   

 The current study investigated the hypothesis that stretching the antagonist 

muscles would improve strength and jumping ability.  Sixteen active males were tested 

for vertical jump height and knee extension strength on a machine that controlled lifting 

speed. The participants tested knee extension strength at a fast and slow speed.  

Electromyography, a measure of a muscle’s electrical activity, was taken during knee 

extension tests for the quadriceps and the hamstring muscles. This test was done to 

determine if antagonist stretching affects the nervous system’s ability to recruit the 

quadriceps and hamstrings during knee extensions. Each test was performed with and 

with out antagonist stretching.   

Stretching the antagonist muscles resulted in a significant improvement in knee 

extension strength at the fast speed.  It also significantly improved jumping ability.  

Antagonist stretching did not result in a significant difference for electromyography or 

knee extension strength at the slow speed.  Antagonist stretching may provide a method 

for enhancement for high velocity activities such as jumping.  Strength and conditioning 

practitioners could use this information to implement antagonist stretching during training 

and competition to increase performance and/or overload during training.     
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CHAPTER 1 

INTRODUCTION 

Traditionally, stretching has been used as a part of pre-exercise and competition 

warm-up (Young & Behm, 2002).  Various forms of stretching have been utilized to 

increase the range of motion around a joint (Bandy, Irion, & Briggler, 1997).  Stretching 

has been proposed as a method to reduce the risk of or prevent injury (Johagen, Nemeth, 

& Eriksson, 1994; Safran, Seaber, & Garrett, 1989) and improve performance (Wordell, 

Smith, & Winegardner, 1994).  In recent years, however, the practice of including 

stretching as a warm up modality has been questioned.  A review conducted by Shrier 

(1999) concluded that it is unlikely that pre-activity static stretching prevents injury.  

There is also a great deal of evidence indicating that pre-activity static stretching has a 

negative impact on strength and power performances (Church, Wiggins, Moode, & Crist, 

2001; Cornwell, Nelson, & Sidaway, 2002; Fowles, Sale, & MacDougall, 2000; 

Kokkonen, Nelson, & Cornwell 1998; Nelson & Kokkonen, 2001; Power, Behm, Cahill, 

Carrol, & Young, 2004; Young & Elliot, 2001). 

To the author’s knowledge there has been no published research investigating the 

effects of static stretching for the antagonist musculature on subsequent expression of 

strength and power.  Therefore, the purpose of this study was to investigate the effects of 

static stretching for the antagonist muscles on peak torque of the knee extensors recorded 

 at a slow knee extension (KES) of 60°/s and a fast knee extension (KEF) of 300°/s, and 

vertical jump height (VJ) and power (VJP).  The study also sought to determine whether 
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antagonist stretching would affect neural activity in the agonist and antagonist 

musculature.   

 
Research Questions 

1. Will static stretching of the antagonist muscles of the quadriceps (i.e., 

hamstrings) improve isokinetic peak torque of the knee extensors?   

2. Will static stretching of the hip flexors and dorsi flexors prior to performing a 

vertical jump improve jump height and power?   

3. Will static stretching of the hamstrings prior to performance of a knee extension 

affect neural activity of the vastus lateralis and biceps femoris.   

 
Research Hypotheses 

Stretching of the antagonist muscles prior to strength and power performance 

could potentially lead to enhanced performance.  Gains in strength might be accompanied 

with an increase in neural activity of the agonist and neurological inhibition of  the 

antagonist (Carolan & Cafarelli, 1992; Häkkinen et al., 1998).  Stretching the agonists 

prior to a given movement may decrease the agonist muscle strength and power, perhaps 

through decreased neural drive (Cornwell et al., 2002; Fowles et al., 2000; Vujnovich & 

Dawson, 1994).  Conversely, stretching the antagonists may result in their inhibition and 

reciprocally facilitate increased activity of the agonists, with subsequent improvements in 

strength and power related performance. 

If this hypothesis is proven true it could have strong practical implications. 
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Individuals in sports and activities characterized by brief maximal efforts (e.g. throwers, 

jumpers, and sprinters in track and field, power lifters and weight lifters) could potentially 

benefit by including antagonist stretching prior to performances requiring high force 

and/or power.  Antagonist stretching could also be used during training to increase the 

overload placed on the agonist musculature via enhanced motor unit recruitment.   

The major muscles involved in the knee extension are the quadriceps group 

(vastus lateralis, vastus medialis, vastus intermedius, and rectus femoris) (Baechle & 

Earle, 2000).  The antagonist musculature to the quadriceps is the hamstring group, which 

includes the semitendinosus, semimembranosus, and biceps femoris.  It has been 

proposed anecdotally that increasing the range of motion of the quadriceps prior to a leg 

curl exercise will increase the amount of motor units used in the hamstrings during this 

exercise (Poliquin, 2010).  It is hypothesized that stretching the hamstrings, the antagonist 

musculature of the quadriceps, will decrease the quadriceps force production capabilities. 

 This may facilitate the action of the agonist musculature, thereby improving knee 

extension performance.     

The hip extensors (gluteals and hamstrings) are vital to jumping performance 

(Bobbert & van Zandwijk, 1999; Goodwin et al., 1999).  The plantarflexors are also 

involved in jumping (Goodwin et al., 1999; Hay & Nohara, 1990).  It is hypothesized that 

stretching the antagonist musculature of the hip extensors and plantar flexors (i.e., hip 

flexors and dorsi flexors) will decrease their force production capabilities, thereby 

improving VJ performance via enhanced activity of the hip extensors and plantar flexors. 

