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Abstract

Prediction Models for Estimation of Soil Moisture Content

by

Swathi Gorthi, Master of Science

Utah State University, 2011

Major Professor: Dr. Huifang Dou
Department: Electrical and Computer Engineering

This thesis introduces the implementation of different supervised learning techniques for

producing accurate estimates of soil moisture content using empirical information, including

meteorological and remotely sensed data. The models thus developed can be extended to

be used by the personal remote sensing systems developed in the Center for Self-Organizing

Intelligent Systems (CSOIS). The different models employed extend over a wide range of

machine-learning techniques starting from basic linear regression models through models

based on Bayesian framework, decision tree learning, and recursive partitioning, to the

modern nonlinear statistical data modeling tools like artificial neural networks. Also, en-

sembling methods such as bagging and boosting are implemented on all models for consid-

erable improvements in accuracy. The main research objective is to understand, compare,

and analyze the mathematical backgrounds underlying and results obtained from different

models and the respective improvisation techniques employed.

(85 pages)
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Public Abstract

Prediction Models for Estimation of Soil Moisture Content

by

Swathi Gorthi, Master of Science

Utah State University, 2011

Major Professor: Dr. Huifang Dou
Department: Electrical and Computer Engineering

The Center for Self-Organizing Intelligent Systems (CSOIS) has been successful in

developing personal remote sensing systems. These systems can be further enhanced to

monitor important resources of earth such as soil moisture content. Soil moisture is the

major component of the soil in relation to plant growth. Soil water dissolves salts and

makes up the soil solution, which is important as medium for supply of nutrients to growing

plants.

Usually, measuring such physical quantities would include using derived formulas that

mathematically describe the relationships between the parameters involved. With the ad-

vancements in computer modeling, other methods such as empirical modeling have evolved

which can be used to develop models for measurement of physical quantities such as soil

moisture content. In this kind of modeling, empirical data are used to pick a right model,

and to calibrate and test it. The relevant data constitutes measured values of predetermined

input parameters and the output parameter which is being modeled. The input parameters

can be chosen by experience emphasizing the fact that there should be a minimum correla-

tion between them. The important step in such a kind of model development is to choose the

techniques to be used in finding an appropriate model. The main objective of the present

work lies in understanding the mathematical backgrounds of different advanced techniques



v

used in empirical model development for measurement of soil moisture content, analyzing

the results, and working in the direction of improving those contemporary methods.
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Chapter 1

Introduction

1.1 Introduction

Precision agriculture is a farming management technique that involves the study of the

spatial variations in a crop field using technological tools such as Global Positioning Systems

and aerial images. This study can be helpful in estimating fertilizers and other input needs

by assessing the local disease and soil conditions in a better way, thus preventing inflexible

practices in farming. The benefits of precision agriculture are very valuable in agronomical,

environmental, technical and economical perspectives.

Irrigation water management forms a major part of precision agriculture. It involves

better assessment of need and availability of soil water level for crop cultivation. The statis-

tical data from the United Nations indicate worldwide, agricultural accounts for 70% of all

water consumption, compared to 20% for industry and 10% for domestic use [1]. According

to D. L. Miles and I. Broner soil moisture estimation helps in determining the timing of

irrigation [2]. Soil moisture is defined as the amount of water level present in the top layers

of the soil that interacts with the atmosphere through evaporation and transpiration [3].

Surface soil moisture is the amount of water content present in the top 10cms of the soil

layer, whereas the root zone soil moisture is that amount present in the upper 200cms of

the soil.

Even though soil moisture is quite small in amount in a specific region, it significantly

affects:

• all kinds of hydrological, biological, and biogeochemical processes; and

• weather patterns, runoffs, and erosion; and

• thermal exchange models of land surface and atmosphere.
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Power et al. and Stewart et al., in their independent research studies, found strong

correlation between crop yield of wheat and soil moisture content availability [4,5]. Machado

et al. also associated the crop yield in corn with the soil moisture content [6]. In conclusion,

it can be said that estimation of soil moisture can be helpful in irrigation scheduling, crop

yield forecasting, drought warnings, and runoff predictions.

1.2 History of Soil Moisture Estimation

Conventionally, in situ soil moisture measurements can be done in either direct or

indirect methods. Direct methods involve gravitimetric and volumetric procedures, whereas

indirect methods include measurement of water stress under which water is withheld by the

soil using the instruments like tensiometers, gypsum blocks, and neutron probes. These

methods are cost prohibitive, time and resource consuming. Therefore, many geologists

started working on effective mapping techniques, like soil water profiling, instead of relying

on above methods for establishing a complete site specific map. Such a research was a

principal area of the AgRISTARS Soil Moisture project. Jackson summarized and compared

different soil water profile models studied by Schmugge, Kanemasu, Heldrith, Calder, and

Saxon [7]. Most of these models incorporate physically-based and empirical factors like

precipitation, thermal index, crop water stress, theoretical functions of heat transfer, and

crop water stress. These summaries can help further in deciding the input parameters while

developing the model of our own.

There are models developed that use the remotely sensed data to profile the soil mois-

ture. However, remote sensing can be used to directly infer soil moisture. Microwave

emissivities and infrared data were proven to be highly correlated with the soil moisture.

A lot of research has been concentrated in this area during the last two decades. These

studies were based on the facts that the reflection spectrum of soil is significantly affected

by soil moisture. Especially, the reflectance of soil in the visible and infrared regions is

highly related to the soil color, texture, surface roughness and crusting, composition and

organic matter, as well as soil moisture.
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In particular, many researchers used different spectral regions including gamma radia-

tion, thermal infrared, and passive and active microwave regions. Soil darkens at the wave-

lengths around 800nm because of absorption of water and internal reflection of radiation.

This forms a water absorption band in the wavelength range of 800 - 900nm. Hyperspectral

data collected from the multispectral sensors working in the above wavelength range can be

used to derive soil moisture measurements. However, all of these remote sensing techniques

have their own disadvantages. Microwave radiation has an advantage of penetrating into

soil to a wavelength dependant depth, but suffers from low resolution. Multispectral sensors

are costly. Of all regions, visible and near infrared are the affordable ones. The remotely

sensed data derived from these regions can be used to derive vegetation indices and sur-

face temperature which can in turn be used in developing empirical or theoretical models.

Moreover, recent developments in Unmanned Air Vehicles (UAV) studies have reduced the

cost of obtaining these visible and near infrared data with no compromise in resolution [8].

“Theoretical models involve complicated scattering phenomena from probabilistic mod-

els of soil, vegetation, and terrain whereas empirical models capture relationships among

measured variables to estimate geophysical characteristics” [9]. For both kinds of models,

in situ data is required to calibrate and validate them. Even though, empirical models are

data-driven and are not computationally intensive and complex. With the advancements in

machine learning, there are many techniques available nowadays to develop these models.

1.3 Machine Learning and Predictions

“Machine learning, a branch of artificial intelligence, is a scientific discipline that deals

with the design and development of algorithms that allow computers to evolve behaviors

based on empirical data” [10]. The main objective of machine learning is to estimate the

unknown relationship between input and target parameters using known examples. Then,

the relationship thus derived can be used in predicting the unknown target values for other

values of inputs. The targets can be nominal or numerical. If the targets are nominal, then

the problem becomes a classification one while if the target is numerical, the problem is a

regression one. The learning task that involves solving such a regression problem is called
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supervised learning.

The goal of supervised learning is to build a model of the system from the training

examples, which can later be used to deduce responses that have yet to be observed. Con-

sider {xn, yn}Nn=1 to be the training dataset with X being the input space and Y being the

output space. The objective now is to seek a function f : X → Y from a hypothesis space

that minimizes the loss associated. The best fit to the underlying function can be chosen

as per structural risk minimization or empirical risk minimization. The former chooses a

function that controls a bias/variance tradeoff, whereas the latter chooses the one that best

fits the training data.

Many algorithms can be used during development of a model in supervised learning,

which are developed in different mathematical backgrounds. They are:

• Linear and polynomial regression,

• Basis function construction using adaptive modeling,

• Relevance vector machines using Bayesian framework,

• Support vector machines,

• Regression trees using recursive partitioning or continuous class learning,

• Multilayer perceptrons using neural networks.

Development of models using supervised learning is done following the procedure below:

• After deciding on the input parameters, gather a decent amount of training and test

examples;

• Analyze the correlation between the input parameters. Less correlated inputs will

give more reliable results;

• Choose one of the algorithms from the above list and decide upon the other parameters

required for that algorithm;

• Train the model using the training examples and the chosen algorithm;
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• Lastly, check the reliability and accuracy by predicting the target values for the test

dataset using the developed model and comparing them with the actual values.

1.4 Research Plan

• Survey of the different empirical models used till date for the estimation of soil mois-

ture content.

• Understand the importance of machine learning techniques among all modeling tech-

niques surveyed.

• Obtain an adequate set of training and test examples.

• Survey of different machine learning algorithms available.

• Study the mathematical backgrounds of surveyed learning algorithms.

• Study different model ensembling techniques along with their pros and cons.

• Implementing the suitable improvement techniques like bagging and boosting for all

the different models to make the prediction accuracy better.

