Grand Valley State University ScholarWorks@GVSU

Honors Projects

Undergraduate Research and Creative Practice

2015

Annotation and Transcription Start Site Analysis of contig70 in Drosophila biarmipes

Robin Wolschendorf Grand Valley State University

Follow this and additional works at: http://scholarworks.gvsu.edu/honorsprojects Part of the <u>Molecular Biology Commons</u>

Recommended Citation

Wolschendorf, Robin, "Annotation and Transcription Start Site Analysis of contig70 in Drosophila biarmipes" (2015). *Honors Projects*.
385.
http://scholarworks.gvsu.edu/honorsprojects/385

This Open Access is brought to you for free and open access by the Undergraduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

HONORS SENIOR PROJECT

Annotation and Transcription Start Site Analysis of contig70 in *Drosophila biarmipes*

Robin Wolschendorf Grand Valley State University Frederik Meijer Honors College Winter 2015

Table of Contents

Introduction3
GEP Annotation Report4
Project Details4
dbia_wnd5
TSS for dbia_wnd12
dbia_lush27
TSS for dbia_lush32
dbia_CG937242
TSS for dbia_CG937246
dbia_CG937651
TSS for dbia_CG937655
dbia_Lon61
TSS for dbia_Lon68
dbia_asf173
TSS for dbia_asf176
dbia_ms(3)76Cc81
TSS for dbia_ms(3)76Cc85
dbia_l(3)76BDm89
TSS for dbia_l(3)76BDm93
Annotation Files Merger98
Other predicted genes

Introduction

The following is my annotation and transcription start site analysis report for contig70 in *D. biarmipes* to be submitted to the Genomics Education Partnership (GEP) at Washington University in St. Louis. The report was completed in accordance with the guidelines and template set forth by the GEP. There are eight complete genes found in contig70, for which I found the protein coding exon boundaries as well as the transcription start sites for all isoforms. All conclusions and reasoning for them are outlined in the report.

The GEP does genomics research, specifically comparing the genomes of all species of *Drosophila*. Students completing projects for the GEP analyze a portion of a genome of one of the species. The GEP collects all of this information and data and uses it for evolutionary analysis. Comparing the genomes of distinct species illuminates important regions of DNA, which are well conserved between species.

Students in CMB 440: Research Applications of Drosophila Genomics are expected to complete GEP reports for their individual projects. I took CMB 440 in Winter 2014, so this is the second project and report I have done. I decided to complete another report for my Honors Senior Project to assist Dr. Martin Burg in advancing the scope of the course. Before this semester, students were not expected to complete transcription start site (TSS) analysis for their projects. To ensure a smoother integration of TSS analysis, Dr. Burg asked me to become well versed in the process so I could teach it to students. I studied GEP materials and instructions over the course of the semester to compile a comprehensive instructional presentation on TSS analysis to give to the class. Along with the presentation, I made myself available once a week in class for students to ask me questions concerning TSS analysis in their individual projects.

- Robin Wolschendorf

GEP Annotation Report

Note: For each gene described in this annotation report, you should also prepare the corresponding GFF, transcript and peptide sequence files as part of your submission.

Student name: Robin Wolschendorf Student email: wolscher@mail.gvsu.edu Faculty Advisor: Dr. Martin Burg College/University: Grand Valley State University

Project details

Project name: contig70 Project species: *Drosophila biarmipes* Date of submission: 4/16/2015 Size of project in base pairs: 40,000 Number of genes in project: 8

Does this report cover all genes and all isoforms or is it a partial report? <u>Yes, all genes and isoforms</u>

If this is a partial report because different students are working on different regions of this sequence, please report the region of the project covered by this report:

from base _____ to base _____

Instructions for project with no genes

If you believe that the project does not contain any genes, please provide the following evidence to support your conclusions:

- 1. Perform a BLASTX search of the entire contig sequence against the non-redundant (*nr*) protein database. Provide an explanation for any significant (E-value < 1e-5) hits to known genes in the nr database as to why they do not correspond to real genes in the project.
- 2. For each Genscan prediction, perform a BLASTP search using the predicted amino acid sequence against the protein database (*nr*) using the strategy described above.
- 3. Examine the gene expression tracks (e.g. cDNA/EST/RNA-Seq) for evidence of transcribed regions that do not correspond to alignments to known *D. melanogaster* proteins. Perform a BLASTX search against the *nr* database using these genomic regions to determine if the region is similar to any known or predicted proteins in the *nr* database.

Complete the following Gene Report Form for each gene in your project. Copy and paste the sections below to create as many copies as needed. Be sure to create enough Isoform Report Forms within your Gene Report Form for all isoforms.

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): <u>*D. biarmipes wnd*</u> Gene symbol (i.e. dmoj_ey): <u>dbia wnd</u> Approximate location in project (from 5' end to 3' end): <u>4693-14366</u> Number of isoforms in *D. melanogaster:* <u>4</u> Number of isoforms in this project: <u>4</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding	List of isoforms with identical coding sequences
sequence	
wnd-PC	wnd-PA, wnd-PB
wnd-PD	

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. **Paste a screenshot with the list of** sequence changes below:

Isoform report form Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia wnd-PC</u> Names of the isoforms with identical coding sequences as this isoform <u>dbia wnd-PA, dbia wnd-PB</u> Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: ______

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker									*	
Configure Gene Model			~	C	hecklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exc	ons Downloads
Model Details				42	Expand Al	I 📔 Colla	ose All			
Fosmid Sequence File:	C:\fakepath\contig70.fasta	Browse			View	Criteria			Status	Message
Errors in Consensus Sequence?	🔾 Yes 💿 No			Ħ	Q	Check for	Start Codon		© Pass	
Ortholog in D. melanogaster:	wnd-PC			Ŧ	_	Acceptor for	r CDS 1		Skip	Already checked for Start Codon
Coding Exon Coordinates:	4693-4850, 9739-10227, 10680-1087	1, 10934-			9	Donor for (DS 1		© Pass	
	11587, 11650-11800, 13009-13910,	13970-14363			9	Acceptor fe	r CDS 2		© Pass	
					4	Donor for 0	US 2		© Pass	
					•	Acceptor to	r CDS 3		© Pass	
Appetated Listragelated					~	Acceptor fi	x CDS 4		© Pass	
Regions?	U res				•	Donor for (2DS 4		Pass	
Orientation of Gene Relative to	Plus OMinus			œ		Acceptor fe	r CDS 5		© Pass	
Query Sequence:					Q	Donor for (DS 5		© Pass	
Translation:	Complete OPartial			æ	Q	Acceptor fe	r CDS 6		© Pass	
Stop Codon Coordinates:	14364-14366			۰	Q	Donor for (DS 6		© Pass	
				۰	Q	Acceptor fe	r CDS 7		© Pass	
Project Details				Ŧ		Donor for (DS 7		Skip	Already checked for Stop Codon
Project Group:	D. biarmipes 3L Control	~		۲	Q	Check for	Stop Codon		© Pass	
Project Name:	contig70			۲	Q	Additional	Checks		© Pass	
				Ŧ	Q	Number of	coding exons matched D.	melanogaster or	Pass	

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 1. A sequence alignment track (D. mel Protein or Other RefSeq)
- 2. At least one gene prediction track (e.g. Genscan)
- 3. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- A comparative genomics track (e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

Paste the screenshot of your gene model as shown on the Genome Browser below:

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of wnd-PC vs. Submitted_Seq

Identity: 923/981 (94.1%), Similarity: 943/981 (96.1%), Gaps: 5/981 (0.5%)