  Pre-activity static stretching has been shown to reduce electrical activity of the 
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muscle being stretched (Cornwell et al., 2002; Fowles et al., 2000; Vujnovich & Dawson, 

1994).  Therefore, it is hypothesized that electrical activity of the hamstrings will 

decrease following stretching.  A decrease in electrical activity of the antagonist 

musculature has been shown to increase electrical activity of agonist musculature 

(Mayhew, Norton, & Sahrmann, 1983).  It is therefore hypothesized that electrical activity 

of the quadriceps will increase following stretching and this will be evident by an increase 

isokinetic knee extension torque.   

 
Limitations/Delimitations 

One of the limitations of this study is the potential confounding factor of the dual 

role of the rectus femoris as a hip flexor and knee extensor during the VJ assessment 

(Van De Graaff, 1998).  

  
Definition of Terms 

Autogenic inhibition: Reflex inhibition of a motor unit in response to excessive tension in 

the muscle fibers it supplies.  Muscle tension is monitored by the Golgi tendon organs. 

Autogenic inhibition is a protective mechanism, preventing muscles from exerting more 

force than the bones and tendons can tolerate. 

Electromyography (EMG): Measurement of action potentials in muscle fibers.   

Hoffmann reflex (H reflex): A response that is elicited artificially by electrical stimulation 

of a peripheral nerve and selective activation of the Group Ia (largest diameter) afferents. 

 The afferent volley activates motor neurons and elicits an EMG and force response. The 
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H reflex is used as a test of the level of excitability of the motor neuron pool (Enoka, 

2002).   

Integrated electromyography (IEMG): The sharp peaks (high frequencies) present in a 

rectified EMG can be smoothed by integration, an electronic process that consists of 

filtering the high frequency content of the signal (Enoka, 2002).    

Musculotendinous unit: The combination of muscle and associated connective tissue 

structures that is involved in transmitting the force exerted by the muscle fibers to the 

skeleton.   

Rectified EMG: Rectification consists of taking the absolute EMG signal and removing 

or flipping over the negative phases of the EMG signal.  This creates a more easily read 

signal (Enoka, 2002).   

Series elastic component: The component of the Hill model (a model describing the 

components of a single muscle fiber) that accounts for the elasticity of muscles in a series 

with the contractile element (Enoka, 2002). 
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CHAPTER II 

LITERATURE REVIEW 

The first section of the literature review will give an overview of adaptations to 

the agonist and antagonist musculature during training.  The implications of these 

adaptations to antagonist stretching will be discussed.  The following section will review 

the effects of pre-activity static stretching on various measures of strength and power.  

The possible mechanisms for reductions observed in strength and power following static 

stretching will be explored.  The final section will discuss antagonist stretching prior to 

the vertical jump.  The potential limitation of the rectus femoris dual role in hip flexion 

and knee extension will be addressed here.  The literature review will then summarize the 

theoretical basis for this study and state its purpose.   

 
Adaptations to Antagonist Musculature 

Following Resistance Training 

Concurrent neural adaptations to both the agonist and antagonist muscles are 

important to facilitate greater torque and power development (Carolan & Cafarelli, 1992; 

Häkkinen et al., 1998).  The net external force applied during a movement is proportional 

to the force produced by the agonist and inversely proportional to the force produced by 

the antagonist muscles (Baratta et al., 1988; Draganich, Jaeger, & Kralj, 1989).  

Therefore, inhibiting the force produced by the antagonist muscles may allow the agonist 

muscles to apply greater force and power production.  

Häkkinen et al. (1998) trained 11 older men (M = 73 years old SD = 3), 10 middle 
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aged men (M = 40 years old SD = 2), 10 older women (M = 67 years old SD = 3), and 11 

middle aged women (M = 39 years old SD = 3) for 6 months in a periodized strength 

training program involving heavy resistance training and lighter explosive training.    

Maximal isometric leg extension torque at a knee angle of 107 degrees and squat jump 

height were measured pre- and post-treatment.  The electromyogram (EMG) activity of 

the vastus medialis, vastus lateralis, and long head of the biceps femoris was also taken 

during isometric strength tests pre- and post-treatment.  All groups demonstrated 

significant increases in maximum isometric force, rate of force development, and squat 

jump height..    AAllll groups also demonstrated significant increases in maximum integrated 

EMGs of the agonist vastus medialis and vastus lateralis.  The older group also had 

significant reductions in integrated EMGs of the antagonist biceps femoris.  Increases in 

activity of the agonist along with concurrent decreases in activity of the antagonist in 

isometric actions have also been observed in younger individuals following strength 

training (Carolan & Cafarelli, 1992).   

Other studies have demonstrated that acute reductions in the activity of the 

antagonist muscles may augment power production of the agonist muscles.  Baker and 

Newton (2005) examined the effects of alternating opposing movement patterns (bench 

press throws and bench pulls) on power output.  Participants were randomly assigned to 

either a traditional group, which performed two sets of five repetitions of bench throws 

with 3 min rest between, or an antagonist group which performed a set of a heavy bench 

pulls between the sets of bench throws.  Power outputs for the bench press throws were 

measured with a specially designed Smith weight machine on each set for both groups.  
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The antagonist group demonstrated significantly greater (p ≤ .05) power output than the 

traditional group.  Acute strength increases have been demonstrated previously in studies 

that alternated antagonist and agonist muscles groups in resistance exercise workouts 

(Burke, Pelham, & Holt, 1999).  Baker and Newton theorized that the augmentation to 

power in their study may have been due to enhanced reciprocal inhibition of the 

antagonist.  