1.5 Dataset Used

Bushra’s work provided a basis for the present work [11]. The datasets used here are

similar to the ones used in that work and they are a part of Soil Moisture Experiments con-

ducted at Ames, Iowa in 2002. The temporal coverage of the data was a one-month period

between mid-June and mid-July and the spatial coverage was 41.52◦N to 42.2◦N, 93.23◦W

to 93.50◦W. The inputs consisted of meteorological parameters such as soil temperature, air

temperature and precipitation, vegetation indices such as Soil Adjusted Vegetation Index

(SAVI) and Leaf Area Index, and Land Surface Temperature (LST). The output or target

parameter is volumetric Soil Moisture Content (SMC).



6

1.5.1 Study Area

The study area is the Walnut Creek watershed located at Ames, in south-central Iowa,

USA. It is a small watershed in the heart of the Corn Belt with an area of about 5,130

hectares and is characterized by fairly level topography and rich soils that developed under

prairie and prairie pothole wetlands. More than 80% of this watershed is planted to corn

and soybean row crops. Figure 1.1 shows the experimental fields, sampling locations, and

topography of the study area [11].

Surface SMC data belonging to 31 sites and 3 dates, i.e. a total of 93 points are

available. Some sites had missing data on some dates, such sites were removed from the

datasets. So, the points available shrink to 80. These points were used for training the

models thus serving as training datasets.

Measurements corresponding to the field number 16, 23, and 24 on three dates were

selected as test data. So, there nine points available as test data. These fields were selected

as test locations as they had the exact precipitation measurements.

1.5.2 Volumetric Soil Moisture Content

These data result from daily measurements of volumetric SMC (0-6 cm) using a man-

ually inserted probe and handheld reader conducted at 31 moisture sampling sites in the

Walnut Creek watershed. The unit for volumetric SMC was cubic meter of water per cubic

meter of soil m3/m3.

1.5.3 Soil Temperature

Soil temperature was measured using soil temperature probes (STP). The unit for Soil

Temperature was degrees Celsius (◦C).

1.5.4 Air Temperature

The air temperature for the study area was downloaded from the DAYMET U.S. data

center website. The website provides daily surface weather data and climatological sum-

maries based on the latitude and longitude of the location. The hourly precipitation data
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Fig. 1.1: Map of the study area.

was added to get daily data. The precipitation data corresponding to the input points were

obtained by creating a spatially interpolated precipitation layer using kriging in ArcGIS.

1.5.5 Precipitation

This data set acquired during SMEX02 from 1 June through 19 August 2002 experi-

ments, includes hourly precipitation data at 20 rain gauge stations distributed throughout

the study area. The unit for precipitation was millimeters (mm).

1.5.6 Soil Adjusted Vegetation Index

The spatial layers of SAVI and Normalized Difference Water Index (NDWI) require the

reflectance data from visible region and NIR region. These data were obtained from the

processed Landsat Thematic Mapper Imagery available along with the SMEX02 datasets.

The Landsat imagery was obtained for the days 23rd June, 1st July, and 8th July, 2002.

The following equations are used to develop the spatial layers of NDWI and SAVI.
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SAV I =
(RNIR −RRED)(1 + L)

RNIR +RRED + L
, (1.1)

NDWI =
RNIR −RSWIR

RNIR +RSWIR
, (1.2)

where RNIR, RRED, RSWIR are the apparent reflectance values in the near-infrared, red and

short wave infrared wavebands, respectively, and L is the calibration factor.

1.5.7 Leaf Area Index

The spatial layer for LAI is developed using the spatial layer for NDWI as follows:

LAI = a×NDWI + b× (1 + c× exp (d×NDWI)), (1.3)

where a = 2.88, b = 1.14, c = 0.104, d = 4.1 are calibration constants [11].

1.5.8 Land Surface Temperature

This dataset was obtained from the processed Landsat 5 and 7 Thematic Mapper

Imagery. The unit for LST is degrees Kelvin (◦K).

1.5.9 Evaluation of Models

The models are evaluated by determining the Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) on test data for all the models. The MAE and RMSE are

given by

MAE =

∑Ntest
i=1

∣∣∣yiactual − yipredicted∣∣∣
Ntest

, (1.4)

RMSE =

√√√√∑Ntest
i=1

∣∣∣yiactual − yipredicted∣∣∣2
Ntest

, (1.5)

where Ntest is the size of the test dataset.
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Chapter 2

Vector Machines

Relevance vector machines and support vector machines are the two kinds of models

used in the present work. This chapter explains the theoretical mathematical backgrounds

involved in developing these machines.

2.1 Support Vector Machines

The learning algorithm involved in Support Vector Machines (SVMs) comes under

supervised learning. It is a widely used classification algorithm. For a simple binary clas-

sification problem, we can say that a support vector machine draws a optimal separating

hyperplane between the two classes of data. The hyperplane is chosen following the fact

that confidence in predictions improves when a point is far from the separating hyperplane

that is the criterion is based on margin maximization of two classes in the case of a binary

classification problem.

2.1.1 Simple Binary Classification Problem

Assume for a given binary classification problem, the training set of data is available

as D = {xi, yi}Ni=1,x ∈ Rn, y ∈ {−1, 1} as shown in Fig. 2.1. Now considering the problem

to be to develop a linear classifier for the dataset, D, let us use the parameters w and b to

write the classifier as

f(x) = sgn(wTx + b), (2.1)

such that the argument wTx + b decides the class of the point and the parameters w and b

are constrained by Eq. (2.2). The benefit of such a notation is that it allows us to explicitly
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treat the intercept term b separately from other parameters [12]

yi[|wTxi + b|] ≥ 1, i = 1, . . . , N. (2.2)

As explained by Steve R. Gunn in his technical report [13], the hyperplane that opti-

mally separates the given data is the one that minimizes

φ(w) =
1

2
‖w‖2. (2.3)

The solution to the minimization problem with the given constraints will be given by the

saddle point of the Lagrange functional

φ(w, b,α) =
1

2
‖w‖2 −

N∑
i=1

αi(y
i[wTxi + b]− 1), (2.4)

where α are the Lagrange multipliers. The dual form of this Lagrange functional is given

by

max
α

(
min
w,b

φ(w, b,α)

)
. (2.5)

The Lagrange multipliers are the solution to the minimization problem

α∗ = argmin
α

1

2

N∑
i=1

N∑
j=i

αiαjyiyjxi
Txj −

N∑
k=1

αk, (2.6)

such that αi ≥ 0 i = 1, . . . , N and
N∑
j=1

αjyj = 0.
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Fig. 2.1: Optimal separating hyperplane.

With the Lagrange multipliers obtained using Eq. (2.6), the parameters w and b can be

obtained as in Eq. (2.7) the classifier is obtained as in Eq. (2.1)

w∗ =
N∑
i=1

αiyixi

b∗ = −1

2
(w∗T (xr + xs)), (2.7)

where xr and xs are any support vector from each class satisfying

αr, αs>0, yr = −1 and ys = 1.
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The support vectors having nonzero Lagrange multipliers are those points xi that

satisfy the Kuhn-Tucker conditions given by Eq. (2.8)

αi(y
i[wTxi + b]− 1) = 0, i = 1, . . . , N

i.e. yi[wTxi + b] = 1. (2.8)

2.1.2 Support Vector Regression

Regression problems are very common just as the classification ones. In the classifi-

cation problems, the unknown target variable to be predicted takes a class value being a

nominal kind whereas, in a regression problem, the unknown target variable takes a nu-

merical value. Hence, the theory behind the development of support vector machines for

regression problems involves some significant changes to be noticed. Note that the argu-

ment of the minimization problem in support vector machines developed for classification

involved finding a optimal hyperplane based on a distance measure. Analogously, in regres-

sion problems support vector machines are introduced with an alternative loss function.

Let us formulate a simple linear regression problem by assuming the availability of the

training set of data as D = {xi, yi}Ni=1,x ∈ Rn, y ∈ R. Now, since the problem is a linear

one, we can approximate the underlying function by a linear function using the parameters

w and b as

f(x) = wTx + b. (2.9)

Note that the optimal regressors depend on the parameters w and b given by Eq. (2.10)

which are derived using Karush-Kuhn-Tucker conditions

w =

N∑
i=1

βixi

b = −1

2
(wT (xr + xs)), (2.10)

where evaluation of β is done depends on the type of loss function we use.
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• ε-insensitive loss function

Lε =

 0 for |f(x)− y| < ε

|f(x)− y| − ε otherwise,
(2.11)

β can then be determined using:

β = argmin
β

1

2

N∑
i=1

N∑
j=1

βiβjx
T
i xj −

N∑
i=1

βiyi, (2.12)

such that − C ≤ βi ≤ C, i = 1, . . . , N and
N∑
i=1

βi = 0,

where C is a regularization parameter.

• Quadratic loss function

Lquad = (f(x)− y)2, (2.13)

β can then be determined using

β = argmin
β

1

2

N∑
i=1

N∑
j=1

βiβjx
T
i xj −

N∑
i=1

βiyi +
1

2C

N∑
i=1

β2i , (2.14)

such that
N∑
i=1

βi = 0 and C is a regularization parameter.

2.1.3 Nonlinear Regression

Usually, most of the problems we come across in our daily life do not supply a linearly

separable data so that, we can follow the above explained methods to develop the models.

Such kind of problems appear when the data we have belong to a higher-dimensional space.
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The use of kernel comes into picture in such cases, so that they allow to map the data into

high-dimensional feature space before feeding them to a linear model in order to increase

the computational power of linear machines [14]. Thus, we can extend linear hypotheses to

nonlinear ones implicitly using kernel functions so that operations can be performed in the

input space rather than the potentially high-dimensional feature space.

