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ABSTRACT

The conjugation of the NEDDS protein has been found to cause a wide range of changes
to the overall function of a protein. The addition of NEDD8 to a conserved lysine on Cul
proteins has been found to provide Cul with increased flexibility, while the transcription
factor protein p53 was prevented from binding to DNA after NEDD8 conjugation. Using
Arabidopsis thaliana, we investigated the potential conjugation of NEDDS to the
AtLRB1 and AtLRB2 proteins, which are both members of Cul3-RING E3 Ubiquitin
Ligase complexes, using both in vitro and in silico techniques. The AtLRBs are negative
regulators of the red light response pathway, interacting preferentially with Cul3 in red

light conditions by an unknown mechanism.

Our investigation into the amino-terminal portion of AtLRB2 (residues 1-144) found two
conserved regions which contained high sequence identity with Cull and Rbx1, two
members of Cullin-RING ligase complexes. These two conserved regions were also
found to share a similar distribution and placement on both the native crystal structure of
Cullin proteins in complex with Rbx1 and on the predicted AtLRB2 structural protein
model. Furthermore, the region of Rbx1 sharing sequence similarity to the LRBs directly
interacts with NEDDS8. Preliminary in vitro results also suggest that purified AtLRB2 is
modified by NEDDS, but the significance of this modification on the function of the LRB

proteins is not yet known.
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NOMENCLATURE & ABBREVIATIONS

GENERAL ABBREVIATIONS

+: DNA promoter region

a/p Domain: Site of Rbx1 association with Cullin, creating an o/f hydrophobic core
3-Box/3BOX: Conserved alpha-helices responsible for high-affinity interactions with Cul3
26S: 26S Proteasome complex

A: Activated, refers to the amino-terminal LRB ‘bridge’ structure

ACC Agreement: Comparison of predicted vs calculated solvent accessibility
ACCpro: Server which predicts the relative solvent accessibility for protein residues
APC2: Anaphase Promoting Complex 2

At(protein): The homologous protein counterpart in Arabidopsis thaliana
AtLRB2A: More accurate predicted structural model of AtLRB2 created using Phyre2
AtLRB2B: A less accurate predicted structural model of AtLRB2 created by Phyre2
AtLRB2N: Shortened amino-terminal AtLRB2A model (residues 1-144)
AXR1/ECRL1: Proteins acting as the RUB-activating E1 enzyme for NEDD8

B: Blocked, refers to the amino-terminal LRB “bridge’ structure

BACK Domain: BTB and C-terminal Kelch domain

BBK: BTB-BACK-kelch proteins

bHLH: Basic Helix-Loop-Helix structural motif

BLAST: Basic Local Alignment Search Tool

BLOSUM: BLOcks Substitution Matrix used for aligning protein sequences.

BTB Domain: Bric-a-brac/Tram-track/Broad complex domain

CB: Carbon residue of protein backbone which attaches to the R group

CAND1: Cullin-Associated and Neddylation-Dissociated 1 Protein

CH Domain: Cullin Homology region containing the o/p and WH-A domains.

CL Motif: The Cullin-Like region of LRB that resembles Cull/2

CLUSTALO: Clustal Omega multiple sequence alignment program

Col-0: The Columbia early-flowering ecotype of Arabidopsis thaliana

ConSurf: Bioinformatics tool for displaying evolutionary conservation on a 3D structure
COPL1: Constitutive Photomorphogenic 1 E3 ligase Protein

CN Domain: Cullin Neddylation or WH-A domain

CR Domain: Cullin Repeat-like domain

CRL/CRLS3: Cullin-RING and Cul3-RING ubiquitin Ligase complexes, respectively
CSI-BLAST: Context-Specific Iterated BLAST

Cul: The scaffolding protein Cullin

Cul®t region: Region of Cull/2 corresponding with the CL region of LRB

Cull/2: Cull and Cul2 proteins

DCNL1: Defective in Cullin Neddylation E3 enzyme for NEDDS8 conjugation

DSSP: Defined Secondary Structure of Proteins database

DUBs: Deubiquitination enzymes

E1/E2: Ub activating enzyme, Ub conjugating enzyme,

E3: Ubiquitin protein ligase complex

EMBOSS: European Molecular Biology Open Software Suite

Expresso: T-coffee MSA tool which aligns protein sequences using structural information
EZAL: Histone-lysine N-methyltransferase protein
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FLC: Flowering Locus C gene which represses flowering

FRI: Coiled-coil scaffold protein FRIGIDA which upregulates FLC

GFP: Green Fluorescent Protein tag

HHpred: Protein homology detection server based on pairwise HMM comparisons
HMM: Hidden Markov Model

Hs(Protein): The homologous protein counterpart in Homo sapiens
I-TASSER: Iterative Threading ASSEmbly Refinement server for protein structure prediction
InterPro: Protein sequence analysis and classification server

LL Motif: The Linker-Like region of LRB that resembles Rbx1

LRBs: Light-Response BTB proteins

LRB1/2: LRB1 and LRB2 proteins

Irb12/ Irb123: Transgenic Irb double/triple knockout mutants, respectively
MAD: Mutually-Assured Destruction mechanism

Matcher: EMBOSS pairwise sequence alignment program

Mdm2: RING finger type E3 ubiquitin ligase which promotes neddylation of p53 in humans
MEME Suite: Motif-based protein sequence analysis tool

MG132: 26S proteasome inhibitor

MLN4924: Analog of adenosine 5’-monophosphate which inhibits neddylation
MODELLER: Comparative protein structure modeling program

MS: Murashige and Skoog basal salts

MSA: Multiple Sequence Alignment

MultiSeq: Bioinformatics tool for aligning protein sequences in VMD

N8: Abbreviation for the NEDD8 Protein

NEDDS8: RUB/Neural precursor cell Expressed, Developmentally Downregulated 8 Protein
NEEDLE: EMBOSS tool for global pairwise sequence alignment

NLS: Nuclear Localization Sequence

NIMIN-1: Coiled-coil NIM1-Interacting protein

NS: Nuclear speckles

P: A site of Phosphorylation on a protein or in a MSA

p53: Tumor suppressor gene in humans

PDB: The RCSB Protein Data Bank archive

Pfr/Pr: Active/inactive phy conformations, respectively

PhosPhAt 4.0: The Arabidopsis Protein Phosphorylation site database

Phy: Phytochrome

Phylogeny.fr: Phylogenetic sequence analysis server

Phyre2: Protein Homology/analogy Recognition Engine version 2.0

phyBP™ phyBP": Active/inactive phyB conformation in R/FR light, respectively
PIFs: Phytochrome Interacting Factor proteins

pif3: PIF3 protein knockout mutant

POBL1.: Alternative name for AtLRB2

POLYVIEW-3D: Protein structure visualization server

PSIPRED: Secondary structure prediction server

QMEAN: Server which estimates the quality of protein structural models
R/FR: Red light (660nm) and Far-Red light (730nm), respectively
RBX1/ROC: RING-box 1 or Regulator of Cullin protein

Rbxtt region: Region of Rbx1 corresponding with the LL region of LRB
RCE1: RUB-conjugating E2 enzyme for NEDD8 conjugation

RING: Really Interesting New Gene

RMSD: Root-mean-square deviation

RUB: Related to Ubiquitin/NEDDS protein
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SAS: Shade Avoidance Syndrome

SET10/SDG10: Set Domain Group 10, alternative name for EZA1

SMART nrdb: Simple Modular Architecture Research Tool non-redundant database
SSE Agreement: Comparison of predicted vs calculated secondary structures
SWISS-MODEL.: Protein homology modelling server utilizing evolutionary information
SWN: SWINGER protein, alternative name for EZA1

T-Coffee: Tree-based Consistency Objective Function For AlignmEnt Evaluation MSA package
TAIR: The Arabidopsis Information Resource database

TRAF Domain: Tumor Necrosis Factor Receptor Associated Factors

Ub: Ubiquitin

UniProt: Universal Protein Resource database of protein sequence and function
UniProtKB: UniProt Knowledgebase database of functional information for proteins
UniProtKB AC: Accession number for entries in the UniProt Knowledgebase database
UPS: Ubiquitin/26S Proteasome system

VMD: Visual Molecular Dynamics program for visualizing protein structures

WH-A: Cullin Winged-Helix A domain, alternative name for CN domain

WH-B: Cullin Winged-Helix B domain

WT: Wild-type Col-0 ecotype in Arabidopsis thaliana

WU-BLAST2: Washington University BLAST version 2.0

Z-Score: Estimated absolute quality for a model using crystal structure comparisons

ABBREVIATIONS FOR PLANT SPECIES

ARALL.: Arabidopsis lyrata

ARATH: Mouse-ear cress (Arabidopsis thaliana)

BRARP: Chinese cabbage (Brassica rapa subsp. pekinensis or Brassica pekinensis)
CARUB: Pink shepherd’s purse (Capsella rubella)

CICLE: Clementine (Citrus clementina)

GLYMA: Soybean (Glycine max)

MAIZE: Corn (Zea mays subsp. mays or Zea mays)

ORYSJ: Asian rice (Oryza sativa subsp. japonica)

PHYPA: Physcomitrella moss (Physcomitrella patens)

PICSI: Sitka spruce (Picea sitchensis)

POPTR: California poplar or black cottonwood (Populus trichocarpa)
PRUPE: Peach (Prunus persica)

RICCO: Castor oil plant (Ricinus communis)

SELML.: Spikemoss (Selaginella moellendorffii)
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. BACKGROUND

PHYTOCHROMES & RED LIGHT RESPONSE

Plants require exposure to light in order to produce energy, and a plant’s ability to
sense and respond to different wavelengths of light is key for its survival. When a plant is
exposed to white light, red and blue wavelengths are absorbed by chlorophyll to perform
photosynthesis, while photons of other wavelengths, such as green or far-red, are filtered
through the plant or reflected. While green light may not have a large effect on plant
growth, the amount of blue, red, or far-red light the plant perceives helps to provide
specific information about its surroundings. For example, plants that are grown in close
proximity to one another can sense an increase in far-red light reflected off neighboring
plants, causing the plant to develop shade avoidance syndrome (SAS). SAS causes stem
elongation, decreased leaf expansion, and increased petiole elongation as the plant tries to
outgrow its neighbors and reach full sunlight on top of the canopy*?. The amount of red
light perceived also influences seedling germination, seedling establishment, initiation of

flowering, pathogen resistance, and regulation of circadian clocks®*.

Proteins bound to chromophores are used as a way for eukaryotes to detect light.
Chromophores are molecules that can absorb a certain photon wavelength and, in doing
s0, undergo a conformational change which changes the function of the protein bound to
it, signaling that a certain wavelength of light has been detected®. Whereas retinol is used
as the sole chromophore for the photoreceptors in the human retina®, plants use multiple
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chromophore protein receptors to detect different wavelengths of light*. Phototropins and
cryptochromes are used to detect blue light, while phytochromes are able to detect red

and far-red photon wavelengths®.

Phytochromes

Plants are able to detect the amount of red light that is available by using
phytochromes (phy), a class of photoreceptors responsible for detecting red and far-red
wavelengths®. Phytochromes have two photoconvertable conformations: the active Pfr
conformation, which absorbs far-red light, and the inactive Pr conformation, which
absorbs red light* (Figure 1A). When red light is absorbed by the Pr phy conformation,
the phytochrome becomes active and can signal to downstream effectors*’. Conversely,
when far-red light is absorbed by the Pfr phy conformation, the phytochrome becomes
inactive*,

Phytochromes act as a way for plants to monitor their environments and exist as
dimers in solution®. Phy exists exclusively in the cytoplasm as the Pr conformation in
darkness, but once the plant is exposed to red light, there is a conversion from the
inactive Pr form to the active Pfr form*. Phytochrome dimers containing at least one Pfr
conformation can then move into the nucleus (Figure 1B)*. Any Pfr homodimers present
in the nucleus can then interact with various proteins and accumulate in small nuclear
speckles (NS)2# (Figure 1C).

Five phy proteins, phyA-E, are found in Arabidopsis*. PhyA accumulates in dark-
grown seedlings and is the primary photoreceptor responsible for seedling

photomorphogenesis (the developmental response dark-grown seedlings undergo when
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CYTOPLASM ¢

INACTIVE

Figure 1: Phytochrome Response to Red Light

A. Photoconversion of inactive phytochrome (Pr) to the active (Pfr) form in response to red (R)
light around 660nme. When active Pfr is exposed to far-red (FR) light at around 730nmé8, the
phytochrome reverses and becomes inactive.

B. Both active and inactive forms of phytochrome remain as dimers in solution. As long as at least
one member of the phy dimer is the active Pfr form, it can be transported into the nucleus.

C. Homodimers consisting of active phytochrome can interact with Phytochrome Interacting
Factors (PIFs), which are transcription factor proteins that normally associate with certain promoter
regions (+) of DNA that promote skotomorphogenesis or repress photomorphogenesis. The active
phytochrome dimers coalesce and form structures known as nuclear speckles (NS) on various
subnuclear foci.
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exposed to light), but once seedlings are exposed to light, phyA is rapidly degraded®.
PhyB-E are stable in white light conditions and are solely responsible for red light

response, with phyB being the most influential light-stable phy*#.

Exposure to red light influences almost every facet of the plant life cycle. When
dark grown Arabidopsis seedlings are exposed to red light, approximately 10% of total
gene expression is altered?. However, multiple factors determine how influential the
exposure to red light will be, as the ratio of active (phyBP™) to inactive (phyBF") phyB
creates different physiological responses?. Seedlings that are exposed to more far-red than
red light have less active phyBP™ in the nucleus, which may result in shade avoidance
syndrome!. Conversely, seedlings exposed to high amounts of red light will have a large
amount of active phyBP™ in the nucleus!. With an increase in nuclear phyB®™, there is a

decrease in stem elongation and an increase in the number and activity of chloroplasts.

Although the ratio of red to far-red light controls the ratio of active and inactive
phyB, the relative overall amount of phyB present in the nucleus was also found to create
different physiological responses®®. An increase in relative phyB levels as a result of
phyB-overexpression or of knocking out negative regulators of phyB results in seedlings
that are hypersensitive to red light, while a decrease in the level of phyB, as found in
phyB knockdown or knockout mutants, results in a plant displaying red light

insensitivity®®, typically resulting in some degree of SAS.
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Phytochrome Interacting Factors

Phytochrome Interacting Factors (PIFs) are a family of nuclear-localized basic
Helix-Loop-Helix (bHLH) transcription factor proteins that mediate various aspects of
light signaling®. There are seven PIF protein members in Arabidopsis'® and it is thought
that their main function is to serve as negative regulators of photomorphogenesis?, with
PIFs 1, 3, 4, and 5 being implicated in either promoting skotomorphogenesis*! (the
allocation of resources to hypocotyl elongation at the cost of root and cotyledon
development when a seedling is grown in darkness’) or in photomorphogenic
repressiont!. As such, the PIFs are specifically thought of as negative regulators of the

phytochrome response pathway® /1112,

In contrast to active phytochromes, the presence of PIF3 in the nucleus has been
shown to promote accelerated hypocotyl elongation in shade®’. PIF3, along with PIF1,
PIF4, and PIF5, has been shown to promote hypocotyl elongation in prolonged red light
exposure by both transcriptional regulation and by reducing the influence of phyBP"
using feedback-loop-induced degradation®. Without PIF3, as shown in pif3 knockout
mutants, seedlings show hypersensitivity to R*3, as PIF3 is required to prevent PhyBP"

accumulation in the nucleus?.

A conserved amino-terminal region responsible for phyB binding, aptly named
the Active PhyB Binding Motif, has been found in all seven PIF proteins'?, and this motif
allows for the high affinity binding of PIF3 to active phyB**. When phyBP™ homodimers
undergo nuclear translocation in red light, phyB"™ is able to interact with the nuclear-
localized PIF3, resulting in the colocalization of PIF3 and phyBP™ in subnuclear

photobodies'! known as nuclear speckles (NS, Figure 1C).
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Figure 2: PhyB-PIF3 Interaction and Transphosphorylation

A. The interaction of photoactivated phytochrome with PIF proteins in the nucleus results in
transphosphorylation (P) of the PIFs. The precise kinase responsible for phosphorylation is not
known, but could be a result of an atypical kinase region on phytochromes as depicted®.

B. Transphosphorylation of the PIFs causes the release of the phyBP"/PIF complex from DNA.
Transphosphorylation also blocks the PIFs from further interacting with any promoter regions,
preventing any further NS colocalization.

PhyB-PIF3 Phosphodegron

The regulation of proteins in the phytochrome signaling pathway using
phosphorylation has been previously documented, as phyA is known to be an active
kinase'* and has been shown to directly phosphorylate proteins in the light response
pathway such as Phytochrome Kinase Substrate 1, Auxin/Indole-3-Acetic Acid, and
Nucleoside DiPhosphate Kinase 2'°. Additionally, phosphorylation of phyA has been
shown to prevent the interaction of phyA with PIF3, resulting in phyA degradation by the
Constitutive Photomorphogenic 1 (COP1) E3 ubiquitin ligase complex®.
Phosphorylation was also found to control phyB and PIF3 stability, as both are degraded

once PIF3 undergoes phosphorylation after interacting with phyB (Figure 2).

The breakdown of PIF3 occurs as part of a mutually-assured destruction (MAD)

mechanism with phyB, where the interaction between PIF3 and phyB ultimately results
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in the polyubiquitination and degradation of both'!®. The MAD mechanism is initiated
when PIF3 is phosphorylated as a result of the interaction with photoactivated phyB
(Figure 2A) in the nucleus, with PIF3 having the potential to be phosphorylated on up to
20 unique sites by a currently unidentified kinase!'. The accumulated
transphosphorylation of PIF3 provides a phosphodegron signal which grows stronger by

each additional phosphorylation.

The phosphodegron signal is accompanied by the release of the phyB-PIF3
complex from DNA promoter regions'! (Figure 2B). The phyB-PIF3 complex is then
thought to recruit the Light-Response BTB proteins 1 and 2 (LRB1 and LRB2,
respectively) and create an active E3 complex!®, which can then ubiquitinate the
transphosphorylated PIF3 protein, marking PIF3 for degradation via the 26S proteasome
system (26S)L. Mutant PIF3 proteins with phospho-null Ala mutations in 20 of the light-
induced phosphorylation sites showed a significant reduction in ubiquitination, indicating
that PIF3 transphosphorylation is necessary for interaction with and ubiquitination by the
LRBs', As the LRBs have been shown to interact with phyBP", and the LRBs bind
especially well when phyBP™ is bound to transphosphorylated PIF3, it would seem that
the LRBs would also ubiquitinate photoactive phyB in addition to transphosphorylated

PIF3; however, no evidence has been found thus far that supports this hypothesis®e.

In addition, PIF3 degradation is known to require a direct physical interaction
between active PhyBP™ and PIF3, as mutant PIF3 proteins that lacked the ability to bind
phyB were not subject to light-induced degradation®!. As such, the red light
hypersensitivity phenotype that was found in the pif3 knockout mutant seedlings was a

result of the buildup of phyBP™ in the nucleus, as there is an absence of the phyB""-PIF3
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interaction responsible for inducing the mutually-assured destruction negative feedback-
loop that results in both PIF3 and phyBP" degradation. Without PIF3, the PIF3-
mediated-phyBP™ degradation cannot occur, and the buildup of active phyBP™ results in a

red-light hypersensitive phenotype’.

21



UBIQUITIN / 26S PROTEASOME SYSTEM

The protein ubiquitin (Ub) is vital for many signaling pathways due to its ability
to selectively mark proteins for degradation via the 26S proteasome system, allowing for
tightly-controlled regulation of various influential cellular processes. The Ub/26S
proteasome system (UPS) has previously been implicated in phy-mediated signaling, as
phosphorylated phyA is degraded by the COP1 E3-ubiquitin ligase complex™®. It has also
been shown that transcription factors PIF4, PIF5, and Long Hypocotyl in Far-Red 1, all
of which are involved in the phytochrome response pathway, are degraded by the UPS
after being phosphorylated®. Additionally, transphosphorylated PIF3 has been found to

be ubiquitinated by the LRB E3 ligase complex*®.

Ubiquitin Conjugation Pathway

Ubiquitin is added to the protein using an ATP-dependent three-enzyme cascade
mechanism composed of a ubiquitin activating enzyme (E1), ubiquitin conjugating
enzyme (E2), and a ubiquitin protein ligase (E3) *’. The E3 ligase family is composed of
many different proteins that provide very specific target recognition and allow for diverse
targets to be selectively degraded?’ (Figure 3). Approximately 5% of Arabidopsis’
proteome is dedicated to the UPS®8, with two E1 proteins, 37 E2 proteins, and potentially
more than 1500 encoded E3 proteins in the genome!’, illustrating the amount of target-

specific diversity that is required to regulate protein breakdown.
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Figure 3: Simple Mechanism for the Ubiquitin Conjugation Cascade

Ubiquitin (Ub) is first attached to the Ubiquitin Activating Enzyme (E1) via a thioester bond in an
ATP-dependent reaction. In the second step, ubiquitin is transferred to the Ubiquitin Conjugating
Enzyme (E2). In the case of Cullin-RING Ligases, the E2 then binds to the Ubiquitin Protein Ligase
(E3), forming a complex that is able to add ubiquitin to a lysine residue on a target protein.

Degradative Effects of Ubiquitin Conjugation

Alteration of a protein by ubiquitin involves forming an isopeptide bond between
an accessible lysine residue on the target protein and a glycine residue located on the
carboxy-terminal end of Ub*’. Ubiquitin itself can be ubiquitinated and form poly-Ub
chains, with each ubiquitin protein containing several accessible lysine residues'’. A
single Ub conjugation to a protein®®, or a poly-Ub chain conjugated to the Lys-63'"1° of
ubiquitin, will result in a non-proteolytic event!® such as endocytosis of a protein’. Poly-
Ub chains formed by conjugation of Ub to the Lys-481"1° Lys-29'° or Lys-111719
residue of another Ub will result in the degradation of the target protein by the 26S
proteasome. The 26S proteasome releases poly-Ub chains from the target protein and
degrades only the target?°, allowing deubiquitination enzymes (DUBS) to cleave the poly-
Ub chain down into single ubiquitin proteins. The release of ubiquitin chains by the 26S

proteasome allows Ub to be recycled and reused to tag new proteins for degradation.
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Steric Effects of Ubiquitin Conjugation

The addition of a ubiquitin chain to a protein may also result in steric hindrance,
as the bulky polyubiquitin chain can alter the structure of large multi-protein structures®®.
Ubiquitin also plays a large role in transcriptional regulation®®. Steric consequences of
ubiquitin attachment have been known to alter the structure of chromatin fibers'®, and
ubiquitination of different histone proteins by E3 ubiquitin ligase complexes might be
partially responsible for the radical change in gene expression seen in Arabidopsis when

active phyBP™ is present in the nucleus®!.