  As the agonist muscle contracts, spindle intrafusal fibers are activated sending 

signals from 1a afferents to the spinal cord.  This may stimulate the activation of an 

inhibitory interneuron, resulting in a decrease in the excitability of motor neurons 

innervating the antagonist muscle (Katz, Penicaud, & Rossi, 1991).  Mayhew et al. (1983) 

assessed the relative participation of the hip extensors and abdominal musculature in 5 

men and 6 women during a unilateral straight leg raise (USLR).  EMG activity of the 

rectus abdominis, external obliques and medial hamstrings were recorded bilaterally.  

Each participant performed a supine USLR three times with two different modes, 

preferred and relaxed.  The preferred mode was performed first in which the participants 

were asked to perform the USLR through a comfortable range of motion.  The relaxed 

mode was performed by instructing the participants to relax the contralateral extremity 

while the USLR was executed.  Results showed that 9 of the 11 participants’ medial 

hamstrings were active during the USLR with the preferred mode.  When participants 

were instructed to relax the contralateral limb, abdominal activity significantly increased 

(p < .001).  This study indicates that when the antagonist hip extensors are activated the 

agonist abdominal EMG activity decreases.  It also indicates that verbal instruction to 



 

 
 

9

relax the antagonist musculature will increase activity of the agonist muscles.  An 

increase in activity of the antagonist may result in a decrease in activity of the agonist 

through reciprocal inhibition.   

Pre-activity static stretching has been shown to acutely decrease strength, power, 

and EMG activity of agonist muscles (Church et al., 2001; Cornwell et al., 2002; Fowles 

et al., 2000; Herda, Cramer, Ryan, McHugh, & Stout, 2008; Kokkonen et al., 1998; 

Nelson & Kokkonen, 2001; Power et al., 2004; Young & Elliot, 2001).  A decrease in 

antagonist activity has been shown to increase EMG activity of the agonist (Mayhew et 

al., 1983).  If one could acutely decrease the strength and power of the antagonist muscles 

through static stretching it could theoretically cause an increase in strength and power of 

the agonist muscles, via reciprocal inhibition.    

 
Possible Mechanisms for Reductions 

in Strength and Power Following Stretching 

There are two primary mechanisms that may contribute to the decreases in 

strength and power performances following stretching of agonist muscles.  The first 

proposed mechanism is that stretching causes transient mechanical changes at the level of 

the musculotendinous unit, most likely a reduction in stiffness.  Stretching could 

potentially alter the length-tension relationship increasing the time needed to “take up the 

slack” in more compliant series elastic components (Caldwell, 1995).  Wilson, Murphy, 

and Pryor (1994) found a high correlation between concentric and isometric bench press 

strength and musculotendinous stiffness.  However, other research indicates a negative 
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correlation between musculotendinous stiffness and stretch shorting performances of the 

lower body (Walshe & Wilson, 1997; Walshe, Wilson, & Murphy, 1996).  Walshe and 

Wilson (1997) and Walshe et al. (1996) hypothesized that the forces transmitted from the 

skeletal system to the musculature of stiffer participants reduced their ability to attenuate 

higher eccentric loads due to less effective contractile dynamics and greater levels of 

reflex inhibition.    

Another proposed mechanism for the acute decrease in force and power 

capabilities following stretching is reduced neural drive.  Stretching has been shown to 

cause autogenic inhibition (H-reflex depression) (Vujnovich & Dawson, 1994).  A 

decrease in the sensitivity of sensory receptors (e.g., spindle fibers) could potentially 

decrease central drive to alpha motor neurons (Bigland-Ritchie, Furbush, Gandevia, & 

Thomas, 1992).  The mechanisms behind declines in force and power following 

stretching are still not fully understood.  

Herda et al. (2008) postulated reductions in strength following static stretching are 

due to mechanical factors.  They investigated the effects of static versus dynamic 

stretching on peak isometric torque, electromyography and mechanomyography (MMG), 

a measure of mechanical oscillation in the muscle that may reflect mechanical 

adaptations, of the biceps femoris at 61˚, 81˚, and 101˚.  Four repetitions of three static 

stretches were held for 30s each, whereas four sets of dynamic stretching exercises were 

performed for 12-15 repetitions with each set lasting 30 s.  Peak torque decreased after 

static stretching at 81˚ (p = .019) and 101˚ (p = .001) but not at 61˚.  Peak torque did not 

change (p > .05) after dynamic stretching.  EMG amplitude remained unchanged with 
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static stretching (p > .05) but increased after dynamic stretching (p < .001) at 101˚ and at 

81˚ (p < .001).  Mechanomyography amplitude increased in response to static stretching 

at 101˚ (p = .0003) but not other angles.  Dynamic stretching increased (p ≤ .05) MMG 

amplitude at all joint angles.  Because there was no change in EMG activity the authors 

suggested that decreases in strength following static stretching are due to mechanical 

rather than neural factors in the biceps femoris.  The MMG amplitude however was not 

decreased for any static stretching conditions and actually increased at 101˚.           

In contrast to Herda et al. (2008), Fowles et al. (2000) found EMG activity was 

significantly decreased for the first 15 min following static stretching, and force 

decrements were greatest during this time.  Electrical activity did, however, return to 

normal after 15 min while force decrements remained for 60 min.  These authors 

theorized that neural factors played a bigger role in strength decreases early, but as time 

passed, the reduction in maximum voluntary  contractions originated peripherally in the 

muscle.  