The fact behind the use of kernels is that there exists a kernel in input space equivalent

to an inner product in inner space

K(x, z) = 〈φ(x), φ(z)〉,

only if K is a symmetric positive definite function that satisfies Mercer’s conditions. Some

of the various kinds of kernels that can be used are tabulated in Table 2.1.

So, the inner product between xi and xj are all replaced by these kernel functionals

and the optimization problems are correspondingly evaluated. There is a great amount of

choice to choose a kernel function from many kinds available. The best choice is always

better to know on a trial and error basis.

2.1.4 Pros and Cons of SVMs

The advantages of Support Vector Machines are:

• The usage of kernel functional for dealing with higher-dimensional data induces flex-

ibility in drawing the margins while development of the model;

• The implicit nonlinear transformations present in the kernel functionals avoid the

requirement of any prior assumptions regarding the underlying functions;

• Any bias in the training samples can be overlooked in SVMs by choosing appropriate

regularization parameters, C and kernel size, θ which ultimately makes SVMs robust;

• SVMs provide unique solutions as the optimality problem developed is convex.

The disadvantages of Support Vector Machines are:
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Table 2.1: Some useful kernels.

# Name of kernel KI(‖x− z‖)/KI(0)

1 Circular 2
π arccos

(
‖x−z‖
θ

)
− 2

π
‖x−z‖
θ

√
1−

(
‖x−z‖
θ

)2
if ‖x− z‖ < θ

positive definite in R2 zero otherwise

2 Spherical 1− 3
2
‖x−z‖
θ + 1

2

(
‖x−z‖
θ

)3
if ‖x− z‖ < θ

positive definite in R3

3 Rational quadratic 1− ‖x−z‖2

‖x−z‖2+θ

positive definite in Rd

4 Exponential exp
(
−‖x−z‖θ

)
positive definite in Rd

5 Gaussian exp
(
−‖x−z‖

2

θ

)
positive definite in Rd

6 Wave θ
‖x−z‖ sin

(
‖x−z‖
θ

)
positive definite in R3

• SVM being a nonparametric method suffers from lack of transparency of results;

• Number of support vectors required is a linear function of the size of the training set;

• The predictions are not probabilistic, and hence there is no estimate of the uncertainty

associated with the prediction.

2.1.5 Tools Used

A MATLAB toolbox is implemented by Steve R. Gunn for building Support Vector

Machines [13]. The functions in this toolbox that are developed for regression purposes

have provided the basis for developing the SVM models in the present work.

2.1.6 Results

Figures 2.2 and 2.3 show the predicted values and actual values of the soil moisture

content test data and the training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0499 and 0.0546, respectively.
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Fig. 2.2: Predicted and actual target values and absolute error for test data using SVMs.

Fig. 2.3: Predicted and actual target values and absolute error for training data using
SVMs.
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2.2 Relevance Vector Machines

Predictions done using SVMs are point estimates and are not probabilistic. If we

desire to estimate the target variables along with a measure of the uncertainty related

with the predictions, we should opt for estimation of the conditional distribution of p(y/

x). Bayesian framework introduces a technique to estimate conditional distributions under

similar scenarios.

2.2.1 Sparse Bayesian Learning

Considering that we are given with a training set of data D = {xi, yi}Ni=1, the goal is

to model y. In order to do that, we can assume that the training set of data is actually

sampled from the model with additive noise as explained by Tipping [15]

y = f(x; w) + ε, (2.15)

where ε ∼ N (0, σ2) and f(xn; w) =
∑N

i=1wiK(x,xi) + w0 and K(x,xi) is any kernel

function listed in Table 2.1.

Assuming that we have independent, identically distributed samples from the popula-

tion of the input space, we can write the likelihood of the complete dataset as

p(y/w, σ2) = (2πσ2)
−N/2

exp

{
− 1

2σ2
‖y − φw‖2

}
, (2.16)

where y = [y1, . . . , yN ]T

w = [w0, . . . , wN ]T

φ = [φ(x1), . . . ,φ(xN )]T

φ(xn) = [1,K(xn,x1), . . . ,K(xn,xN )]T .
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In order to avoid over fitting, we impose some additional constraints on the parameters

by defining a prior distribution on it as

p(w/α) =
N∏
i=0

N (wi/0, α
−1
i ) =

N∏
i=0

α2
i

2
exp−αi

2
w2
i , (2.17)

where α is vector of N+1 hyper parameters. The prior p(w/α) is Gaussian and has little

preference for sparsity. So to attain the Bayesian consistency, hyper priors are defined over

α and noise variance, σ2 as in Eq. (2.18) which is referred to as hierarchical prior [16]

p(α) =
M∏
i=0

Gamma (γi/a, b)

p(β) = Gamma(β/c, d), (2.18)

where β = σ−2, Gamma(z/a, b) = Γ(a)−1baz(a−1)e−ba and Γ(a) =

∫ ∞
0

ta−1e−t dt.

In order to make the hyper priors noninformative, they are made uniform by setting

them to a fixed value mostly 0 or some other small value. This formulation of prior dis-

tributions is a type of automatic relevance determination prior explained by Mackay [17].

The name for this model comes actually from the concept of hyper parameters. Individ-

ual hyper parameters support groups of weights associated with each input dimension x.

Relevance vectors are actually the the points present at some distance from the decision

boundary and appear more prototypical in character. The weights associated with the other

“irrelevant”vectors or input dimensions are made zero by using broad prior over the hyper

parameters that allows the posterior probability mass to concentrate at very large values of

some of these α variables. The assignment of each hyper parameter to each weight is what

gives the Relevance Vector Machines (RVMs) their sparsity properties.



19

2.2.2 Procedure for Predicting Target Variables

Now that we have all the information regarding the priors and the hierarchical priors,

for a given new point x∗, the value for the target variable can be predicted as

p(y∗/y) =

∫
p(y∗/w,α, β)p(w,α, β/y) dw dα dβ. (2.19)

Now, Bayesian inference proceeds by decomposing one of the terms in the integrand of

Eq. (2.19), p(w,α, β) as

p(w,α, β/y) = p(w/y,α, β)p(α, β/y). (2.20)

Now, if we further decompose the posterior distribution over weights, combine and

simplify the expressions obtained in the process, we can see by inspection that it is actually

a Gaussian distribution with posterior mean and covariance given by

µ = βΣΦTy

Σ = (βΦTΦ + A)
−1
, (2.21)

where A = diag(α0, α1, . . . , αN ).

In order to evaluate µ and Σ, we need to know the proper values of the hyper pa-

rameters, α and β that maximize the second factor in Eq. (2.20), which is proportional to

p(y/α, β)p(α)p(β) [18]. Assuming that the hyper priors to be uniform, the factors p(α) and

p(β) can be neglected thus leaving the term p(y/α, β) to be maximized. It is computable

and given by

p(y/α, β) =

∫
p(y/w, β)p(w/α)

= (2π)−
N
2
∣∣β−1 + ΦA−1ΦT

∣∣− 1
2 exp

{
−1

2
yT (β−1I + ΦA−1ΦT )

−1
y

}
. (2.22)
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Optimization of the marginal likelihood function in Eq. (2.22) will not result in a

closed form expression for the hyper priors α and β. So, iterative re-estimates for them

are calculated through evidence approximation or expectation maximization. The latter

technique is the one used by Tipping in his paper [15]. Both of the techniques have been

exploited in the present work.

• Evidence Approximation

The maximization of the marginal likelihood is achieved by considering the logarithmic

of the evidence (Eq. (2.22)) and differentiating it. The resultant expression is then

equated to zero to obtain the reestimation expressions for the hyper priors as [19]

γi = 1− αiΣii, (2.23)

αnewi =
γi + 2a

µ2 + 2b
, (2.24)

βnew =
N −

∑
i γi + 2c

‖y −Φµ‖2 + 2d
. (2.25)

• Expectation Maximization

Another strategy to maximize the expression in Eq. (2.22) is to treat the weights

as hidden variables and maximize the expectation of the logarithm of the marginal

likelihood function with respect to the distribution over the weights given the data

and hidden variables as explained by Dempster et al. [20]. Using this technique, the

updates for the hyper priors will be

γi = 1− αiΣii, (2.26)

αnewi =
1 + 2a

Σii + µ2i + 2b
, (2.27)

βnew =
N + 2c

‖y −Φµ‖2 + σ2old
∑

i γi + 2d
. (2.28)

The learning algorithm proceeds by repeated application of the any one of above rees-

timation rules until some suitable convergence criteria is met with. As we proceed through

these iterations, we can see some of the α values approaching infinity, thus confirming that
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the corresponding weights are zero. So, the corresponding basis functions are pruned and

sparsity is realized.

Solving the maximization problem in the above procedure provides us with the values

of α and β that maximize the objective function, thus allowing us to compute the predictive

distribution using Eq. (2.19) giving

p(y∗/y,α, σ
2) = N (y∗/m, σ

2
∗), (2.29)

where m = µTφ(x∗) and σ2∗ = σ2 + φ(x∗)
TΣφ(x∗).