Some E3 proteins have also been shown to simultaneously function as
transcriptional regulators and as adaptor proteins in Cullin-RING ligase complexes?. E3
ligase complexes can directly target transcription factors bound to DNA, RNA-binding

proteins, or histone-methyltransferases for degradation via the UPS%?2,

The ubiquitination of histone proteins can have inhibitory effects on transcription
or provide access to promoter regions through steric hindrance!®. The monoubiquitination
of histone H2B in yeast is associated with actively-transcribed euchromatin, and the
addition of a ubiquitin molecule has been shown to induce structural changes in
chromatin organization, ultimately providing new binding sites for chromatin regulators
while simultaneously preventing other transcription factors from associating with
chromatin®®. Much like histone H2B, the addition of ubiquitin to histone H2A provides
binding sites for transcription factors or blocks chromatin access for others, but this
results in an overall repelling effect that prevents gene expression, promotes chromatin

compaction, and silences gene expression?®,
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CULLIN-RING LIGASE COMPLEXES

E3 ubiquitin ligase complexes are able to recognize both the substrate protein
being targeted for degradation as well as the E2 enzyme that brings ubiquitin to the E3
complex?®. One type of E3 ubiquitin ligase complex contains a member of the Cullin
(Cul) family of scaffolding proteins. In Arabidopsis, there are five main types of known
Cullins (AtCul) which include Cull, Cul2, Cul3, Cul4, and APC2%25, However, there
are a total of 490 Cul-domain-containing proteins that have at least 60% sequence
conservation located in the SMART nrdb database?, which helps to illustrate the

ubiquitous presence of Cullin-like proteins in Arabidopsis.

General Characteristics of Cullin Proteins in Arabidopsis thaliana

All of the individual Cullin protein members are structurally very similar to one
another and highly conserved, with all Cullin proteins sharing a similar domain and
tertiary structure?. Cull through Cul4 contain a cylindrical amino-terminal domain
which contains three repeats of the Cullin Repeat-like (CR) domain, as well as highly-
conserved carboxy-terminal domains that include Cullin Homology (CH) and Cullin
Neddylation (CN) domain? (Figure 4A). The CN region is made up of the Winged-
Helix B (WH-B) domain and contains a highly-conserved lysine residue which is
responsible for conjugation with NEDD82%, a small modifier protein which will be

discussed in further detail in a later section.
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The amino-terminal portion, which contains the three CR domains, has a long
cylindrical shape for approximately 450 residues?®2®. At the carboxy-terminal end of each
Cullin rests a globular region which contains an o/p domain and the two Winged-Helix
domains; the latter lie on opposite sides of the protein from one another® (Figure 4A-B).
The structure of Cullin, as well as the associated members of the E3 complex that Cul
interacts with, have only been crystallized and resolved in mammalian proteins to date,
but the structural models of both have been generally deemed applicable across all
eukaryotic species based on the extreme conservation of the interactions between Cullins
and their CRL partners determined using biochemical assays in systems ranging from

humans to yeast?,

Genetic Diversity of Cullin Proteins

A genome-wide study of Cullin proteins suggests that all eukaryotic Cul proteins
arose from three genes, annotated Cula, Culf, and Culy?®. In humans, the CUL1 and
CULZ2 genes are thought to be descended from the Cula gene, while CUL3 arose from
Culp and CUL4 evolved from Culy?®. As the structures and functions of Cullin proteins
are thought to be almost completely conserved across all eukaryotic organisms, we can

assume this is also true for Arabidopsis®.
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A. The amino-terminal portion of Cullin proteins contain three CR domains, which are collectively
shown in blue?®?. A highly-conserved CH domain surrounds the winged-helix structure of the
CN domain, shown in red and green, respectively?*26.

B. A model of crystalized Cull/Rbx1 in Homo sapiens (PDB: 1LDK). The Cullin Repeat-like,
Winged Helix, and o/p domains are color coded?®, with Rbx1 being depicted in blue. The threading
of the amino-terminus of Rbx 1 through the o/f domain of Cull can also be observed.

C. The amino-terminal region of each type of Cullin protein is responsible for interacting with a
different adaptor protein. Cullin’s carboxy-terminal region focuses on interacting with Rbx1, which
in turn recruits and associates with an ubiquitin-charged E2 enzyme. This multimeric complex of
proteins is known as a CRL complex. The site of NEDD8 conjugation is marked with an asterisk.

D. When the adaptor protein in the CRL complex interacts with the target protein, the target is
brought in close proximity to the Ub-charged E2 enzyme due to the ring-like shape of the CRL
complex. The ubiquitin can then be transferred to a lysine residue on the target protein.
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Role of Cullin Proteins in the Formation of Cullin-RING Ligase Complexes

Cullin’s carboxy-terminal domain binds to a Really Interesting New Gene
(RING) partner called RING-box protein 1 (Rbx1), which can also be referred to as
Regulator of Cullins (ROC)?. Rbx1 associates with Cullin by inserting its long amino-
terminal extension through certain secondary elements in the a/f domain on Cullin®
(Figure 4B). The B-sheet of Rbx1 forms hydrogen bonds with the S1-3 strands of Cull,
creating an o/p hydrophobic core that is the characteristic feature of Cullin-RING ligase

complexes?,

Once Cullin is associated with Rbx1, the ubiquitin-charged E2 enzyme can be
recruited to the carboxy-terminal portion of Cul?®2?’. Meanwhile, the amino-terminal CR1
region of Cul utilizes helices H2 and H5 to interact with specifically-designated adaptor
proteins?, which differ from one Cullin protein to the other. The Cullin proteins that

relate to this thesis will be discussed further in the next section.

The presence of Rbx1-E2-UDb at the carboxy-terminal of Cullin, in addition to the
adaptor protein associated with the amino-terminal region, creates a multimeric structure
that is known as a Cullin-RING ligase (CRL) complex?’ (Figure 4C). The adaptor
protein can then interact with the target protein, which will be placed in close proximity
to the Ub-charged E2 due to CRL’s ring-like structure (Figure 4D), allowing the

complex to ubiquitinate the target?®,
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Crystal Structures of Native Cullin-RING Ligase Complexes

The native structure of three CRL complexes have been modeled in humans at
3.1A resolution and will be later used for structural analysis. All three crystal structures
were readily accessible from the Protein Data Bank (PDB). 1LDK and 4P50 both depict
HsCull in complex with HsRbx12%2°, while 2HYE depicts HsCul4A and HsRbx1
associated with one another®®, All three CRL complexes were unable to resolve the
amino-terminal portion of Rbx1, but all models contain the portion of Rbx1 responsible
for creating the a/p hydrophobic core?®2°*°, The crystal structure for 4P50 also includes
the modifier protein Neural precursor cell Expressed, Developmentally Downregulated 8
(NEDDS) conjugated to Cul4A*. The implications of NEDDS8 conjugation to Cullin

proteins will be discussed in a later section.

29



CUL3 & THE BTB DOMAIN

LRB proteins contain a Bric-a-brac/Tram-track/Broad (BTB) domain and have
previously been shown to interact specifically with Cul3-RING ubiquitin ligase (CRL3)
complexes preferentially in red-light?. Cul3 utilizes an amino-terminal extension
sequence to specifically bind only substrate receptors that contain a BTB complex?.
Previous genetic analysis of Arabidopsis shows various BTB subfamilies being
responsible for the regulation of ethylene production?’, development of gametophytes®?,
phototropism32, and other physiologically-important plant pathways. BTB domain E3
ligase complex adapter proteins are unique, however, due to their ability to dimerize and
recruit two Cul3 subunits into the same Cullin-RING ligase complex, as well as their
ability to recruit both Cul3 and a degradation target simultaneously via two distinct

protein-interaction domains®3.

Characteristics of the BTB, BACK, and TRAF-Like Domains

The BTB fold motif is specifically targeted by Cul3%**%®, and BTB proteins are
also able to homodimerize at an area different from Cul3/BTB interaction, allowing both
processes to occur at once®*2®. It is the dimerization of the BTB domain at the al helix®
that allows two Cul3 proteins to be recruited in order to form one large CRL3 complex®.
The BTB domain shares a common fold topology across all eukaryotes (Figure 5A);
however, the surface residues of the domain are highly variable in order to obtain a large

amount of different protein-protein interaction states®*, allowing BTB proteins to be
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selective in their dimerization partners. This prevents all BTB proteins from dimerizing
with one another, but evidence suggests that closely-related BTB proteins are able to

heterodimerize with one another in addition to homodimerization?.

A BTB and C-terminal Kelch (BACK) domain is commonly found immediately
following the BTB domain?. The BACK domain is found mainly in BTB proteins that
contain carboxy-terminal kelch repeats, called BTB-BACK-Kelch (BBK) proteins, but
was found to be present in 11 BTB proteins in Arabidopsis that did not contain carboxy-
terminal kelch repeats®’. The LRB proteins contain a BTB domain and a BACK domain?,

but no carboxy-terminal kelch repeat was detected.

Previously, the region carboxy-terminal to the BACK domain has been implicated
in target recognition in BBK proteins®***. It is also predicted that the BACK domain is
necessary to correctly position the carboxy-terminal recognition region for substrate
ubiquitination®. Despite a high amount of carboxy-terminal sequence conservation in the
LRBs, the SMART? database could not recognize or predict the presence of any
carboxy-terminal domains for LRB2. However, the InterPro database® entry for LRB2 in
Arabidopsis thaliana (UniProtKB AC: Q9FPWS6) predicts that the carboxy-terminal
region contains a Tumor Necrosis Factor Receptor Associated Factors (TRAF)-like
domain. TRAF proteins, as well as TRAF-like domains in other proteins, have been
found to have roles in targeted degradation, with the domain typically containing a large,
shallow groove that functions as the binding domain for a protein substrate*°. The
predicted TRAF-like domain further supports the theory that the carboxy-terminal end of

the LRBs is responsible for recognizing and interacting with the target protein.
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Figure 5: Conserved BTB Fold Topology and Interaction with Cul3

A. The fold topology for the well-conserved BTB domain®*%, All of the secondary structures for the
BTB domain are shown and are drawn in agreement with previous BTB fold topologies published343¢,
with the a-helices denoted using a navy blue box and the p-sheets modeled using an orange arrow. The
unlabeled structure marked with asterisks denotes a variable region in the domain that can been found
as either an a-helix or as a B-sheet, and it is drawn using both elements.

B. Anaglyphic image of the crystal structure for the PDB structure 4AP2 shows the layout of the
BTB/3BOX/BACK domains of Kelch-like Protein 11 in relation to the amino-terminal extension of
Cul3 at a 2.80A resolution in humans®. Image was rendered using VMDA,

Role of the 3-Box in Interactions with Cul3

Two conserved helices in the BTB domain, a5 and a6, were determined to be
responsible for high-affinity interaction with Cul3*42, These helices, located at the
carboxy-terminal portion of the BTB domain, were named the “3-Box” (3BOX)*2. Two
helices in the amino-terminal portion of the BACK domain, a7 and a8, were also found
to create the 3-Box motif and bind the two carboxy-terminal BTB helices in an
antiparallel four-helix bundle® (Figure 5B). This 3-Box helix bundle contributes to the
interaction with the carboxy-terminal portion of H2 and H5 of Cul3, and ultimately the
helices of the BTB and BACK domains create a hydrophobic groove that allows the
amino-terminal extension sequence that is unique to Cul3 to insert itself antiparallel to
a7% of the 3-Box bundle. The majority of the interactions between the amino-terminal

extension of Cul3 and the 3-Box were found to be hydrophobic®.
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NEDDS8 & NEDDYLATION

One necessary modification for Cul proteins is the addition of the Related to
Ubiquitin/Neural precursor cell Expressed, Developmentally Downregulated 8
(RUB/NEDDS) protein'®?3 which will be referred to hereafter as only NEDDS. In
Arabidopsis thaliana, two redundant genes, UBQ15 and UBQ7, code for NEDDS,
differing by only one amino acid?. Both encode a full-length protein that is cleaved in
half to yield one ubiquitin and one NEDDS protein. One additional gene, UBQ16,
encodes for a protein 77.6% identical to UBQ15 and UBQ?7, but is only expressed in the
stems and flower buds of plants?®. Despite NEDDS sharing 61.6% sequence identity with
ubiquitin, alignments of the two proteins reveals that they have a structure that is almost
identical to one another®?, and it would seem that NEDD8 and Ub may having differing
but overlapping roles in various cellular processes. The addition of NEDDS8 to various
proteins has been widely shown to result in an overall change of protein function**-4¢, but

this phenomenon has not yet been well studied in Arabidopsis thaliana.

The NEDDB8 Conjugation Pathway

The covalent attachment of NEDDS8 using its carboxy-terminal glycine residue to
a conserved carboxy-terminal lysine in Cullin proteins occurs through a process much
like the ubiquitin E1-E2-E3 conjugation cascade** (Figure 6). The NEDDS8 conjugation
cascade is less specific than its ubiquitin counterpart, as NEDDS8 can be added to the

ubiquitin E1 enzyme, transferred to the ubiquitin E2 enzyme, and ultimately incorporated
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into ubiquitin chains via the activity of an E3 ligase®, though the consequences of this
addition to a growing ubiquitin chain is not yet known. The opposite scenario is not true,
however, as the proteins that act as the NEDD8 E1 or E2 enzymes do not recognize
ubiquitin®. Each NEDD8 conjugation enzyme will therefore be referred to by its

acronym to avoid any confusion.

NEDDS is attached to the RUB-activating E1 by ATP-dependent conjugation®>®,
In plants, the RUB-activating E1 enzyme is composed of heterodimeric Auxin-resistant 1
(AXR1) and E1 C-terminal-related 1 (ECR1) proteins®. This high-energy intermediate

then transfers NEDDS to the RUB-conjugating enzyme (RCE1) E2 protein’2°,

Circumstantial evidence has suggested that Rbx1 may provide the E3-like action
necessary for the transfer of NEDD8 onto a conserved Cullin lysine residue. However,
there has been no direct proof that Rbx1 is involved in the transfer of NEDDS8 from
RCEL to Cullin, only that the RING domain of Rbx1 helps promote Cullin neddylation.
Perhaps the addition of Rbx1 to Cullin provides NEDD8 with access to the appropriate
lysine residue needed for conjugation. However, the Defective in Cullin Neddylation
(DCN1) protein has been shown to provide the NEDD8 E3-ligase functions in both yeast
and mammals**. DCN1 has been shown to interact with Rbx1, suggesting that DCN1
might cooperate with Rbx1 to enhance neddylation of Cullin proteins*. Much like the
ubiquitin E3 ligase complex, DCN1 does not form thioester bonds with NEDD8 while
interacting with RCE1 and Cullin, strongly suggesting that DCN1 is the NEDD8 E3

protein ligase responsible for the last step in NEDD8 conjugation** (Figure 6).
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Figure 6: NEDD8 Conjugation Cascade

NEDDS8 conjugation occurs very much like the conjugation of Ubiquitin to a target. First, free
NEDDS is attached to the heterodimeric Auxin-resistant 1 (AXR1) and E1 C-terminal-related
1 (ECR1) proteins. NEDDS is then transferred from the high-energy E1 complex to the RUB-
conjugating enzyme. Similarly to the Ub conjugation cascade, the NEDD8-charged RUB-
conjugating E2 enzyme interacts with DCN1, which is able to neddylate a target protein without
interacting directly with the NEDDS itself. In the case of CRL complexes, DCNL1 interacts with
Rbx1 and Cullin, positioning itself in a way that allows the E2 to transfer the NEDD8 onto a
conserved lysine residue that is present on all Cullin proteins.

The Possible Effects of NEDD8 Conjugation

NEDDS conjugation can induce a conformational change that ‘activates’ an
enzyme, granting it flexibility and altering the function of the protein®4. NEDD8
conjugation has been shown to cause a drastic conformational change in the Winged-
Helix B region of Cullin proteins, conferring Rbx1 flexibility and placing the active
Rbx1-bound E2 enzyme close to the target protein®. This close proximity of E2 with the
target allows the transfer of ubiquitin to take place**, essentially activating the CRL
complex. NEDD8 was also found to greatly stimulate ubiquitin chain elongation by
creating a flexible activated Rbx1-E2 heterodimer that can be placed in different

orientations and can add additional ubiquitin proteins to the elongated ubiquitin chain*.

NEDDS8 can also result in direct steric hindrance or create a conformational

change in the protein that limits its interactions with other proteins*. This effect can also
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be seen when NEDDS is attached to Cullin, as it creates steric hindrance that blocks the
binding site of CANDL1, a protein that sequesters unneddylated Cullin proteins and
prevents them from creating Cullin-RING ligase complexes*. Also, the conformational
change caused by NEDDS that occurs in the winged-helix B region of Cullin grants Rbx1
flexibility by preventing the globular portion of Rbx1 from binding with Cullin®. Rbx1
remains tethered to the E3 complex by the amino-terminal extension embedded in the o/f
hydrophobic core of Cullin, and the flexibility and range granted to Rbx1 by NEDD8
ultimately activates the E3 complex*. Inactivation of a protein by NEDD8 occurs with
human p53 protein, as NEDDS creates steric hindrance that prevents p53 from binding to

DNA, causing the protein to become inactive until NEDDS is removed*®.
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LIGHT-RESPONSE BTB PROTEINS

Despite its relative stability in light, phyB does undergo a slow degradation via
the UPS2. The Light-Response BTB proteins 1 and 2 (LRB1 and LRB2, respectively)
are responsible for preventing phyB accumulation in red light, as an accumulation of
phyBP™ after the initial phyB signal propagation would cause the plant to become
hypersensitive to red light>. LRB2 has been shown to interact with phyBP™ in vitro, and
this interaction is further enhanced in the presence of certain Phytochrome Interacting
Factors®®. However, a detailed mechanism regarding how the LRB proteins regulate

phyB levels is still under investigation?64.

The LRBs are E3 ligase linker proteins that were found to be involved in
phytochrome-related processes. Due to their high sequence identity, LRB knockout
mutant lines were created (Irb1 Irb2) which produced an interesting red light
hypersensitive phenotype in Arabidopsis thaliana?. LRB1 and LRB2 shared 88% identity
and an overall sequence similarity of 94% as determined using the global sequence
alignment tool NEEDLE*, A third LRB protein, LRB3, was also identified, sharing 69%
similarity and 55% identity with LRB1 and 28, but the lack of robust expression and
degree of overall sequence divergence implies that it is only a pseudogene?. All three
LRB proteins were found to have the same overall domain distribution, with a proposed
nuclear localization sequence (NLS) amino-terminal to the BTB domain as well as a

carboxy-terminal BACK domain?.
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Figure 7: Photomorphogenic Differences of
Irb1 Irb2 Knockouts in Arabidopsis
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Effects of Irb1 Irb2 Double Knockout Mutants on Light Signaling

The nuclear-localized LRB1 and LRB2 proteins have previously been shown to
negatively influence phyB and phyD activity in planta, as knocking out both LRB1 and
LRB2 result in plants that are red-light hypersensitive? (Figure 7). Knocking out only
LRB1 or LRB2 did not show an extreme phenotypic change, indicating that LRB1 and
LRB2 act redundantly to negatively regulate red light responses. This redundancy could
also be seen when LRB1 was reintroduced into the Irbl Irb2 double mutant knockout
(Irb12), as Flag-LRB1 was able to rescue the Irb12 phenotype, preventing the red light

hypersensitivity normally seen in the double mutant knockout?.

Knocking out both LRB1 and LRB2 created plants extremely hypersensitive to
red light. Additionally, the Irb12 double knockouts were found to have higher amounts of
chlorophyll present, as well as increased amounts of phyB and phyD when grown in red
light?. Phenotypic differences in red-light grown Irb12 mutants included shorter petioles,
substantially shorter hypocotyls, and a delay in flowering?. Photomorphogenic defects,

which included shorter hypocotyls, dwarfed rosettes, shorter petioles, and delayed
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flowering, were found only when Irb12 was exposed to red light (Figure 7). Irb12 plants
grown in continuous darkness or exposed to continuous blue or far-red light were
indistinguishable from the wild-type control?, suggesting that the phy pathway was being

affected in the Irb12 double knockout plants.

PhyB and phyD were found to be epistatic to the LRB proteins, as inactivating
phyB and phyD in Irb12 mutants saw a near complete suppression of the red-light
hypersensitivity found in the Irb12 mutant phenotype?, suggesting that LRB proteins act
to suppress phyB and phyD. It was also shown that the LRBs increase the rate of phyB
and phyD breakdown in the cell, as well as work through phyB to enhance phyA
accumulation?. The breakdown of phyB after four days of continuous red light in the
Irb12 mutant was remarkably slower than wild type®!8. Additional treatment of the Irb12
mutants with the 26S proteasome inhibitor MG132 resulted in further stabilization of
phyB levels, implicating other E3 ligase activity, such as COP1, may also be responsible

for phyB/D breakdown?,

LRB Protein Interactions in Arabidopsis thaliana

Both LRB1 and LRB2 interact with Cul3 in vivo, as predicted by the BTB/BACK
domains present in both sequences? (Figure 8A). The interaction of the LRBs with Cul3
is dependent on light, with a stronger LRB/Cul3 interaction seen in response to red light
as compared to dark-grown seeds?, which further supports the phenotypic differences
observed in red light conditions. Also, as with all BTB proteins, LRB1 and LRB2 can
form homodimers or heterodimers with one another, but were not found to interact with
other types of BTB proteins?, indicating that dimerization is confined to other LRB

proteins.
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The LRBs have also been shown to interact with PIF3 in vivo'®, suggesting that
PIF3 is a target for the LRB CRL3 complex (Figure 8B). The interaction of PIF3 with
LRB2 was found to be stronger with phosphorylated PIF3 in vitro, with LRB2 playing a
role in the mutually assured destruction mechanism that degrades both PIF3 and phyB *°.
Additionally, LRB2 was able to interact with both forms of phyB in vitro, and this
interaction was amplified with the addition of PIF3%®, Interestingly, an in vitro
immunoprecipitation of LRB3 showed that LRB3 can interact with the phospho-mimic
PIF3 protein, which has an S/T—D mutation in 6 key phosphorylation locations and can
mimic transphosphorylated PIF3, but this interaction was much weaker than was seen
with LRB1 or LRB2'®. However, LRB3 has never been detectable in vivo and was found
to not be actively expressed, indicating that it might be a pseudogene?!®. Therefore it is

currently unknown whether LRB3 can interact with Cul3 or dimerize.

Figure 8: The LRBs are the Adaptor Proteins in CRL3 Complexes

A. The LRB proteins interact with Cul3 to form the
multimeric CRL3 complex. When bound to Cul3, the
carboxy-terminal portion of LRB that is thought to be
responsible for target recognition is positioned near the
ubiquitin-charged E2. Once NEDDS8 (N8) is conjugated
to Cul3, the linker protein Rbx1 becomes flexible, and
with the ring-like structure of the CRL3 complex, this
brings the E2 into close proximity to the carboxy-
terminus of LRB.

B. LRB proteins are able to selectively target other
proteins for degradation, and when the target interacts
with the carboxy-terminal end of the LRBs, the flexible
and closely-located E2 protein can transfer Ub to the
target protein.
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Effects of Irb1 Irb2 Irb3 Triple Knockout Mutants on Light Signaling

Despite the Irb1 Irb2 Irb3 triple knockout mutant (Irb123) having the same
phenotypic characteristics as the Irb12 mutant and no post-transcriptional data being
available for LRB3?, the protein that was previously-dubbed a pseudogene may actually
play a role in red light signaling®®. LRB3 was previously detectable using reverse
transcription PCR, indicating that it is actively transcribed?, but the LRB3 protein itself
has yet to be detected by either immunoblotting or mass spectrometric analysis??®,
Despite this, the degradation of PIF3 was found to be reduced in the Irb123 mutant, while
PIF3 degradation was normal in the Irb12 mutant®, suggesting that LRB3 is a functional

gene that is able to cause PIF3 degradation in red light.