Cornwell et al. (2002) tested the explosive capabilities of the plantar flexors 

following static stretching.  Static passive stretching exercises were performed for 30 s, 3 

times on each leg.  They found a reduction in stiffness and EMG activity, but concluded 

the change in stiffness was unlikely sufficient to cause changes in strength and power.  

They theorized that the decreases to performance were likely due to neural factors.  

Knudson, Bennett, Corn, Leick, and Smith (2001) found no difference in the kinematics 

of the vertical jump with or without static stretching.  These authors hypothesized that if 

stiffness was reduced, changes in knee angles would have been witnessed during 
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jumping.  Stretching likely reduces neural drive to the muscle stretched.  

 
Antagonist Stretching for the Vertical Jump 

It is difficult to distinguish a true antagonist in a complex movement such as the 

VJ.  Hip extension, knee extension, and planar flexion are all important movements in 

jumping (Goodwin et al., 1999).  Stretching the hip flexors has however been anecdotally 

observed to enhance jumping ability (Poliquin, 2004).  This may be because hip extensors 

play a vital role in jumping.  Bobbert and van Zandwijk (1999) studied the importance of 

stimulation dynamics for force development in vertical jumping.  They assessed 21 males 

in maximum height jump squats.  As a measure of the signal dynamics rise time (RT), the 

time taken by the signal to increase from 10% to 90% of its peak value, was used.  Rise 

time was calculated from smoothed rectified electromyograms (SREMG) of seven lower 

extremity muscles, net moments about the hip, knee, and ankle joints, and components of 

the ground reaction force vector.  A strong correlation (r = .88) was found between RT of 

SREMG of the gluteus maximus and RT of the vertical component of the ground reaction 

force vector.  It was speculated that for an effective transfer from joint extensions to 

vertical motion, the center of mass needs a forward component during push off.  Given 

the starting position of the squat jump, only the hip extensor muscles are able to generate 

such a forward acceleration of the center of mass.  Therefore, the greater the RT of the 

hip joint moment and RT of the gluteus maximus SREMG, the greater the RT of the 

vertical component of the ground reaction force.   

Active lengthening of the hip flexors has been proposed as a way to 
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simultaneously increase flexibility of short hip flexors while concomitantly increasing the 

function of the antagonist hip extensors (White & Sahrmann, 1994).  Winters et al. (2004) 

found that both passive and active stretching of the hip flexors increases active hip 

extension.  Although no strength or EMG measures were taken it is likely that increased 

hip flexor flexibility improved hip extension function.  Efficient hip extension is 

important to VJ performance (Bobbert & van Zandwijk, 1999).  To the author’s 

knowledge the effects of stretching the hip flexors on jumping ability has not been 

investigated in reviewed research.  If however hip extension could be enhanced through 

stretching the hip flexors this could theoretically improve VJ.   

Additionally, some evidence suggests that lengthening the rectus femoris prior to 

jumping may not have a detrimental effect on performance.  A three dimensional model 

of the take off leg in the running long jump, running vertical jump, and standing vertical 

jump was developed to compute the muscle-tendon lengths of seven muscle groups, the 

gluteus maximums, hamstrings, vastus medialis and lateralis, rectus femoris, soleus, and 

gastrocnemius (Hay & Nohara, 1990).  The data obtained from digitizing the films were 

used to determine how the lengths of these muscles changed during the takeoff.  All 

muscle groups in all three jump types either shortened or lengthened and then shortened 

during takeoff, with the exception of the rectus femoris.  The rectus femoris was the only 

muscle which lengthened throughout the takeoff in all jumps.  Consequently, lengthening 

of the rectus femoris prior to performance of the vertical jump is unlikely to have a 

negative effect on performance despite its dual role in hip flexion and knee extension.   

Hakkinen and Komi (1985) investigated the effects of 24 weeks of training 
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involving various jumps with and without light weights on jump height.  Changes in 

integrated electromyography (IEMG) for the vastus lateralis, vastus medialis, and rectus 

femoris muscles during training were also measured.  Training resulted in a 21% increase 

in jump height.  Significant (p < .05) increases in IEMG of the vastus medialis and vastus 

lateralis were observed in squat jumps during the training.  No significant changes were 

observed in the IEMG of the rectus femoris.  This study indicates that neural adaptations 

to the vastus medialis and vastus lateralis may be more important to improved jumping 

ability than adaptations to the rectus femoris.  Although this study was investigating 

chronic not acute adaptations to training, it could be theorized that reductions in force and 

power, via static stretching, to the vastus medials and vastus lateralis would have a 

greater negative effect on VJ performance than reductions in strength and power to the 

rectus femoris from stretching.  Attempts will be made in the methods to minimize any 

stretch at the knee joint during stretching of the hip flexors.    

Stretching the antagonist could theoretically reduce the opposing torque of the 

antagonist muscle groups, resulting in greater net torque for the agonist muscle groups, 

thereby enhancing performance.  It has been proposed anecdotally that stretching the 

antagonist will acutely enhance strength and power related performances by means of 

decreased neural drive to the antagonist, thereby facilitating the effectiveness of the 

agonist muscle groups (Poliquin, 2004, 2010).  The purpose of this study was to 

investigate the effects of antagonist stretching on a variety of variables that measure 

strength and power.  



 

 
 

15

CHAPTER III 

METHODS 

Experimental Approach to the Problem 

 To determine if stretching the antagonist musculature affects performance, 

participants were tested for peak knee extension torque at 60˚/s and 300˚/s and for VJ.  