2.2.3 Pros and Cons of RVMs

The advantages of the Relevance Vector Machines are:

• The basic motivation for the development of these models is to estimate the uncer-

tainty associated with every prediction unlike the support vector machines;

• The number of kernel functions required is dramatically lesser than those required for

SVMs even though the performance is similar;

• The fully marginalized probability of a given model and its approximation is a measure

of the merit of the model.

The disadvantages of Relevance Vector Machines are:

• There is inverse operation required to be performed on a covariance matrix which may

involve an algorithm computational complexity of order N3, where N is the training

sample size.

2.2.4 Tools Used

SparseBayes is a package of MATLAB functions designed by Micheal E. Tipping to

implement an efficient learning algorithm for Sparse Bayesian models. The functions in this

toolbox are edited appropriately and used for developing the RVM models in the present
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work. The functions in this toolbox were previously edited by Zaman [11] and they are

further edited to make them appropriate for the present work. The SparseBayes distribution

comes with a basic user manual [21].

2.2.5 Results

Figures 2.4 and 2.5 show the predicted values and actual values of the soil moisture

content test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0279 and 0.0323, respectively.
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Fig. 2.4: Predicted and actual target values and absolute error for test data using RVMs.

Fig. 2.5: Predicted and actual target values and absolute error for training data using
RVMs.
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Chapter 3

Tree-Based Learning

Tree-structured classification and regression are the alternative approaches to classi-

fication and regression that are not based on assumptions of normality and user-specified

model statements. Also, unlike any other nonparametric kernel based methods, the resul-

tant tree structures can be relatively simple functions of the input variables. This chapter

explains the mathematical backgrounds of the models using Multivariate Adaptive Regres-

sion Splines (MARS) and other continuous learning algorithms like M5 and M5′.

3.1 Multivariate Adaptive Regression Splines

This method provides a flexible regression modeling method for high-dimensional data,

developed by Friedman [22]. This model works by generating products of spline basis

functions, where the data is automatically used to determine the number of basis functions

and the parameters associated with them. The motivation behind this model development

rises from the recursive partitioning approach. These models are developed in adaptive

computation framework. Algorithms indulging in adaptive computation dynamically adjust

their strategy to account for the behavior of the function to be approximated. Adaptive

algorithms for function approximation have their roots back in recursive partitioning and

projection pursuit.

3.1.1 Projection Pursuit Regression

Projection pursuit uses univariate and arbitrary additive functions of linear combina-

tions of the input variables to attain an approximation to the underlying unknown function

as

f̂(x) =
M∑
m=1

(
N∑
i=1

αimxi

)
. (3.1)
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The one-dimensional arguments of the functions are not specified. Instead, they are jointly

optimized along with the coefficients used in forming the linear combination so that they

best fit the data. This kind of approximation can be viewed as low-dimensional expansion

of a high-dimensional function. By choosing a proper value for M, close fits for many classes

of functions can be developed by using this approximation. Equation (3.1) can be expressed

as

f̂(x) =
J∑
j=1

ĝj(zj), (3.2)

where zj consists of a preselected subset of the input variables. The above J number

of functions used for approximation are in turn obtained through nonparametric methods

involving backfitting algorithms like

{ĝj(x)}Ji = argmin
gj

N∑
i=1

yi − J∑
j=1

gj(zij)

2

. (3.3)

The benefits of this kind of modeling are:

• This method can be used to approximate a wide variety of functions;

• Affine equivariance, that is the solution being invariant of any kind of nonsingular

affine transformation of the original input or explanatory variables.

The corresponding disadvantages of this kind of model building are:

• Even simple functions require large M for better approximations;

• When the variables are inter-dependent on each other, the additive forms cannot be

separated from these effects.

3.1.2 Recursive Partitioning

Let the input space, D, be partitioned into M disjoint subregions, {Rm}M1 . Then, the

model using recursive partitioning takes the form

if x ∈ Rm, then f̂(x) = gm
(
x/{aj}P1

)
, (3.4)
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where gm are parametric functions usually chosen to be constants which facilitates to rep-

resent the model as a simple binary tree and the interpretation becomes easier, and P is

the number of parameters used to represent those parametric functions.

The procedure of model building now involves, partitioning the input domain, D, into

optimal subregions and simultaneously estimating the parametric functions associated with

those subregions. This partitioning of subregions represents the fact that, even though

the underlying function may strongly depend on a large number of variables globally, the

dependence is confined to only a small number of different variables in different regions.

This methodology is analogous to subset selection. The partitioning is achieved by recursive

splitting of previous subregions, starting from the entire input space. Every time a split is

done, a region is divided into two daughter subregions following a goodness of fit criterion

on the resulting approximation in Eq. (3.4). The subregions are then combined in the

backward stage until an optimal set in terms of lack of fit and number of subregions is

obtained.

The advantages of this procedure are:

• This model building uses simple piecewise constant approximation,

• It takes benefit of low local dimensionality of functions,

• The model developed is easy to interpret.

The limitations of this procedure are:

• The approximating function is discontinuous at the subregion boundaries,

• Discontinuities at the boundaries limit the accuracy of the model,

• Approximations become difficult when the dominant interactions involve a small frac-

tion of total number of variables.

In order to make the recursive partitioning theory more related to spline construction,

the geometrical view of the regions and splitting can be explained with the arithmetic
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notions of adding and multiplying. As a starting step to such a notion, we can express the

approximation as

f̂(x) =
M∑
m=1

αmBm(x) where Bm(x) = I [x ∈ Rm] . (3.5)

The forward stepwise regression procedure for recursive partitioning procedure is outlined

in Appendix A.

The limitations of recursive partitioning and projection pursuit can be overcome by

making the following changes, which is the primary motivation behind the development of

MARS:

• Replacing the indicator function in Eq. (3.5) by a truncated power spline function;

• Not removing the parent basis function after it is split thereby making it and both its

daughters eligible for further splitting;

• Restricting the product associated with each basis function to factors involving distinct

predictor variables.

Incorporating the above mentioned modifications into the algorithm, the MARS algo-

rithm can be implemented in two parts, one for the forward stepwise part of the MARS

strategy and the other part dealing with one at a time backward stepwise procedure to

delete less contributing basis functions. Note that deleting the basis functions on a one-at-

a-time basis, will not produce zero response as it did for the usual recursive partitioning

algorithm because here the subregions formed are not disjoint but overlapping.

The forward stepwise and backward stepwise algorithms for the MARS model devel-

opment procedure are outlined in Appendix B.

3.1.3 Pros and Cons of MARS

Since MARS is built up on the notion of recursive partitioning and projection pursuit,

it also shares their advantages. Apart from those, MARS develops subregions that have

first order continuities and also there is no prohibition as such, there should be a single split
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on one variable which allows to approximate local additive dependencies. The limitation of

MARS is that its computational requirements grow rapidly with dimensionality which in

turn limits its capability to deal with dimensions above 20.

3.1.4 Tools Used

ARESLab is a MATLAB toolbox for building piecewise-linear and piecewise-cubic re-

gression models using the MARS technique developed by Gints Jekabsons. The functions

in this toolbox are edited appropriately and used for developing the MARS models in the

present work. The ARESLab distribution comes with a basic user manual [23].

3.1.5 Results

Figures 3.1 and 3.2 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0408 and 0.0484, respectively.

3.2 Continuous Class Learning

Many problems dealt in machine learning are related to classification, which involves

prediction of a nominal variable. Building trees was firstly used for classification purpose

through class learning. Then Quinlan proposed an algorithm called M5 for developing model

trees for prediction of numerical continuous variables [24]. These model trees are similar to

regression trees build by Classification and Regression Trees (CART), except the fact that

regression trees have values at their leaves, whereas model trees have multivariate linear

models at their leaves.

These models are built by combining instance-based and model-based learning, a tech-

nique proposed by Quinlan [25]. Instance-based learning involves forming prototypes from

the training set of data and then a prediction for a new case is made by finding similar

prototypes and using their classes in some way. On the other hand, learning methods in

model-based techniques construct explicit generalizations of the training cases. This sec-

tion explains how the model trees are built through M5 and M5′ algorithms and also how
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Fig. 3.1: Predicted and actual target values and absolute error for test data using MARS.

Fig. 3.2: Predicted and actual target values and absolute error for training data using
MARS.
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predictions are done through model trees by combining instance-based and model-based

learning.

3.2.1 M5 Algorithm

Tree-based models are constructed by the divide and conquer method. The algorithm

proceeds by assigning the whole training set to a single leaf or by splitting it into subsets in

a way similar to recursive partitioning. This process is recursively applied to produce over

elaborate structures. To reduce the over size of trees thus formed, they are pruned back.

The splitting is done based on the outcomes of a test. Let T denote the set of training

examples and Ti denote the subset of cases that have the ith outcome of the potential

test. Let sd(Ti) denote the standard deviation of the target values of the examples in Ti.

M5 calculates a measure of error in the form of Standard Deviation Reduction (SDR) as

denoted in Eq. (3.6) and uses it to decide the best test helpful in the evaluation of the tree

developed. The splitting ceases when the class values of all the instances that reach a node

vary slightly or only a few instances remain.

SDR = sd (T)−
∑
i

|Ti|
|T|
× sd (Ti) (3.6)

Details

• In order to avoid underestimation of error, M5 multiplies the average of the absolute

difference between the actual and predicted target values by (n+ ν)/(n− ν), where n

is the number of training cases and ν is the number of parameters in the model. This

increases the estimated error of model with many parameters constructed from small

numbers of cases.