The amount of degradation for both native and phosphorylated PIF3 in the Irb123
mutant after 60 minutes of red light irradiation was significantly decreased compared to
the wild-type control, which had approximately 25% less PIF3 present than the triple
mutant®®. Additionally, phyB levels in the Irb123 mutant were unaltered by red light. This
phenomenon did not change in the PIF3-GFP transgenic lines, which contained an
additional copy of PIF3 controlled by the very strong 35S promoter'®, resulting in a
massively high levels of PIF3 protein that should help to further abolish phyB. However,
phyB levels remained unaltered in Irb123 after four days of continuous exposure to red
light, despite the increased degradation of phyB in the control line resulting from 35S-

controlled PIF3 overexpression?.
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Proposed Interaction of LRB with PHYB/PIF3 in Red Light

The Irb123 mutant was found to have less ubiquitinated PIF3 present than the
wild-type control, and ubiquitinated phyB was not detectable at all in the Irb123
mutant®, suggesting that the LRBs are solely responsible for phyB degradation and only
assist in PIF3 ubiquitination. In vitro studies of the LRBs showed that LRB2 is able to
interact with phosphorylated PIF3 and phyBP™, as well as with phyB"" when
phosphorylated PIF3 is also present*®. Only PIF3 was found to be ubiquitinated by the
LRB2 E3 complex in vitro, however, and neither phyB"™ nor phyBP" were found to be
ubiquitinated in the same in vitro experiments®.

The ability of LRB2 to interact with phyB but not ubiquitinate it in vitro may
suggest that phyB needs the phosphodegron signal propagated by phosphorylated PIF3 in
order for phyB to be ubiquitinated. PhyB degradation was previously found to require
direct physical interaction between phyB and PIF3, and without this interaction, a
buildup of phyB was observed!. Another idea is that the LRBs must undergo a light-
dependent modification in order to interact with Cul3, as LRB interacts with Cul3
strongly in red light. Therefore, without this light-induced modification to LRB, LRB
cannot interact with Cul3 and cannot form an E3 ligase complex capable of

ubiquitinating phyB"".

The Region of the LRBs Found Amino-terminal to the BTB Domain is Important
for Vernalization

Recently, it was established that the amino-terminal portion of both AtLRB1 and

AtLRB2, which was truncated at the start of the BTB domain (residue 136 for both),
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interacts with a coiled-coil scaffold protein known as FRIGIDA (FRI) in yeast*’. FRI is
normally responsible for recruiting several chromatin modifiers that modify certain
flowering genes after vernalization (the promotion of flowering in the spring after a plant
has had exposure to an extended period of cold temperatures®®) to initiate flowering.
During vernalization, AtLRB1/2 was found to assemble with FRI and Cul3 to promote
FRI degradation via the 26S proteasome, but this was found to not be the case in the
Columbia (Col-0) ecotype of Arabidopsis thaliana, which has an early-flowering

phenotype due to a carboxy-terminal deletion allele at the FRIGIDA locus®’.

As the established Irb12 mutant phenotypes were observed in Col-0 Arabidopsis
ecotypes?, the degradation of FRI cannot be responsible for the hypersensitivity found
when plants were grown in red light. It is unclear what function the amino-terminal FRI
protein plays in Col-0, and it is unknown whether truncated FRI is able to interact with

the LRBs or what role it might have in phy signaling.

As well as demonstrating that there was a functional role for the amino-terminal
portion of the LRBs, it was also established that the truncated amino-terminal portion of
both LRB1 and LRB2 in Arabidopsis thaliana (AtLRB1/2) remains functional and is able
to be co-purified with FRI*’. Purifying truncated AtLRB1/2 suggests that the amino-
terminal portion of LRB folds correctly and is able to interact with the same proteins as
full-length AtLRB1/2*". This evidence of truncated protein stability in the amino-terminal
portion of AtLRB will be further investigated computationally as a way to further
uncover any information on how this region may help to control the function of the

LRBs.
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Moving Forward by Investigating Whether the Amino-Terminal Region Can
Regulate the Functional Role that the LRBs Play in Light Signaling

Although the amino-terminal portion of the LRBs has been shown to interact with
FRI, it is not yet known if it can regulate the functional role the LRBs play in light
signaling. There are several intriguing aspects of the amino-terminal region that have yet
to be studied in-depth, and may suggest an alternative function for this portion of the
LRBs other than interacting with FRI. First, based on protein multiple sequence analysis,
there seem to be several amino-terminal regions that may be conserved throughout the
plant kingdom. Second, a preliminary sequence comparison analysis suggests that there
are conserved portions of the amino-terminal region that may be similar to other E3
ligase components such as Cull and Rbx1. Lastly, it is well documented in the literature
that monocots do not control flowering through the FRI, as a homologue has not been
identified in these plants®®. However, amino-terminal conservation was determined to be
present in homologous LRB proteins across all land plants and not just conserved in
eudicots. Taken together, these data suggests that the amino-terminal region may play a
role in regulating light signaling. This thesis project aims to provide a more in-depth
analysis of the amino-terminal portion of the LRBs to determine what role this region

may play in light signaling.
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II. RESEARCH SIGNIFICANCE

Investigating the phytochrome pathway is significantly challenging, as it controls
many different plant responses, including pathogen resistance, germination rates,
efficiency of water use, shade avoidance response, seedling establishment, initiation of
flowering, pathogen resistance, and regulation of circadian clocks' . One great example
of the diverse phytochrome signaling pathway can be found in the shade avoidance
response that is caused by the reflected far-red light from neighboring plants. The reflected
far-red light from other nearby vegetation can cause a plant to undergo stem elongation,
accelerated flowering, decreased leaf expansion, and increased petiole elongation as a way
for the plant to try and outgrow any competition. As long as the plant senses a higher
amount of far-red light than normal, even over a small area of the plant, some amount of
shade avoidance mechanisms will be triggered. This phenomenon is modeled perfectly
when looking at a field full of closely-planted rows of corn. Knowing the red light response
pathway may help to design corn in the future that prevents it from wasting energy on

trying to outgrow any neighboring plants.

Studying the mode of activation used by LRB2, a protein responsible for the
negative regulation of the phytochrome response in red light, will help to shed some light
on how plants use phytochromes to determine how to respond to light. Research into the
LRBs could give new insights into the mechanisms used in the shade avoidance pathway
in Arabidopsis thaliana, as discussed above, or may reveal new information on pathogen

response and circadian rhythm regulation, as the phytochrome response pathway
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encompasses a multitude of plant responses. Specifically, this project focused on detecting
any modification of the LRBs that could be present in different light conditions, setting up
a framework for understanding the mechanism of the red-light-dependent activation of the

LRBs.

Additionally, research on the LRBs will help assist in pinning down the general
mechanisms responsible for regulating certain protein degradation pathways. There are
hundreds of E3 ligase proteins predicted in the Arabidopsis genome!’, and the general
mechanisms and structures of the core Cullin-RING Ligase complexes are thought to be
equivalent across all CRL complexes of all origins?®, including humans. With our
understanding of all E3 ligase complexes still at its infancy, any research that investigates
how any E3 ligase complex protein members are regulated helps to place one more piece
into the E3 regulation pathway puzzle. This project was designed to determine if the LRBs
were modified in red light, as knowing would increase the overall knowledge of how one
family of E3 ligase complexes is regulated, helping to assist in uncovering general

mechanisms responsible for protein degradation regulation.

Knowing the mechanics behind the function of the LRB proteins has a wide range
of agricultural, environmental, and economical benefits. Identifying and manipulating the
light-dependent mechanisms used by LRB proteins to selectively activate in certain light
conditions would be applicable to almost every plant grown by man, as homologous LRB
proteins are widely found in all types of land plants?. Therefore, understanding the
mechanism of LRB activation and function could give rise to various groundbreaking
applications such as the ubiquitous manipulation of the shade avoidance response in almost

any member of the plant kingdom. This ability to manipulate red and far-red light response
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pathways would present an opportunity to create plants that are better suited to grow in the
harsh, stressful environments that might occur in the near future due to global climate

change and as access to water becomes increasingly more difficult.
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I11. PROJECT AIMS, OVERVIEW, AND OBJECTIVES

AIM #1: Use in silico methods to identify potentially functional segments of
the amino-terminal regions of the LRB proteins in Arabidopsis.

(A). Provide evidence that the LRB amino-terminus is conserved.

(B). Investigate the relatedness of the LRB amino-terminal conserved sequence motifs
to Cullin and Rbx1 proteins.

(C). Create structural models of the LRB proteins to help predict function.

AIM #2: Investigate if phosphorylation is present on the LRBs in different
light conditions which may be responsible for its preferential interaction with
Cul3in red light.

(A). Identify potential phosphorylation sites on the LRBs.
(B). Determine if light-dependent LRB phosphorylation occurs.
(C). Determine if phosphorylation is present on purified LRB proteins.

AIM #3: Investigate if neddylation is present on the LRBs in different light
conditions which may cause the LRBs to interact with Cul3 in a red-light-
dependent manner.

(A). Use the NEDDS inhibitor MLN4924 to test for LRB neddylation.
(B). Directly detect NEDD8 conjugation using purified LRB.
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AIM #1 OVERVIEW: Use in silico methods to identify potentially functional segments
of the amino-terminal regions of the LRB proteins in Arabidopsis.

INTRODUCTION:

Sequence conservation was predicted to be a reliable way to identify any portion of the
protein important to the structure or function of the LRBs. Sequence analysis may also
provide clues towards the possible mechanisms responsible for the light-specific
interaction of the LRBs. The sequence for the BTB and BACK domains of LRB
homologs are predicted to be very conserved, as both are established domains and must
maintain the ability to selectively dimerize with other LRB proteins®*. It is also predicted
that the carboxy-terminus of LRB homologs will be highly conserved, as this is the
predicted site of target recognition3*3>. Accordingly, the amino-terminal portion of
AtLRB proteins (residues 1-144 of AtLRB2) was thought to be of particular interest

because it has no predicted function and does not contain any identifiable domains.

HYPOTHESIS:

The amino-terminal region of the AtLRBs contain two important contiguous regions that
were found to be conserved across all land plant species®. We hypothesize that the amino-
terminus of the LRBs may contain a novel regulatory site on LRBs. We will use in silico
techniques to evaluate the amino-terminal sequence conservation in order to determine
any possible similarity in structural characteristics of two contiguous regions, as
preliminary data has suggested that each conserved regions contains a similar motif as

found on Cullin and Rbx1 proteins, respectively.
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OBJECTIVES FOR AIM #1:

(A.) Provide evidence that the LRB amino-terminus is conserved. In order to provide
evidence that the two contiguous amino-terminal regions (referred to as the Cullin-
like and Linker-like regions, respectively) are conserved in all LRB proteins, AtLRB
proteins will be compared to the LRBs in many diverse plant species by using the
Basic Local Alignment Search Tool (BLAST) with the full-length LRB2 protein
sequence in Arabidopsis. A multiple sequence alignment (MSA) will then be
created using these homologous LRB proteins, providing an idea of which areas are
important to the structure or function of the LRBs.

(B.) Investigate the relatedness of the LRB amino-terminal conserved sequence
motifs to Cullin and Rbx1 proteins. Cull and Rbx1 proteins will also be compiled
by using a protein BLAST with the Cull and Rbx1 protein sequences in
Arabidopsis. Once compiled, a MSA will then be created for each to determine the
degree of conservation in each of the regions associated with LRB. To definitively
show that each of the amino-terminal domains of the LRB proteins remains similar
to the Cull and Rbx1 in multiple plant species, a second MSA will be generated
aligning the Cullin-like or linker-like regions of the LRBs with the corresponding
areas on Cull or Rbx1. The known crystal structures of the Cull/Rbx1 complex can
then be used to investigate the location of the Cullin-like or Linker-like regions on
Cull and Rbx1, respectively.

(C.) Create structural models of the LRB proteins to help predict function. The
structure of the LRB proteins in Arabidopsis thaliana will be modeled using
structural prediction software. Using homology models, sequence conservation will
be displayed as a way to elucidate potential structural or functional roles for the two
contiguous amino-terminal domains.
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AIM #2 OVERVIEW: Investigate if phosphorylation is present on the LRBs in different
light conditions which may be responsible for its preferential interaction with
Cul3 in red light.

INTRODUCTION:

Phosphorylation has previously been shown to play a significant role in the red light

signaling pathway41> and, more specifically, has been found to be directly responsible

for PIF-mediated phytochrome degradation!!6, Additionally, some evidence suggests

that the phytochromes found in plants are atypical serine/threonine protein kinases'?#,

and this kinase activity by the phytochromes might be the light-dependent modification

that the LRBs need in order to become active in red light.

HYPOTHESIS:

Since the LRBs are able to interact with and ubiquitinate PIF3!®, as well as interact with
both active and inactive phytochromes*®, both of which are closely tied to
phosphorylation or kinase activity, it was hypothesized that LRB activation in red light
could occur due to phosphorylation. This aim is designed to determine if phosphorylation
is present on AtLRB and if the presence of phosphorylation occurs preferentially when

exposed to red light (Figure 9).
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Figure 9: Potential Mechanism for LRB Activation in Red Light

When grown in complete darkness, LRB proteins do not form active E3 ubiquitin ligase complexes,
but after exposure to red light, the LRBs are able to interact strongly with Cul326, One potential
mechanism to explain this phenomenon is that the phosphorylation of the LRBs may be responsible
for LRB CRL3 complex formation in red light.

OBJECTIVES FOR AIM #2:

(A.) Identify potential phosphorylation sites on the LRBs. The light-dependent

phosphorylation of LRB proteins by an unknown kinase could result in the
activation and subsequent association of the LRBs with Cul3. In silico
phosphorylation prediction methods will be used to investigate the probability that
phosphorylation is responsible for the activation of the LRBs in red light. Predicted
sites of phosphorylation will be modeled using the predicted protein structural
models created in Aim #1C.

(B.) Determine if light-dependent LRB phosphorylation occurs. A phospho-shift

assay using lambda phosphatase will be used to determine the phosphorylation status
of LRB proteins extracted from plants grown in darkness, red light, or far-red light
conditions. If phosphorylation is present on the LRBs, the tissue samples treated
with the lambda phosphatase will have bands that run faster on a gel than the
samples containing phosphatase inhibitors, as they will be influenced by a
phosphorylation-dependent mobility shift®.

(C.) Determine if phosphorylation is present on purified LRB proteins. Purified LRB

proteins extracted from plants grown in darkness, red light, or far-red light
conditions will be probed with anti-phosphoserine antibodies in an attempt to detect
any light-dependent phosphorylation present on the LRBs.
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AIM #3 OVERVIEW: Investigate if neddylation is present on the LRBs in different
light conditions which may cause the LRBs to interact with Cul3 in a red-light-
dependent manner.

INTRODUCTION:

Since the amino-terminal end of the LRBs share some similarity to Cullin and Rbx1, one
possibility is that the LRBs may be involved in neddylation. NEDD8 conjugation has been
previously shown to create steric hindrance that prevents proteins from interacting with
certain partners or grant flexibility and activate new functions for a protein®4®, either of
which could be responsible for AtLRB activation and subsequent interaction with Cul3

when exposed to red light.

HYPOTHESIS:
This aim investigates the possibility that the LRB proteins are being conjugated in a light-
dependent manner with the small modifier protein NEDD8. The two amino-terminal

regions on AtLRB may be involved in helping to signal NEDD8 conjugation in red light.

OBJECTIVES FOR AIM #3:

(A.) Use MLN4924 to test for LRB neddylation. To test the hypothesis that NEDD8 may
be responsible for LRB activation in red light, the small-molecule NEDDS inhibitor
MLN4924 will be used to inhibit the function of ECR1, the E1-like enzyme
responsible for the first step in NEDD8 conjugation®?. Transgenic seeds will be grown
on MS media supplemented with the MLN4924 and exposed to red light or only
darkness, and the apparent molecular weight of the LRB proteins will be assessed
using Western blotting to identify the possible extent of NEDDS8 presence in each
light condition.
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(B.) Directly detect NEDDS8 conjugation using purified LRB. Purified LRB proteins
extracted from Arabidopsis thaliana via immunoprecipitation will be probed with
anti-NEDDS8 antibodies on a Western blot to see if NEDDS8 is conjugated to the LRBs.

54



IV. RESULTS & DISCUSSION

IN SILICO INVESTIGATIONS OF THE LRB PROTEINS

Two Conserved Amino-Terminal Regions Are Found in All LRB Homologs

Regions of conservation in the sequence of the amino-terminal portion of AtLRB
may be the sites of any light-specific mechanisms or modifications that could be present.
The BTB (residues 144-245) and BACK (residues 260-362) domains of AtLRB2 were
predicted to be conserved in a small number of LRB homologs, as both are well-known
domains and contain the site of LRB dimerization and Cul3 interaction®; however, this
was based on a limited sample size. It is also suggested, by the same limited alignment,
that the carboxy-terminus of LRB homologs is also highly conserved, as this is the

predicted site of target recognition3+3,

Current literature leaves the amino-terminus portion of AtLRB2 (residues 1-144)
unaccounted for, which contains no known domains or functions, and details regarding
the functional role of this portion remain scarce. Amino-terminal AtLRB has been shown
to interact with and cause the degradation of a transcription factor known as FRIGIDA in
Arabidopsis*’, supporting the hypothesis that the amino-terminal region is important for
LRB function. Functional FRIGIDA proteins are only present in plants requiring
vernalization®?, so it is unclear what function the amino-terminal LRB region would play

in non-biennial flowering plants.

Additionally, we do know that the AtLRBs are partially responsible for negatively

regulating phyB accumulation in response to red light?, and they do so by ubiquitinating
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phosphorylated PIF3 in a MAD pathway®. However, what we do not know is the
mechanism used by the AtLRBs to regulate their interaction with Cul3 in a red-light-
dependent manner. Amino-terminal sequence conservation across all land plants would
strengthen the argument that the amino-terminus has a role outside of vernalization and
could be important for light signaling. This idea that the amino-terminal LRB portion is
important and would be universally conserved in plants became our working hypothesis,
so we began our investigation by determining amino-terminal sequence conservation in

LRB protein homologs.

To carry out sequence analysis, full-length LRB protein homologs were chosen
from different land plant species in each phylum. Out of 967 AtLRB2 protein homologs,
LRB proteins from 14 diverse land plant species were chosen. Members of the chosen
species included flowering plants from both the eudicot and monocot subphyla, a conifer
from the gymnosperm subphyla, a spikemoss from the lycophyte subphyla, and a non-
vascular moss from the subdivision bryophyte. Proteins were collected from
UniProtKB’s database®** after a protein BLAST search was performed using the full-
length AtLRB2 protein and default settings (Supplemental Figure 1). Any full-length
LRB protein homologs sequences that were gathered in the protein BLAST were then
used to create a multiple sequence alignment (MSA, Supplemental Figure 2) using

default T-coffee Expresso®®°’ settings.

Essentially, three amino-terminal regions of LRB were found to be conserved
across all plant phyla (Figure 10). The first conserved motif contained approximately 25
residues, and this motif was the most conserved of the three. The first two amino-terminal

regions shown to be contiguous, with the second region containing the short NLS
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sequence needed for nuclear localization?. However, the conservation of the second
region spanned approximately 25 residues, a much larger area than the 5 amino acid NLS
sequence, and this prompted us to further analyze that portion. The third conserved
region contained a much shorter motif, consisting of approximately 15 residues, and was

located in close proximity to the start of the BTB domain.

A phylogenetic tree®® was used to infer evolutionary distance of one LRB
homolog from another and to show the disproportionate amount of eudicot protein
homologs used to create the MSA (Figure 11). The tree shows the diversity of the
proteins chosen, while the strong bootstrap values indicate that the LRB proteins are

conserved across all plant phyla, despite the disproportionate amount of eudicot proteins.

AtLRB3, previously thought to be a pseudogene?, along with two LRB3 protein
homologs in Capsella rubella and Arabidopsis lyrata, contained extremely divergent
sequences, enough to be marked as the outgroup in the tree, and based on their poor
alignment in the MSA, they were removed from future sequence analysis. LRB
homologs listed in red on the phylogenetic tree were removed from further multiple
sequence alignments due to poor alignments with AtLRB2 in the MSA, the presence of
insertions or deletions in the protein sequence, or, in the case of Physcomitrella patens

and Selaginella moellendorffii, the large evolutionary distance from AtLRB2.
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Figure 11: Phylogenetic Analysis and Division of LRB Protein Homologs

Phylogenetic analysis of the LRB proteins gathered using a UniProtKB protein BLAST% of
AtLRB2. The LRB proteins were given generic names based on their similarity to AtLRB2. The
length of each branch is proportional to the relative amount of divergence between each of the LRB
proteins, with the scale at the top depicting 0.2 substitutions per sequence position. Branch support
values are shown in red and display the amount of support for each node. AtLRB3, which is thought
to be a pseudogene, was chosen as part of the outgroup by the Phylogeny.fr One Click tool®®,
Proteins were grouped together by phyla, as marked on the right. Proteins marked in red were
removed from subsequent multiple sequence alignments.

Abbreviations for each plant species include Arabidopsis thaliana (ARATH), Arabidopsis lyrata
(ARALL), Brassica pekinensis (BRARP), Citrus clementina (CICLE), Populus trichocarpa
(POPTR), Prunus persica (PRUPE), Ricinus communis (RICCO), Capsella rubella (CARUB),
Glycine max (GLYMA), Oryza sativa subsp. japonica (ORYSJ), Zea mays (MAIZE), Picea
sitchensis (PICSI), Physcomitrella patens (PHYPA), and Selaginella moellendorffii (SELML).
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Two of the Conserved Amino-terminal Regions of LRB1 and LRB2 Show Sequence
Similarity to Other E3 Ligase Protein Members in Arabidopsis thaliana

The conserved amino-terminal motifs were investigated as a way to gain further
insight into the functions each motif plays in the LRBs. Each of the conserved motifs, as
well as the entire amino-terminal portion, were used to search for other proteins with
similar conserved motifs. If proteins with similar motifs were detected, we would not be
able to determine if the functions of both proteins are similar based solely on the
sequence and amount of conservation. Related proteins may have the same functional

role, but unfortunately, sequence conservation is not proof of similar functions®.

Each of the small conserved amino-terminal motifs of the AtLRB2 proteins were
used to perform a protein BLAST search using the WU-BLAST?2 tool on TAIR®®
(http://arabidopsis.org) to search for any other proteins in Arabidopsis thaliana
containing similar sequences. The first of the two contiguous motifs on AtLRB2 were
found to be similar to those in Cullins 1 and 2 (Figure 13A-B), with 64 and 60%
sequence similarity, respectively. Other hits from the WU-BLAST2 search included
Trans-caffeoyl-CoA 3-O-methyltransferase, Asynaptic 1, and kelch repeat-containing
protein At3g27220 (Supplemental Figure 3A). The second motif was found to be
similar to a region on Rbx1 (Figure 13A-B), another member of the E3 ubiquitin ligase
complex, with 64% similarity. Other proteins found in the search included NIMIN-1,
Response to ABA and Salt 1, and Benzoic Acid Hypersensitive 1 (Supplemental Figure
3B). Statistical confidence in the amount of similarity is low for each of the motifs, as
shown by the high E-values calculated (Supplemental Figure 3A-B), but this does not
necessarily mean the functional role of the motifs on each protein is not similar. Low

statistical confidence for each of the protein hits could indicate that the similarity is not
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meaningful; however, it could also indicate that the similarity may be meaningful or that

the motifs are a meaningful match with a meaningful function in all of the protein hits.

Interestingly, Region 1 was found to be similar to Cull and Cul2 but not similar
to Cul3, which the LRBs have been shown to associate with when forming a CRL
complex? (Supplemental Figure 3C). This discovery could relate back to the idea that
Cul3 is a paralog of Cull, with the Cul1/2 genes descended from the Cula gene, while
Cul3 arose from the Culp gene?®. Also, the region of Cull1/2 sharing similarity to
conserved Region 1 of the LRBs was found to be located directly upstream of the

NEDDS conjugation site that is found on all Cullin proteins (Figure 12).