4. Dot plot between the submitted model and the *D. melanogaster ortholog*

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

lsoform report form Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia wnd-PD</u> Names of the isoforms with identical coding sequences as this isoform

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: _____

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker									
Configure Gene Model		~	Che	ecklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exo	ns Downloads
Model Details			€÷ E	xpand All	📔 🗄 Collap	se All			
Fosmid Sequence File:	C:\fakepath\contig70.fasta	Browse	۱ ۱	View	Criteria			Status	Message
Errors in Consensus Sequence?	🔾 Yes 💿 No		٠	Q	Check for S	start Codon		© Pass	
Ortholog in D. melanogaster:	wnd-PD		*	_	Acceptor fo	r CDS 1		Skip	Already checked for Start Codon
Coding Exon Coordinates:	7202-7269, 9739-10227, 10680-10871,	10934-	E	<u> </u>	Donor for C	DS 1		© Pass	
	11587, 11650-11800, 13009-13910, 139	970-14363			Acceptor to	r CDS 2		© Pass	
				<u> </u>	Acceptor fo	CDS 3		© Fass	
		œ.	~	Donor for C	DS 3		@ Pass		
Annotated Untranslated	Yes No			0	Acceptor fo	r CDS 4		@ Pass	
Regions?	0.12			Q.	Donor for C	DS 4		© Pass	
Orientation of Gene Relative to Ouery Sequence:	Plus OMinus		±	Q	Acceptor fo	r CDS 5		© Pass	
Completeness of Gene Model	Complete OPartial		٠	Q	Donor for C	DS 5		© Pass	
Translation:	ion:		÷	Q	Acceptor fo	r CDS 6		Pass	
Stop Codon Coordinates:	14364-14366		-	Q	Donor for C	DS 6		© Pass	
			±	Q	Acceptor fo	r CDS 7		© Pass	
Project Details			۲	-	Donor for C	DS 7		Skip	Already checked for Stop Codon
Project Group:	D. biarmipes 3L Control	~	±	Q	Check for S	top Codon		© Pass	
Project Name:	contig70		±	Q	Additional (Checks		© Pass	
			±	e,	Number of	coding exons matched I	D. melanogaster or	Pass	

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 1. A sequence alignment track (D. mel Protein or Other RefSeq)
- 2. At least one gene prediction track (e.g. Genscan)
- 3. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 4. A comparative genomics track (e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of wnd-PD vs. Submitted_Seq

4. Dot plot between the submitted model and the *D. melanogaster ortholog* **Paste a screenshot of the dot plot** of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
wnd-PD	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_wnd-PD Names of the isoforms with the same TSS as this isoform:

Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 6,576 – 7,269 Coordinate(s) of TSS position(s): 6,576 Coordinate(s) of TSS search region(s): 5,000 – 7,201

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS annotation?	Refute TSS annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The core promoters in the search region do not help in predicting a TSS. They neither support my prediction nor strongly support another location. As seen in the figure above, none of the surrounding motifs support my predicted TSS, indicated by the red star.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Range 1:	: 6576 t	o 7269 Graphics		V Ne	xt Match 🔺 Pre	vious Match
Score 633 bits	s(442)	Expect 0.0	Identities 598/724(83%)	Gaps 41/724(5%)	Strand Plus/Plus	
Query	18	CTGATACTGATAAT	GTGGAGCTAGACCGTTAT	GCTCACGCT-GCGAGTCG	CGATTTAGTT	76
Sbjct	6576	CTGATAGTGATAAT	GGGGAGCTTTACCGCTAT	GCTCCCGCTCGCGAGTCG	CGGTTTAGTT	6635
Query	77	GGCGAAAATCAATC	GCTTCTGGTGGTCGCTCT	TTGCGCTTGAAATTCGCA	AGCCTGCCTT	136
Sbjct	6636	GGCGAAAATCAATC	GTATCTGACGGTCGCTCT	TCGCGCGTGGAATTCGCG	AGCCTGCCTT	6695
Query	137	AATTTGCGTCCGTG	TGTTTGTGCGACAACAAA	AACAAAAGCGAGCTTATC	GCCAAATCAG	196
Sbjct	6696	AAAGTGCGCTCGTG	GTTGTGGCACAGCAAG	AACAAAACACGGCTTATC	GCCAAATCAG	6753
Query	197	TTTGCAGCCGTTGT	CTGTGTGTGTGTGGTGTGACG	CAGTTGTGCGAAATACGI	GAAATTATTG	256
Sbjct	6754	TTTGCAGGCCT-GT	CTGTGTGTGTTGGAGTGACG	CAGTGGCGAAATACGT	GAAATCATTA	6810
Query	257	CATTTTTTCCCCCCC	AAACCCAACCAATAAGCA	ACAGTCTTGAAAAACCGC	CAACGAAAGT	316
Sbjct	6811	CACTTTTTTCCCCAG	ACAGCAACCA	ACACTGTT-AAAAACCGC	CAACGAAAGT	6861
Query	317	GTTACGCGTCGCGT	TCGTCTCTCTTTTCTTGI	AATTAATAGCAACAAAAA	GCGATACCAA	376
Sbjct	6862	GTTACGCGCTTCCC	TCGTCTCT-TTTTCTTGT	AATTGACAACAAAAA	GC-ATACCAA	6916
Query	377	CTTACCTTGACGTC	ACTTTTTTTTTTTTTTTTT	ACATCGGACGACAAAAGG	CGATTGTTGT	436
Sbjct	6917	CTCACCTTGACGTC	ATTTTTTTTATAATAC-AC	ACATCGGACGACAAAAAG	CGCTGGTTGT	6975
Query	437	TGTTT	TTTCGGTGGCTGCTGGTG	CTTGGCACGAACTCACAA	TCAAAAGTTA	487
Sbjct	6976	TGTTGCTCGTTTTT	TATTGGTGGCTGCTGGTG	CTTGGCACGAACTTAAAA	TCAAAAGTTA	7035
Query	488	GCCAACTTTTGTTG	TTGGCCCAGTGCGTAAAA		TGCTGGC-GA	546
Sbjct	7036	GCCAACTTTTGTTG	TTGGCTCGGTGCGTAAAC	AAAAATAAAGAAAAC	TGTCGACCGA	7092
Query	547	AAAGCGAGCGTAAA	ATTTTGCATTAATGCAGT	CTCGTCGCATGAATGAAT	GAAATTCTTA	606
Sbjct	7093	AAGGCGAGCGTAAA	AATTTGCATCAATGCAGT	CGCGTCGCATGAATGAAT	GAAATTCTTA	7152
Query	607	GTGCGCGACAACTA	ATTACGAAAGGGAACCAA	AAAAGTGGCAATAACAAA	TAAACCATGG	666
Sbjct	7153	GTGCGCGACAACTA	ATTACGAAAGCAAAC	AAAAGAGGGACAAA	TAAACCATGG	7205
Query	667	TCTACATCATACCO	TTCTTTAGCCACAATGAC	CCGCCCGACATGATCATC	ACCAAAGAAA	726
Sbjct	7206	TCTACACCATACCG	TTCTTCAGTCACAATGAG	CCGCCCGACCCGATCATC	ACCAAAGAAA	7265
Query	727	AAAG 730				
Sbjct	7266	AAAG 7269				

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|Query_8681 Length: 40000 Number of Matches: 12