All tests were performed with and without preceding antagonist stretching for each 

participant.  The study used a within group design, and the treatment was provided in a 

randomized counter-balanced order.  Participants underwent the KES and KEF on the 

same day with or without the stretching treatment; they then received the opposite 

treatment 1 to 3 days later.  The KES and KEF was performed in randomized order on the 

first testing day.  The opposite order was repeated with the opposite treatment on the 

second testing day.  The VJ was tested by itself on two separate days with or without 

stretching treatment with one to three days between each treatment.   

 
Participants 

A power analysis revealed that a minimum of 11 participants would be necessary 

to theoretically achieve statistical significance with a power of .80 and an alpha of .05.  

Sixteen active males participated in the study.  Participants engaged in resistance training 

a minimum of two times a week for the previous 6 months.  All participants were free 

from musculoskeletal, cardiovascular, and metabolic disorders at the time of the study 

(Appendix A).  The participants were given written informed consent (Appendix B).  The 
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study was approved by the university’s institutional review board.  

 
Stretching Treatments 

All stretches for the KES, KEF, and VJ, were held for 30 s and repeated three 

times with 20 s rest between stretches.  Previous research has recommenced holding static 

stretches for duration of 30 s (Bandy et al., 1997; Chan, Hong, & Robinson, 2001).  A 90 

s rest period was provided between stretching and knee extension and VJ tests.    

Stretches prior to the knee extension tests emphasized the hamstring group.  The 

participant laid supine on a training table.  While stabilizing the opposing limb, the 

investigator put one hand on the participant’s heel and the other hand just above the knee. 

 The investigator then pushed the participant’s heel and took them into knee extension 

and hip flexion (see Figure 1).    

The stretching treatment prior to the vertical jump emphasized the stretching of 

the hip flexors and dorsi flexors.  To stretch the hip flexors, the participant was 

positioned in a half-kneel position.  For comfort a foam pad was placed under the knee of 

the kneeling limb.  The participant was instructed to keep an erect upper torso.  The hip 

that was posterior was then extended by contracting the gluteals.  The participant was 

then instructed to internally rotate the leg, or turn his foot out (see Figure 2).  Internal 

rotation stretches the hip flexors because their insertion point is the lesser trochanter of 

the femur (Lorenz, 2007). 

 



 

 
 

17

 

Figure 1.  Hamstring stretch performed prior to knee extension. 

 

  Because the knee was placed in only partial flexion, a greater emphasis of stretch 

was placed at the hip than the knee.  Therefore, the rectus femoris, which has a dual role 

of hip flexion and knee extension, was lengthened more at the origin (anterior superior 

iliac spine) than the insertion (tibial tuberosity via the quadriceps tendon). 
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Figure 2.  Hip flexors stretch performed prior to vertical jump. 

 

To stretch the dorsi flexors, the subjects lay supine on a training table with their 

feet hanging freely off the edge of the table.  An investigator put the foot into plantar 

flexion by pulling on the toes and pushing on the heel (see Figure 3).   
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Figure 3.  Dorsi flexor stretch performed prior to vertical jump. 

 

The dorsi flexors were stretched to a point of mild discomfort.  The dorsi flexors 

were stretched first followed by the hip flexors.   

 
Isokinetic Testing 

Knee extensors peak torque was measured on a Biodex isokinetic dynamometer 

(Biodex, Shirley, NY).  Calibration was performed prior to testing.  Participants were 

tested in a seated position with straps placed over their waist and distal thigh for 

stabilization.  The tibial pad was placed and secured approximately two finger widths 

proximal to the medial maleolus on the dominant leg.  The axis of rotation of the 
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dynamometer was aligned with the medial epicondyle of the knee.  Concentric peak 

torque of the knee extensors was recorded at 60˚/s and 300˚/s.  Each testing velocity was 

performed in a randomized order with 10 min rest between maximal tests.  During 

stretching treatment, the stretching protocol was repeated before each maximal attempt at 

each testing velocity.  Five maximal attempts were made and the highest value was used 

for data analysis.  A similar five-repetition isokinetic protocol has been shown to be 

reliable (r = .95) for both 60°/s and 300˚/s (Feiring, Ellenbecker & Derscheid, 1990).    

    
Electromyography 

 Electromyography (EMG) (Biopack MP 150, Goleta, CA) was performed on the 

vastus lateralis and the long head of the biceps femoris during knee extension tests.  

Positioning and placement of electrodes was determined using procedures described by 

Herda et al. (2008).  Before applying the EMG electrodes, the skin at the placement sight 

was shaved, rubbed with alcohol, and slightly abraded to ensure good surface contact and 

to reduce skin resistance.  Bipolar surface electrodes (2.5 cm interelectrode distance) were 

placed at the approximate center of each muscle belly.  A ground electrode was applied to 

the tibial tuberosity.  For the biceps femoris, the electrodes were placed at 50% of the 

distance from the ischial tuberosity to the lateral epicondyle of the tibia.  For the vastus 

lateralis, the electrodes were placed at 50% of the distance between the greater trochanter 

and the lateral epicondyle of the femur.  The positions of the electrodes were marked with 

a small ink mark on the skin.  The precise distance was also recorded and used for 

electrode placement in all conditions.  The electrodes were placed before commencing the 
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stretching treatments.   

 The raw EMG signals were pre amplified 100 times at the electrode site, then 

further amplified for a total gain of 5,000 with a band width of 10-500 Hz.  A low pass 

filter was used with a cut off frequency of 250 Hz.  A high pass filter was used with a cut 

off frequency of 25 Hz.  As recommended by Basmajian and DeLuca (1985), the EMG 

signal was smoothed by integration by root mean square.    