A WU-BLAST?2 search using the third conserved region did not turn up any
viable results using variable lengths of the motif, suggesting that this portion may only be
structurally significant to the LRBs or might be the site of a secondary modification such
as phosphorylation or neddylation. Further investigation into the third conserved region

will be touched on in later sections.

Region of Similarity to LRB NEDDS
L *

CUL1 ARATH 628 TQNE FEFNSKFTDRMRRIKIPLPPVDERKKVVEDVDKDRRYATIDAATVRIMKSRKVL
CULZ ARATH 628 NNTT FEFNSKFTDEMRRIRMPLPPMDERKKEVEDVDKDRRYATDAARVRIMKSRKVI

Figure 12: Proximity of the NEDD8 Conjugation Site to the LRB-like Region of Cull/2

A pairwise alignment showing the area on Cullin that shares similarity to the Cullin-like region
on the LRBs in brackets and its close proximity to the site of neddylation, which is highlighted in
red and marked using an asterisk.

61



The Amino-terminal Motifs in LRB Protein Homologs Retain Sequence Similarity to
their Respective CRL Protein Members in All Land Plants

The first conserved motif on AtLRB2 was found to be similar to a region on
Cullins 1 and 2, while the second motif showed similarity to Rbx1. The next step in
investigating these two amino-terminal regions was to determine if the similarity of the
amino-terminal LRB motifs to E3 complex members (Figure 13) could also be found in
homologous LRB proteins in different plant species and not just in Arabidopsis thaliana.
In order to compare the LRB homologs to their respective Cul1/2 and Rbx1 proteins, the
MSA was edited (Figure 10, Supplemental Figure 2) to exclude proteins with poor
alignments in these two areas (Figure 14, Supplemental Figure 4), which will further be

referred to as the Cullin-like (CL) and Linker-like (LL) regions or motifs, respectively.

Separate multiple sequence alignments were created of homologous Cull/2 and
homologous Rbx1 proteins as a way to view the overall sequence conservation of the
regions found to be similar to the LRBs. In addition to determining the overall
conservation of the motifs on Cull/2 and Rbx1, we will also be aligning the conserved
LRB motifs with their respective Cul1/2 and Rbx1 segments to show that the similarity

between these E3 members is conserved across all land plants analyzed.

The area containing similarity to the CL region, further referred to as the Cul®-
region (Figure 15, Supplemental Figure 5), showed very high sequence identity, with
residues being either absolutely conserved (invariant) or containing substitutions similar

in their physicochemical characteristics. Conservation of physicochemical characteristics

is shown with the hydrophobic residues of 1/V and V/M, as well as with the conservation

of positively-charged basic residues with substitutions of K/R.

62



The alignment of the Rbx1 proteins at the region associated with the LL motif of
the LRBs, denoted the Rbx- motif (Figure 16, Supplemental Figure 6), showed an

overall conservation of physicochemical properties of the first third of the motif with
some substitutions of A/G/S and A/V/S. The middle portion of the alignment contained a
region of variance with gaps in the alignment and only a few key serine residues, one
lysine residue, and a positively-charged K/R substitution being conserved. The last half
of the Rbx1 alignment retained a high amount of residue conservation, with only a single

major S/N residue substitution.
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AtLRB1 (33) FAFNDSNFSDRLLRIEILGGPSDSRSDAEGCTSIADWARHRKRRREDNKKDNGVAIL (88)
[P T O - B [
FEFN-SKFTDEMRRIRVPLPFMDER
639 AtCUL2 662~
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Le39—AtCUL2—654-
BLAST SCORES MATCHER* SCORES
P AtLRB2 AtLRB1 AtLRB2 AtLRB3
E-val 1.3 % ID 52 50 S5
AtCull % ID 50 AtCull % Sim 60 57.1 64.7
% Sim 64 % Gaps 4 3.6 5.9
E-val 4.4 % ID 44 39.3 41.2
AtCul2 % ID 39 AtCul2 % Sim 60 57.1 64.7
% Sim 60 % Gaps 4 3.6 5.9
E-val 2.1 % ID 32.1 35.7 29.4
AtRbx1a % ID 35 AtRbxla % Sim 57.1 60.7 64.7
% Sim 64 % Gaps 0 0 0

64

Figure 13: Alignment of Sequences Showing Similarity to the LRBs

A. Pairwise alignments of the three AtLRB proteins with AtCull (blue), AtCul2 (green), and
AtRbxla (red) as determined using an EMBOSS Matcher*® BLOSUM90 matrix. Amino acid
residue numbers for each of the AtLRBs are given in parenthesis, while residue numbers for each
of the aligned sequences are marked inside of the brackets next to the protein being labeled.

B. The E-values, percent identity, and percent similarity found between AtLRB2 and each member
of the E3 complex found by BLAST using default settings on TAIR®.

C. The percent identity, similarity, and gaps found in the pairwise alignment of the three AtLRB
proteins with AtCull (blue), AtCul2 (green), and AtRbxla (red) as determined using EMBOSS
Matcher®®. The asterisk denotes that a BLOSUMO90 matrix was used instead of the default
BLOSUMG62 matrix.
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Figure 15: Alignment of the Cul®- Region on Cullins

An Expresso®” MSA of the Cul®t region in proteins found to be homologous to AtCull and
AtCul2. Residues with a high overall conservation (above 70%) are shown highlighted in black,
while residues that are conserved (above 70%) due to residue similarity consensus are shown in
grey. Sequence conservation is also displayed directly above the alignment using a MEME® logo,
with the height of each amino acid abbreviation being directly proportional to residue conservation.
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Figure 16: Edited Alignment of the Rbx"" Region on Rbx1 Homologs

An Expresso®®5” alignment of the Rbx'- region of proteins (Supplemental Figure 6A) found to be
homologous to AtRbx1 which was edited manually for overall alignment (Supplemental Figure
6B). Residues with a high overall conservation (above 70%) are shown highlighted in black, while
residues that are conserved (above 70%) by residue similarity consensus are shown highlighted in
grey. Sequence conservation is also displayed directly above the alignment using a MEMES®! logo,
with the height of each amino acid abbreviation being directly proportional to residue conservation.
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To test if the amino-terminal regions of the LRB homologs retain similarities to
Cul1/2 and Rbx1, additional MSAs were performed using the sequences for the CL or LL
domain of the LRBs and the Cul®t (Figure 17A) or Rbx'- (Figure 18A) regions. The
overall alignment of CL and Cul®t regions displayed complete conservation of 7 out of
the 25 residues included in the alignment. Variant residue positions still retained a certain

amount of physicochemical conservation when comparing Cullin sequences to the LRBs,

with Cul/LRB substitutions such as T/S and R/K/R (site 9 and 11, Figure 17B). Some

basic physiochemical properties were also conserved, such as the polarity of K/R/E (site
16, Figure 17B), while some residues that might be important for salt bridge formation

contained E/S substitutions. A trio of hydrophobic residues were generally conserved,

with overall substitutions of PLP/MGG (sites 18-20, Figure 17B).

The overall alignment of the LL and Rbx'" areas had a small amount of complete
residue conservation, with 3 out of the 37 residues being completely conserved.
However, residue similarity in the LL alignment was quite substantial®? (Figure 18B),
despite a large variable region in the middle portion of the alignment due to the Rbx1

homologs. There is physicochemical conservation throughout the alignment, conserving

hydrophobicity with G/A and 1/V/L/A substitutions, charged residues with R/K and E/D

substitutions, and polar residues with N/S, S/T, and C/S substitutions.
The similarity of the two conserved amino-terminal regions to CRL complex
members was determined to be a phenomenon that was present in all land plants due to

the overall amount of conservation between the CL and LL region of each LRB homolog

and the associated regions on each respective Cullin and Rbx1 homolog. These two
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amino-terminal sequences are conserved, and conservation of sequence implicates that
these regions are vital for a structural or functional role for the LRBs. Regardless of the
sequence comparisons between the LRBs, Cull/2, and Rbx1, it is worth investigating
both of the conserved amino-terminal regions to determine their role in LRB function or

structure.
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Figure 18: Alignment and Physical Properties of the Rbx'" and LL Regions

A. An Expresso®®°’ alignment of the LL region of the LRB proteins with the Rbx"- region on each
respective Rbx1 protein. Conserved residues (above 70%) are shown highlighted in black, while
residues that are mostly conserved and have consensus due to residue similarity (above 70%) are
shown highlighted in grey.

B. A MEME® logo was also created in order to display the relative amount of sequence and basic
chemical conservation. The height of each residue is directly proportional to the amount of residue
conservation. Additionally, the conserved physicochemical properties for each residue at a given
position is shown®?,
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The Cul®t and Rbx- Regions are found to be in Close Proximity to One Another in
Three Human CRL Complex Crystal Structures

To understand the full biological role of a protein, both the structure and the
function must be known®3. Both Cull and Rbx1 have crystal structure models readily
available in the Protein Data Bank® (PDB, www.rcsh.org) and the distribution of the
Cul®t and Rbx"* regions on each of their respective proteins can be viewed
simultaneously, as both proteins form CRL complexes. We know that the Cul®t region is
upstream from the site of neddylation, but little is known about the location of the Rbxt
region. It would be beneficial to know where the Cul®" and Rbx"" regions reside at on the
Cullin and Rbx1 structures, as mapping these motifs may help us to understand the
functional meaning of the similarity to the LRBs that is found at either region. However,

there are currently no CRL complex structures from plant species found in the PDB.

All CRL complexes found in PDB were crystalized using human CRL complex
proteins, but despite a large evolutionary distance between humans and plants, there is
evidence that the Cullin scaffolding functions and structure are highly conserved, and as
such, the CRL complexes modeled in humans is thought to be equivalent to Cullin
protein homologs from all origins?. The crystal structures of three different CRL
complexes (2HYE®’, 1LDK?® and 4P502°) were chosen to provide information on the
exact location of the conserved Cul®t and Rbx- motifs. 2HYE®’ contained the crystal
structure for human Cul4/Rbx1 in complex, while both 1LDK?® and 4P50%° contained
models of human Cull/Rbx1. The structure for 4P50 also contained NEDDS attached to

Cul1l at the conserved neddylation site?.
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Figure 19: Alignment of Human Cul®" and Rbx"" Areas with their Respective
Counterparts in Arabidopsis

A. A MSA showing the alignment of the Cull protein in Arabidopsis thaliana with two
homologous proteins, Cull and Cul4A, in Homo sapiens, which are modeled in the PDB structures
2HYE®, 1LDK?®, and 4P50%. The portion of the alignment corresponding to the Cul®" region is
marked below in red.

B. A pairwise alignment of AtRbx1 with the Rbx1 protein homolog in Homo sapiens. The HsRbx1
protein is modeled in complex with the Cullin proteins in all three of the previously mentioned
PDB structures, and the region corresponding to the Rbx'" area is marked below the alignment in
blue. A structure for the amino-terminal portion of HsRbx1 remains unresolved and highlighted
with grey. The first modeled residue in both the 1LDK?® and 2HYE®® crystal structures are boxed
in green and marked [1], while the first residue of the 4P502° HsRbx1 crystal structure is boxed in
dark red and marked [2] on the alignment.

An alignment of AtCull with both HsCull and HsCul4 was created in order to
account for any variations in the protein sequence (Figure 19A) and provided further
justification for our use of human CRL complexes to model plant protein motifs. AtCull
was found to share a sequence identity score of 31% with HsCul4 and 23.0% with
HsCul1, as determined using UniProt’s CLUSTALO alignment program®*°. The
sequences for AtRbx1 and HsRbx1 were very similar (Figure 19B), with a sequence

identity score of 75% being calculated using CLUSTALO®*%,

Using VMD*, a 3-dimensional anaglyphic image was created for each of the
relevant proteins in the three crystalized CRL complexes (Figure 20). In all three of the
structures, a general pattern was observed with respect to the mutual orientation of the

Cul® and Rbx“* motifs, and this general pattern showed that the Cul®" and Rbx\" areas
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were in close proximity to one another, with the Cul®" area maintaining a horseshoe-like

shape that was not dependent on NEDDS8 conjugation (4P50) (Figure 20).

The first half of the Rbx"- region was found to be the region where Rbx1 inserts
itself into Cullin, with the amino-terminal portion entering on the top of the o/f domain
of Cull closest to NEDDS8 conjugation and exiting from the far end of the Cull WH-A
(Figure 4B, Figure 20). Interestingly, one portion of the Rbx-- region was found to be in
direct contact with NEDDS8 (Figure 21A). The residues that interacted with NEDD8
(D36, 137, V38, V39 of HsRbx1) were found to be very well conserved across the eudicot
LRB homologs, with the residues of the other homologous LL regions showing an overall

conservation of chemical properties across the alignment (Figure 21B).

The amino-terminal portion of the Rbx"" region was unresolved on HsRbx1 due
to lack of crystal structure (Figure 19B). This was most likely due to high mobility for
this span of residues on HsRbx1. This unresolved area was also the region which
contained the most divergence in the MSA of the homologous LL regions of LRBs with
their corresponding Rbx* regions (Figure 18). This could suggest that only the first 8
amino acids in the MSA alignment might be important for signaling or protein function,
while the six or more Rbx1 residues that reside in the space immediately outside of the

Cullin WH-A threading region (residues 20 to 26 of AtRbx1) might not be as important.
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IN SiLico Structural Models of the AtLRB Proteins

In the previous section, it was established that both Cull and Rbx1 share sequence
similarity with the amino-terminal portion of the LRBs. The Rbx't motif was also found
to interact with NEDDS, as both Cull and Rbx1 had crystal structures readily available in
the Protein Data Bank® (Figure 20). It would be beneficial to not only know where the
Cul®t and Rbx"* regions reside on each respective protein, but also where the CL and LL
regions are located on the amino-terminal portion of the LRB proteins. However, there is
no crystal structure currently available for the LRB proteins. In an attempt to try and
better understand the significance of the CL and LL motifs, protein structure prediction

software was used to create homology models for the three LRB proteins in Arabidopsis.

Homology models for each of the three AtLRB proteins were created using
various open-source homology modeling programs, including Phyre2%®,
HHpred/Modeller®, I-TASSER®’, and Swiss-Model®. Phyre2 was the only program
able to produce atomic coordinates for the entire AtLRB sequences, which wasn’t
unexpected, as Phyre2 is known to be able to collect and combine multiple templates to
cover the full protein sequence length (Supplemental Table 1)%. Using multiple
templates usually results in an increased root-mean-square deviation (RMSD) of atomic
positions, which is the measure of the average distance between the backbone atoms of
the model superimposed onto the original template, but this method has been able to
create highly reliable in silico structures of a modeled protein in the past®®. Phyre2 also
uses a Hidden Markov Model (HMM) database of known structures that is able to
reliably detect remote homology and create accurate protein models, even at sequence

identities of 15% or less’®"*. However, Phyre2 was also the program that provided the
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least amount of control over determining the structure, as the structural templates are
chosen by the program and cannot be adjusted by the user. The homology models created
by Phyre2 served as representations of the overall structure of the AtLRB proteins,
despite multiple caveats. Problems with the predicted structure included low sequence
identity between the templates and the AtLRB protein sequences, ambiguous alignment
of the individual templates with the protein, ambiguous alignment of the templates with
the overall protein sequences, and the need for Phyre2 to use multiple templates from

distant protein homologs.

Two different models of the same AtLRB2 isoform (UniProtKB AC: Q9FPW6-1)
were produced by Phyre2®, as the HMM database of known structures is constantly being
updated to include any new structures added to PDB. One model, created on February 9",
2015 using 8 template structures (Supplemental Figure 7A, Supplemental Table 1), had
98% of the residues modeled with a confidence of >90%. This model was labeled AtLRB2A
(Figure 22A, 23A). The second model, denoted AtLRB2B (Figure 22B, 23B), was created
on April 7", 2015, and had a total of 97% of the residues reported as being modelled with a
confidence of >90% by Phyre2® (Supplemental Figure 7B). AtLRB2B was created using
only three template structures (Supplemental Table 1). With fewer overlapping structures,
Phyre2 cannot overlap the protein templates and tends to make more errors in the overall
predicted structure, requiring more ab initio modeling®. Also, the second model had less
residue coverage, creating a less reliable carboxy-terminal end with more de novo modeling

required (Supplemental Figure 7B, Supplemental Table 1).

The models for AtLRB1 (Figure 22C, 23C) and AtLRB3 (Figure 22D, 23D)
were both created on April 4", 2015. Both structural models showed much less
confidence, however, than the AtLRB2 models, with only 84% and 81% of residues being
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modelled at greater than 90% confidence, respectively. Both AtLRB1/3 had large amino-
terminal gaps in sequence template coverage, and AtLRB1 also had a large carboxy-

terminal gap immediately following the BACK domain (Supplemental Table 1). It was
decided that only the two AtLRB2 predicted structures would be used due to their higher

overall model coverage and decreased number of residues modeled by ab initio methods.

Unfortunately, a high amount of confidence does not translate to a high level of
accuracy in the model, but instead refers to the quality of prediction of the overall fold
and the placement of residues in the core of the protein’2. Therefore, confidence alone
should not be the deciding factor when choosing between AtLRB2A and AtLRB2B. The
overall number of templates used also indicates model reliability, as a greater number of

templates creates a model with a higher number of caveats.

QMEAN, a web server that performs comprehensive model evaluation and
calculates scoring functions, was used to gauge the overall quality of each of the AtLRB2
models™>> as a way to select which model was more appropriate to use based on residue
reliability and overall structural integrity. Despite a similar overall QMEAN score for
both models, AtLRB2A was predicted to have modeled the Cp and all-atom interactions
more accurately than AtLRB2B (Supplemental Figure 8A-B). The overall propensity of
a residue for being exposed to the solvent was also predicted to be modeled much more
accurately in AtLRB2A than in AtLRB2B (Supplemental Figure 8A-B). An overall
assessment of the residue error for each model showed a much higher probability that
AtLRB2A is more reliable than AtLRB2B, especially over the region amino-terminal to

the BTB domain (residues 1-120, Supplemental Figure 8C-D).
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Figure 22: Anaglyphic Stereo View of AtLRB Phyre2 Protein Models

Anaglyphic stereo view of the (A) AtLRB2A, (B) AtLRB2B, (C) AtLRB1, and (D) AtLRB3 models
created using the intensive mode of the protein homology modeling program Phyre2%. Each model
was developed by combining and overlapping the known structural templates of multiple protein
structures found in PDB® (Supplemental Table 1). Anaglyphic structural models were then
created using POLYVIEW-3D’.
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Figure 23: AtLRB Phyre2 Protein Models Displayed via Residue Index

Model of the (A) AtLRB2A, (B) AtLRB2B, (C) AtLRB1, and (D) AtLRBS3 structures that were
created using the intensive mode of the protein homology modeling program Phyre2%. Amino-
terminal residues are displayed in blue, while carboxy-terminal residues are displayed in red. The
amino-terminus, carboxy-terminus, amino-terminal “bridge”, C-term “claw”, and 3-Box regions
are also marked. Models were created using the structural rendering web-based interface program

POLYVIEW-3D".
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The sequence beginning carboxy-terminal to the BACK domain (approximately
residue 350) showed a high probability of residue error for both AtLRB2 models, but
AtLRB2A contained fewer and less frequent spikes in the amount of predicted residue
error. With this, AtLRB2A was chosen to be the model that would be used to create all

future figures.

Analyzing the AtLRB IN Sitico Structural Models

Despite the caveats previously discussed, the AtLRB1 and both AtLRB2 models
created using Phyre2% offered several insights into the possible structure and functional
mechanism of the LRBs. The BTB domain of the AtLRB2A structure was examined to
determine if the domain architecture was correctly predicted®*2¢. By using the Kelch-like
Protein 11, we were able to compare known BTB/3BOX/BACK architecture to the
AtLRB2A predicted model (Supplemental Figure 9). The topology expected to be found
in the BTB domain corresponds well to the BTB domain topology in AtLRB2A
(Supplemental Figure 9A-B). This region was modeled using templates containing
MATH/BTB (PDB ID: 3HU6)*2 or BTB/BACK (PDB ID: 313N, 3HVE)*2 domains, both
of which are known to associate with Cul3 in humans, so we would expect this region to

be accurately modeled.

Another feature that was readily found in all three models was the 3-Box motif,
which resides in the cleft between the BTB and BACK domains®#? (Supplemental
Figure 9C). The grooved area that corresponds to the 3-Box marks the site at which
amino-terminal Cul3 creates a high-affinity interaction with the BTB domain of the

LRBs*# (Figure 5B). The 3-Box region was found to be modeled as expected, with the
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two carboxy-terminal a-helices creating an antiparallel four-helix bundle with the two

amino-terminal a-helices of the BACK domain®* (Supplemental Figure 9C).

A third structural feature that was found to be consistent in each model was a
carboxy-terminal structure resembling a claw, as the structure of the claw consists of a
shallow groove surrounded by multiple finger-like protrusions (Figure 23). This
carboxy-terminal claw structure is predicted to be responsible for target recognition and
interaction, as the carboxy-terminal region has already been well established as being
responsible for target recruitment3*354%, The claw is based solely on observations from

the predicted model, however, and has no evidence to support its existence at this time.

Finally, the most notable feature that was found in all three of the models was an
amino-terminal bridge or loop (residues 108 to 138) that seemed to separate the amino-
terminal portion of AtLRB from the BTB domain (Figure 23). The amino-terminal loop
structure (residues 108 to 138) was consistently found in all AtLRB2 models created by
Phyre2%, and each model had varied orientation to the region amino-terminal to the loop

in subsequent models created using Phyre2% (not shown).

Interestingly, neither HsCull nor HsRbx1 were chosen as templates for the
amino-terminal portion of the AtLRBs. This may mean that our hypothesis that the LRBs
share homology with Cul and Rbx'" is not correct. However, the motifs may be
homologous but were simply judged to be unsuitable templates due to their small size and
therefor neither were chosen as templates by the program. The overall layout of the CL
region of AtLRB2 was directly compared to the native layout of the Cul®t crystal
structure (Figure 24). The horseshoe-like shape of the CL region was found in both the

predicted AtLRB2 model and in the region of the 1LDK crystal structure associated with
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the CL region. If the predicted AtLRB2 model is found to be an accurate model of the
AtLRBs, this similarity between the CL region of AtLRB2 and the Cul®" region of Cull

could signify a conservation of function between the two proteins in this region.

Overall, this is a very difficult case for homology modeling. The AtLRB2A
predicted structure that we have decided to use should not be thought of as highly reliable
or of good quality. There is no structural information to make the model any more
accurate. However, in terms of overall fold in the BTB/3BOX/BACK domains, the

predicted structural models are usable.

Fet

-

e Cull
At RB2 ‘*’}3_ ( 1 LDK)

. & |
- 0

Figure 24: Comparison of the CL Predicted Structure and Cul®" Native Structure

The CL region of AtLRB2 is shown next to the Cul®* region of Cul1?®. Amino acid side chains are
colored by type using VMD*, with hydrophobic residues in white, acidic residues in red, polar
residues in green, and basic residues in blue.
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Using ConSurf to Map the Relative Evolutionary Conservation of the CL & LL
Motifs onto Full-Length AtLRB2A Model

The bioinformatics program ConSurf’’ was used in an attempt to merge the
AtLRB2A model created by Phyre2%® with previous data on sequence conservation
identified through MSA. Combining sequence conservation and a three-dimensional

model will provide us with further insight into the function of the amino-terminal motifs.