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary

3. RNA-Seq TopHat

The RNA-seq tracks show good support for my TSS prediction. This is predicted as the 5' UTR is relatively short. My predicted TSS is indicated by the red star in the figure above.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alignment block 1 of	1 in window, 6600 - 7446, 847 bps
<u>B</u> D. biarmipes	accgctatgctcccgctcgcgagtcgcggtttagttggcgaaaatcaatc
<u>B</u> D D. melanogaster	${\tt accgttatgctcacgc-tgcgagtcgcgatttagttggcgaaaatcaatcgcttctggtggtcgctcttt$
<u>B</u> D. yakuba	accgttatgctcccgcatgcgagtcgcgatttagttggcgaaaatcaatc
<u>B</u> D. erecta	accgttatgctcccgcatgagttgcgatttagttggcgaaaatcaatcgcttctgacggtcgctctct
<u>B</u> D. eugracilis	gccactatgctcccgctcgcgagttgcgatttagttggcgaaaatcaatc
<u>B</u> D. ficusphila	atgcatatgctcccgctcgcaattcagttggcgaaaatcgaacgattctgacggtcg-tctgt
<u>B</u> D. takahashii	accgctatgctcccgctcgagagtcgcgatttagttggcgaaaatcaatc
D. biarmipes	gcgcgtggaattcgcgagcctgccttaaagtgcgctcgtggttgtggcacagcaag
D. melanogaster	gcgcttgaaattcgcaagcctgccttaatttgcgtccgtgtgttttgtgcgacaacaaa
D. yakuba	gcgcgtgaaattcgcaagcctgccttaaattgcgtccgtgtgtgt
D. erecta	gcgcgtgaaattcgcaagcctgccttaaatttcgtcagtgtgtttgtgcgacaacaaa
D. eugracilis	gcgcgtgaatttcgcgagcctatcttaaatttcgttcgtgtgtttgtgagatgcacaataac
D. ficusphila	gcgcgtgaatttcgcgagccagccttaaaatacgctcgagtgttcgtgagccaacaaa
D. takahashii	$\verb gcgcgtgaaattcgcgagcctgccttaaattacgcgcgtgtatttgtgtgacaacaacaacacacacacacacacacacacaca$
D biarminea	and a second state and a second state of the second state of the state of the second s
D. Diarmipes	aacaa-aacacggcttatcgccaatcagtttgcaggc-ctgtctgtgtgtggagtgacgcagtggc
D. melanogaster	aacaaaagcg-agctatcgccaatcagttgcagcgttgtctgtgtgtgtgt
D. yakuba	aacaaaagcg-ggcttatcgccaaatcagttttctggtgtgtgtgtggtagtagacgcagttgtg
D. erecta	aacaaaagcg-ggcttatcgtcaaatcagttgcagccgttgtctgtgtggtgtgagcagttgtg
D. eugracilis	aaaaagtgctgcttatcggcaaatcagttgcaattgttgtcgtggtggtgacgcagttgtgc
D. ficusphila	aacaacagcacagcttatcggcaaatcagtttttcactgctgtcgtggtgatgtgacgcagttgtgc
D. takanashii	aaaaacaagactgcttatcgccaaatcagtttgcagtcgctgtctgt
D. biarmipes	gaaatacgtgaaatcattacactttt-tccccagacagcaaccaacactgtt-aaaaacc
D. melanogaster	gaaatacgtgaaattattgcattttt-cccccccaaacccaataagcaacagtcttgaaaaacc
D. yakuba	gaaatacgtgaaattattacatttttacccccccaaaaccaaccaataagcagcagtcttgaaaaacc
D. erecta	gaaatacgtgaaattattacattttt-ttcccccaaacccaaccaataagcaacagtcttgaaaaacc
D. eugracilis	gaaatacgtgaaattattacactttt-cccccttaaaccaataaccaacactcttgaaaaacc
D. ficusphila	gaaatacgtgaaattattaaactttt-ttcccagcccataaccaacactcttgaaaaacc
D. takahashii	gaaatacgtgaaattattacactttt-ttccaccaaccaataatcaacactcttgaaaaaaccaataatcaacactcttgaaaaaaccaataatcaacactcttgaaaaaaccaataatcaacactcttgaaaaaaccaataatcaacaataatcaacactcttgaaaaaaccaataatcaacaataatcaacactcttgaaaaaaccaataatcaacaataatcaacactcttgaaaaaaccaataatcaacaataatcaacactcttgaaaaaaccaataatcaacaataatcaacaataatcaacaa
D biarminos	
D. Diarmipes	gecaacgaaagtgttacgegetteeetegtete-ttttettgtactaceaaaageatace
D. meranogaster	gccaacgaaagtgttacgcgtcgcgttcgtctctttttttt
D. yakuba	gecaacgaaagtgttacgecgecgttegtetetttttettgtattaatagcaacaaaagegatace
D. erecta	accaacgaaagtgttacgccgcattcgtctttttttttgtaattaat
D. eugraciiis	gecaacgaaagtgttacgegettegtacgeetetttttttttt
D. ficusphila	gccaacgaaagtgttacgcgcttcgttcgtcttttttttt
D. takanashii	gccaacgaaagtgttacgcgcttcgtttgtctctttttttt
D. biarmipes	aactcaccttgacgtcatttttttataat-acacacatcggacgacaaaaagcgctggttgttgttgc
D. melanogaster	aacttaccttgacgtcacttttttttttttttttattattatacatcggacgacaaaaggcgattgttgttg
The Multiz alignment	ts somewhat support my TSS prediction as their conservation starts at

```
6,600.
```

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+6358, +6360, +6378, +6707,	-19632874, -19632876, -
	+6710, +6769, +6771	19632878, -19632939, -
		19632941, -19632943, -
		19633182, -19633269, -
		19633271, -19633281, -
		19633283
Inr	+6483, +6750	-19633146, -19632899
MTE	NA	NA
DPE	+6709	-19632862, -19633193, -
		19633274
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
wnd-PC	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_wnd-PC Names of the isoforms with the same TSS as this isoform:

Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 3371-3697 Coordinate(s) of TSS position(s): 3371 Coordinate(s) of TSS search region(s): 3,071 – 3,671

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs	Х	
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Dbia4_dna range=contig7	0:1 -4 0000 5'p	pad=0 3'pad=0 strand=+ repeatMasking=none
Sequence ID: Icl Query_45753	Length: 40000	Number of Matches: 6

Range 1: 3380 to 3697 Graphics Vext Match 🔺 Previous						vious Match
Score		Expect	Identities	Gaps	Strand	
278 bit	s(193)	2e-77	278/351(79%)	39/351(11%)	Plus/Plus	
Query	9	TTCTCCCGCACACT	IGCGCAGTGAACACAACCTG	CGCTCCAAACTGGTTTT	GGTGGAGGA	68
Sbjct	3380	TTCTGCCGCACACA	IGCGCAGTGCAACCTG	CGCTCCAAACTGGTTTC	GGGGGGAGGA	3435
Query	69	AATCCGCAAGAGAG	AGCGCTAGAGAGCGGATTGG	AACTCGGTTTCGGCCAA	AGCCAAAGC	128
Sbjct	3436	AATCCGCGAGAGAGAG	CGGATTGG	TTTCGGCCCA	Å	3468
Query	129	AGAGCCAGCAGCCA	GTTTTTGCTTTTTAG	TCGATTTGTATCTACCT	TTGGTGCGG	183
Sbjct	3469	AGCCAGCAGCCA	GTTTTTTTTTCTGCTTTTTAG	TCGACTTGTATCTACCT	TTGGTGCGG	3526
Query	184	ACGGTTGGTCGGAA	TAAACGCGTTTCGCAGCGGA	ACTCCAAGAAGAGCAGA	AAACCAGTC	243
Sbjct	3527	ACGGTTGGTCGGAA	TAAACGCGTTTCGCTGCGGA	ACCCAAAGGCAACCAGA	AAACCAGTC	3586
Query	244	TTTAATTGTTCCAT	TTCAAGCTGAAATCAAATAA	AAGTTCTTCGCCAATGG	CTGAAT-AA	302
Sbjct	3587	TCTAATTGTTCCAT	TTCAAGCCGAAATCAATTAA	AAGTTCTTCGCCCACAA	CCAAATCGA	3646
Query	303	AGTACGAATCAATG	CAATCACTACGATTCGCAGT	GGAAAATTGCTGGAAAA	353	
Sbjct	3647	AGTAGGAATCGAAG	CAATCAATGCCATTTCCCCT	GGAAAATTGCTGGAAAA	3697	