 It has been proposed that if EMGs are to be compared between trials that require 

the reapplication of electrodes, between muscles, or individuals that they should be 

normalized (Burden, 2010; DeLuca, 1997).  This was done by taking the EMG from each 

treatment and comparing it to a reference contraction of the same muscle with the same 

electrode placements.  To represent reference contraction, a maximal voluntary 

contraction (MVC) was performed with the dynamometer set at 45˚ of knee flexion.  

Participants were tested in a seated position the same as described above with torque 

testing.  Velocity was set at 30˚/s and participants performed 3 maximal knee extensions 

with a 5 s isometric hold at the terminal range of motion.  Participants were instructed to 

exert maximal effort against the tibial pad.  The MVC was performed then participants 

rested 10 min before performing stretching and randomized isokinetic testing.  The peak 

EMG voltage for the vastus lateralis and biceps femoris for KES stretch, KES non-

stretch, KEF stretch, and KEF non-stretch was divided by the peak EMG voltage for the 

MVC.  The EMG results are represented as a percentage of MVC.  A summary of the 

time line for isokinetic knee extension and EMG testing is shown in Figure 4. 
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Vertical Jump Testing 

The vertical jump test was performed using a Vertec device (Sports Imports, 

Columbus, OH) according to Harman, Garhammer, and Pandorf (2000).  The investigator 

adjusted a vertical column with vanes low enough that the participant could register a 

standing reach measurement.  The participant then stood so that the dominant hand 

reached straight upward and directly below the center of the vanes.  The highest vane that 

could be pushed forward while standing flat-footed determined the standing reach height. 

 The same reach height was used for both trials.  The vertical column was then raised to 

accommodate the jumping ability of the participant.  The participant was allowed a 

counter movement with no approach step.  The participant then jumped to the highest 

vane possible.  Participants were allowed to jump until they were unable to touch a higher 

vane on two consecutive trials.  Jump height was determined by subtracting the distance 

between the highest vane touched and the standing reach.  Jump height and body mass 

were used to calculate absolute vertical jump power using the Harman equation (Harman, 

Rosenstein, Frykman, Rosenstein, & Kraemer, 1991).  This test was chosen because it is a 

commonly used field test to measure power.  The test has been found to have high 

reliability (r = .94) (Young, MacDonald, Heggen, & Fitzpatrick, 1997). 
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Figure 4. Summary for isokinetic knee extension trials. 
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Statistical Analyses 

Statistical significance for the mean difference between the stretch and non- 

stretch trials for the KES, KEF, VJ height, vertical jump power, and percentage of MVC 

for EMG activity for the vastus lateralis and the long head of the biceps femoris during 

knee extension tests were determined from paired t tests.  Probability was set at  p ≤ .05.  

Effect sizes were also calculated using Cohen’s d for each dependent variable.  All 

analyses were executed using Statistical Package for Social Sciences (SPSS 13.0).    
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 CHAPTER IV 

RESULTS  

A total of 18 participants volunteered for the study.  Two dropped out due to 

scheduling issues.  Thus, 16 participants (M = 22.5 years, SD = 49 years) finished all 

stretching and non-stretching trials for KES, KEF, and VJ.  The average height and 

weight of the study sample was M = 180.3 cm, SD = 10.1 cm and M = 84.9 kg, SD = 19.5 

kg, respectively.  

 
Torque 

The results for knee extension torque are summarized in table 1.  Stretching the 

antagonist produced a significantly greater torque for the KEF but not the KES.  

According to Rhea (2004), the effect sizes for both trials were trivial for recreationally 

trained subjects.    

 
Vertical Jump Height and Power 

Both VJ and VJP were significantly higher following the stretching protocol (see 

Table 1).  The effect sizes were trivial (Rhea, 2004) for both variables. 

 
Electromyography 

Paired samples t test indicated no significant (p > .05) difference between trials 

for electromyography, represented as a percentage of MVC.  The results for all conditions 
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for the vastus lateralis are summarized in Figure 5.   

 

Table 1  

Isokinetic Knee Extension Torque and Vertical Jump 

 Trial  

Treatment Stretch Non stretch %Change P ES 

KEF (Nm) 102.2 ± 26.8 93.5 ± 33.4 13.9  .032 * 0.26 

KES (Nm) 176.7 ± 52.1 162.9 ± 46.3 8.5       .086 0.29 

VJ (cm) 59.8 ± 13.3 58.6 ± 13.3 2.0  .011 * 0.09 

VJP (W) 8571.7 ± 597 8487.4 ± 615 1.0       .005 * 0.14 

Note. All trials represented as Mean ± Standard Deviation.  * p ≤ .05.    

 

The results for all conditions for the biceps femoris are summarized in Figure 6.   
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Figure 5.  Mean percentage of MVC for all conditions for the vastus lateralis.  
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Figure 6.  Mean percentage of MVC for all conditions for the biceps femoris.     
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CHAPTER V 

DISCUSSION 

Torque Production 

         The first key finding from the current study was that static stretching of the 

antagonist (i.e. hamstrings) significantly (p < .05) increased torque production for an 

isokinetic knee extension at 300˚/s.  Antagonist stretching did not however produce a 

statistically significant enhancement in isokinetic knee extension torque at 60˚/s.  These 

results indicate that the effects of antagonist stretching on torque production may be 

velocity specific.   