Additionally, ConSurf has the ability to go one step further than the MSAs that
were created previously using Expresso®”’?, as ConSurf runs a context-specific iterated
BLAST (CSI-BLAST) on AtLRB2 to find homologous protein sequences, then clusters
them together, with highly similar sequences being removed along the way. ConSurf then
uses Expresso to create a MSA, which is then used to construct a phylogenetic tree and
create position-specific conservation scores that range from 1 to 9, with 9 being the most
conserved (Figure 25A). Once the evolutionary conservation of AtLRB2 was determined,
the amount of conservation was then written into the AtLRB2A structural model and

could then be visualized using POLYVIEW-3D® (Figure 25B).

The ability to display evolutionary sequence conservation on the predicted three-
dimensional LRB2 protein structure helps to further provide insight into which regions
are important for the overall function of the LRBs. Accordingly, the BTB and BACK
domains were found to be the most well conserved portions of the protein. Unfortunately,
despite the 45% minimum cutoff value for percent identity, the MSA created by ConSurf
contained a multitude of protein sequences that did not contain any residues amino-
terminal to the BTB or BACK domains resulting in very low relative scores for all

amino-terminal residues (Figure 25A). In order to determine the evolutionary sequence
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conservation of the region amino-terminal to the BTB domain, the PDB file for
AtLRB2A was edited to contain only the first 144 residues. This shortened amino-

terminal structure was then investigated using ConSurf.

Analysis of Relative Evolutionary Conservation of the CL & LL Motifs Using
ConSurf and Only the Amino-terminal Portion of AtLRB2

The shortened amino-terminal AtLRB2A model was denoted as AtLRB2N and
ran using ConSurf. Our new dataset contained only sequences relevant to the amino-
terminus of LRB, resulting in a more accurate representation of sequence similarity
across the dataset, particularly in the Cullin-like region (Figure 26A). Additionally, the
amount of evolutionary conservation representation in the Linker-like region was also
higher in the AtLRB2N model, extending beyond the 5 residues responsible for nuclear

localization (residues 74-78) and encompassing much more of the full Linker-like region.

Additionally, the updated evolutionary conservation scores were written onto the
newly-created AtLRB2N structural file and visualized using POLYVIEW-3D’® (Figure
26B, 26C). The AtLRB2N structure was also used to visualize the CL and LL regions
(Figure 26B, 26C). In the spacefill models of AtLRB2N, the CL region can be seen
creating a “horseshoe” around the LL motif (Figure 27A), and together, the two regions

form a prominent and compact structural area on the amino-terminal AtLRB2 domain.

The AtLRB2N structure modeling the conservation predicted by ConSurf’’
analysis (Figure 27) also showed the conservation of some of the residues residing in the
amino-terminal ‘loop’ or ‘bridge’ region (residues 108 to 138) that was previously
postulated to control the orientation of the amino-terminal structure (Figure 24).

However, the residues that were conserved did not appear to be sites for potential
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modifications. Only a single serine residue was relatively conservation, indicating a
potential target site for phosphorylation. A conformational shift in the LRB “bridge”
region could be due to a modification placed anywhere on the LRBs, so a lack of
complete conservation does not necessarily disprove the hypothesis that the bridge could

be a regulatory site.
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Figure 25: Predicted Evolutionary Conservation of Full-Length AtLRB2

A. The relative amount of LRB2 residue conservation as predicted by ConSurf’’. Residues scoring
9 (scarlet) are predicted to be the most conserved, while a score of 1 (cyan) signifies a high amount
of residue variability. Residues highlighted in yellow contain unreliable scores.

B. The front and rear surface view of AtLRB2A. Residues are colored based on the ConSurf scores
assigned to them. The small model in the box below the ConSurf structures shows the locations of
the BTB, 3-BOX, and BACK domains. Structures were rendered using POLYVIEW-3D.

87



1 4 1 CONSERVED)|

MR TENTOL FDPKTEDPD iTRHGSSSDG DEG@ 'L@
CULLIN-LIKE REGION

51 61 71

]

8

6
MGGPSDSRSE V!GCTSIADW ARHR@ED 'KESH 18 DIV'CPEEQI 5
LINKER-LIKE REGION 4

3

2

1]

O

101 1411 1.21. 131 141

LTDEQPDMDG EPGEEJPDDE GEAYVIEAL SGDEEETSSE PNWG

VARIABLE

UNRELIABLE:

B ConSure ANALYSIS = CL/LL REGION VIEW P C ConSure ANALYSIS CL/LL REGION VIEW

2. A ~ R, e,
AR N

“ w D

/
\ CL REGION
LL REGION
‘, N N\
N b 4
5 N %
CONSERVED /4 BLE CL REGION CONSERVED LE
| . | LL REGION | e

Figure 26: Predicted Amino Acid Conservation of AtLRB2N

A. The relative amino acid conservation of the AtLRB2N sequence, as determined by ConSurf’’.
The areas corresponding to the Cullin-like and Linker-like regions are also marked. Residues
scoring 9 are predicted to be the most conserved, while a score of 1 signifies a high amount of
residue variability.

B. The front cartoon views of AtLRB2N. Residues on the figures to the left are colored based on
the ConSurf’” scores assigned to them. The structure on the right shows the area of the amino-
terminal region associated with the CL and LL regions, which are colored in red and blue,
respectively.

C. The back cartoon views of AtLRB2N after rotating the model 180°. Residues on the figures to
the left are colored based on the ConSurf’” scores assigned to them, with conserved residues being
marked scarlet. The structure on the right shows the area of the amino-terminal region associated
with the CL and LL regions, which are colored in red and blue, respectively. All of the structural
models created were rendered using POLYVIEW-3D.
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Figure 27: Predicted Amino Acid Conservation of the Amino-terminal Domain

A. The front, side, and rear surface views of AtLRB2N, which was achieved by rotating each
structure 90° each time. The structural areas of the amino-terminal region associated with the CL
and LL regions, which are colored in red and blue, respectively, are shown. The location of the
NLS sequence is marked with yellow asterisks, while the amino-terminus is marked with an N
inside a light-blue-colored circle. The start of the BTB domain is also shown.

B. The front, side, and rear surface views of AtLRB2N, which was achieved by rotating each
structure 90° each time. ConSurf’”’ was used to determine sequence conservation, with the
conserved residues colored scarlet and variable residues colored cyan. The location of the NLS
sequence is marked with yellow asterisks, while the amino-terminus is marked with an N inside a
light-blue circle. The start of the BTB domain is also shown. All of the structural models of
AtLRB2N created were rendered using POLYVIEW-3D"8.
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DETERMINING THE ROLE OF PHOSPHORYLATION ON LRB
FUNCTION

Three Predicted Phosphorylation Sites Are Completely Conserved in All LRB
Protein Homologs

Phosphorylation is known to play a significant role in the phy signaling pathway,
with the phosphorylation of PIF3 being directly responsible for PIF-mediated
phytochrome degradation!®. There is also evidence to suggest that plant phytochromes
act as atypical serine/threonine protein kinases!214. Phosphorylation is known to play a
major role in triggering the MAD mechanism responsible for PIF3® and phyB21°
degradation, and since we know that the LRBs directly interact with both PIF3 and phyB,
it was hypothesized that phosphorylation may also play a role in regulating LRB

function.

First, we wanted to identify any potential phosphorylation sites that were present
on the conserved regions of the LRBs. Using the Arabidopsis Protein Phosphorylation
Site Database’®"® (PhosPhAt 4.0, http://phosphat.uni-hohenheim.de/), each of the LRB
protein sequences that were used to create the edited MSA previously (Supplemental
Figure 4) were individually tested for any potential regions where phosphorylation could
occur. Then, the multiple sequence alignment of the homologous LRB proteins was used
to predict potential phosphorylation sites using regions of conservation (Supplemental
Figure 10). Only three conserved sites on the LRB alignment showed a high probability
of being phosphorylated (sites H, U, W, Supplemental Table 2), with three other sites
showing almost complete conservation and moderate phosphorylation potential (sites O,

S, V, Supplemental Table 2). One particular serine residue, S131 in AtLRB2 (site H,
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Supplemental Table 2), was located at the end of the third conserved amino-terminal
region and was predicted to have a high probability of being phosphorylated. The
remaining conserved residues predicted to be phosphorylated appeared on the carboxy-
terminal portion of the LRBs (residues 513 through 516 in AtLRB2) in the form of a
highly-conserved YTFT sequence (sites U, V, W, Supplemental Table 2). S131 and the
YTFT sequence were both projected onto the AtLRB2A model in order to determine their

placement in proximity to known or predicted structural features (Figure 28).

Figure 28: Anaglyphic Model of the Predicted Phosphorylation Sites on AtLRB2A

An anaglyphic model of the two phosphorylation regions found to be conserved across all LRB
land plant homologs. The serine-131 residue (S131) is displayed in yellow, while the tyrosine-513,
threonine-514, and threonine-516 residues from the conserved YTFT sequence are displayed in
green. Phosphorylation sites were determined by the PhosPhAt’®" database, while the model was
created using the AtLRB2A structure and the anaglyphic stereo option of VMD*.
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Two other clusters of predicted phosphorylation sites, known as phosphorylation
“hotspots”, were found in LRB and contained fairly-conserved potential phosphorylation
residues. Each hotspot was found immediately before the CL or LL regions (sites A/B/C
and D/E/F in Supplemental Figure 10), contained at least three predicted
phosphorylation residues in close proximity to one another, and each hotspot had high
predicted phosphorylation values in two out of the three potential sites (Supplemental

Table 2).

The Phospho-Shift Assay Did Not Present Evidence that Transgenic LRB1 Proteins
are Phosphorylated

To test the phosphorylation state of LRB proteins in response to different light
conditions, a phospho-shift assay was performed on an Arabidopsis thaliana transgenic
line overexpressing LRB1-GFP that was grown in red or far-red light conditions.
Phosphorylated proteins have previously been shown to sometimes run higher on an
acrylamide gel by repelling the negatively-charged SDS molecules®. However, a
negative result, i.e. no shift detected, would not necessarily mean there is no difference in
phosphorylation®!, as some proteins simply do not show a phosphorylation shift. The
protein lysate from seedlings grown in different light conditions (Figure 29A) was
treated with a A-protein phosphatase and compared to a non-treated plant grown in the
same light conditions using immunoblotting. In theory, the A-protein phosphatase will
remove any phosphorylation present on any proteins in the lysate. Immunoblot analysis
following SDS-PAGE using anti-GFP antibodies could reveal any differences in

phosphorylation state of the LRBs between red, far-red, and dark-grown seedlings®.
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Figure 29: Phospho-Shift Assay in Red and Far-Red Light

A. A graphic showing the duration and type of light exposure each GFP-LRB1 treatment group
was exposed to and when each sample was collected.

B. Plant lysates from plants treated with red light and then isolated immediately (“R”) or after a
further 2 day treatment with Far-red light (“FR”) were treated with (‘“+Phosphatase”) or without
(“~Phosphatase”) a A-protein phosphatase and analyzed using Western blotting with anti-GFP
antibodies. The INPUT lane represents lysates immediately after isolation, with a non-specific
band used as a loading control.

The phospho-shift assay did not show any dephosphorylation after 15 minutes of
incubation (Figure 29B). The lack of shifting in band size could indicate that there was
no phosphorylation present on GFP-LRB1, as there is not a noticeable difference in band
migration between the zero and 15 minute timepoints for samples treated with A-protein
phosphatase or between the inhibitor controls. A lack of band shifting could also indicate
that either the samples were not incubated long enough to remove the phosphate from any

active GFP-LRB1, the phosphatase was non-functional, or that the phosphorylated
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proteins do not run higher on the gel as expected. However, there is a noticeable
difference between the intensity of the red and far-red light samples, as the band is visibly
brighter in red light than it is in far-red light conditions. Despite the same strength in the
non-specific band, the difference in banding strength could be due to the seedlings that
were exposed to two days of far-red light for a total of 6 days of growth, compared to the

red light seedlings, which were collected after 4 days of treatment (Figure 29B).

Anti-Phosphoserine Antibodies Did Not Reveal the Presence of Phosphoserine
Residues on Purified GFP-LRB2 Proteins

The in silico phosphorylation site prediction software PhosPhAt 4.0 predicted
a high probability of phosphorylation occurring on multiple different sites on the AtLRBs
(Supplemental Figure 10). The phospho-shift assay was unable to support this, showing
inconclusive results (Figure 29), but the lack of a shift does not correlate to a lack of
phosphorylation8l, A more direct approach, such as directly detecting phosphorylation on
purified LRB proteins, would be needed to determine if phosphorylation was present on

the AtLRBs.

LRB proteins purified by immunoprecipitation from plants grown in darkness, red
light, or far-red light conditions were investigated using Western blotting and probed
with anti-phosphoserine antibodies in an attempt to detect any light-dependent
phosphorylation present on the LRBs. Although we were able to purify the GFP-LRB2
proteins, none of the purified samples from the GFP-LRB2 immunoprecipitation cross-
reacted with the anti- phosphoserine antibodies under our conditions (Figure 30). This

supports the conclusion from the phospho-shift assay that the LRBs may not be
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phosphorylated, despite the in silico data predicting otherwise. However, definitive
interpretation of these results is difficult, because phosphorylation present on the YTFT
sequence (Y513, T514, and T516 in AtLRB2) would not be identifiable when probing for

phosphoserine, since the phosphoserine antibody targets only phosphorylated serine

residues.
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Figure 30: Probing Purified LRB2 for the Presence of Phosphoserine Residues

Immunoprecipitated GFP-LRB2 proteins extracted from Arabidopsis seedlings grown in darkness
or exposed exclusively to R or FR light were analyzed using SDS-PAGE and immunoblotting. The
purified GFP-LRB2 eluates were probed with anti-phosphoserine antibodies, then reprobed with
anti-GFP antibodies. The crude input for GFP-LRB2 grown in FR light was probed using anti-GFP

antibodies.
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NEDD8 CONJUGATION PREDICTED ON AtLRB2

Disrupting Neddylation Using MLLN4924 Shows an Accumulation of GFP-LRB1 in
Red Light Conditions

Since we see that the CL and LL domains in LRBs are similar to regions found in
both CUL and RBX, and these regions are adjacent to and may play a role in the
neddylation of Cullin, we wanted to investigate the possibility that the LRBs may be
neddylated. The interaction of the Rbx"" region with NEDDS also suggests that the LRBs
can also interact with NEDDS at the LL region (Figure 21). Additionally, GFP-tagged
AtLRB2 tends to run at around approximately 105kDa in an SDS-PAGE gel, despite only
being 90kDa in size (27kDa GFP + 63kDa AtLRB2). This suggests that the LRBs are
modified in some form, which may support the hypothesis that light-dependent

neddylation occurs.

The small-molecule NEDD8-inhibitor MLN4924 will be used as a way to
indirectly test for NEDD8 conjugation on GFP-tagged AtLRB proteins, as MLN4924
binds to ECR1 to prevent the first step of NEDDS conjugation®. If the AtLRB proteins
are conjugated with NEDDS8, which is approximately 9kDa in size, treatment with
MLN4924 should inhibit NEDDB8 conjugation and show an overall change in the

molecular weight of the AtLRBs when visualized using Western blotting.

Exposure to a 50uM concentration of MLN4924 by 4-day-old etiolated GFP-
LRB2 seedlings for four days resulted in an accumulation of only GFP-LRBL1 in red light
(Figure 31). Without NEDD8 conjugation, Cullin proteins would not be able to form

functional CRL complexes, preventing the attachment of Ubiquitin and the subsequent
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degradation of any proteins targeted by Cullin-RING E3 Ubiquitin ligases®2. As it was
previously established that the AtLRBs undergo degradation via the UPS?, an

accumulation of the GFP-tagged AtLRBs would be expected.

A molecular weight band shift could not be detected after MLN4924 treatment in
any light condition (Figure 31A). Despite a lack of band shift after MLN4924 treatment,
the MLN4924 treatment worked, as the plants treated with the inhibitor had decreased
hypocotyl lengths and showed increased root hair growth when exposed to 50uM
MLN4924 as was observed in previous studies®?. Seeds placed on 100uM MLN4924 did
not germinate even after 6.5 days of growth (Figure 31B). The absence of a band shift in
the seedlings treated with MLN4924 could indicate that no NEDD8 modification is
present in any light condition. However, the GFP-tagged AtLRB proteins continue to run
approximately 15kDa higher than expected, so to rule out NEDD8 conjugation

completely, the LRBs will need to be purified and probed with anti-NEDD8 antibodies.

Preliminary results suggest the amount of GFP-tagged AtLRB1 and AtLRB2
protein accumulation after treatment with MLN4924 may be different between the two
transgenic lines. GFP-LRB2 levels in both dark and red light conditions did not increase
noticeably after MLN4924 treatment, while the inhibitor caused a pronounced
accumulation of GFP-LRBL1 in red light (Figure 31). Despite having a non-specific
control band with considerably less intensity, the MLN4924-treated GFP-LRB1 sample
had a much darker GFP band than its untreated GFP-LRB1 counterpart. AtLRB1 has
previously been shown to be less effective at rescuing the hypersensitive phenotype
found in the Irb12 double mutant than AtLRB2. The Irb2 single knockout mutant also

showed rosette compaction when grown in short day conditions, whereas the Irb1 single
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knockout did not show any obvious change in phenotype from the wild-type?. This may
suggest that LRB1 and LRB2 do not operate identically to one another and may have two
separate mechanisms for regulating phytochrome and PIF levels, or possibly that each of
the LRBs have an additional protein-specific function in the red light response pathway

that the other does not.

NEDDS8 Conjugation Was Detected on Purified GFP-LRB2 Proteins

The AtLRB predicted models and alignments, along with the HsCul crystal
structure models, consistently suggested that NEDD8 conjugation or the NEDD8
signaling pathway was important to the overall function of the LRBs. Since the CL
region of AtLRB2 shares sequence and structural similarities with the region of AtCull/2
which sits in close proximity to the site of Cullin neddylation, in addition to the
similarities seen with the LL region and the region of AtRbx1 which has been shown to
physically interact with NEDD8?° (Figure 21), a direct method for detecting NEDD8 was
devised. Additionally, the 15kDa increase in the molecular weight of AtLRB found when
using SDS-PAGE analysis could be the result of NEDD8 conjugation, despite the lack of
support for NEDDS8 conjugation that was found in the MLN4924 NEDDS inhibitor
experiment (Figure 31).

GFP-tagged AtLRB2 proteins were purified from plants grown for 4 days in
darkness, then exposed to 4 additional days of either darkness, red light, or far-red light.
Special care was taken to prevent Cul3 from being pulled down, with total protein lysates
being boiled prior to immunoprecipitation. Under these conditions, neddylated Cul3

should be prevented from interacting with GFP-LRB2, and this is especially important,
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given that Cullin and GFP-LRB2 have similar molecular weights and can’t be

differentiated from one another when probing with anti-NEDDS antibody.

A
Wild Type GFP-LRB2 GFP-LRB2 GFP-LRBI1
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Figure 31: Treatment of seedlings with the NEDD8 Inhibitor MLN4924

A. Etiolated 4-day-old Arabidopsis seedlings were treated with 50uM of MLN4924 and exposed
to different light conditions for four additional days. Total protein extracts were analyzed via
Western blotting using anti-GFP antibodies. An asterisk marks the non-specific band used to
compare protein loading between each pair of related samples.

B. Transgenic GFP-LRB2 Arabidopsis seeds were planted on plates containing 0.64% DMSO
and 100uM MLN4924, 25uM MLN4924, or OuM of the inhibitor. Seeds were exposed to 2.5
days of white light, placed in darkness for 3 days, then either remained in darkness or were

exposed to red light for 24 hours. All plates were photographed after 6.5 days of total growth.
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Figure 32: Probing Purified LRB2 for NEDD8

GFP-LRB2 proteins immunoprecipitated with anti-GFP antibodies from seedlings grown
exclusively in darkness or continuous R or FR light were probed with anti-GFP (left) and anti-
NEDDS (right) antibodies. The WT lane contains immunoprecipitated proteins from the Col-0
ecotype and was used as a negative control.

Samples were investigated via Western blotting, with the purified AtLRB2 eluates
each being probed with anti-GFP and anti-HSNEDDS antibodies in two separate blots in
an attempt to detect any NEDD8 conjugated to the LRBs (Figure 32). Despite the
noticeable absence of any shift in molecular weight on the LRBs when using the NEDD8
inhibitor MLN4924, the anti-NEDD8 antibody was able to detect the presence of NEDD8

on the purified GFP-LRB2 samples in all three light conditions (Figure 32).

Quantification values were obtained for each light treatment by using the Odyssey
FC Image Studio Lite 5.0 program® (Supplemental Figure 11A-B). Quantification
values for each treatment were normalized to the lane containing the wild-type Col-0
ecotype in each blot to address any differences in the exposure times of the two blots.
The normalized quantification values for each light treatment could be compared between
blots, but the quantification values could not be compared between light conditions, as

the far-red GFP immunoprecipitation yielded significantly less GFP-LRB2 than the
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immunoprecipitations performed on the red or dark treatment groups (Supplemental
Figure 11B). The ratio of aNEDDS to aGFP (and vice-versa) can provide an estimate of

the distribution of NEDDS8 that is found between each light condition.

The normalized GFP probe signal intensity was determined to be 1.41 times
stronger than the signal intensity found when probing for NEDDS in plants grown in red
light, and 1.08 times more intense with seedlings grown in far-red light. Interestingly, the
signal intensity for GFP was found to be 0.77x as intense as NEDDS signaling in dark-
grown seedlings (Supplemental Figure 11C). The dark-grown seedlings were found to
have a aGFP:aNEDDS ratio that was less intense than in the other two treatment groups,
which could signify that NEDD8 conjugation occurs mainly in darkness. However, the

experiment must be performed again before the ratios could be considered significant.

101



V. CONCLUSIONS

The two highly-conserved Light-Response BTB proteins are quickly becoming
known as key members of the red light signaling pathway in Arabidopsis thaliana?*®.
This project used a two-pronged approach to show that the amino-terminal portion of the

LRBs are highly conserved in at least two regions in all land plants, and these conserved

regions may play a role in LRB neddylation.

TWO AMINO-TERMINAL REGIONS FOUND TO BE CONSERVED
IN ALL LRB PROTEIN HOMOLOGS

A multiple sequence alignment of homologous LRB proteins taken from various
land plant species revealed two amino-terminal regions that were highly conserved across
all land plant species. Amino-terminal conservation was not unexpected, as a recent paper
established that the amino-terminal portion of AtLRB1/2 interacts with a coiled-coil
scaffold protein FRIGIDA (FRI)*’. FRI is normally responsible for recruiting several
chromatin modifiers that modify several flowering genes after vernalization to initiate
flowering, but this was found to not be the case in the Columbia (Col-0) ecotype of
Arabidopsis thaliana, which has an early-flowering phenotype due to a carboxy-terminal
deletion allele at the FRIGIDA locus*’. As the established Irb12 mutant phenotypes were
observed in Col-0 Arabidopsis ecotypes, the degradation of FRI cannot be responsible for
the hypersensitivity to red light?, implying that the LRBs have multiple roles in distinct

signaling pathways.
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If the amino-terminal portion of LRB interacted solely with FRI, we would not
expect to see the two regions of conservation in the LRB proteins from monocots and
non-flowering plant species, as the proteins that make up the FRI signaling pathway are
only found in eudicots®. Transgenic Arabidopsis plants containing a truncated version of
AtLRB2 could be used to further support the hypothesis that the conserved amino-
terminal LRB regions are important for LRB function. Just observing the phenotype
expressed by plants containing the truncated amino-terminal (residues 1-140) or carboxy-
terminal (residues 140-561) AtLRB2 protein transgene could provide valuable insight

into the role that the amino-terminal portion plays in light signaling.