BLASTn predicts the first transcribed exon on wnd-PC to be from about 3380-3697. If the first 8 nucleotides are included, BLAST supports a TSS at 3371.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, <mark>paste a Genome</mark> Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

The RNA-Seq alignments do not explicitly support my TSS prediction, but make it plausible. The RNA-Seq data just does not carry far enough into the 5' UTR. The red star in the figure above approximately indicates my TSS prediction.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alig	nment block 1 of	1 in window, 3360 - 3630, 271 bps
<u>B</u> D	D. biarmipes	ggctctctcgcgcacctctcttctgccgcacacatgcgcagtgcaacctgcgctcca
<u>B</u> D	D. melanogaster	cccgcccag-tcgcgtt-ctcccgcacacttgcgcagtg-aacacaacctgcgctcca
<u>B</u> D	D. yakuba	cccgcdcaa-tcgct-ctctcgcacacttgcgcagtgcaacgcaac
<u>B</u> D	D. erecta	cccgcdcaa-tcgct-ctcccgcacacttgcgcagtgcaacgcaac
<u>B</u> D	D. eugracilis	ggctc
<u>B</u> D	D. ficusphila	ggctctctcctcgtgctccccct-cccccgcacgcatgcgccgtacaacctgcgctcca
<u>B</u> <u>D</u>	D. takahashii	ggctctcttgcgcac-tctct-ctgccgcacacatgcgcagtgcaacctgcgctcca
	D. biarmipes	aactggtttcggggggggggaggaaatccgttcgg
	D. melanogaster	aactggtttttggtggaggaaatccgcaagagagagcgctagagagcggattggaactcggtttcgg
	D. yakuba	aactggtttttggggggaggaaatccgcaggagagagcgcgagagagcggattggaactcggtttcgg
	D. erecta	aactggtttaaggggaggaaatccgcaggagagagcgcgagagagcggattggaactcggtttcgg
	D. eugracilis	aactggtttcaggggaggaaatccgaaaaagagagagagagagagagggggggttgggattcgg
	D. ficusphila	aactggtttcgagggaggaaatccgttctctcgttttctcgctctctggcggattgggtttcgg
	D. takahashii	aactggtttcgagggaggaaatccggttcgg
	D. biarmipes	ccc-aaagccagcagccagttttttttctgctttttagtcg-acttgtatctacctttgg
	D. melanogaster	cca-aagccaaagcagagccagcagccagtttttgcttttttagtcg-atttgtatctacctttgg
	D. yakuba	cca-aagccaaagcagagccagcagccagtttttgcttttttagtcg-atttgtatctacctttgg
	D. erecta	cca-aagccaaagcagagccagccagtttttgctttttagtcg-atttgtatctacctttgg
	D. eugracilis	cccaaaagccagcagccagtttttttctttttatttgtatctatatctacctttgg
	D. ficusphila	ccc-aaagccagccagcttttttgctttttaatttgtatctacctttgg
	D. takahashii	ccc-aaagccagcagccagtttttttt-tgctttttagtcg-atttgtatctacctttgg
	D. biarmipes	tgcggacggttggtcggaataaacgcgtttcgctgcggaacccaaaggcaaccagaaaaccagtctctaa
	D. melanogaster	tgcggacggttggtcggaataaacgcgtttcgcagcggaactccaagaagagcagaaaaccagtctttaa
	D. yakuba	tgcggacggttggtcggaataaacgcgtttcgcagcggaactcc-agaagaccagaaaaccagtctttaa
	D. erecta	tgcggacggttggtcggaataaacgcgtttcgcagcggagctccaagaagagcagaaaaccagtctttaa
	D. eugracilis	tgcggacggttggtcggaataaacgcgttacgctgcggagccccaagaaaagcagaaaaccagtctttaa
	D. ficusphila	tgcggacggttggtcggaaaaaacgcgtttcgctgcgggtccccaagaaagccagaaaaccagtctttaa
	D. takahashii	tgcggacggttggtcggaataaacgcgattcgcagcggaacccaa-gacaacctgaaaaccagtctttaa
	D. biarmipes	ttgttccatttcaagccgaaatcaattaaaagttcttcg
	D. melanogaster	ttgttccatttcaagctgaaatcaaataaaagttcttcg
	D. yakuba	ttgttccatttcaagctaaaattaaataaagttctttg
	D. erecta	ttgttccatttcaagctgaaatcaaataatagttactcg
	D. eugracilis	ttgttcgattcctagctaaaatcaattaaaccttcttcg
	D. ficusphila	ttgttctgttttaagctgaaatcaattaaaagttcttcg
	D. takahashii	t+at+ccatt+caaacctaaatcaattaaaaactattaa

The red line and red star indicate my TSS prediction in the figures above. Sequence conservation shows a significant increase immediately downstream of the predicted TSS. Thereby, the conservation from Multiz alignments supports my prediction.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
---------------------	--------------	-----------------

BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+3179, +3342, +3348, +3453,	-19635635, -19635723, -
	+3481	19635795, -19635799, -
		19635881, -1963640
Inr	+3129	NA
MTE	NA	NA
DPE	+3622	-19635500
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

The BRE^d motif at 3348 supports my predicted TSS at 3371.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
wnd-PA	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_wnd-PA Names of the isoforms with the same TSS as this isoform:

Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 3,476 – 3,706 Coordinate(s) of TSS position(s): 3,476 Coordinate(s) of TSS search region(s):

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs	Х	
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**: Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none

_				
Sequence ID: Icl Query_	_38867	Length: 40000	Number of Matches: 13	

Range 1: 3476 to 3706 Graphics Vext Match 🔺 Previous Next Match						
Score	(4.5.3)	Expect	Identities	Gaps	Strand	
226 bit	s(157)	4e-62	196/231(85%)	6/231(2%)	Plus/Plus	
Query	1	AGCCAGTTTTT	-GCTTTTTAGTCGATTTGTAT	CTACCTTTGGTGCGGA	CGGTTGGT	55
Sbjct	3476	AGCCAGTTTTTTTC	recttttttagtcgacttgtate	CTACCTTTGGTGCGGA	CGGTTGGT	3535
Query	56	CGGAATAAACGCGTT	CGCAGCGGAACTCCAAGAAG	AGCAGAAAACCAGTCT	TTAATTGT	115
Sbjct	3536	CGGAATAAACGCGTT	CGCTGCGGAACCCAAAGGCA	ACCAGAAAAACCAGTCT	CTAATTGT	3595
Query	116	TCCATTTCAAGCTGA	ATCAAATAAAAGTTCTTCGC	CAATGGCTGAAT-AAA	GTACGAAT	174
Sbjct	3596	TCCATTTCAAGCCGA	ATCAATTAAAAGTTCTTCGC	CACAACCAAATCGAA	GTAGGAAT	3655
Query	175	CAATGCAATCACTAC	GATTCGCAGTGGAAAATTGCT(GGAAAAGTGAGCAAA	225	
Sbjct	3656	CGAAGCAATCAATGC	CATTTCCCCTGGAAAATTGCT	GGAAAAGTGTGCAAA	3706	