• During the initial splitting procedure, a node is not split if it represents very few

examples or its values vary only slightly.
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• At each node of the model tree, a multivariate linear model is constructed using

standard regression techniques upon a restricted number of attributes referenced by

tests.

• Linear models are obtained as above and they are simplified by eliminating parameters

to minimize estimated error. M5 algorithm uses greedy search methods to remove

variables that contribute very little to the model.

• Pruning of the model tree involves evaluation of each nonleaf node starting from the

bottom. The final model at each leaf node is selected to be the one of the simplified

linear model or the model subtree depending on which has low estimated error.

• A smoothing process is adopted to improve the prediction accuracy of the model trees.

The predicted value for a new case at the appropriate leaf is adjusted so that it reflects

the values at the nodes along the path from the root to the leaf. To serve this purpose,

the value at that leaf is backed up from the leaf to the root as

PV (S) =
ni × PV (Si) + k ×M(S)

ni + k
, (3.7)

where Si is the branch of subtree S followed by the new case, ni is the number of

training cases at Si, PV (Si) is the predicted value at Si, M(S) is the value given by

the model at S, k is the smoothing constant.

3.2.2 M5′ Algorithm

The drawbacks of the model trees developed by M5 are of very big size which is overcome

in M5′ algorithm developed by Wang and Witten [26]. In order to improve the speed of the

algorithm in M5′, the splits at all nodes are made binary; that means they involve either a

continuous valued attribute or a synthetic binary one. This is based on the proof that the

best split at a node for an enumerated variable with k values is one of the k − 1 positions

obtained by ordering the average class values for each enumerated variable. To avoid the

automatic favoring of the attributes with large different values in M5′, the SDR is multiplied
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by a factor (β) that is unity for every binary split and decays exponentially as the number

of different values increases.

The decision tree inducing algorithm used by M5′ algorithm is same as the one used by

its previous version except the following changes:

• The tree is built by minimizing the intra-subset variation in the class values down

each branch instead of maximizing the information gain at each interior node;

• While pruning back to an interior node, consideration is given to replacing that node

by a regression plane instead of a constant value.

The problem of missing values can come into picture, when the examples are to be

divided into subsets based on the value of the attribute which is selected for splitting. To

account for the missing values, a further modification is made to SDR in Eq. (3.6) as below

SDR =
m

|T |
× β(j)×

sd (T)−
∑

i∈{L,R}

|Ti|
|T|
× sd (Ti)

 , (3.8)

where m is the number of examples without missing values for that attribute, T is the set

of examples that reach this node, β(j) is the correction factor calculated for the original

attribute to which this synthetic attribute corresponds using Eq. (3.9). TL, TR are sets that

result from splitting on this attribute

β = e7×
2−k
n , (3.9)

where k is the number of samples of values of the original enumerated attribute and n is

the total number of examples.

The algorithm for M5′ is outlined in Appendix C.

3.2.3 Pros and Cons of Continuous Class Learning

The advantages of continuous class learning are:

• Interpretation of the models developed using this procedure is easy;
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• It requires little data preparation such as data normalization;

• The models developed are robust;

• No prior assumptions of underlying model parameters are required.

The disadvantages of continuous class learning are:

• Use of heuristic search algorithms such as greedy algorithms do not guarantee the

optimal results;

• Overfitting is a common problem.

3.2.4 Tools Used

M5primelab is a MATLAB toolbox for building regression trees and model trees using

M5′ method developed by Gints Jekabsons [27]. The functions in this toolbox are edited

appropriately and used for developing the model trees in the present work. The M5primelab

distribution comes with a basic user manual [27].

3.2.5 Results

Figures 3.3 and 3.4 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0411 and 0.0536, respectively.
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Fig. 3.3: Predicted and actual target values and absolute error for test data using model
trees.

Fig. 3.4: Predicted and actual target values and absolute error for training data using model
trees.
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Chapter 4

Polynomial Regression and Neural Networks

This chapter explains other miscellaneous methods such as polynomial regression and

neural networks used in the present work for the development of prediction models for the

estimation of soil moisture content. The mathematical backgrounds of full polynomial,

sparse polynomial based regression and Adaptive Basis Function Construction (ABFC)

are explained in the first section. The theoretical background of constructing multilayer

perceptrons, a kind of neural networks is explained in second section.

4.1 Polynomial Regression

Polynomial regression fits a nonlinear model to the data, but then as a statistical prob-

lem it is linear, as in the regression function is linear in unknown parameters to be estimated

for the model. Also, polynomial regression usually fits the data to the model using least

squared fit. The least squares method minimizes the variance of the unbiased estimators of

the parameters of the model under the conditions of the Gauss-Markov theorem.

In these methods, basis functions are used to approximate a function. Usually, the

basis functions used have fixed degrees in nonadaptive methods and otherwise for adaptive

methods. In nonadaptive methods, the model approximates the unknown function as a

linear combination of basis functions from a dictionary of valid basis functions. In adaptive

methods, the basis functions are adapted to the data.

4.1.1 Full Polynomials

The models using low order full polynomials for approximating an unknown function

are the mostly used and the easiest to develop compared to other kinds of regressions. For
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example, a second degree polynomial can defined as

f(x) = a0 +
∑
i

aixi +
∑
i

∑
j

aijxixj . (4.1)

A polynomial regression model can be represented in Eq. (4.2), where ai’s are model

parameters are estimated usually using least squares method as shown in Eq. (4.3)

F (x) =
k∑
i=1

aifi(x), (4.2)

where k is the number of basis functions used in the model, and fi(x) are the basis functions

of input x.

a = argmin
a

n∑
j=1

(yj − F (xj))

2

, (4.3)

where a = (a1, . . . , ak)
T are the model’s parameters.

For a d -dimensional input and a polynomial of fixed degree p, the total number of basis

functions in the size of dictionary of full polynomial is given by

m =

p∏
i=1

(1 + d/i). (4.4)

The advantages of using full low-order polynomials is the requirement of low number of

data points and computational efficiency. One of the important limitations of this rigorous

procedure is overfitting of data to the model. The drawback of using low-order polynomials

is the inability of them to approximate highly nonlinear behaviors. This is overcome by

using high-order polynomials. However, use of higher-order polynomials increases the size

of dictionary, and in turn the computational efficiency.

4.1.2 Sparse Polynomials

The importance of “sparse”polynomials lies in avoiding the overfitting of the data to

the model and reducing the resulting errors in the regions that contain sparse data. The

sparse polynomials are selected using subset selection methods whose goal is to find a
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subset of functions from a fixed predetermined dictionary basis functions that provide the

best predictive performance of the model. So all the following benefits of feature selection

apply to the sparse polynomial models [28]:

• Alleviating the effect of the “curse of dimensionality,”

• Enhancing generalization,

• Speeding up learning process,

• Improving model interpretability.

If the size of dictionary is m, the total number of possible subsets become 2m. For

reasonably big values of m, the search procedure for finding out the right subset by searching

through all subsets becomes a cumbersome procedure. To make this search more practical,

heuristic search algorithms can be used to find out the best subset. Some of the search

algorithms that can be employed are Sequential Forward Selection (SFS), Steepest Descent

Hill Climbing (SDHC), and Sequential Floating Forward Selection (SFFS).

All the search algorithms proceed iteratively adding functions to the model to get the

highest performance increase according to a chosen criteria. The criteria can be chosen

from any of the following: Small Sample Corrected Akaike’s Information Criterion (AICC),

Bayesian Information Criterion (BIC), and Generalized Cross Validation (GCV). The ex-

pressions for these criteria in terms Mean Square Error (MSE), size of the set of training

examples (N), and number of basis function used (k) are tabulated in Table 4.1.

Sequential Forward Selection and Sequential Floating Forward Selection

These sequential algorithms add or remove features sequentially, but have a tendency

to become trapped in local minima. Both of these algorithms come under the scheme

called maximum relevance selection which selects features that correlate strongest to the

classification variable. SFS performs best when the optimal subset has a small number of

features. When the subset is near the empty set, a large number of states can be potentially

evaluated while when the subset is near the full set, the region examined by SFS is narrower
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Table 4.1: Search criteria.

# Name of criteria Expression

1 AICC N logMSE + 2k + 2k(k+1)
(N−k+1)

2 BIC logMSE + k logN

3 GCV N logMSE − 2N log (1− k
N )

since most of the features are already been selected. To state this more clearly, we can say

that the search space is drawn like an ellipse to emphasize the fact that there are fewer

states towards the full and empty sets.

SFS methods are an extension to Plus-L Minus-R Selection (LRS) algorithms with

flexible backtracking capabilities. Rather than fixing the values of number of features to

added and removed at every step, i.e. L and R values, these floating methods allow those

values to be determined from the data. Sequential floating forward selection starts from an

empty set and after each forward step, it performs backward steps as long as the objective

function increases. In iteration of search, forward phase is done only once while the number

of times the backward phase is carried is determined dynamically.

Steepest Descent Hill Climbing

Hill climbing is a mathematical optimization technique that belongs to the family

of local search. It proceeds by randomly selecting a solution from the search space and

iteratively makes small changes to attain the neighborhood solution. Steepest hill climbing

differs from the simple hill climbing in the way the node is selected. In the former, all

successors are compared and the closest to the solution is chosen, whereas in the latter the

first closer node is chosen. Note that the solution chosen using this technique is close to the

optimal, but it is not guaranteed ever.