CONSERVED AMINO-TERMINAL LRB REGIONS SHOW SEQUENCE
SIMILARITY TO OTHER CRL PROTEIN MEMBERS

To narrow down the potential mechanisms that could be utilized to regulate the
LRB proteins in different light conditions, both of the conserved amino-terminal regions
were used as queries to search for other proteins that share a similar sequence. The two
conserved regions of LRB were found to be similar to regions on Cull and Rbx1
proteins, and this similarity between sequences was conserved across all land plants. By
using CRL complex crystal structures, we determined that the distribution of the Cul®"
and Rbx"* regions on their respective CRL proteins were in close proximity to one
another, and the Rbx!* region directly interacts with NEDD8. The Cul" region was also
located in close proximity to the NEDDS8 conjugation site on AtCull, and this prompted

our later investigation of NEDD8 conjugation on the AtLRBs.
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To determine the functional role of the amino-terminal portion of the LRBs, a
carboxy-terminal AtLRB2 (residues 140-561) transgene could be placed in the Irb12
double knockout seed lines. The phenotype observed in red light would provide insight
into the role that the amino-terminal LRB region plays in phyB
accumulation/degradation. The amount of Cul3 interaction that occurs in the carboxy-
terminal AtLRB2 mutant could also be investigated, as a significant decrease in Cul3-
LRB interaction would implicate the amino-terminal region as being responsible for

Cul3-LRB interaction.

LRB HOMOLOGY MODELS REPRESENT THE OVERALL
FOLD OF THE BTB/3BOX/BACK DOMAINS

Homology models were created by Phyre2% to serve as representations of the
overall structure of the AtLRB proteins (Figure 22). While AtLRB2A was predicted to be
the more comprehensive model, a majority of the overall structural features (exposure of
certain residues to solvent, secondary and tertiary structure) in AtLRB2A were consistent
with both AtLRB1 and AtLRB2B. A comparison of the AtLRB2A predicted
BTB/3BOX/BACK domain structure with the known crystal structure for 4AP2%
revealed that the overall fold of the protein in these domains was usable (Supplemental
Figure 9). The LRB homology models were used as representations of the overall
structure of the AtLRB proteins, despite multiple caveats regarding template alignments

and low sequence identity during the creation of each model.

The overall shape and sidechain arrangement of the CL region was found in both

the predicted AtLRB2 model and in the Cul* region of the 1LDK crystal structure®
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(Figure 24). If the predicted AtLRB2 homology model structures are found to be
accurate, the similarities between the CL region of AtLRB2 and the Cul®" region of Cull
could signify a conservation of function between the two proteins in this region. Cullin
was not chosen as a template for the AtLRB2A homology model, yet there was found to
be a convergent arrangement of residues in this region (Figure 24). This observation
strengthens our hypothesis that there is some parallel in function or identity between the

LRBs and Cullins in the CL motif.

Beyond the BTB/3BOX/BACK domains, we were able to observe structural
features on each of the homology models. One of the prominent features observed on the
AtLRB2A homology model was an amino-terminal ‘bridge’ (residues 108-138) structure
(Figure 23A), and the bridge seemed to be conserved on the AtLRB1 and AtLRB2B
homology models as well (Figure 23B-C). A carboxy-terminal ‘claw’ structure was also
found on each of the models and was predicted to be the site of target recognition®*340

(Figure 23A-C).

The AtLRB2A ‘bridge’ gave rise to many ideas about the possible function of the
amino-terminal LRB region. Residues 20 to 128 of AtLRB2A were modeled after the
MATH domain, a subset of TRAF-like domains, of one PDB structure (PDB ID:
3HU6)*2. MATH domains are known to be flexibly tethered to the BTB domain,
suggesting that if the model for the AtLRBs is correct, the amino-terminal region may be
equivalent to MATH domains and the possibly flexible “loop” or “tether” structure could
be used to control the orientation and placement of the amino-terminal AtLRB region*?
(Figure 33A). If this ‘loop’ is indeed responsible for amino-terminal orientation, a light-

dependent modification on or near the loop could result in a change in the orientation of
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the amino-terminal region and could be responsible for the red-light-dependent
interaction with Cul3 (Figure 33B)?®. However, there is currently no evidence to

support this theory outside from the predicted structures created using Phyre2%,

Two hypotheses were created to explain the potential placement of the amino-
terminal domain when no red light is present that would essentially inactivate the LRBs.
As Cul3 is known to only interact with the LRBs after exposure to red light?, and the 3-
Box on the LRBs are responsible for high-affinity Cul3 binding®, it was predicted that
the amino-terminal LRB structure could be physically blocking Cul3 from interacting
with the 3-Box on the LRBs. The two ways that this physical 3-Box blocking
phenomenon was predicted to occur was through changing the overall shape of the LRBs
through target recognition site promiscuity (Figure 33C) or through a direct interaction

of the amino-terminal LRB domain with the 3-Box area (Figure 33D).

The amino-terminal region of the LRBs could be targeted by the carboxy-terminal
recognition region through binding site promiscuity. If the carboxy-terminal “claw”
responsible for target recognition were to bind the amino-terminal portion of LRB, the
entire shape of the protein may be altered, and this conformational change could block

access to the 3-Box (Figure 33C).

A more simple method of blocking the 3-Box from access, however, could simply
be that the amino-terminal region of LRB is oriented in such a way that it creates a
physical barrier that prevents Cul3 from interacting with the 3-Box (Figure 33D). A
direct physical barrier would also leave the carboxy-terminal “claw” region free to bind

to any target proteins, and binding the target may ultimately be the modification that is
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needed for the LRBs to reorient the amino-terminal domain and allow Cul3 to bind the 3-

Box.

The distribution of the LL and CL regions on the amino-terminal portion of
AtLRB2 should be investigated further, but the crystal structure of AtLRB2 would first
need to be determined. AtLRB homology models were created to provide a three-
dimensional view of the AtLRBs, but the predicted structures contained large caveats and
may not be accurate. By crystalizing the AtLRBs, the native distribution of the CL and
LL regions could then be identified in the native structure and compared to the native
distribution of Cul®" and Rbx't, removing all of the caveats associated with the predicted

homology models of the AtLRBs.

If the distributions of the Cul®" and Rbx\t regions were found to be identical or
similar to the native placement of the CL and LL regions on the AtLRB crystal structure,
then we could start to hypothesize that the CL and LL regions are ‘mimicking’ the
structure of Cul1/2 in complex with Rbx1. However, further investigation would be
needed to determine if the mimicking caused by the CL/LL region interacts with proteins

in the same way the Rbx1/Cull/2 complex does.
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Figure 33: Potential Mechanisms for Blocking Cul3 Binding

A. A predictive model showing the overall structural characteristics of the LRBs, with specific
emphasis on AtLRB2A, that were determined using the structural prediction models created by
Phyre2%. Notable features included an independently-folded amino-terminal domain, an amino-
terminal ‘loop’ (or ‘bridge’), the 3-Box region, and a carboxy-terminal ‘claw’ structure, which may
be the site of target recognition.

B. A predictive model showing the possible movement of the amino-terminal region by activation
of the loop. When activated (A), the loop could be used to control the orientation and placement
of the amino-terminal LRB structure, allowing Cul3 to bind to the 3-Box or allowing the carboxy-
terminal claw to interact with the target.

C. This predictive model shows binding site promiscuity at the carboxy-terminus of the LRBs,
which could result in the amino-terminal domain being targeted by the carboxy-terminal ‘claw’, in
turn preventing the target from binding to the target recognition site. Additionally, when the LRBs
interact in this manner, the protein could adopt a different conformation, blocking access to the 3-
Box and preventing Cul3 from interacting. In this model, the amino-terminal loop region is blocked
(B) from moving the amino-terminal domain and breaking the carboxy-terminal LRB binding site
promiscuity.

D. A second model depicting the amino-terminal region of the LRBs directly blocking (l) the 3-
Box from interacting with Cul3. In this model, the amino-terminal loop would orient the amino-
terminal LRB domain so that it would block the 3-Box. Upon activation of the loop, the orientation
of the amino-terminal domain would be altered, allowing for Cul3 interaction with the 3-Box. This
scenario depicts the carboxy-terminal claw as open, as the binding of the target to the target
recognition site might be the activation needed to reorient the amino-terminal LRB region away
from the 3-Box.
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NEDD8 MAY HAVE A ROLE IN THE FUNCTION OR
REGULATION OF THE LRB PROTEINS

The conjugation of NEDDS8 to the LRBs was hypothesized after investigating the
two conserved amino-terminal LRB regions and the similarities they shared with Cullin
and Rbx1. The Cul®t region was found to be located directly upstream from the site of
NEDDS conjugation on Cullin, while the Rbx"" region was found to directly interact with
NEDDS, and this led to the hypothesis that the amino-terminal region of LRB may also

be neddylated.

The small-molecule NEDD8-inhibitor MLN4924, which binds to ECR1 and
blocks the NEDDS8 conjugation pathway, was used to indirectly test the AtLRBs for
NEDDS8 conjugation. Treatment of MLN4924 gave inconclusive results when investigated
using immunoblotting, as no band shift was observed. However, we know that the MLN4924
treatment was effective from the distinct phenotype which was observed in the seedlings
treated with MLN4924. Exposure to the NEDD8-inhibitor resulted in decreased hypocotyl
expansion, stunted root growth, and, at higher concentrations, prevented germination from

occurring altogether.

An overall accumulation of GFP-LRB proteins in MLN4924-treated dark-grown
seedlings could be detected, but the lack of an adequate control line provides reasonable
doubt to the validity of this observation. The accumulation of GFP-LRB proteins in the
presence of MLN4924 would be expected, however, because it has been previously shown
that the AtLRBs are degraded via the UPS?, which relies on Cul3-NEDDS8 conjugation to
form the active CRL E3 complex required for ubiquitination and subsequent protein

degradation®.
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It is also known that some E3 proteins that are conjugated with NEDDS are also able
to conjugate with ubiquitin interchangeably. Mdm2 is able to autoubiquitinate and
autoneddylate itself*°, and it has been shown to conjugate with NEDDS8 and ubiquitin
interchangeably*®. By doing so, Mdm2 promotes either the neddylation or ubiquitination of
p53*46, The same may be true for the AtLRBs, as the lack of band shift in the seedlings
treated with MLN4924 could be due to the same number of ubiquitin and NEDDS8 proteins

being conjugated to the AtLRBS, as both proteins are approximately the same size.

For a more direct approach, enriched GFP-tagged AtLRB2 proteins were probed
with anti-NEDD8 antibodies. NEDD8 was detected in the purified GFP-LRB2 samples,
suggesting that the LRBs are neddylated. A second immunoprecipitation will need to be
done in order to show reproducibility in these results, as well as provide further evidence
that the quantification values and signal intensity ratios in each light treatment are
significant. Also, detecting the presence of GFP-tagged AtLRB1/2 after performing an
anti-NEDD8 immunoprecipitation prepared using the same method of boiling samples
prior to immunoprecipitation would provide undeniable in vivo evidence that the LRBs

are neddylated.

Despite the lack of immunoprecipitated proteins appearing in the far-red GFP-
LRB2 samples, the ratio of GFP signal intensity to NEDDS signal intensity within each
individual light treatment sample was calculated and compared. However, the experiment
will need to be performed multiple times before the ratio can be considered viable. The
diminishing signal intensity ratio of aGFP:aNEDDS8 when comparing the quantification
values of red, far-red, and dark-grown seedlings respectively suggests that NEDD8

conjugation may be primarily found in darkness (Figure 34A) as a means to control LRB
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function (Figure 34B). The removal of NEDD8 from the LRBs in a light-dependent
manner (Figure 34C) could be the modification that allows the LRBs to interact with
Cul3 (Figure 34D), as protein neddylation has been found to inhibit protein-protein

interactions, decrease protein stability, and even antagonize ubiquitination4-4683,

The theory behind using the signal intensity ratio of aGFP:aNEDDS to determine
the amount of NEDD8 conjugation occurring in one light condition compared to another
could be modified by using MLN4924. After transgenic GFP-LRB2 seedlings are treated
with MLN4924 and exposed to a specific set of light conditions, immunoblotting could
be used to detect both NEDD8 and GFP. If a decrease in aNEDDS signal intensity is
discovered after MLN4924 treatment for each light condition, we could be fairly certain
that neddylation of the LRBs is occurring via the NEDD8 conjugation cascade (Figure

6), as MLN4924 blocks NEDD8 from reaching the first step of the conjugation cascade.

Additionally, before the AtLRBs can be confirmed as authentic targets of NEDD8
conjugation, the lysine (or lysines) that serve as the site of attachment on the AtLRBs
must first be identified using mutagenesis or by mass spectrometric analysis**83. Also,
the criteria currently published for determining the authenticity of NEDDS8 protein targets
state that NEDDS8 conjugation must be found to occur in planta and must rely on the
specific neddylation enzymes and/or deneddylases in vivo*8 (Figure 34A, 34C). If
NEDD8-conjugation is confirmed to be present on the AtLRBs, this would be a very big
discovery, as few neddylated proteins have been discovered in plants. Also, the
conjugation of NEDDS to the AtLRBs may provide a very clear pathway for studying the
LRBs, as they could be investigated using the same approach as the E3 proteins that have

been identified in humans.

111



Terminal

Termina
“Claw”

DARKNESS

ACTIVITY o o

Figure 34: Proposed Mechanism of AtLRB Neddylation

A. NEDDS conjugation to the LRB proteins by a NEDD8 ligase enzyme is thought to primarily be
found in darkness.

B. The conjugation of NEDDS to the LRBs blocks Cul3 from interacting with the 3-Box region
and prevents CRL3 formation. In addition to inhibiting Cul3 interaction, neddylation may cause
the LRBs to become flexible, allowing them to interact with other proteins (not shown).

C. The removal of NEDDS8 from the LRBs occurs after exposure to R or FR light. In a light-
dependent manner, a deneddylating enzyme would remove NEDDS, allowing proteins to access
the 3-Box region once again.

D. Once NEDDS is removed, the LRBs are free to interact with Cul3 and can once again form
active CRL3 complexes.
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It is currently unknown whether NEDD8 conjugation is responsible for the red-
light dependent activation of the AtLRBs, nor is it known if NEDDS8 plays an inhibitory
role in AtLRB function. Further investigation will need to be performed in order to
discern the role that the neddylation of AtLRB proteins plays in a plant’s ability to sense

light and respond to it.

AtLRB PHOSPHORYLATION COULD NOT BE DETECTED DESPITE
IN SILICO PHOSPHORYLATION SITE PREDICTIONS

The LRB proteins are thought to undergo distinct changes after exposure to red
light. The increased interaction between LRB and Cul3 after red light irradiation
demonstrates how the LRBs change in response to light. This change may be a result of
the LRBs interacting with phyBP™ or PIF, or could be due to some other modification
brought about by red light irradiation. One of the possibilities is phosphorylation, as
phosphorylation has already been found to play a large role in many light signaling
pathways.

In silico phosphorylation site prediction data, in combination with the LRB
multiple sequence alignment, suggested that there could be three possible
phosphorylation sites on AtLRB2. A phospho-shift assay performed using a bacterial A-
protein phosphatase showed no conclusive results, but this does not necessarily mean
there is no phosphorylation present, as some proteins simply do not show a
phosphorylation shift®. Also, phosphorylation is removed from proteins at different rates
by the A-protein phosphatase, so a 15 minute treatment may not have been adequate for

dephosphorylation of the GFP-tagged AtLRBL1 protein.
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Despite a lack of band shift after exposure to the A-protein phosphatase, there was
a noticeable difference in band strength between the phospho-shift samples that were
grown in red and far-red light conditions, but this could be due to the difference in
growth time between the two groups. Half of the seedlings were grown in red light and
collected after four days of irradiation, while the second half were grown for four days in
red and then exposed to far-red light for an additional two days. Future experiments
should be designed so that the seedlings are collected at the same timepoint, regardless of

light conditions.

A more direct approach was devised to specifically detect any phosphoserine
residues that could be present on the AtLRB proteins. No phosphoserine residues were
detected when probing enriched AtLRB2 with anti-phosphoserine antibodies, but this
could due to a number of different factors. A human phosphoserine immunogen was used
to create the phosphoserine antibody that was used, so it is possible that the human anti-
phosphoserine antibody is not able to detect phosphoserine residues in Arabidopsis
thaliana. Without a positive phosphoserine control, we cannot be certain that the
antibody can detect phosphoserine-specific phosphorylated residues in plants.
Phosphorylation present in the YTFT sequence (Y513, T514, and T516 in AtLRB2), which
was predicted in the in silico analysis of the AtLRBs using PhosPhAt 4.0 prediction
software, would not be identifiable when probing for phosphoserine. Probing purified
AtLRB2 with anti-tyrosine or anti-threonine antibodies could implicate the YTFT

sequence as the site of phosphorylation.

The proximity of the YTFT sequence to the predicted carboxy-terminal “claw”

could suggest that any phosphorylation found in that particular area would relate to target
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recognition, but could also be the result of the Serine/Threonine kinase activity that has
been found previously in eukaryotic phytochromes!*. The creation of phospho-mimic
(Y/T—D) or phospho-null (Y/T—F/A) mutations at each residue in the YTFT sequence
would need to be performed in order to confirm that the YTFT sequence is the site of
phosphorylation. Also, any phenotypic changes witnessed in the phospho-mutant lines
would give valuable insight into the modification on the LRBs that may regulate the red

light signaling pathway.

With a lack of in vivo evidence to support or definitively reject phosphorylation as
a modification present on the AtLRB proteins using the phospho-shift assay or by
immunoblot analysis of purified LRB2 proteins using a phosphoserine antibody, no

overall conclusion could be drawn about the phosphorylation state of the AtLRBs.

THE INTERACTION BETWEEN LRB1 AND HISTONE-LYSINE N-
METHYLTRANSFERASE EZA1 SHOULD BE INVESTIGATED FURTHER

Ubiquitin plays a large role in transcriptional regulation®. The ubiquitination of
histone proteins can have inhibitory effects on transcription, such as preventing
elongation of a transcript from occurring, preventing RNA polymerase from reaching
promoters, recruiting repressive factors, or blocking histone-methyltransferases from
initiating transcription by methylating histones®. However, ubiquitination on a different
histone protein can provide a binding site for histone-methyltransferases, prevent DNA
compaction, provide access to promoter regions for RNA polymerase through steric

hindrance, or repress the expression of pro-oncogenes'®. Additionally, E3 ligase
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complexes can directly target transcription factors bound to DNA, RNA-binding proteins,

or histone-methyltransferases for degradation via the 26S proteasome!®?,

The AtLRBs are able to interact with the coiled-coil domain of the transcriptional
activator protein FRI*', as well as the basic Helix-Loop-Helix transcription factor protein
PIF3%®, Previous unpublished experimentation performed by Dr. Christians revealed that
AtLRBL1 is able to interact with histone-lysine N-methyltransferase EZAL (also known as
SWINGER (SWN), CURLY LEAF-LIKE 1, or SET DOMAIN GROUP 10 (SET10)).
EZA1 helps to control Flowering Locus C (FLC) expression during and after
vernalization®*. While FRI is responsible for increasing FLC transcript levels and
suppressing flowering until after vernalization®, EZA1 down-regulates FLC expression
after prolonged exposure to the cold®, working against FRI and FLC to allow flowering
to occur. Further investigation into the interactions between EZA1 and the LRBs could
help to unlock the complex and growing role that the LRBs play in regulating

vernalization in addition to red light response in Arabidopsis.
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VI. MATERIALS & METHODS

Protein BLAST, LRB Sequence Alignments, and Phylogenetic Analysis

The UniProtkKB BLAST program® was used to identify homologous LRB
proteins. The entry for LRB2 in Arabidopsis thaliana (UniProtKB AC: Q9FPW6) was
used to probe the UniProtKB Plant database for proteins containing regions of local
sequence similarity. Using a BLOSUM®62 matrix, an expectation value threshold of 10,
and filtering for low complexity regions, the BLAST presented 641 proteins that shared
local sequence similarity with the LRBs ranging from 99% to 27%. Closely-related LRB
homologs were chosen based on overall sequence conservation and lack of gaps in the
alignment, while the homologous proteins in some additional plant species were chosen

due to genetic variation.

A multiple sequence alignment was created with homologous LRB protein
sequences from Arabidopsis thaliana (ARATH), Arabidopsis lyrata (ARALL), Brassica
pekinensis (BRARP), Citrus clementina (CICLE), Populus trichocarpa (POPTR), Prunus
persica (PRUPE), Ricinus communis (RICCO), Capsella rubella (CARUB), Glycine max
(GLYMA), Oryza sativa subsp. japonica (ORYSJ), Zea mays (MAIZE), Picea sitchensis
(PICSI), Physcomitrella patens (PHYPA), and Selaginella moellendorffii (SELML) using

the default settings of the multiple sequence alignment tool Expresso®®.

Phylogenetic analysis was performed on the same homologous LRB sequences
using the One Click phylogeny analysis tool at Phylogeny.fr®8, which is designed to

perform robust phylogenetic analysis for non-specialists®®.
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Refining the Homologous LRB Multiple Sequence Alignment

The MSA of homologous LRB proteins was refined by removing protein
sequences that deviated substantially from AtLRB2. LRBC_BRARP was removed for
containing large gaps in the total protein sequence. The pseudogenes LRB3_ARATH,
LRBC_ARALL, and LRBC_CARUB were removed, as they contained multiple
deviations from the other LRB sequence. LRBB_RICCO was removed for containing a
large insertion in the carboxy-terminal portion of its protein sequence. The bryophytes
(LRB_PHYPA) and lycophytes (LRB_SELML) were removed, as the amino-terminal
LRB sequences for these proteins contained very little conservation at the LL region.
Diverging LRB proteins, as determined by phylogenetic analysis, were also removed, but
only when more than one copy of the LRBs were found in an organism, resulting in the
removal of LRBA_GLYMA, LRBC_CICLE, LRBB_PRUPE, LRBC POPTR,

LRBD POPTR, LRBB_BRARP, LRBB_RICCO, LRBB_ORYSJ, LRBC_MAIZE,
LRBE_MAIZE, LRBD_MAIZE, and LRBF_MAIZE. Finally, LRBB_CICLE was

removed, as it was found to be an identical copy of LRBA_CICLE.

Alignment of the CL and LL Sequences with Cul®t and Rbx'“- Sequences

The alignment of Cull and Cul2 proteins with the CL motif sequence of each of
the AtLRB proteins (amino acids 34-61 of AtLRB2) was found using a BLOSUM90
matrix of the EMBOSS pairwise sequence alignment tool Matcher®8¢, Additionally,
homologous Cull and Cul2 were found using a UniProtKB protein BLAST®* search of
AtCull and AtCul2, pulling out any full-length Cullin proteins that were found in the

other 13 plant species that were used. An alignment of these Cullin sequences was

118



performed using the default settings of the MSA tool Expresso®® was used to determine
the overall alignment of Cullin at the area associated with the CL region of the LRBs, and
this short region was then aligned with the shortened CL region using default Expresso®®
settings. Each of the alignments were also visualized using the program MEME

SUITE®,

Similarly, an alignment of RING-box 1 (Rbx1) proteins in Arabidopsis thaliana
with the Linker-Like sequence of LRB proteins (amino acids 62-89 of AtLRB2) was
found using a BLOSUMB90 matrix of the pairwise sequence alignment tool Matcher8>8°,
Homologous Rbx1 proteins were found using a UniProtkB protein BLAST®* search of
AtRbx1, and any full-length Rbx1 proteins that were found in the other 13 plant species
that were used. The homologous Rbx1 proteins were aligned using the multiple sequence
alignment tool Expresso®. The short region with similarity to the LL region was then
aligned with the actual LL region of the LRBs using default Expresso settings. Both of

the multiple sequence alignments were visualized using the program MEME SUITE®,

Structural Prediction of the LRB Proteins in Arabidopsis

Phyre2° predictive protein modeling software was used to create each model of
the LRB proteins. The models were created using the intensive setting, allowing the use
of multiple templates to be used to cover the full protein sequence length. The AtLRB2
models produced was determined to be more reliable, as the models for AtLRB1 and
AtLRB3 had a smaller amount of homologous template coverage. A QMEAN structural
analysis was also used to assess the quality of the two AtLRB2 protein models, with

AtLRB2A being chosen as the more reliable model between the two. All structures were
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displayed using POLYVIEW-3D, a free online protein structure rendering program, or

by using the VMD program*!,

Modeling the Conservation of LRB Sequence

Sequence conservation of full-length LRB2 was projected onto the predicted
model AtLRB2A using the ConSurf’” program (http://consurf.tau.ac.il/). ConSurf was
able to determine conservation by building a MSA from 3 iterations of CSI-BLAST with
a 0.0001 E-value cutoff using the UniProt protein database. Homologs collected
contained sequence identity between 98% and 45%, and these sequences were aligned
using Expresso. The calculation method used for the rate of evolution at each site in the
MSA was the Bayesian method, with the default JTT model used as the evolutionary

substitution model.