The BLASTn alignment strongly supports a TSS prediction on 3,476.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

The RNA-Seq tracks support my TSS prediction, indicated by the red star in the figure above. The RNA-Seq data seems to pick up soon after the TSS.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

The conservation is just overall very good for the entire search region. This is likely due to the fact that the TSS for wnd-PC is just upstream and the TSS for wnd-PB is just downstream.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core_promoter_motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your

project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+3179, +3342, +3348, +3453,	-19635415, -19635635, -
	+3481, +3734	19635723, -19635795, -
		19635799, -19635881
Inr	NA	NA
MTE	NA	NA
DPE	+3622	-19635500
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

The BRD^d motif at +3453 supports my TSS prediction at 3,476.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
wnd-PB	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_wnd-PB Names of the isoforms with the same TSS as this isoform:

Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 3,499-3,647 Coordinate(s) of TSS position(s): 3,499 Coordinate(s) of TSS search region(s): 3,450-3,600

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from D. melanogaster	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**: Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|Query_37661 Length: 40000 Number of Matches: 6

Range 1: 3499 to 3632 Graphics Vext Match							tch 🔺 Previo	ous Match
Score		Expect	Identities	_	Gaps	S	trand	
162 bi	ts(112)	5e-43	123/134(92%)	0/134(0%)	P	lus/Plus	
Query	1	AGTCGATTTGTATCT	ACCTTTGGTGCGGACGG	TTGGTCGGAA	TAAACGCGTTT		60	
Sbjct	3499	AGTCGACTTGTATCT	ACCTTTGGTGCGGACGG	TTGGTCGGAA	TAAACGCGTTT	CGCTGCG	3558	
Query	61	GAACTCCAAGAAGAG	CAGAAAACCAGTCTTTA	ATTGTTCCAT	TTCAAGCTGAA	ATCAAAT	120	
Sbjct	3559	GAACCCAAAGGCAAC	CAGAAAACCAGTCTCTA	ATTGTTCCAT	TTCAAGCCGAA	ATCAATT	3618	
Query	121	AAAAGTTCTTCGCC	134					
Sbjct	3619	AAAAGTTCTTCGCC	3632					

The BLASTn alignment shows good support for a TSS at 3,499.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

3,450	100 bases	3,550	Dbia4 3,600	3,659
ALQTGFGGGNPRESGLVSAQSQQ _RSKLVSGEEIRERADWFRPKASS CAPNWFRGRKSARERIGFGPKPAA	°VFFLLFSRLVSTF QFFFCFLVDLYLPI SFFSAF <mark>≋</mark> STCIYL	'GADGWSE <mark>x</mark> trfaaepkgn(Lvrtvgrnkrvslrnpkat WCgrlvginafrcgtqrqp	QKTSL <mark>%</mark> LFHFKPKSIK: RKPVSNCSISSRNQLK 'ENQSLIVPFQAEIN <mark>%</mark> K	S S S P T T K S K <mark>M</mark> E S K Q S <mark>M P</mark> V L R P Q P N R S R N R S N Q C H (F F A H N Q I E V G I E A I N A
	Perf	fect Matches to Short Sequence (R	KGWYVT) +3,622∎	-3,634
		X Alignment to D. melanogaster F	Proteins	
		Genscan Gene Predictions		
	RNA-Seq	Alignment Summary for Mixed Embr	-yos (Eggs)	
	RNA-1	Seq Alignment Summary for Adult	Fema les	
	RNA	-Seq Alignment Summary for Adult	Males	and the second second
	modENCO	DE RNA-Seq TopHat Splice Site Pr	redictions	

The RNA-Seq data supports the TSS prediction, indicated by the red star in the figure above. When comparing to the RNA-Seq of the TSS predictions for wnd-PC and wnd-PA, wnd-PB may be more expressed in adult males than in mixed embryos.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

The conservation is just overall very good for the entire search region. This is likely due to the TSS locations for other isoforms in the area.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: <u>http://gander.wustl.edu/~wilson/core_promoter_motifs.html</u>

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+3179, +3342, +3348, +3453,	-19635415, -19635635, -
	+3481, +3734	19635723, -19635795, -
		19635799, -19635881
Inr	NA	NA
MTE	NA	NA
DPE	+3622	-19635500
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

None of the core promoters in the area support the predicted TSS.

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): <u>*D. biarmipes lush*</u> Gene symbol (i.e. dmoj_ey): <u>dbia lush</u> Approximate location in project (from 5' end to 3' end): <u>38021-38629</u> Number of isoforms in *D. melanogaster:* <u>2</u> Number of isoforms in this project: <u>2</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding sequence	List of isoforms with identical coding sequences
lush-PA	lush-PB

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. **Paste a screenshot with the list of** sequence changes below:

lsoform report form Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia lush-PA</u> Names of the isoforms with identical coding sequences as this isoform <u>dbia lush-PB</u> Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u>

If so, how many exons are missing from the 3' end: _____

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker											
Configure Gene Model						Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exo	ns Downloads	
Model Details				E	Expand A	II 📔 Colla	pse All				
Fosmid Sequence File:	C:\fakepath\contig70.fa	sta	Browse		View	Criteria			Status	Message	
Errors in Consensus Sequence?	⊖ Yes	 No 			I 🔍 –	Check for	Start Codon		© Pass		
Ortholog in D. melanogaster:	lush-PA			Œ	9	Acceptor fe	or CDS 1		Skip	Already checked fo	r Start Codon
Coding Exon Coordinates:	38021-38242, 38333-38	3483, 38541-3862	26			Donor for (CDS 1		© Pass		
					Donor for (DF CUS 2		© Pass			
					Acceptor fe	or CDS 3		@ Pass			
					3	Donor for (CDS 3		Skip	Already checked fo	r Stop Codon
Annotated Untranslated) Yes	No		Œ	I Q	Check for	Stop Codon		© Pass		
Regions?					۹ Q –	Additional	Checks		© Pass		
Orientation of Gene Relative to Query Sequence:	 Plus 	 Minus 		Œ	I 🔍 -	Number of	coding exons matched [D. melanogaster or	Pass		
Completeness of Gene Model Translation:	 Complete 	Partial									
Stop Codon Coordinates:	38627-38629										
Project Details											
Project Group:	D. biarmipes 3L Control		~								
Droject Name	anatia70										

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 5. A sequence alignment track (D. mel Protein or Other RefSeq)
- 6. At least one gene prediction track (e.g. Genscan)
- 7. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 8. A comparative genomics track (e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

Paste the screenshot of your gene model as shown on the Genome Browser below:

Even though the coding exons are the same for lush-PA and PB, they have unique first transcribed exons. That is why I have included custom models for both above.