4.1.3 Adaptive Basis Function Construction

The backdrop of polynomial regression lies in subset selection, where the search for the

best subset is carried in exponential orders as proportional to the number of independent

input parameters. To alleviate this extraordinary searches, basis function are constructed
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adaptively from the data. The required basis functions are automatically iteratively con-

structed using heuristic searches instead choosing a subset from a restricted finite user

defined dictionary. So note that in this approach, the basis function dictionary is infinite

and polynomials of arbitrary complexity are generated brining the desired flexibility to the

model building process. In one way, we can say that the ultimate aim of Adaptive Ba-

sis Function Construction is to overcome some of the limitations associated with subset

selection.

Generally, a basis function in a polynomial regression model can be defined as a product

of original input variables each with an individual exponent as

fi(x) =
∏
j

x
rij
j , (4.5)

where r is a k × d matrix of nonnegative integer exponents such that rij is the exponent

of the jth variable in the ith basis function. Finding a best subset can now be defined as

finding the best matrix r with the best combination of nonnegative integer values of its

elements, that is

r = argmin
r

J
∏

j

x
rij
j

 i = 1, 2, . . . , k, (4.6)

where J(.) is an evaluation criterion that evaluates the predictive performance of the regres-

sion model which corresponds to the set of basis functions. Following are the five components

of heuristic search procedure explained with respect to the ABFC approach [29].

Initial State Generally, the simplest model is chosen to be the initial state. Here, the

model with a single basis function is the simplest one and it corresponds to the inter-

cept term with all the exponent terms for the basis function being 0s.

State Transition Operators Subset selection approach employs only add/delete opera-

tors for state transition while in ABFC approach, modified form of the usual add/

delete operators are used which facilitate the modification on the level of individual
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exponents. The basic idea behind using such modified operators is to employ operators

that add only simplest functions. The following are the four operators used:

• Add a new linear basis function with only one of the exponents as one and all

others zeros;

• Add an exact copy of already existing basis function with one of exponents

increased by 1;

• Decrease one of the exponents in one of the existing basis functions by 1;

• Delete one of the existing basis functions.

Search Strategy Since both complication and simplification algorithms are used, we can

employ both forward and backward type searches.

Evaluation Measure The evaluation measures used for ABFC approach are the same as

in subset selection approaches.

Termination Condition Some of the widely used termination conditions are:

• User defined pre-specified number of iterations;

• User pre-specified size of model;

• No further improvement of the model can be made with the available state tran-

sition operators.

4.1.4 Floating Adaptive Basis Function Construction

This is a special case of ABFC approach [30]. It uses SFFS search procedure starting

from a simplest model. SFFS is one among the most efficient heuristic floating search algo-

rithms. In ABFC, sometimes when the data is of low dimensionality, the search algorithm

may get stuck in a local minimum too early in the search, returning a too simple and under-

fitted model. F-ABFC approach addresses this issue by employing an additional recursion

of the state-transition operators which introduces another hyper parameter for the model.
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The recursion of operators reduces the number of local minima in the state space, which

helps in the searching procedure and ultimately results in a better model.

4.1.5 Pros and Cons of Adaptive Construction of Basis Functions

The advantages of ABFC modeling are:

• The computational considerations for ABFC search procedure are better than those

of subset selection;

• Use of four operators instead of the conventional add/delete operators helps in making

the building procedure easier and more efficient;

• The models of best predictive performance are usually located relatively near to the

initial state. Hence, only a small fraction of the whole infinite state space can be

explored.

The disadvantages of ABFC modeling are that they can become computationally de-

manding when the number of input variables or the size of training set get very large.

Selection bias occurs when the same dataset is used for all the tasks such as model building,

selection of best model and steering the direction of search procedure and this selection bias

increases with the noise present in the dataset. Selection instability is another issue, which

is related to the fact that small perturbations in the data can make the model building

process result in vastly different models.

4.1.6 Tools Used

FABFC is a MATLAB toolbox implementing adaptive modeling techniques through

Floating-Adaptive Basis Function Construction, developed by Gints Jekabsons [31]. The

functions in this toolbox are edited appropriately and used for developing the adaptive

models discussed in this section.
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4.1.7 Results

Figures 4.1 and 4.2 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0389 and 0.0453, respectively.

4.2 Neural Networks

A neural network is a mathematical model consisting of interconnected neurons (nodes)

that dupe the functioning of biological neurons. They are used as nonlinear statistical tools

in modeling complex relationships between inputs and outputs. The neurons are arranged

in different layers with random weighted connections between layers. It is an adaptive

system that changes it structure based on the external or internal information that flows

through the network during the training phase. A typical neural network with four input

nodes, three output nodes, and one hidden layer with six nodes is shown in Fig. 4.3.

The functioning is basically similar to flow diagrams in networks, like every node sums

up the weighted inputs and transfers it to all the other nodes connected to it with the

respective weights multiplied (feed-forward). The development of the model involves two

phases: training and testing. Training phase essentially selects one model from all the

available ones that optimizes the cost function evaluated on the obtained training dataset.

In other words, the objective of training phase is to determine a mapping from the set of

training dataset to the set of possible weights. Test phase involves the assessment of the

performance of the model using different evaluation procedures or a test dataset, if available.

The cost function is usually the mean-squared error that represents the mismatch between

the mapped functional output and the dataset.

Different training procedures have evolved to be used during the first phase of neural

network development. The kind of feed-forward neural network that uses back propagation

algorithm for training is called Multilayer Perceptron network (MLP). These are the most

commonly used neural network models. The MLP networks have only one hidden layer as

shown in Fig. 4.4, and the activation function at the nodes are usually hyperbolic tangent
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Fig. 4.1: Predicted and actual target values and absolute error for test data using ABFC.

Fig. 4.2: Predicted and actual target values and absolute error for training data using
ABFC.
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Fig. 4.3: A typical neural network.

or linear activation functions (f, F ).

ŷ(w,W ) = Fi

 q∑
j=1

Wijhj(w) +Wi0

 = Fi

 q∑
j=0

(Wijfj

(
m∑
l=1

wjlzl + wj0

)
+Wi0)


(4.7)

4.2.1 Back-Propagation Algorithm

This algorithm minimizes the cost function to find the weights (θ = [w,W ]) using

gradient descent. Let T denote the training dataset {xi, yi}Ni=1. The cost function in the

form of mean square error criterion is

VN (θ, T ) =
1

2N

N∑
t=1

[
yt − ŷt/θ

]T [
yt − ŷt/θ

]
. (4.8)

The weights can be found as

θ̂ = argmin
θ
VN (θ, T ). (4.9)
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Fig. 4.4: A feed-forward MLP network with weights and activation functions.

The cost function in the form of Minimum Mean Square Error (MMSE) is minimized

in the algorithm by propagating the error backwards through the network and adjusting

the weights accordingly. The weights are thus iteratively updated as

θ̂(i+1) = θ̂(i) + µ(i)f (i), (4.10)

where θ(i) represents the present iterate, f (i) gives the search direction, and µ(i) is the step

size.

All the computations involved are ordered in a way to take advantage of the structure

of the neural network. The algorithm is implemented in the following steps [32].

Feed-Forward Calculation The training input is propagated through the network and

the corresponding activations at all the nodes are generated in the process.

Back-Propagation to the Output Layer The gradients of all outputs and hidden neu-

rons are generated through the back propagation of the activations of all the neurons.
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Back-Propagation to the Hidden Layer The back-propagation error in each hidden

layer is computed taking into account all possible backward paths.

Weight Updates The weights are updated by subtracting a fraction of them from the

previous weights.

4.2.2 Levenberg-Marquardt (LM) Method

This method of optimizing the cost function is more rapid and robust [33]. LM method

is a compromise between the Gauss-Newton Algorithm and the method of Gradient Descent

employed in back-propagation algorithm. The algorithm is implemented in the following

steps [33].

Step 1: Select the initial parameter vector θ(0) and an initial value λ(0).

Step 2: Determine the search direction from
[
R
(
θ(i)
)

+ λ(i)I
]
f (i) = −G

(
θ(i)
)
, I being a

unit matrix. Here, G denotes the gradient of the criterion with respect to the weights

and R is the Gauss-Newton approximation to the Hessian.

Step 3: Compute

r(i) =
VN (θ, T )− VN (θ(i) + f (i), T )

VN (θ, T )− L(i)(θ(i) + f (i))
, (4.11)

where L(i)(θ(i) + f) =

N∑
t=1

(
yt − yt/θ − fT

[
∂ŷt/θ

∂θ
‖θ=θ̂

])2

= VN (θ(i), T ) + fTG(θ(i)) +
1

2
fTR(θ(i))f.

If predicted decrease is close to actual decrease, let the search direction approach the

Gauss-Newton search direction while increasing the step size. That is if r(i) > 0.75

implies that λ(i) = λ(i)/2.
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Step 4: If predicted decrease is far from the actual decease let the search direction approach

the gradient direction while decreasing the step size. That is if r(i) < 0.25 implies

that λ(i) = 2λ(i).

Step 5: If VN (θ(i) + f (i), T ) < VN (θ(i), T ), then accept θ(i+1) = θ(i) + f (i) as new iterate

and let λ(i+1) = λ(i) and i = i+ 1.