To determine conservation of the region amino-terminal to the BTB domain
(residues 1-144), the PDB file for AtLRB2A was modified to include only the amino-
terminal domain. ConSurf was then used to build a MSA from 3 iterations of CSI-
BLAST searches with a 0.0001 E-value cutoff using the UniProt protein database.
Homologs collected contained sequence identity between 98% and 35%, and these
sequences were aligned using Expresso. The calculation method used for the rate of
evolution at each site in the MSA was the Bayesian method, with the default JTT model

used as the evolutionary substitution model.

120



Displaying the Cul®- and Rbx* Regions on Crystalized CRL Complexes

The multiple sequence alignments that were created used AtCull (UniProtkKB AC:
Q94AHG6-1), HsCull (UniProtKB AC: Q13616-1) and HsCul4A (UniProtKB AC:
Q13619-1) for the Cullin alignments, and AtRbx1A (UniProtkKB AC: Q940X7-1) with
HsRbx1 (UniProtKB AC: P62877-1) to align Rbx1. The full sequence for each of these
proteins can be found using the UniProtKB ACC numbers given in parenthesis. Default
Expresso>® settings were used to create both alignments. The three PDB structures that
were used were 1LDK?®, 4P50%°, and 2HYE®. Modeller®” was used to create a
homology model of HsCull and HsRbx1 for the PDB structure 4P50, as the original
PDB structure contained multiple gaps in vital portions of both structures. By creating
two homology models that could be aligned with the original structure, 4P50 was able to
be used to model the Cul®" and Rbx'" regions after neddylation had occurred. The
updated structures were then aligned to 4P50 using the MultiSeq® option on VMD*,

VMD was also used to visualize the other two structures.

Determining Phosphorylation Sites Using In Silico Analysis

The Arabidopsis Protein Phosphorylation Site Database’®® software PhosPhAt
4.0 was used to find any known or highly-suggestive phosphorylation motifs present on
AtLRB1 and AtLRB2. To achieve this, each of the LRB protein sequences that were used
to create the edited MSA previously were individually tested using the PhosPhAt 4.0
software to find any potential regions where phosphorylation could occur. This
information was then recorded on the full multiple sequence alignment of the

homologous LRB proteins as a means to isolate any overall regions of phosphorylation
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conservation. Phosphorylation sites were then modeled using the AtLRB2A structure and

visualized using the anaglyphic stereo option on VMD*!,

General Planting and Growth Procedures of Arabidopsis thaliana Seedlings

All Arabidopsis thaliana seedlings were surface sterilized using 70% ethanol and
3% bleach. Seeds were grown on plates of Murashige and Skoog Basal Media with
Sucrose and Agar (Sigma, cat# M9274-10L), pH=5.7, which were covered with a layer of
sterile cellophane. Incubation of the plated seedlings occurred at 21.0° C under different

light conditions dependent on experimental requirements.

General SDS-PAGE Procedure

SDS-PAGE stacking and resolving gel recipes were obtained using the
polyacrylamide gel recipe calculator provided at the Cytographica website
(http://www.cytographica.com/lab/acryl2.html). Resolving gels were made using 18mQ
water, 40% acrylamide (BioRad, cat# 161-0146), 2.0M Tris (pH=8.8), 10% SDS, 10%
APS, and TEMED (Sigma, cas# 110-18-9). Stacking gels were made using 0.5M Tris
(pH=6.8) instead of 2.0M Tris. Isopropanol was used to flatten the resolving gel and
allow for complete polymerization. Gels were run on a Mini-PROTEAN Tetra Vertical
Electrophoresis Cell (BioRad, product #1658006FC) in 1xTris/Glycine/SDS buffer.

Current, voltage, and running time varied for each experiment.
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General Western Transfer Procedure

Proteins separated using SDS-PAGE were transferred from a gel onto a
membrane to prepare for Western blotting. An Immobilon-FL membrane (cat#
IPFL10100, pore size 0.45um) was first activated in 100% methanol for two minutes,
then placed in 1xPBS for ten minutes. The SDS-PAGE gel was then covered with the
Immobilon-FL membrane, sandwiched between two sheets of Whatman paper, and
placed into the Mini-PROTEAN Tetra Vertical Western Transfer Cell. Western transfer
was performed in 1x Tris/Glycine along with an icepack. Current, voltage, and time
varied for each experiment. After transfer, membranes were washed in 1xXPBS for 5
minutes, then dried for one hour at 37°C. Before blocking, membranes were reactivated
in 100% methanol for one minute, placed in 1xPBS for ten minutes, and then placed in a
blocking solution containing 50% Odyssey Blocking Buffer (Licor, cat #T1753) and 50%

1xPBS. Blocking took place for one hour with agitation at room temperature.

A-Phosphatase Treatment and Phospho-Shift Assay

Transgenic Irb1-1 Irb2-1 plants containing a GFP-LRB2 transgene? were grown in
8 hours of white light, left in darkness for 2 days, exposed to 2 days of red light, then an
additional 2 days of far-red light. Wild-type Col-0 control plants were grown in darkness.
Seedlings were ground up in protein extraction buffer containing 1200mM HEPES-KOH
(RPI, cas# 7365-45-9), 5% glycerol (EMD, cas# 56-81-5), 0.5% PVP (Acros Organics,
cas# 9003-39-8), ImM PMSF (Sigma, cas# 329-98-6), and 1x Protease Inhibitor Cocktail
(Sigma, P9599-1mL) adjusted to pH=7.53. Extraction buffer was added at a 1:1 ratio of

grams of tissue to milliliters of extraction buffer and spun down for 2 minutes at
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10,000RCF at room temperature. Protein extracts were then treated with an A-
phosphatase (New England BioLabs, #B0O7615), an inhibitor cocktail containing 500mM
EDTA (pH=8) and 500mM NaF (Sigma-Aldrich, cas# 7681-49-4), both the A-
phosphatase and the inhibitor cocktail, or using neither the phosphatase nor the inhibitor
cocktail. Treatment lasted for fifteen minutes in a water bath at 30°C before the addition

of a phosphatase-stopping cocktail (2.5% SDS, 250mM EDTA, 250mM NaF).

Samples were boiled in 300uL SDS Sample Buffer (26mM Tris, 4.16% Glycerol,
1.66% SDS, 0.02% Bromophenol Blue, 10%ME) for ten minutes before proteins were
separated using SDS-PAGE (4% stacking, 8% resolving gels). Proteins were then
transferred onto an Immobilon-FL membrane, and subsequent Western blotting utilized
rabbit anti-GFP primary antibodies (Abcam ab290, 1:4000 dilution) and goat anti-rabbit
secondary antibodies (Licor IRDye800CW, 1:8000 dilution). Blot was visualized using

the 800nm channels on the Odyssey FC machine (Licor).

MLN4924 Treatment and Immunoblotting

Seeds were grown for 4 days in darkness as previously described, then the
cellophane was transferred to plates containing 8mLs of MS agar (pH=5.7) along with
either 25.6uL of 15.6mM MLN4924 (ChemieTek, cat# CT-M4924) stock solution for a
concentration of 50uM MLN4924 or 25.6uLs of DMSO (Sigma, cas# 67-68-5). Seedlings
treated with the inhibitor for 4 days in either red light or remained in darkness. Seedlings
were prepared in a 1:1 ratio of denaturing buffer:tissue, with the denaturing buffer
containing 100mM MOPS (pH=7.6), 50mM Na Metabisulfite, 2% SDS, 10% glycerol,

and 4mM EDTA (pH=8). SDS sample buffer was added at a ratio of 0.5mL SDS sample
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buffer:1 gram of tissue before sample was boiled for 10 minutes and ground up using
clean pestles. Proteins were separated using SDS-PAGE and transferred onto an
Immobilon-FL membrane as previously described. Immunoblotting was performed using
rabbit polyclonal antibodies to GFP (Abcam290, 1:2000 dilution) and goat anti-rabbit
secondary antibodies (Licor IRDye800CW, 1:5000 dilution). Blot was visualized using

the 800nm channel on the Odyssey FC machine (Licor).

Immunoprecipitation and Immunoblotting

Seedlings were grown for 4 days in darkness then exposed to 4 additional days of
the specific light treatment (red, far-red, or darkness). Under a green safelight, samples
were ground in liquid nitrogen before adding a 1:1 ratio of pre-chilled Non-Denaturing
MOPs Buffer containing 100mM MOPs (pH=7.6), 50mM NaF (Sigma-Aldrich, cas#
7681-49-4), 150mM NaCl, 1% Triton X100, 1mM PMSF (Sigma, cas# 329-98-6),
Protease Inhibitors (Sigma, cat# P9599-1mL, added at 50uL inhibitor per 1mL sample),
10 uM Leupeptin (Sigma, cat# SLBL7867V), 0.3uM Aprotenin (Sigma, cat# SLBJ6925V),
and 15mM lodoacetimide (Sigma, cat# SLBJ8175V). Samples were boiled 10 minutes to
denature proteins, then ran through a cheese cloth and centrifuged at 13000 RCF for 10
minutes. Rabbit polyclonal antibody to GFP (Abcam290, 1:1750 dilution) was added to
the supernatant and the solution was left in the darkroom for two hours with agitation.
Solutions were treated with Pierce protein A/G magnetic beads (Pierce, prod# 88802) at
a rate of 18uL beads per 1mL supernatant and left overnight in darkness at 4°C. Beads
were collected using magnetism and washed thrice with non-denaturing MOPs buffer.

The beads were boiled for ten minutes in a 100uL solution containing a 66% non-
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denaturing MOPs buffer and 33% SDS sample buffer. Proteins were separated using
SDS-PAGE with a 10% resolving and 5% stacking gel. Immunoblotting for GFP-LRB2
was performed using rabbit polyclonal antibodies to GFP (Abcam290, 1:2000 dilution)
and goat anti-rabbit secondary antibodies (Licor IRDye800CW, 1:5000 dilution).
Immunoblotting for NEDDS utilized rabbit polyclonal antibodies to NEDD8 (Abcam
Ab139468, 1:1000 dilution) and goat anti-rabbit secondary antibodies (Licor
IRDye800CW, 1:5000). Immunoblotting for Phosphoserine residues was performed using
mouse anti-phosphoserine antibodies (BD Biosciences, 1:1000 dilution) and goat anti-

mouse secondary antibodies (Licor IRDye680LT, 1:5000 dilution).

Quantifying Immunoblot Signaling Intensity

Quantification values were obtained for each light treatment by using the Odyssey
FC Image Studio Lite 5.0 program® (Supplemental Figure 11). Quantification values
for each treatment were normalized to the wild-type lane in each blot to address any
differences in the exposure times of the two blots. After normalization, the ratio of

normalized band intensities for each light treatment sample was calculated.
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VIl. SUPPLEMENTAL INFORMATION

UniProtKB AC#

LRB Name

UniProtKB AC#

LRB Name

082343 | LRB1 ARATH BO9RCL7 | LRBB RICCO
Q9FPW6-1 | LRBZ ARATH* ROFMM2 | LRBA CARUB
004615 | LRB3 ARATH ROFV79 | LRBB CARUB
D7LSCO | LRBA ARALL ROFKO1 | LRBC CARUB
D7LDYO | LRBB_ ARALL I1MKP3 | LRBA GLYMA
D7M4Y3 | LRBC ARALL I1INCH4 | LRBB GLYMA
M4CGX6 | LRBA BRARP Q5Z9M6 | LRBA ORYSJ
M4C889 | LRBB_ BRARP Q6K229 | LRBB ORYSJ
M4CK17 | LRBC BRARP COHG55 | LRBA MAIZE
V4U2A9 | LRBA CICLE B6T8VY | LRBB MAIZE
V4UT7L7 | LRBB CICLE B4FHV1 | LRBC MAIZE
V4TS09 | LRBC CICLE K7v570 | LRBD MAIZE
BO9GQF7 | LRBA POPTR B7ZYR2 | LRBE MAIZE
BOI8T4 | LRBB _POPTR COP6IO | LRBF MAIZE
B9GX53 | LRBC POPTR AO9NUYS | LRBA PICSI
B9GKA4 | LRBD POPTR A9SYTS5 | LRBA PHYPA
M5XM81 | LRBA PRUPE A9S1Y2 | LRBB_ PHYPA
M5WCM9 | LRBB_PRUPE D8SJ32 | LRBA SELML
BO9RE12 | LRBA RICCO D8QNYO | LRBB SELML

Supplemental Figure 1: UniProt Accession Numbers for Homologous LRB Proteins

The UniProtKB Accession number (UniProtkKB AC) is given in bold on the left side of each
column. The right side of the column features the LRB name assigned to each of the LRB protein
homologues. The organism’s abbreviated name is separated from the assigned LRB name by an
underscore, with the abbreviated names listed below. LRB2_ARATH used the protein sequence
for Isoform 1 and is marked with an asterisk.

Species are abbreviated as ARATH (Arabidopsis thaliana), ARALL (Arabidopsis lyrata), BRARP
(Brassica pekinensis), CICLE (Citrus clementina), POPTR (Populus trichocarpa), PRUPE
(Prunus persica), RICCO (Ricinus communis), CARUB (Capsella rubella), GLYMA (Glycine
max), ORYSJ (Oryza sativa subsp. japonica), MAIZE (Zea mays), PICSI (Picea sitchensis),
PHYPA (Physcomitrella patens), and SELML (Selaginella moellendorffii).
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Supplemental Figure 2: Multiple Sequence Alignment of All LRB Protein Homologues

The MSA of all LRB protein homologues discovered using AtLRB2 as the query sequence to
perform a UniProtKB>**® protein BLAST. This alignment was ultimately used to create a
phylogenetic tree and to observe the regional conservation present in the amino-terminal region.
Proteins are abbreviated as listed in Supplemental Figure 1.
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Supplemental Figure 3: Alignments of AtLRB2 with BLAST Search Results
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A. Results of the WU-BLAST?2 search using the first conserved region of AtLRB2. UniProtKB AC,
protein name, alignment, E-value, percent identity, and percent similarity are provided for each

match.

B. Results of the WU-BLAST2 search using the second conserved region of AtLRB2. UniProtKB
AC, protein name, alignment, E-value, percent identity, and percent similarity are provided for each

match.

C. A MSA of the CL region of AtLRB1/2 with the Cul®* region of all four Cullin proteins found in
Arabidopsis thaliana. Residues with a high overall conservation (above 66%) are shown
highlighted in black, while residues that are mostly conserved and have consensus due to residue
similarity (above 66%) are shown highlighted in grey.
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Supplemental Figure 4: Refined MSA of Homologous LRB Proteins

A refined MSA that excludes LRB homologues that deviate substantially in the overall alignment.
Sequences that contained large insertions or deletions were also excluded from the alignment. If all
homologues for a particular plant species deviated substantially, the LRB homologue that deviated
the least was used in the alignment. If two protein sequences were found to be identical, as was
found with LRBA_CICLE and LRBB_CICLE, then the second protein sequence was removed from
the alignment. Residues with a high overall conservation (above 70%) are shown highlighted in
black, while residues that are mostly conserved and have consensus due to residue similarity (above
70%) are shown highlighted in grey.
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Supplemental Figure 5: Multiple Sequence Alignment of AtCull and AtCul2 Homologs

Proteins homologous to AtCul1/2 were aligned using default Expresso®’ settings. The region of the
alignment associated with the CL region of the LRBs is marked, with the site of neddylation also
marked with an asterisk and highlighted in red. The sequence for CULA_BRARP (highlighted in
blue) was truncated at residue 767, as it contained a 219-residue carboxy-terminal extension.
Residues with a high overall conservation (above 70%) are shown highlighted in black, while
residues that are mostly conserved and have consensus due to residue similarity (above 70%) are
shown highlighted in grey. Gaps in the alignment are denoted with a dash (-).
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Supplemental Figure 7: AtLRB Phyre2 Models Displayed by Percent Confidence

A figure showing the (A) AtLRB2A, (B) AtLRB2B, (C) AtLRB1, and (D) AtLRB3 models created
using the intensive mode of the protein homology modeling program Phyre2%. Each model was
developed by combining and overlapping the known structural templates of multiple protein
structures found in PDB® (Supplemental Table 1). Models are colored based on percent
confidence given by Phyre27?, with residues that are modeled with >90% confidence colored in
green, while residues modeled using de novo methods are colored in red. Protein images were
created using POLYVIEW-3D'C,
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Supplemental Figure 8: QMEAN Structural Analysis of AtLRB2 Models

Z-score analysis of the (A.) AtLRB2A and (B.) AtLRB2B homology models that were created on
February 9™, 2015 and April 7%, 2015, respectively, using Phyre2%,

The amount of residue error present in the (C.)AtLRB2A and (D.) AtLRB2B homology models
that were created using Phyre2%®. The plot on the right displays the amount of residue error
present for each protein sequence, with a higher predicted error being associated with higher
probability of region unreliability.

The QMEAN analysis™"* for each model has a plot on the left depicting the relative Z-score for
the overall QMEAN (a linear combination of the six following scores), Cp interactions score
(interaction potentials determined by the secondary-structure-specific interactions made by the Cp
atoms®), all-atom interactions score (interaction potentials determined by the secondary-
structure-specific interactions made by any atoms in the protein), the solvation score (the potential
for certain residue types to have a specific degree of exposure to the solvent when not buried), and
the extended torsion potential (the torsion angle over three residues in order to test the propensity
for certain amino acids to conform to a certain local geometries compared to other residues). The
SSE agreement is scored by the difference between the predicted secondary structures of the model
(using the PSIPRED web server®) and the calculated secondary structures of the model (using
DSSP, which contains all secondary structure alignments for all proteins in PDB®). The ACC
agreement compares the predicted solvent accessibility that is determined using the ACCpro
solvent accessibility prediction server® and the calculated solvent accessibility determined by
DSSP®. A higher Z-score is associated with a better structural model, as the Z-score estimates the
amount of ‘nativeness’ in a model, presenting the overall likelihood of the model being comparable
to reference structures that have already been crystalized.
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Supplemental Figure 9: Comparative Structural Modeling of the BTB/BACK Domains

A. Overlay of the BTB domain from the predicted LRB2 model AtLRB2A (blue) with the known
crystal structure of the BTB domain of the Kelch-like Protein 11 (red, PDB ID: 4AP2%) using
MultiSeq®. Model is labeled according to the fold topology diagram described in Figure 5. A box
was used to show the region of the BTB domain containing major differences in structure.

B. Sequence alignment of the BTB domains from 4AP2 and AtLRB2 (residues 143-190).
Secondary structure for both proteins is shown, with fold topology labeled as shown in A.

C. Overall structural alignment of the BTB, 3-Box, and BACK domains for AtLRB2A (residues
126-380) and 4AP2. The BTB domain is enclosed within the dotted oval.
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M-RGAADNTDLFDPK-IQMDS———-DESRHGSES - ——-DGDEFGFAFNDSNESDRLLRIEIM
M-RGS-NNTDLFDPK-TEMDS---TFSRHGESP-—-—-EGDFGFAFNDSNFSDRLLRIETL
M-K-D-FNSDLEFDPG-MVMDSSSSDYSRSASES--—-DADFGFAFNDSNESDRILRIEIM
—————————————————— MDP---DFSRA--SR--—-GPRIFAFAFNSVNESDRVLRIEIV
****************** MDP---DFSPA--SG--—-GPSFEFAFNSVNESDRVLRIEIV
—————————————————— MDP---DFSPA--5G--—-GPSFEFAFNSVNFSDRVLQIETIV
G

AEGCTSIADWARHRKRRREDNKKDNG——VAISDIVACAEEQILEDNNQ
SEVEGCTSIADWARHRKRRREDIKKESG--VTISDIVACPEEQILTD-EQ
S DVEGCTSIADWARHRKRRREDIKKESGG-VTISDIVACPEEQILTD-EQ

S DGEGCTSTADWARDRKRRREDIKKDN-———~— GLDLSACPEEQIL---NQ
GGSAE---NRADGEGCTSIIDWARHRKRRREDIKKDINN-VRAGDLSVGAEEQILGS-IQ
GGSAE---SRADGEGCTSIIDWARHRKRRREDIKKDNN-——-—-——-—— NGAEEQILGS-NQ
G PE———SRPDEEACTSIADWARHRKRRREDIKKEN ————— IPDPSECPEEQILND-NQ
DERPD---NRCDGEGCNS IADWNARHRKRRREDIKKDNA--V---EVSAGAEEQIL-—--NQ

GGPED---SREDVEGCTSIADWARHRKRRREDIKKESG--VTISDIVACPEEQILTD-EQ
GGPEID-——-SREDGEGCTS IADWARHRKRRREDNKKDNG—--VATSDIVACAEEQILTDNNQ
GDPVE-—-ARPDEEGCTTIADWARHRKRRREDIKKDN-———— VVDLTLLPDEQILNE-NQ
AGDDAAGAKGAAGEGCSSLADWAHQRKRRREELRREKESGK—HTDLETCKV —————————
AGDDALGAKGABMGEGCSSLADWACHRKRRREELRRDKESRKYMPDPANCKV———————-—
AGDDALGAKGARBGEGCSSLADWACHRKRRREELRRDKESRKYMPDPANCKV——————=-—

H 18 K
PDMDDAPGGDNLDDE—GEAMVEE——ALHGD————DD—ASEEPNWGlDCSTVVRVKELHLS
PDMDGCPGGENPDDEGGEAMVEE——ALEGD————EEETSEEPNWGMDCSTVVRVKELHIS
PDMDGCPGGENLDDEGGEAMVEE--ALRIGD--—-EEETSEEPNWGMDCSTVVRVKELHIS
PDMDDGPGGDNLDDE—GEAMVEE——AL“GD————DD—ASEEPNWGIDCSTVVRVKELHIS
PDMDGCPGGDNLDDE—GEAMIEE——SLLGD————EEDTTEEPSWGMDCSKVVRVIELHIS

PDMDDCVGCENQDEE-VEAMIEG SGD--—-EAANGNESSWSMDCSTVVRVKTLHIS
PDMDDCVGCDNQDEE-AEAMVEG SGD****EAADGEESSWSMDCSTVVRVKTLHIS
PDMDDCVVGDNQDEE-GEAMVEV-—-§PSDD--—--EAGDGNESSWSMDCSTVVRVKTLHIS
PDMDDCEGCENQDEE—AVAMVEE——!PSGD————EAANENDSDWGMDCSTVVRVKTLHIS