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of lush-PA vs. Submitted_Seq

View plain text version

Identity: 128/153 (83.7%), Similarity: 139/153 (90.8%), Gaps: 0/153 (0.0%)

lush-PA	1	MKHWKRRSSAVFAIVLQVLVLLLPDPAVAMTMEQFLTSLDMIRSGCAPKFKLKTEDLDRL 60	3
Submitted_Seq	1	MRHWRQRSSSVLTIVLAVLGLLLPDPGTAMTMDQFLASLDMIRNGCAPKFKLNIEDLDRL 60	3
lush-PA	61	RVGDFNFPPSQDLMCYTKCVSLMAGTVNKKGEFNAPKALAQLAPHLVPPEMMEMSRKSVEA 12	20
Submitted_Seq	61	RVGDFNFPPSQDLMCYTKCVSLMAGTVNKKGEFNAAKALAQLPHLVPTEMIEMSKKSVEA 12	20
lush-PA	121	CRDTHKOFKESCERVYQTAKCFSENADGOFMWP 153	
Submitted_Seq	121	CRDAHKAFKESCERVYQTAKCLAENAEGKFMWP 153	

4. Dot plot between the submitted model and the *D. melanogaster ortholog*Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). Provide an explanation for any anomalies on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

The first and last exons have some mismatches with the *D. melanogaster* sequence. The middle exons in genes are usually the best conserved between species, and this is one of those cases. Relatedness can still easily be concluded based on the 83.7% identity and same length of both sequences.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
lush-PA	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): <u>dbia_lush-PA</u> Names of the isoforms with the same TSS as this isoform: ______ Type of core promoter: (Peaked or Broad): <u>Broad</u> Coordinates of the first transcribed exon: <u>36133-36161</u> Coordinate(s) of TSS position(s): <u>36133</u> Coordinate(s) of TSS search region(s): <u>36133-38021</u>

1. Evidence that supports the TSS annotation postulated above

Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

Searching the area just upstream of the first coding exon, which starts at 38021, there is a relatively dense collection of core promoter motifs. The Inr motif at 37874 and the BRE_d motif upstream of it give the indication of a possible TSS. The RNA-seq and conservation data also seem to somewhat support this TSS. However, a TSS at this location would remove a transcribed exon in the 5' UTR from the *D. melanogaster* model. The BLASTn alignment also refutes this TSS. My annotation of the TSS is not supported by any surrounding core promoter motifs.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

The melanogaster model has 2 transcribed exons in the 5' UTR.

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: |cl|207095 Length: 40000 Number of Matches: 84

Range 1	: 36133	to 36161 Graphics		🔻 Next Match 🔺 Previous Mat		
Score 58.0 b	its(29)	Expect 3e-12	Identities 29/29(100%)	Gaps 0/29(0%)	Strand Plus/Plus	
Query	1	GTGATGTGCATCGCAAATGATCCGGTTCG		29		_
Sbjct	36133	GTGATGTGCATCGCAAATGATCCGGTTCG		36161		

This is the BLASTn alignment for the first transcribed exon of lush-PA. It predicts a TSS at 36133.

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: Icl|14135 Length: 40000 Number of Matches: 7

Range 1	L: 37893	to 38242 Graphics		V Ne	ext Match 🔺 Prev	ious Match
Score 251 bi	ts(174)	Expect 4e-69	Identities 266/352(76%)	Gaps 3/352(0%)	Strand Plus/Plus	
202.01			200,002(/0/0)	0,002(070)		
Query	67	AAATGGCGTGCGA	GTGTGTTACTTAATTATT	AATCCCTGCGATTTAAT	TACCACCTTTCC	126
Sbjct	37893	AAATGGCGTGCAA	STGCGTTGTTTAATTACC	AGAGĊTACAAACGTGAT	AGCCAACTGTCC	37952
Query	127	CTGCCACCATGAT	CA-CCTATAAAACTCTCC	TACGACATGGTTACTCA	ACGTATTTAGCT	185
Sbjct	37953	AGCCCAC-ATGGG	CAGCCTATAAAGGCCTCC	GCCTCGTTGGCTAGTCG	ICGTATTCCG-T	38010
Query	186	TTCCGCCACCATG	AAGCATTGGAAACGACGC	ICTTCCGCTGTTTTCGC(GATCGTCCTGCA	245
Sbjct	38011	TCCCGCCACCATG	AGGCATTGGAGGCAACGC	ICTTCCTCCGTTCTGAC	CATCGTCCTGGC	38070
Query	246	AGTGCTGGTACTC	CTGCTACCCGATCCTGCA	GTTGCCATGACGATGGA	GCAGTTCTTGAC	305
Sbjct	38071	AGTTTTGGGCCTC	CTCTTGCCAGATCCTGGG	ACAGCCATGACGATGGA	CCAGTTTTTGGC	38130
Query	306	CTCGCTAGACATG	ATCCGCAGTGGCTGTGCG	CCGAAGTTTAAGCTCAA	AACAGAAGATCT	365
Sbjct	38131	CTCGCTGGATATG	ATCCGGAATGGTTGTGCG	CCGAAGTTTAAGCTTAA	CATAGAAGATCT	38190
Query	366	CGATCGGCTTCGC	GTGGGTGATTTCAACTTT	CCGCCATCGCAGGATCT	TATG 417	
Sbjct	38191	CGATCGGCTTCGC	GTGGGGGGATTTTAATTTT	CCGCCGTCGCAGGATCT	CATG 38242	

This is the BLASTn alignment for the second transcribed exon of lush-PA. It does not align for the first 66 bases, but it gives a search region between about 37793-37893 to look for more evidence.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, <mark>paste a Genome</mark> Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 4. Short Match results for the Inr motif (TCAKTY)
- 5. RNA-Seq Alignment Summary
- 6. RNA-Seq TopHat

The second transcribed exon needs to have an acceptor site. TopHat indicates an acceptor site AG at 37832-37833. This prediction is supported by the BLASTn alignment, if the first 66 nucleotides aligned. It is also supported by RNA-seq data, which begins to improve coverage after this site.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

The purple arrow going to the left indicates the 5' UTR of the adjacent gene, CG9372. Thereby, it seems that the conservation shown by the Multiz alignments in the orange box is from the first transcribed exon of the lush gene. The BLASTn alignment indeed puts the exon in this region. This figure also shows the lack of core promoter motifs to support this annotation.

position/search	contig70:36,12	25-36,196	jump clear size 72 bp.
36,140 36,145 T G C A T C G	20 bases 36,150 C A A A T	 36,155 G A T C C G G T	36,160 T T C G G T S ,165 G G T T T Gap Locations

The BLASTn alignment of the first exon ends at 36,161. There is a GT donor site immediately after this alignment. Thereby, I annotated the first transcribed exon to the same start and end as the BLASTn alignment.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: <u>http://gander.wustl.edu/~wilson/core_promoter_motifs.html</u>

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	+37589	NA
BRE ^d	+36162, +36375, +36411,	-19606055, -19606184
	+36481, +36561, +36572,	
	+36577, +36730, +36750,	
	+36770, +36899, +37146,	
	+37274, +37312, +37352,	
	+37359, +37501, +37605,	
	+37808, +37861, +37910,	
Inr	+36957, +37047, +37350,	-19606000, -19606110
	+37874	
МТЕ	NA	NA
DPE	+36601, +36986, +37199,	-19605998
	+37730, +37880, +37995	
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
lush-PB	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

1. Evidence that supports the TSS annotation postulated above

Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The core promoter motifs refute the TSS of lush-PB the same way they do lush-PA. There is another location supported by two core promoter motifs, but it is refuted by all other pieces of evidence and requires removing a transcribed exon from the *D. melanogaster* model. The annotated TSS at 36,256 is not supported by any core promoter motifs in the area.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Dbia4_dna range=c	ontig70:1-400	000 5'pad=0 3'pad=0 strand=+ repeatMasking=none
Sequence ID: Icl 97225	Length: 40000	Number of Matches: 46

Range 1: 36256 to 36268 Graphics Vext Match 🔺 Previous						
Score	ite(13)	Expect	Identities	Gaps 0/13(0%)	Strand	
20.5 0	1	CTTCCACATCAAA	13	0/15(0%)	Flus/Flus	
Sbjct	36256	CTTGCACATCAAA	36268			