 Although no known research has investigated the effects of antagonist stretching on 

strength, a velocity specific effect has been found with agonist stretching.  Nelson, 

Guillory,Cornwell, and Kokkonen (2001) found an opposite and negative effect for 

agonist stretching on peak knee extension torque.  The quadriceps were stretched 

statically with 3 exercises prior to isokinetic knee extension tests.  Each exercise was 

performed four times and each stretch was held for 30 s.  Five different velocities were 

tested.  Only the two slowest velocities (1.05 Rad/s and 1.57 Rad/s) showed a significant 

(p < .05) reduction in knee extension torque.  At 1.05 Rad/s torque was reduced from M = 

218 Nm, SD = 47 Nm to M = 199 Nm, SD = 49 Nm following agonist stretching.  At 1.57 

Rad/s torque was reduced for M = 204 Nm, SD = 48 Nm to M = 195 Nm, SD = 47 Nm.  

These changes are of similar magnitude to the current study.  Torque decreased 7.2% and 

4.5% at 1.05 Rad/s and 1.57 Rad/s, respectively, compared to the current study which had 
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a 12.2% increase in torque with antagonist stretching at 300˚/s.  In the current study 

antagonist stretching exhibited the opposite effect to agonist stretching in the Nelson et al. 

(2001) study.   

 Siatras, Mittas, Mameletzi, and Vamvakoudis (2008) however, did not find a 

significant velocity specific effect for agonist stretching of the quadriceps.  They 

investigated the effects of stretching duration on peak isokinetic knee extension torque at 

60˚/s and 180˚/s.  They looked at the effects of both 60 s and 30 s bouts of stretching. 

There were statistically significant (p < .05) decreases in torque for all agonist static 

stretching treatments.  Peak knee extension torque was decreased by 5.5% and 11.6% at 

60˚/s for 30 and 60 s, of stretching, respectively.  At 180˚/s peak knee extension torque 

was reduced 5.8% and 10% for 30 and 60 s, respectively.  According to this study agonist 

static stretching reduced torque production, independent of contraction velocity.   

 Other research investigating the effects of agonist stretching have also 

demonstrated reductions in torque production.  Herda et al. (2008) explored the effects of 

acute static stretching of the hamstrings on isometric peak knee flexion torque and EMG 

and MMG activity of the biceps femoris.  Torque decreased 15.94% at 101˚ and 7.2% at 

81˚ compared to a 12.2% increase for KEF and an 8% increase for KES in the current 

study.  Kokkonen et al. (1998) investigated the effects of agonists static stretching for the 

quadriceps and the hamstrings on one repetition maximal strength (1RM) using a variable 

resistance machine.  They found a 7.3% decrease in 1RM for knee flexion and 8.1% 

decrease for knee extension.    
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Vertical Jump 

 The second key finding from the current study was that prior stretching of the hip 

flexors and dorsi flexors, the antagonists of the hip extensors and plantar flexors, 

significantly (p = .011) enhanced jump height and absolute jump power (p = .05).  Church 

et al. (2001) examined the effects of performing proprioceptive neuromuscular facilitation 

(PNF) stretching for the hamstrings and quadriceps prior to performing a vertical jump. 

Participants performed a standard warm up with and without stretching on two different 

occasions.  They found a significant (p = .01) decrease in vertical jump height.  PNF 

stretching of the hamstrings and quadriceps resulted in a 1.47 cm decrease in jump height. 

In the current study static stretching of the hip flexors and dorsi flexors resulted in a 1.2 

cm increase in jump height.  Robbins and Scheuermann (2008) investigated the effects of 

3 different volumes of static agonist stretching on vertical jump height.  Ten collegiate 

athletes and 10 recreational athletes performed a VJ with and without 2 sets of 15 s, 4 sets 

of 15 s, or 6 sets of 15 s stretches for the hamstrings, plantar flexors, and quadriceps.  The 

6 sets of 15 s stretch group saw a significant (p ≤ .05) decrease in jump height between 

the stretch (M = 58.199, SD = 2.23 cm) and non-stretch (M = 60.117, SD = 2.268 cm) 

condition.  This is comparable and opposite to the increase in VJ following stretching of 

the hip flexors and dorsi flexors (M = 59.8cm, SD = 13.3 cm), compared with VJ 

performed with no stretching (M = 58.6, SD = 13.3 cm) in the current study.  Cornwell et 

al. (2002) also found a significant (p ≤ .05) decrease in VJ height following acute static 

stretching of the plantar flexors.  They found a decrease of 7.4% compared to a 2.9% 
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increase in VJ in the current study.   

 
Electromyography Implications 

  Two hypotheses have been proposed for agonist stretch induced force deficits 

(Bigland-Ritchie et al., 1992; Caldwell, 1995; Cornwell et al., 2002; Fowles et al., 2000; 

Herda et al., 2008; Knudson et al., 2001; Vujnovich, & Dawson, 1994; Walshe & Wilson, 

1997; Walshe et al., 1996).  One proposed mechanism for decreased strength and power 

following agonist, pre-activity, static stretching is mechanical adaptations, namely a 

reduction in stiffness and increase in length between resting sarcomeres that alters the 

length-tension relationship of the muscle.  The second proposed mechanism is neural 

factors such as decreased recruitment and/or reflex sensitivity.  