Step 6: If the stopping criterion is not satisfied, go to step 2.

4.2.3 Pros and Cons of Neural Networks

The advantages of neural networks are:

• No restrictive assumptions,

• Can overcome autocorrelation between input features,

• Robust and flexible.

The disadvantages of neural networks are:

• Risk of overfitting,

• Requires definition of architecture,

• Long processing time,

• Large training samples required.

4.2.4 Tools Used

Neural Network Based System Identification Toolbox is developed by Magus Norgaard,

Department of Automations, Technical University of Denmark. The toolbox contains a large

number of functions for training and evaluation of MLP networks. The toolbox provides six

different model structures. Two of them, NNARX and NNOE, have been used in the present

work. The former is a simple auto-regressive type neural network model while the latter is

a Neural Network Output Error model. Both of them use Levenberg Marquardt method for
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training the parameters. Mostly, a test dataset is used to cross-validate the trained model.

The toolbox also provides functions like NNVALID and NNEVAL to validate the models.

This distribution comes with a basis user manual [33].

4.2.5 Results

Figures 4.5 and 4.6 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0677 and 0.0856, respectively.
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Fig. 4.5: Predicted and actual target values and absolute error for test data using neural
networks.

Fig. 4.6: Predicted and actual target values and absolute error for training data using neural
networks.
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Chapter 5

Ensembling Methods

This chapter explains some ensembling techniques such bagging, variance optimized

bagging, and boosting for combining models built on same learning techniques. Every

model suffers from selection bias and selection instability when the same dataset is used

for different tasks like model building, determining the search criteria, and selection of final

best model. Ensembling models may avoid such kind of problems. These techniques also

improve prediction accuracies.

The first section goes through an ensembling technique applied to adaptively con-

structed basis functions which is similar to the bagging procedure, but differs in the way

the best model is chosen. The latter sections give the details about the other ensembling

techniques and present the results with different base learning algorithms such as Relevance

Vector Machines and Adaptively Constructed Basis Functions.

5.1 Ensembling Floating Adaptive Basis Function Construction (EF-ABFC)

In order to deal with the selection bias and selection instability of the models developed

by adaptively constructed basis functions, ν-fold Cross-Validation (CV) over the entire

search process is used [34]. All other features such as the evaluation criteria are followed

the same way as in the ABFC model building process. The training data is re sampled with

a CV-type re sampling. During this resampling, the whole training dataset is randomly

divided into ν disjoint subsets. Then ν overlapping training datasets are constructed by

dropping out a different one of these ν subsets during each iteration. The post-evaluation

is done using the validation dataset left out during each iteration, to select the best models

of each iteration. This process is repeated ν times each time with different CV fold serving

as the the validation dataset and all other as training datasets.
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By combining the ν models using a simple unweighted model averaging as indicated in

Eq. (5.1), the issue of selection instability is resolved. Note that prior to combining, all the

models need to be refitted to the whole training set in order to compensate for the smaller

training set used during individual model building. Such a combining of models can smooth

out the effect of erratic models that overfit the data thus attaining more model stability.

ŷcomb = (1/ν)
ν∑
i=1

ŷi (5.1)

The disadvantages of this kind of modeling are:

• When large datasets are available, the positive effects of EF-ABFC might diminish;

• Increased complexity of the algorithm may lead to inaccurate and overfitted models.

Results

Figures 5.1 and 5.2 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively. The Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) for this model are 0.0376 and 0.0431, respectively.

5.2 Bagging Predictors

Bagging is a technique developed by Breiman [35]. Both stability and prediction ac-

curacy can be improved using this technique. It can be applied over classification as well

as regression problems. The multiple versions of models are formed by bootstrapping the

dataset and using them as training sets for building different models. In the case of a clas-

sification problem, a plurality vote is taken to predict a nominal target variable while in

the case of a regression problem, average of all the versions is taken as a prediction for a

numerical target variable. The name bagging came from bootstrap aggregating. The more

general form of bagging can be seen in the Perturb and Combine methods developed by

Breiman, in which regression technique is applied to several perturbations of the original

data and the results are combined to obtain a single regression model.
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Fig. 5.1: Predicted and actual target values and absolute error for test data using EF-ABFC.

Fig. 5.2: Predicted and actual target values and absolute error for training data using
EF-ABFC.
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Let L denote the actual learning set and LB denote bootstrapped samples from L and

ψ(x,L) denote the model developed using the input variables x, learning set L and learning

algorithm ψ. The algorithm follows as below.

Step 1: The whole dataset is divided into test set T and learning set L, the share of the

former being usually 10% of the whole dataset.

Step 2: A bootstrap sample LB is selected from L and a prediction model is built us-

ing this bootstrap sample as the training dataset following a specific learning algo-

rithm such as ABFC, RVM, or SVM. This is repeated T times so that T predictors

ψ1(x), ψ2(x), . . . , ψT (x).

Step 3: Now for all (xn, yn) ∈ T , the bagged predictor is ŷn = avgkψk(xn) and the squared

error eB(L, T ) is avgn(yn − ŷn)2.

Step 4: The random division of the data into L and T is repeated n times and the errors

are averaged to give ēB.

It is understood that the aggregated predictor is actually the average over L of ψ(x,L)

that is ELψ(x,L). It can be proven easily that

[
ELψ(x,L)

]2 ≤ ELψ2(x,L). (5.2)

It can be thus understood that the difference of the mean-squared prediction error for a

prediction with the square of the mean value of the prediction is equal to the variance of the

predictor. The larger this variance is relative to the mean squared prediction error of the

predictor, the greater the percentage reduction of the mean squared prediction error will

be if the predictor is replaced by its mean [36]. Hence, the predictors with relatively large

variance can be improved by bagging. Hence, we can conclude that bagging shows reason-

able improvement when the base learner is rather unstable. It can degrade the performance

otherwise.

The number of bootstrap replicates, T required is not an issue. Usually, a 10 to 25

number of replicates are enough as the work of Breiman proves. Also, usually it is helpful
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if we make the size of a bootstrap sample LB equal to the size of the actually learning set,

L.

Results

Figures 5.3 and 5.4 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively, obtained by bagging RVMs. The Mean

Absolute Error (MAE) and Root Mean Square Error (RMSE) for this model are 0.0935 and

0.1034, respectively.

5.3 Variance Optimized Bagging

This section explains a technique developed by Derbeko et al. for aggregating an

ensemble of bootstrap predictors [37]. Weights are chosen for forming the linear combination

of predictors through minimum variance computations using quadratic programming. The

idea is actually borrowed from Markowitz Mean-Variance Portfolio Optimization. It has

been observed that this technique can even produce improvements in ensembling those

models that are deteriorated by bagging. The procedure thus developed was termed as

Variance Optimized Bagging, in short as Vogging.

In this technique, the goal is to find optimized weights for obtaining a weighted average

of the predictors developed as in bagging. Similar to bagging, T bootstrap samples are

produced from the whole learning set L available and T predictors are developed using each

of those bootstrap samples as training sets for each model. Let the predictors be denoted

as ψi i = 1, 2 . . . , T , and let the bootstrap samples be denoted as Bi i = 1, 2, . . . , T ,

each of size nB. Let Aj(Bi) denote the empirical accuracy obtained by the predictor ψj on

the bootstrap sample Bi given by Eq. (5.3). Let Āj = 1
T−1

∑
i 6=j Aj(Bi) be the average

empirical accuracy over all the other bootstrap samples.

ψj on Bi =
1

nB

∑
y∈Bi

(y − ŷ) (5.3)
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Fig. 5.3: Predicted and actual target values and absolute error for test data using bagging.

Fig. 5.4: Predicted and actual target values and absolute error for training data using
bagging.



56

The empirical covariance, Q is given by Eq. (5.4).

Q =
1

T − 1

T∑
j=1

(Aj − Ā)(Aj − Ā)
T
, (5.4)

where Aj = [Aj(B1), . . . , Aj(BT )] j = 1, . . . , T and Ā =
1

T

T∑
j=1

Aj .

Now, for each ai ∈ U
[
minj Āj ,maxj Āj

]
i = 1, 2, . . . , k , the following quadratic

problem is solved with linear constraints.

Minimize over w : min
w

1

2
wTQw; (5.5)

subject to :
(
Ā1, Ā2, . . . , ĀT

)T
w ≥ ai; (5.6)

and
∑
j

wj = 1, w ≥ 0. (5.7)

The vogging weight vector is chosen out of these k sequences of weights as wi∗ with

i∗ = argmaxi
a′i−p0
σi

where (a′i, σi) is the mean-variance pair corresponding to ai and p0 is

the mean of all the responses obtained using all the predictors. The algorithm for Vogging

is outlined in Appendix D.

5.3.1 Tools Used

The quadratic problem in Eq. (5.5) can be solved by convex optimization using cvx, a

modeling system for disciplined convex programming. Disciplined convex programming is a

methodology for constructing convex optimization problems proposed by Michael Grant and

Stephen Boyd. cvx is implemented in MATLAB, effectively turning it into an optimization

modeling language. This distribution comes with a basic user manual [38].

5.3.2 Results

Figures 5.5 and 5.6 show the predicted values and actual values of the soil moisture
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content for test data and training data, respectively, obtained by applying this technique

on RVMs. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for this

model are 0.1115 and 0.1217, respectively.