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

The second transcribed exon needs to have an acceptor site. TopHat indicates an acceptor site AG at 37832-37833. This prediction is supported by the BLASTn alignment, if the first 66 nucleotides aligned. It is also supported by RNA-seq data, which begins to improve coverage after this site.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

7 Drosophila Species Multiz Alignments & phastCons Scores

Conservation score statistics

Capitalize coding + exons based on Augustus + show all + bases Place cursor over species for alignment detail. Click on 'B' to link to browser for aligned species, click on 'D' to get 1

```
Alignment block 1 of 1 in window, 36226 - 36304, 79 bps
<u>B</u> D
        D. biarmipes ttatattctctatttaattgccttctgacgcttgcacatcaaaaac---aataataaatcaactgcatgag
     {\tt D. melanogaster ttatattctctatttaattgccttttgacgcttgcacatcaaagtagtaataataaatcaattgcacggc}
ΒD
           {\tt D. yakuba} \quad {\tt atatttctctatttaattgcattttgacgcttgcacatcaaagcagtaataataaatcaattgcatggc}
B D
           D. erecta ctatattctctatttaattgccttttgacgcttgcaaatcaaagcagtaataataaatcaattgcatggc
<u>B</u> D
B D
      D. eugracilis ttatattcactatcttattgccttttgacgcttgcacatcaaaacaataataataaatcaattacatgca
<u>B</u> D
       D. ficusphila ttat-ttctctacttaattgccttttgacgcttatacatcaaaac---agtaataaattacatgcc
      D. takahashii ttatattctctatttaattgcctcttgacgcttgcacatcaaaac---aataataaatcaattgcaataa
B D
        D. biarmipes aaaaccggaatc
     D. melanogaster acaaccggaatc
           D. yakuba agaaccggaatc
           D. erecta agaaccggaatc
       D. eugracilis aaaaccggaatc
       D. ficusphila aaaaccggaatc
       D. takahashii aaaccggaataa
```

BLASTn predicts the end of the first transcribed exon to be at 36,268. However, there is no donor sequence in this area for splicing. Looking at the Multiz conservation track in this area, there is inconsistency between the species. *D. biarmipes, D. ficusphila, and D. takahashii* have three gaps introduced. *D. melanogaster, D. yakuba, and D. erecta* all have a donating GT site, which could be used to end the exon. This needs to be investigated further to see if there is supposed to be a GT in the *D. biarmipes* sequence as well.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	+37589	NA
BRE ^d	+36162, +36375, +36411,	-19606055, -19606184
	+36481, +36561, +36572,	
	+36577, +36730, +36750,	
	+36770, +36899, +37146,	
	+37274, +37312, +37352,	
	+37359, +37501, +37605,	
	+37808, +37861, +37910,	
Inr	+36957, +37047, +37350,	-19606000, -19606110
	+37874	
MTE	NA	NA
DPE	+36601, +36986, +37199,	-19605998
	+37730, +37880, +37995	
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): <u>*D. biarmipes CG9372*</u> Gene symbol (i.e. dmoj_ey): <u>dbia CG9372</u> Approximate location in project (from 5' end to 3' end): <u>35622-33089</u> Number of isoforms in *D. melanogaster:* <u>1</u> Number of isoforms in this project: <u>1</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding	List of isoforms with identical coding sequences
sequence	
CG9372-PA	

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: No

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes

to the consensus sequence you have identified above. <mark>Paste a screenshot with the list of</mark> <mark>sequence changes below:</mark>

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia CG9372-PA</u> Names of the isoforms with identical coding sequences as this isoform

Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: ______

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker												
Configure Gene Model			«	C	hecklist	Dot Plot	Transcript Sequ	ence Peptide Sequence	Extracted Coding Ext	ons Downloads]	
Model Details				t:	Expand A	JI 🔳 Colla	ipse All					
Fosmid Sequence File:	C:\fakepath\contig70.fa	ista	Browse		View	Criteria			Status	Message		
Errors in Consensus Sequence?) Yes	No		۲	Q	Check for	Start Codon		© Pass			
Ortholog in D. melanogaster:	CG9372-PA			×		Acceptor	or CDS 1		Skip	Already checked f	or Start Codon	
Coding Exon Coordinates:	35622-35535, 35221-3	5073, 35012-3487	76, 34164-	۲	Q	Donor for	CDS 1		Pass			
	33591, 33361-33092			Q	Acceptor	for CDS 2		Pass				
				×	Q	Donor for	CDS 2		Pass			
				۲	Q	Acceptor	for CDS 3		Pass			
				Ð	Q	Donor for	CDS 3		Pass			
Annotated Untranslated	 Yes 	💽 No		Ð	Q	Acceptor	for CDS 4		Pass			
Regions?		۲	Q	Donor for	CDS 4		Pass					
Orientation of Gene Relative to Query Sequence:	O Plus	 Minus 		Ð	Q	Acceptor	for CDS 5		Pass			
Completeness of Gene Model	Complete	Partial		۰		Donor for	CDS 5		Skip	Already checked f	or Stop Codon	
Translation:	Ocompicto	<u> </u>		E	Q	Check for	Stop Codon		Pass			
Stop Codon Coordinates:	33091-33089			۲	Q	Additional	Checks		Pass			
				۲	Q	Number o	f coding exons ma	tched D. melanogaster or	Pass			
Project Details												
Project Group:	D. biarmipes 3L Control		~									
Project Name:	contig70											

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project;

zoom in so that only this isoform is in the screenshot. Include the following evidence tracks in the screenshot if they are available.

- 9. A sequence alignment track (D. mel Protein or Other RefSeg)
- 10. At least one gene prediction track (e.g. Genscan)
- 11. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 12. A comparative genomics track

(e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the D. melanogaster ortholog

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). Paste a screenshot of the protein alignment below:

4. Dot plot between the submitted model and the *D. melanogaster ortholog*Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). Provide an explanation for any anomalies on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Dot plot of CG9372-PA vs. Submitted_Sequence

The first exon is less conserved than the rest of the exons. However, it does have enough similarity, based on the protein alignment, to be annotated as it is.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
CG9372-PA	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_CG9372-PA Names of the isoforms with the same TSS as this isoform: Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 36,009-35,535 Coordinate(s) of TSS position(s): 36,009 Coordinate(s) of TSS search region(s): 36,000-36,300