PDMEDCVGCENQDED—AVAMIEE——PPEGD————EAVDGNESTWSMDCSTVVRVKTLHIS
PDMDGCPGGENIDDE*GEAMVEEEEALEGD****EDETSSEPNWGMDCSTVVRVKELHIS

PDMDDCPGGDNLDDE-GEAMVEE--ALBGD--—-DD-VSSEPNWGID-SSVVRVKELHIS
PDMDDFVPSENQDRD—AVAMVRE——PPEGD————EAANSNDSNWNMDCSAVVRVRTLHTS
—EAEECDTYEENNEE-PVAMIEE--BPPDIGODGEDGDSCDSSWSMECTQVLRVKSIYIS
—EAEECDAYEEG-NE-PVAMIEE PDIEADGEDGKSSDSECSMECTQVLRVKSMYIS
—EAEECDAYEEG—NE—PVAMIEE——EPPDIEADGEDGKSSDSECSMECTQVLRVKSMYIS
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PHOS SITE:
LRB1 ARATH
LRB2_ARATH
LRBA ARALL
LRBE_ARALL
TL.REA BRARP
LRBA_CICLE
LRBA POPTR
TLRBB_POPTR
TLREA PRUPE
LRBA RICCO
LRBA CARUB
LREE_CARUB
LRBB_GLYMA
LRBA ORYSJ
LRBA MATIZE
LRBB_MATIZE

PHOS SITE:
LRB1 ARATH
LRBZ ARATH
LRBA_ARALL
LRBB_ARALL
LRBA BRARP
TRBA_CTCLE
LRBA POPTR
LRBB POPTR
LRBA PRUPE
LRBA RICCO
LRBA CARUB
LRBB CARUB
TLREB GLYMA
TRBA_ORYSJ
LRBA_MATZE
LRBB MAIZE

PHOS SITE:
LRB1 ARATH
LRB2_ARATH
LRBA ARALL
TREB_ARALT
LREBA BRARP
LRBA CICLE
LREA POPTR
LRBB_POPTR
LRBA PRUPE
LRBA RICCO
LREA CARUB
LREB CARUB
TRBE_GLYMA
TRBA ORYSJ
LRBA MAIZE
TRBB MATZE

158
160
161
158
157
152
159
151
160
152
161
157
157
140
140
140

218
220
221
218
217
212
219
211
220
212
221
217
217
200
200
200

278
280
281
278
277
272
279
271
280
272
281
277
277
260
260
260

L

EPILAAKSPFFYKLFSNGMRESEQRHVTLRISAQEEGALMELLNFMYSNSLSVTTAPALL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELLNFMYSNAVSVTTAPALL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAATIMELLNFMY SNAVSVTTAPALL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRISAQEEGALMELLNFMYSNSLSVTTAPALL
SPTLAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELLNFMYSNVVSVATAPALL
SPILAAKSPFFYKLFSNGMKESEQRHVALRINASEEAALMELLNFMYSNTLSTTAAPALL
SPILAAKSPFFYKLFSNGMRESEQRHYTLRINASEEAAIMELLNEMY SNTLTASQAFPQLL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELMNEFMY SNTLTASQAFQLL
SPTLAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELLNFMYRNSLTTTSAPALL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELLNFMY SNSLSTNTAPGLL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELLNFMYSNAVSVTTAPALL
SPILAAKSPFFYKLFSNGMRESEQRHVTLRISAQEEGALMELLNFMYSNSLSVTTAPGLL
SPTLAAKSPFFYKLFSNGMRESEQRHVTLRINASEEAALMELINFMYSNTLSTITSPPALL
SAILAAESPFFYKLFSNGMKESDORHATLRITASEENALMELLSEFMY SGKLTTNQPTLLL
SATLAAKSPFFYKLFSNGMKESDQRHATLRITASEENALMELLSFMYSGKLTTNQPTVLL
SATLAAKSPFFYKLFSNGMKESDQRHATLRITASEENALMELLSFMYSGKLTTNQPTVLL

] N
DVLMAADKFEVASCMRECSRLLRNMPMTPDSALLY LELPSSVLMAEAVQPLTDAAKQFLA
DVLMAADKFEVASCMRMCSRLLRNMPMTPESALLYLELPSSVLMAKAVOPLTDAAKQFLA
DVL.MAADKFEVASCMRECSRITRNMPMTPESALLYLELPSSVLMAKAVQPT,TDARKQFTLA
DVLMAADKFEVASCMRMCSRLLRNMPMTPDSALLYLELPSSVLMAEAVOPT, TDAAKQOFLA
DVL.MAADKFEVASCMRECSRITLRNMPMTPESALLYLELESSVLMAKAVQPT, TDARKQFTL.A
DVL.MAADKFEVASCMRMCSRITLRNMPMT PESALLYLELPSSVLMGEAVQPT, TDAARQYTA
DVLMAADKFEVASCMRMCSROLRNLPMKPESALLYLELPSSVLMAEAVOPLTDAAKQYLA
DVLMAADKFEVASCMRMCSROLRNLSMTPESALLYLELPSSVLMAEAVQPLTDARKQYLA
DVL.MAADKFEVASCMRMCSRITLRNMPMTPESALLYLELPSSVLMAEAVQAT, TDARKQYTA
DVLMAADKFEVASCMRMCSROLRNMSMTPESALLYLELPSSVLMAEAVOPLTDAAKQYLA
DVLMAADKFEVASCMRMCSRLLRNMSMTPESALLY LELPSSVLMAKAVQPLTDAAKQFLA
DVLMAADKFEVASCMRMCSROLRNMPMTPDSALLYLELPSSVLMAEAVOPLTDAAKQFLA
DVL.MAADKFEVASCMRECSRILRNT PMTPESALLYLELPSSVLMADAVQPT, TDARKQYTA

DILMIADKFEVVSCMRHCSQLLRSLPMTTESALLYLDLPSSISMAAAVQPLTDTAKAFLA
DILMIADKFEVGSCMRHCSOLLRNLPMTTESALLYLDLPSSISMAAAVQPLTDTAKEFLA
DILMIADKFEVGSCMRHCSQLLRNLPMTTESALLYLDLPSSISMAAAVQPLTDTAKEFLA

ol

SRYKDLTKEHDEVMALPLAGLEALLSSDULQLASEDAVYDEVLKWARGQESSLEDRRELL
ARYKDLTKFHEEVMSLPLAGLEALLSSDELQLASEDAVYDElLKWARAQEPCLEERRElL
ARYKDITKFHEEVMTLPLAGIEAILSSDDLQIASEDAVYDFILKWARAQMPCLEERREIL
SRYKDITKFHDEVMALPLAGIEAILSSDDLOTASEDAVYDFVLKWARG SLEDRREIL
ARYKDITKFQEEVMSLPLAGIEAILSSDDLQIASEDAVYDFILKWARAQEPSLEERREIL
SRYKDMTKFQDEVMALPLAGVEAILSSDDLQIASEDAVYDFVLKWARAQEPRVEERREVL
ARYKDMTKFQEEVMALPLAGIEAILSSDDLQVASEDAVYDFVLKWARAQEPRLEERREVL
ARYKDMTKFQEEVMALPLAGIEAILSSDDLQVASEDAVYDFVLKWARAQEPKLEERREVL
ARYKDISKFIEEVMALPLAGIEAIVSSDELQVASEDAVYDFVLKWSRTHHPKLEERREIL
SRYRDMTKYQEEVMSLPLAGTEATPSSDDLQVASEDAVYDFVPKWARTQEPKLEERREVR
ARYKDITKFHEEVLSLPLAGIEATILSSDDLOIASEDAVYDEFILKWARA
SRYKDITKFHDEVMALPLAGIEATILSSDDLOIASEDAVYDEFVLEKWARGOMS SLEDRRETL
SRYKDITKFQEEVMGLPLAGIEATLSSDELOVASEDAVYDFVLKWVRTQYPKLEERREVL
NKYKDLTKLQDEAMNIPLAGIEAILWSNDLQVASEDAIYDFVIKWARSQEPKLEERREIL
NKYKDLTKFQDEAMNIPLAGIEAILWSNDLQVASEDAIYDFMIKWARAQEPKLEERREIL
NKYKDLTKFQDEAMNIPLAGIEAILWSNDLQVASEDAIYDFMIKWARAQEPKLEERREIL
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PHOS SITE:
LRB1 ARATH
LRBZ ARATH
LRBA ARALL
LRBB_ARALL
LRBA BRARP
LRBA CICLE
LRBA POPTR
LRBB_POPTR
LRBA_ PRUPE
LRBA RICCC
LRBA CARUB
LRBB_CARUB
LRBB_GLYMA
LRBA ORYSJ
LRBA MATZE
LRBB MATZE

PHOS SITE:
LRB1 ARATH
LRB2_ARATH
LRBA ARALL
LRBB_ARALL
LRBA_BRARP
LRBA CICLE
LRBA POPTR
LRBB POPTR
LRBA_PRUPFE.
LRBA RICCC
LRBA_CARUE
LRBB_CARUB
LRBB GLYMA
LRBA ORYSJ
LRBA_MATZF
LRBB_MAIZE

PHOS SITE:
LRB1 ARATH
LRB2 ARATH
LRBA ARALL
LRBB ARALL
LRBA ERARP
LRBA CICLE
LRBA POPTR
LREB_POPTR
LRBA PRUPE
LRBA RICCC
LRBA CARUB
LRBB CARUE
LEBB GLYMA
LRBA ORYSJ
LRBA MAIZE
LRBB MATZE

338
340
341
338
337
332
338
331
340
332
341
337
337
320
320
320

398
400
401
398
397
392
399
391
400
392
401
397
396
378
378
378

458
460
461
458
457
452
459
451
460
452
461
457
456
438
438
438

Q
GSRLALYIRFPYMTCRKLKKVLTCSDFEHEVASKQVLEALFFKAEAPHROQRILAAEGSDS
GSRLALSIRFPFMTCREKLKKVLTCSDFEHETASKLVLEALFFKAEAPHRORELASEESAS
GSRLALSIRFPFMTCRKLKKVLTCSDFEHEIASKLVLEALFFKAEAPHRQRELASEESAS
GSRLALYIRFPYMTCRKLKKVLTCSDFEHEVASKQVLEALFFKAEAPHRORILAAEGSGS
GSRILALSIRFPFMTCRKLKKVLTCSDEFDHEIASKLVLEALFFKAEAPHROREBILAAEESAS
GSRLARFIRFPHMTCRKLKKVLTCNDFDHDVASKLVLEALFFKAEAPHRORILAAEESVT
GARLARYIRFPYMTCRKLKKVLTCTDFEHDAASKLVLEALFFKGEPPHRORWLAAEESAT
GARLARY IRFPYMTCREKLKKVLTCTDFEHDAASKLVLEALFFKGEPPHRORMLAAEESAT
GSRLARYIRFPYMTCRKLKKVLTCNDFDHDAASKLVLEALFFKAEAPHRORILAAEESAT
GARLARFIRFPYMTCRKLKKVLTCSDFDHDVASKLVLEALFFKAEAPHRORSLAAEESAS
GSRLALSIRFPFMTCRKLKKVLTCSDEFDHEIASKLVLEALFFRAEAPHRORSLAAEETAS
GSRLALY IRFPYMTCRKLKKVLTCSDFEHEVASKQVLEALFFKAEAPHRORILAGEGSDS
GTRLARLIRFPYMTCRKLEKKVLTCNDFDHDVASKLVLEALFFKAEAPHRORILAAE-SAS
GTRLLPLVRFCHMTCRKLRKVLACNDLDHEQATKCVTEALLYKADAPHRQRELAADV——L
GTRLLPLVRFCHMTCRKLREKVIACSDLDHEQATKCVTEALLYKADAPHRORALAADV--M
GTRLLPLVRFCHMTCRKLREKVIACSDLDHEQATKCVTEALLYKADAPHRORALAADV--M

MNRRFIERAYKYRPVEKVVEFELPRPOCVVYLDLKREECAGLFPSGRVY SQAFHLGGOGEF
LNRRLIERAYRKYRPVKVVEFELPRPOCVVYLDLKREECGGLFPSGRVY SQAFHLGGQGEF
LNRRLIERAYRYRPVKVVEFELPRPOQCVVYLDLKREECGGLEPSGRVY SQAFHLGGQGEE
LNRRFIFERAYKYRPVKVVEFELPRPOQCVVYLDLKREECAGLFLSGRVYSQAFHLGGOGEF
VNRRLTIERAYKYRPVEVVEFELPRPOCVVYLDLEKREECAGLFPSGRVY SQAFHLGGOGEF
LNRREVERAYKYRPVEVVEFERPRQQCVVYLDLKREECENLEPSGRVY SOAFHLGGQGEF
LNRREVERAYKYRPVKVVEFELPROOCVVYLDLKREECVNLEFPSGRVY SQAFHLGGOGEF
SNRRFVERAYKYRPVEVVEFELPROOCVVYLDLKREECANLIFPSGRVY SQAFTHLGGOGFF
LNRREVERAYKYRPVEVVEFDLPROOCVVYLDLKREECANLFPSGRVY SOAFHLGGOGEF
LNRREVERAYKYRPVEVVEFELPRQQCVVYLDLKREECANLEPSGRVY SOAFHLGGQGEF
LNRRLIFERAYKYRPVKVVEFELPRPOQCVVYLDLKREECLGLFPSGRVY SOAFHLGGOGE'F
MNRRFIERAYKYRPVEVVEFELPRPOCVVYLDLKREECAGLFPSGRVYSQAFHLGGOGEE
FNRLFVERAYKYRPVKVVEFELPROOQCVVYLDLKREECTNLFPSGRVY SQAFHLGGQGETE
TCRKYAERAYKYRPLKVVEFDRPYPQCIAYLDLKREECSRLEFPSGRIYSQAFHLAGQOGEF
TCRKYAFERAYKYRPLKVVEFDRPYROQCIAYLDLKREECSRLFPSGRIYSQAFHLAGOGEF
TCRKYAERAYKYRPLKVVEFDRPYROQCIAYLDLKREECSRLEFPSGRIYSQAFHLAGQOGEF

T i
LSAHCNMDQQSSFHCFGLFLGMQEKGAVSFGVDYEFAARDK?EKEE?VSKYKGNE%FEGG
LSAHCNMDQQSSFHCFGLFLGMOEKGSVSFGVDY EFBARSK- PAEDFTSKYKGNYTFHGG
LSAHCNMDGQSSFHCFGLFLGMQEKGSVSFGVDYEFEARSK-PAEDFI SKYKGNHTFHEGG
LSAHCNMDQQSSFHCFGLFLGMQEKGAVSFGVDYEFAARDKKSEEE Y VSKYKGNET FlGG
LSAHCNMDQQS SFHCFGLFLGMOEKGSVSFGVDYE FARSK-PSEEFT SKYKGNETFHGG
LSAHCNMDGQSSFHCFGLFLGMQEKGSVSFAVDYEFAARSK- PlEEFVSKYKGNHTFEGG
LSAHCNMDGQSSFHCFGTFL.GMOEKGSVSFAVDYEFAARSK- PlEFFVSKYKGNETFEGG
LSAHCNMDQQS SFHCFGLFLGMOEKGSVSFAVDYEFAARSK- PIEEFVSKYKGNETFlGG
LSAHCNMDGQOS SFHCFGT FL.GMOEKGSVSFAVDYEFAARSK- PFEFTSKYKGNYTFRGG
LSAHCNMDOQSSFHCFGLFLGMOEKGNVSFAVDYEFAARAK- PlEEFVSKYKGNETFHGG
LSAHCNMDGQS SFHCFGLF LGMOEKGSVSFGVDYEFARSK-PAEDF T SKYKGNETFHGG
L3AHCNMDOOS SFHCFGLFLGMOEKGAVSFAVDYEFAARENKPGEEFVSKYKGNETFHGG
LSAHCNMDQQSSFHC FGLFLGMOEKGSVSFAVDYEFAARSR- PREEFVSKYKGNEV GG
LSAHCNMDOQSAFHCFGLFLGMOEKGSTSVTVDYEFAARTR- PCEFVSKYKGYHT GG
LSAHCNVDQOSAFYCFGLFLGMOEKGSTSVTVDYEFAARTR- PYGEFVSKYKGYHTFRGG
LSAHCNVDGQSAFYCFGLFL.GMOEKGSTSYTVDYEFAARTR- PPGEFVSKYKGYHTFHGG
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PHOS SITE:

LRB1 ARATH 518 KAVGYRNLFGIPWTSFIAEDSQHFINGILHLRAELTIKRSSDLH--
LRB2 ARATH 519 KAVGYRNLFGVPWTSFIAEDSQYFINGILHLRAELTIKRSTDP---—
LRBA ARALL 520 KAVGYRNLFGVPWISFIAEDSQYFINGILHLRAELTIKRSTDP---
LRBB ARALL 518 KAVGYRNLFGIPWTSFIADDSQHFINGILHLRAELTIKRSSDLH--
LRBA BRARP 516 KAVGYRNLFGIPWISFIAEDSLYFINGILHLRAELTIKRSTDPPPQ
LRBA CICLE 511 KAVGYRNLFAIPWTSFMADDSLYFINGILHLRAELTIRH-——-—---—
LRBA POPTR 518 KAVGYRNLFAIPWISFMAEDSPYFINGVLHLRAELTIRH--—----
LRBB_POPTR 510 KAVGYRNLFAIPWISFMAEDSLYFINGVLHLRAELTIRL-——-—---—
LRBA PRUPE 519 KAVGYRNLFAIPWTSFMAEDSLYFINGVLHLRAELTIRH--—-----
LRBA RICCO 511 KAVGYRNLFAIPWTSFMADDSLYFINGVLHLRAELTIRH-—-----
LRBA CARUB 520 KAVGYRNLFGIAWTSFIAEDSQYFINGILHLRAELTIKRSTDP---
LRBB_CARUB 517 KAVGYRNLFGVPWISFMAEDSLHFINGILHLRAELTIKRSTDLH--
LRBB GLYMA 515 KAVGYRNLFAIPWITFMAEDSLYFINGVLHLRAELTIRH-——-—--—
LRBA ORYSJ 497 KAVGYRNLFAIPWSSFMADDSLFFIEGVLHLRAELTIKQP---—--
LRBA MATZE 497 KAVGYRNLFAIPWPLFMADDSLFFIDGVLHLRAELTIKQP------
LRBB MATZE 497 KAVGYRNLFAIPWPLFMADDSLFFIDGVLHLRAELTIKQP------

Supplemental Figure 10: Phosphorylation Site Prediction using PhosPhAt 4.0

The edited MSA was used to show the amount of conservation for each phosphorylation site
predicted using the PhosPhAt 4.0 program’®®. Each phosphorylation site was highlighted in
alternating yellow or black (to distinguish between closely-located phosphorylation sites) and
given a letter that corresponds to a specific phosphorylation value. The exact phosphorylation
values predicted for each phosphorylation site can be found listed in Supplemental Table 2.
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BLOT 1: NEDDS8 Probe
WT GFP-LRB2
Col-0 | Red | FarRed| Dark
QUANTIFICATION | 0.122 | 0794 | 0340 | 0.703
NORMALIZATION | 1.000 | 6508 | 2.787 | 5.762

- =NEDDS8

0.340 0.703

B GFP-LRB2
wT I' Red FR Dark |
BLOT 2: GFP Probe
WT GFP-LRB2 g
Col-0 Red | Far-Red ! Dark “ =GFP
QUANTIFICATION | 0.120 | 1.100 | 0362 | 0.530 A
NORMALIZATION | 1000 | 9.167 | 3.017 | 4417 0.1208 © [1.10|  [0.362]

C
RELATIVE BAND INTENSITIES RELATIVE % BAND INTENSITY
GFP-LRB2 GFP-LRB2
Col-0 Red | Far-Red I Dark Col-0 Red | Far-Red | Dark
aNEDD8:aGFP

1.0000 | 0.7100 | 0.9238 | 1.3047 100.00% 71.00% | 92.38% | 130.47%

RATIO

aGFP:aNEDD8

1.0000 | 1.4085 | 1.0825 | 0.7665 100.00% | 140.85% | 108.25% @ 76.65%

RATIO

Supplemental Figure 11: Quantification Results for aGFP AtLRB2 Immunoprecipitation

A. Immunoprecipitated GFP-LRB2 proteins purified from 8-day-old Arabidopsis seedlings grown
exclusively in darkness or 4 days in darkness followed by 4 days of continuous R or FR light were
investigated using Western blotting probed with anti-NEDD8 antibodies. The quantification and
normalization values are provided. Blot was visualized on the Odyssey FL system using IRDye800
secondary antibodies. Quantification for each band was found using the Odyssey FC Image Studio
Lite 5.0 program®, while normalization values were calculated for each blot individually by taking
the quantification values for each independent light treatment and dividing it by the WT Col-0
guantification value for that individual blot.

B. Immunoprecipitated GFP-LRB2 proteins were probed with anti-GFP antibodies. The
guantification and normalization values are provided. Blot was visualized on the Odyssey FL
system using IRDye800 secondary antibodies. Quantification for each band was found using the
Odyssey FC Image Studio Lite 5.0 program®,

C. Relative banding intensity ratio values for each light treatment. The ratio of aNEDDS to aGFP
and aGFP to aNEDDS are provided, with the relative percent band intensity listed to the right.
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Supplemental Table 1: Template Coverage of Phyre2 Homology Models

e | AtLRB1 | AtLRB2A | AtLRB2B | AtLRB3

Template | Conf Residue | Conf| Residue |Conf Residue |Conf Residue
oo |1 o |10 oy |10 [ |0

* 3HU6.b | 99.9 | 21 20-279 | 100 [ 21 5-281 100 [ 21 5-281 - - -

3I3N.a J 100 | 20 | 129-385] 100 | 19 | 128-387 | 100 [ 19 | 128-387 1 100 | 19 84-331

3HVE.a | 100 | 17 | 142360 - | - - - - - A ;

2CR2.al |1 96.5| 17 | 442-558 - - - - - - - - -

2F1Z.b 1954 | 10 | 442-560 - - - - - - - - -

2F1Xb | 952 | 9 | 444554 - - - - - - - - -

+*

3117.a - - - 993 16 | 394-549 - - - 96.7 6 342-503
2XN4.a | - - - 994 16 | 397-549] - - - 96.8 | 10 | 343-446
1X2R.a | - - - 994 10 | 397-550] - - - 96.5| 3 | 346-437
2VPJa | - - - 994 19 | 400-550 | - - - 963 9 | 343-437

1ZGK.al| - - - 99.3( 11 | 397-548 | - - - 972 5 | 340-497
2WOZ.a - - - 994 15 387-553 - - - - - -
4YYS8.b - - - - - - 100 12 147-549 - - -
AASCaa ) - | - ool J963) 7 362503
Ab initio 0] 0 i-19 0 0 1-4 0 0 1-4 0 0 1-83
Ab initio 0 0 8§3-100 0 0 65-66 0 0 65-66 0 0 [332-339
Ab initio | 0 0 |361-441] 0 0 |554-561| 0 0 |550-561| 0 0 |504-503
Ab initio 0 0 561 - - - - - - - - -
Total . . . .
ab initio 89 residues 13 residues 17 residues 97 residues

98% | 97% RIVL

The PDB template identifiers for the known crystal structures used by Phyre2%® to make
the predicted structures for the AtLRBs. The confidence, percent identity, and residues of
the query sequence that are covered are provided for each PDB template used. Residues
that were modeled using ab initio methods are also listed. The percent of the overall
coverage modeled with >90% confidence was calculated by Phyre2 and presented at the
bottom of the table. An asterisk marks the only two templates used to create both AtLRB1
and AtLRB2.
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