It was hypothesized in the current study that stretching the antagonist musculature 

would result in increased performance.  This would occur by increasing the neural drive 

to the agonist, decreasing neural drive to the antagonist, reducing stiffness of the 

antagonist, thereby reducing braking forces to the agonist, or a combination of these 

factors.  The current study found the KEF stretch condition to produced significantly (p < 

.05) more torque than the KEF non-stretch condition.  A third key finding from the  

current study was that the EMG activity of the vastus lateralis for the KEF stretch 

condition was 9.7% higher than the KEF non-stretch condition; however, this did not 

reach statistical significance (p > .05).  This would indicate that the difference in torque 

observed was not related to increased activation of the prime movers.  The EMG activity 

of the antagonist biceps femoris was 16% lower in the KEF stretch vs. the KEF non- 
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stretch; again, however, this did not result in a statistically significant difference.  

Herda et al. (2008) found no change in EMG following agonist static stretching.  

They hypothesized that decrements in force following stretching were related to 

mechanical factors.  Cornwell et al. (2002) found a decrease in EMG activity and stiffness 

following agonist static stretching.  However, these authors hypothesized that reductions 

in stiffness were insufficient to cause a decrease in force production.  Fowles et al. (2000) 

found EMG activity was significantly decreased for the first 15 min following static 

stretching, and force decrements were greatest during this time.  Electrical activity did, 

however, return to normal after 15 min while force decrements remained for 60 min.  

These authors theorized that neural factors played a bigger role in strength decreases 

early, but as time passed, the reduction in MVCs originated peripherally in the muscle.  It 

is possible that improvements in knee extension torque following antagonist stretching at 

300°/s in the current study was a result of a mechanically mediated response.  If the 

length tension relationship of the hamstrings was disrupted, this could lead to a reduction 

in braking forces, which would allow the quadriceps to produce more torque.  This is 

speculation because no measure of mechanical adaptation was taken.   

   Despite lack of statistically significant differences in biceps femoris EMG 

activity between KEF stretch and KEF non-stretch conditions, stretching the hamstrings 

did result in a moderate effect size (d = 0.55) for the reduction in biceps femoris EMG 

activity (Cohen, 1988).  This indicates that stretching the hamstrings prior to KEF may 

have reduced electrical activity to these muscles.  Decreased electrical activity to the 

antagonist biceps femoris could also lead to reduced braking forces and greater torque 
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production in the quadriceps.  It should be noted however that Rhea (2004) proposed a 

different effect size scale for strength training research, which would classify 0.55 as a 

small effect versus Cohen’s (1988) classification of  0.55 as a moderate effect size.   

 With each measured variable there was a large amount of subject to subject 

variability as shown by the relatively large standard deviations (Table 1).  There appeared 

to be a very individual strength and power response among participants to antagonist 

stretching.  This may have been due to initial levels of flexibility.  One of the limitations 

of this study is that there was no initial flexibility assessment taken.  There is evidence 

that tight or short antagonist musculature may result in decreased function of the agonist 

musculature (Sahrmann, 2002; White & Sahrmann, 1994; Winter el al., 2004).  It is 

possible that individuals with lower initial levels of flexibility in antagonist musculature 

experienced a greater training effect with stretching than those with higher initial levels.  

To the investigator’s knowledge no studies have investigated whether initial levels of 

flexibility affect the magnitude of treatment effect with agonist stretching.  Future 

research should investigate if initial levels of flexibility affect the magnitude of treatment 

effect in antagonist stretching. 

 
Practical Applications 

 It appears that antagonist stretching may improve strength at high velocities.  

Antagonist stretching of the hamstrings resulted in significantly greater torque during a 

high velocity, isokinetic knee extension (300˚/s).  Stretching the antagonist to the hip 

extensors and plantar flexors during jumping resulted in significantly higher jump height 
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and absolute jump power.  Jumping represents a high velocity movement.   

 The mechanisms for these improvements cannot yet be determined.  There were 

no significant differences in EMG activity in the agonist vastus lateralis or the antagonist 

biceps femoris for any variable.  There was however, a moderate effect size (d = 0.55) for 

reduced EMG activity of the biceps femoris during the KEF stretch condition.   

 Antagonist stretching may provide a method for acute enhancement for high 

velocity activities such as jumping.  Strength and conditioning practitioners could use this 

information to implement antagonist stretching during training and competition to 

increase performance and/or overload of the neuromuscular system.  Because responses 

to antagonist stretching appear to be very individual, practitioners should experiment with 

individual responses before applying this technique during competition.   

 Future research should investigate other muscle groups and movement patterns.  It 

should also be determined if initial levels of flexibility affect responses to antagonist 

stretching prior to strength and power related performance.  The effects of methods of 

antagonist stretching other than static (e.g., PNF, dynamic) should be investigated.  

Gender effects to antagonist stretching should also be investigated.  Future research 

should also attempt to determine possible mechanisms, whether mechanical, neural, or a 

combination of both.    
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Health Status Form 
 
 
 
Name: ______________________________________________________  
 
Age:   
 
Read each question and circle yes or no.  If you have any questions ask the investigator 
for clarification.  
 
Do you have any cardiovascular disorder or disease (cardiovascular disease, coronary 
artery disease, etc.)? 
 
Yes                            No 
 
If yes explain 
 
 
 
 
 
Do you have any current muscle injuries (strains, pulls, tears, etc.)? 
 
Yes                            No 
 
If yes explain 
 
 
 
 
 
Do you have any current joint injuries (sprains, tears, etc.)? 
 
Yes                           No 
 
If yes explain 
 
 
 
 
 
Do you have any current bone injuries (fractures, etc.)? 
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Yes                          No 
 
If yes explain 
 
Do you have any metabolic disorders or disease (diabetes, etc.)? 
 
Yes                          No 
 
If yes explain 
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