5.4 Boosting

Boosting is another technique used generally for improving the accuracy of any given

learning algorithm. Drucker developed boosting for regression purposes [39] by modifying

the Adaboost.R algorithm previously developed by Freund and Schapire [40]. It is very much

similar to bagging in its its implementation except that, in bagging each training example

is equally likely to be picked while bootstrapping. On the other hand, the probability

of a particular example being in the training set of a particular machine depends on the

performance of the prior models on that example. It accomplishes this by maintaining

a distribution of weights over the training set which are increased proportional to the

difference between the actual and predicted values of the target variables. So in simple

words, this algorithm tracks and makes note of all the ill-predicted values and increases

their probability to be chosen into another bootstrap sample thus allowing the base learner

to concentrate more on harder examples.

The algorithm for Boosting is outlined in Appendix E.

Results

Figures 5.7 and 5.8 show the predicted values and actual values of the soil moisture

content for test data and training data, respectively, obtained by boosting RVMs. The

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for this model are

0.0205 and 0.0264, respectively.
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Fig. 5.5: Predicted and actual target values and absolute error for test data using vogging.

Fig. 5.6: Predicted and actual target values and absolute error for training data using
vogging.
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Fig. 5.7: Predicted and actual target values and absolute error for test data using boosting.

Fig. 5.8: Predicted and actual target values and absolute error for training data using
boosting.
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Chapter 6

Conclusion

6.1 Summary of Results

One of the main goals of developing all these models is to produce reliably good es-

timates of Soil Moisture Content using the most easily available attributes such as the

meteorological factors and vegetation indices. This information is very helpful to farmers

and water researchers to understand the approximate conditions of the fields and guides

them to decide more efficiently about farming practices such as irrigation and application

of fertilizers.

The present work has also given a chance to explore different kinds of empirical model-

ing techniques and understand the mathematical backgrounds on which they are built. This

work provides a survey of all important and mostly used nonparametric methods ranging

from the basic polynomial regression to the modern tools like neural networks. The results

obtained are quite satisfactory and encouraging

The Mean Square Error (MSE) and Root Mean Square Error (RMSE) for test data for

all the models developed in the present work are summarized in Table 6.1.

Of all the models used in the present work, RVM proved to be the best one with

reasonable training and test errors. The training error for neural networks were better than

any other model, but their test errors were not at all satisfactory. Other models that gave

reasonable results of all are ABFC and MARS.

The ensembling techniques like Bagging and Boosting proved to produce better pre-

dictors for the models of RVM and ABFC. Sometimes, it has been observed that Vogging

deteriorated the results contrary to what it is supposed to be producing.
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Table 6.1: Summary of results.
# Model MAE RMSE

1 Support Vector Machines 0.0499 0.0546
2 Relevance Vector Machines 0.0279 0.0323
3 Multivariate Adaptive Regression Splines 0.0279 0.0484
4 Model trees using M5′ algorithm 0.0411 0.0536
5 Adaptive Basis Function Construction 0.0389 0.0453
6 Multilayer Perceptron Networks 0.0677 0.0856
7 Ensembling Adaptive basis Function Construction 0.0376 0.0431
8 Bagging RVMs 0.0935 0.1034
9 Variance Optimized Bagging RVMs 0.1115 0.1217
10 Boosting RVMs 0.0205 0.0264

6.2 Future Work

Further work in this direction might involve using the data derived from Unmanned Air

Vehicles unlike the satellite data used in this present work. Many other input parameters

which are nominal may also be allowed while building the model. Also, spatio-temporal

maps of the retrieved soil moisture content measurements might be developed using more

sophisticated models.
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Appendix A

Recursive Partitioning Algorithm

Algorithm A.1 Recursive Partitioning Algorithm

B1(x)← 1
For M = 2 to M = Mmax do: lof* ←∞

For m = 1 to M − 1 do:
For ν = 1 to n do:

For t ∈ {xνj/Bm(xj) > 0}
g ←

∑
i 6=m aiBi(x) + amBm(x)H [xν − t] + aMBm(x)H [−(xν − t)]

lof ← mina1,...,aM LOF(g)
if lof<lof*,then lof* ← lof; m∗ ← m;ν∗ ← ν; t∗ ← t end if

end for
end for

end for
BM (x)← Bm∗H [−(xν∗ − t∗)]
Bm∗(x)← Bm∗H [xν∗ − t∗]

end for
end algorithm
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Appendix B

MARS Algorithms

B.1 MARS-Forward Stepwise

Algorithm B.1 MARS-Forward Stepwise

B1(x)← 1;M ← 2
Loop until M > Mmax :lof* ←∞

For m = 1 to M − 1 do:
For v /∈ v(k,m) such that 1 ≤ k ≤ Km

For t ∈ {xνj/Bm(xj) > 0}
g ←

∑M−1
i=1 aiBi(x) + aMBm(x)H [xν − t] + aM+1Bm(x)H [−(xν − t)]

lof ← mina1,...,aM LOF(g)
if lof<lof*,then lof* ← lof; m∗ ← m;ν∗ ← ν; t∗ ← t end if

end for
end for

end for
BM (x)← Bm∗H [−(xν∗ − t∗)]
BM+1(x)← Bm∗H [xν∗ − t∗]
M ←M + 2

end for
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B.2 MARS-Backwards Stepwise

Algorithm B.2 MARS-Backwards Stepwise

J∗ = (1, 2, . . . ,Mmax);K∗ ← J∗

lof* ← minaj/j∈J∗ LOF (
∑

j∈J∗ ajBj(x))

For M = Mmax to 2 do: b←∞;L← K∗

For m = 2 to M do: K ← L− {m}
lof← minak/k∈K LOF (

∑
k∈K akBk(x))

if lof < v, then b← lof ;K∗ ← Kend if
if lof <lof*, tehn lof* ←lof;J∗ ← K end if

end for
end for
end algorithm
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Appendix C

M5′ Pseudocode

Algorithm C.1 M5′

M5′ (examples)
SD=sd {examples}
for each k -valued enumerateed attributes

convert into k-1 synthetis binary attributes
root=new node ; root.examples = examples
split (root); prune (root)
print tree(root)

split(nodes)
if sizeof(node.examples)<4 or sd(node.examples)<0.05×SD

node.type=LEAP
else

node.type= INTERIOR
for each old continuous and new binary attribute

for all possible split positions of the attribute
calculate the attribute’s SDR

node.attribute=attribute with maximum SDR
split (node.left); split(node.right)

prune(node)
if node = INTERIOR then

prune(node.left child); prune(node.right child)
node.model = linear regression(node)
if subtree .error(node) > error(node) then

node.type=LEAP
subtree left.r=node.right

l=node.left;r=node.right
if node = INTERIOR then

return
(
sizeof(l.examples)×subtree error(l)+sizeof(r.examples)×subtree error(r)

sizeof(node.examples)

)
else return error(node)
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Appendix D

Variance Optimized Bagging

Algorithm D.1 Variance Optimized Bagging

Input:
Number of bagged classifiers,T
Number of efficient frontier points, k
Training examples : S = {xn, yn}Nn=1

Choose the base learning algorithm H
Training:

Generate T bootstrap samples B1, . . . , BT from S
Train T models h1, h2, . . . , hT such that hj ∈ H is trained over Bj
Evaluate Āj = 1

T−1
∑

i 6=j Aj(Bi) for all i = 1, . . . , T

Evaluate Q = 1
T−1

∑T
j=1 (Aj − Ā)(Aj − Ā)

T

where Aj = [Aj(B1), . . . , Aj(BT )] j = 1, . . . , T

and Ā = 1
T

∑T
j=1Aj

Choose k uniformly spread points a1, . . . , ak in [minj Āj ,maxj Āj ]
Solve k instances of the following Quadratic problem for all i = 1, . . . , k. Let wi and
(a′i, σi) be the resulting weight vector and mean-variance pair corresponding to ai

minw
1
2wTQw

such that
(
Ā1, Ā2, . . . , ĀT

)T
w ≥ ai

and
∑

j wj = 1, w ≥ 0

Let p0 be the mean of all the responses obtained using all the predictors. Output:

Vogging weight vector wi∗ with i∗ = argmaxi
a′i−p0
σi
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Appendix E

Boosting

Algorithm E.1 Adaboost.R2 Algorithm

Input:
Training examples : {xn, yn}Nn=1

Choose the base learning algorithm
Number of iterations (T)

Initialize:
iteration number, t = 1
Distribution Dt(i) = 1

N i = 1, . . . , N
Average loss function, Lavgt = 0

Iterate while Lat vg < 0.5 or t ≤ T
Obtain a regression model, ft(x)→ y using the base learning algorithm and distribution Dt

Calculate loss for each training example as: lt(i) = |ft(xi)− yi|
Calculate the loss function Lt(i) for each training example as : Lt(i) = lt(i)

MRES
where MRES = maxi lt(i)

Calculate an average loss as: Lavgt =
∑N

i=1 Lt(i)Dt(i)

Set βt =
Lavg
t

1−Lavg
t

Update distribution Dt as: Dt+1(i) =
Dt(i)β

(1−Lt(i))
t
Zt

where Zt is a normalization factor chosen such that Dt+1 will be a distribution.
set t = t+ 1

Output:
Final hypothesis,

ffinal(x) = inf
[
y ∈ Y :

∑
t:ft(x)≤y log 1

βt
≥ 1

2

∑
t log 1

βt

]
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