1. Evidence that supports the TSS annotation postulated above

Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The core promoter motifs in the area refute the predicted TSS of 36,009. There are no core promoters supporting the predicted TSS. Upstream of the TSS, there is a greater concentration of core promoters, as shown by the red box in the figure above. The purple arrow shows the predicted first transcribed exon. The green arrow shows the first transcribed exon of the adjacent gene, lush-PA. Thus, the core promoters are not used to predict a TSS because it is unlikely that the two transcribed exons overlap.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Range	1: 35535	to 36009 Graphics		•	Next Mate	:h 🔺 Previo
Score 298 b	its(207)	Expect 3e-83	Identities 361/491(74%)	Gaps 46/491(9%)	Strar Plus/	nd Minus
Query	1	GCATTAAAGGGGAC-0	STCATTTCAGTGGCTCGC	TTTCCGCCCTACAGATAAGC	CAAGTGC	59
Sbjct	36009	GCATTAAAGGGGACCO	GCATCCCAGTGCCTCGC	TTTTCACCCTGGCGATAAGC	CAAGAGC	35950
Query	60	TCGGAT	ГААСТСААБТАТТАТА	ТААТАБТТАСТАТАТСССТА	GCGGTTC	108
Sbjct	35949	AGAAAGTACTCGGAT	TAATATTCGGGCGTTCG-	TAAAATTCACTATTTAAGT-(GCGGTGC	35892
Query	109	CAATCCCATTAAGCT	TTCGCCTGGGAACTGAGC	AT-GGAGTA	AGA	152
Sbjct	35891	CCATCCCAAAAAGCT	TTGTCTGGGAACTGAGC	TTAGGAGTACGCGACTCGCC	TGAGAGC	35832
Query	153	CGCTTTAATAGCCAG	SAAAACCCCATAGTGTCG/	ACGCATCGAACAGGTTCAAC	AGCAGTA	212
Sbjct	35831	CGCTTCATTAGCCAG	5AAAACCCAAAAGTGTCA	CCGCATTGAACAAGTTCAAA	AGCAGTG	35772
Query	213	TCCAAGGCAAGACGT	ATGTAAATTGAGCCGATC	TGAGCTCAGC-TCCATATCG	GAGAAGT	271
Sbjct	35771	TCCAAGGCAAATCGT	AAGTCGAGCCGGTC	TCAGCTCGTCGTCCATATCG	GAGCAGT	35716
Query	272	AGCTTTAGCTGGTTG	5AGAACTGT-CAAAACAG	AACTGATTCAGCGGGCAACG	GAAGCGA	330
Sbjct	35715	GCTCGTCG	SAGAAGTGCACAGAGCAG	AAGCGATTCAGCTGGCAACG	GAAGCGG	35663
Query	331	CACGCGATTAAAATT	CCACTGCACTCGCGAAA	ATAACTCAAAATGAAGGCAT	ттсттто	390
Sbjct	35662	CACACGATAAAA(CCAGTGCACTCGCGAAA	ATAACTCAAAATGAAGGCCT	TTATTTG	35606
Query	391	GGCATTGGTGATTTT		GAGTACAATCGCCAAGACTG	TATCCAC	450
Sbjct	35605	GGCTTTCGTGGTTTT	ACTGGGCTTCAGCGTGCA	GCGTATACTCGCCAAAACAA	TAACCAG	35546
Query	451	TGATTTTTTAG 46	1			
Sbjct	35545	TGATTATATAG 355	535			

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|26537 Length: 40000 Number of Matches: 9

The BLASTn alignment supports the predicted TSS location at 36,009.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 4. Short Match results for the Inr motif (TCAKTY)
- 5. RNA-Seq Alignment Summary
- 6. RNA-Seq TopHat

My predicted TSS, indicated by the red star, is supported by RNA-Seq data. The RNA-Seq does not pick up in read depth until downstream of the TSS.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alignment block 1 of	1 in window, 35971 - 36291, 321 b	ps
<u>B</u> D. biarmipes	tgaaaagcgaggcactgggatgccggtcccct	ttaatg ttatgagcttgggcccaatttcgt
<u>B</u> <u>D</u> D. melanogaster	cggaaagcgagccactgaaatg-acgtcccct	ttaatg ctctgagcttagacccaatttggt
<u>BD</u> D. yakuba	cggaaagcgagccactgagacg-cggtcccct	ttaatguttatgagctcagcttaggcccaatttatttt
<u>B</u> D D. erecta	cggaaagcgagccactgagatg-cggtcccct	ttaatg ttatgagcttaggcccaattt
<u>B</u> D. eugracilis	tggaaagcgaggcactgggatgccggtcccct	ttaatg ttatgagcttagacccaattttgt
<u>B</u> D. ficusphila	tggaaagcgagacactgatatgccggtcccct	ttaatg ttatgagcttggacctaatttcgt
<u>B</u> D. takahashii	tgaaaaacgagccactgagatgccggtcccct	ttaatg ttatgagcttggacccaattttgt
D. biarmipes	-gtattatcttaatgttgctggca-acagttt	ggcaacatg-actccagggcgacctaccgcccatgatc
D. melanogaster	-gtattatctcaatgttgctggca-acagctt	ggcaacatgttgccagggggga-gtagtgccc
D. yakuba	cgtattatctcaatgttgctggca-atagctt	ggcaacatgttgccaggggtaaagtagtgccc
D. erecta	ttttccgtattatctca-atagctt	ggcaacatgttgccaggggggaagtattgccc
D. eugracilis	-gtattatctcaatgttgctggcatatagctt	ggcaacatgtttccaagggcaaaatattgcca
D. ficusphila	-gtattatctcaatgttgctgact-tttgttt	ggcaacatgtttccaggcgctgaaatttgccc
D. takahashii	-gtattatctcaaagttgctgaca-aaagttt	agcaacaccaaaggcaaaattgttggtc
D. biarmipes	acgatgatccactcggattctccgagga	aaacgtgatgtgcatcgcaaatgatccggttcggtgg
D. melanogaster	atgatgatcagtttggattctccgaggc	gaacgtgatgtgcatcgcaaatgatccggttcggtgg
D. yakuba	atgatgatcaatttgtattatccgagga	gaacgtgatgtgcatcgcaaatgatccggttcggtgg
D. erecta	atgacgatcagtttggattctccgagga	gaacgtgatgtgcatcgcaaatgatccggttcggtgg
D. eugracilis	acgatgatcaacttggattctccgagga	aaacgtgatgtgcatcgcaaatgatccggttcggtgg
D. ficusphila	atgataatccactccgattctctgagaa	aaacgtgatgtgcatcggtaacgatccggttgggtgg
D. takahashii	acgatgatcgactcggcttctccgatgaaaat	aaacgtgatgggcattgcaaatgatccggttcggtgg
D. biarmipes	gttttgattccgtag-agtaacatctccgaat	tactaagaaagattttataagtatacaacttatattct
D. melanogaster	gttttgattccatagaagtatcatctccgaaa	tactaaggaagattttatactcagttatattct
D. yakuba	gttttgattccatagaagtatcatctccgaaa	tactaaggaagattttataagtactcaagatatattct
D. erecta	gttttgattccatagaagtatcatctccgaaa	tactaaggaagattttataagtgctcaagctatattct
D. eugracilis	gttttgattccatagaagtaacatctccgaaa	tactaaggaagattttataagtacacagcttatattca
D. ficusphila	gttttgattccatagaagtaacatcttcaaaa	tactgaggaagattttataactacacagcttat-ttct
D. takahashii	gttttaattccatagaagtaacatctccgaaa	tactaaggaagattttgtaggtacacagcttatattct
D. biarmipes	ctatttaattgccttctgacgcttgcacatca	aaacaataataaatcaactgcatga
D. melanogaster	ctatttaattgccttttgacgcttgcacatca	aagtagtaataataaatcaattgcacgg
D. yakuba	ctatttaattgcattttgacgcttgcacatca	aagcagtaataataaatcaattgcatgg
D. erecta	ctatttaattgccttttgacgcttgcaaatca	aagcagtaataataaatcaattgcatgg
D. eugracilis	ctatcttattgccttttgacgcttgcacatca	aaacaataataataaatcaattacatgc
D. ficusphila	ctacttaattgccttttgacgcttatacatca	aaacagtaataaataaattacatgc
D. takahashii	ctatttaattgcctcttgacgcttgcacatca	aaacaataataaatcaattgcaata

The red box in the figure shows the first bases that are included in the first transcribed exon, according to my TSS prediction. The purple boxes show the conservation that is part of the adjacent lush gene.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core_promoter_motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	-36267	+19605909, +19606189,
		+19606384
Inr	-36147	+19606071, +19606223
MTE	NA	NA
DPE	-36070, -36185, -36221	+19606218, 19606429
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): <u>*D. biarmipes CG9376*</u> Gene symbol (i.e. dmoj_ey): <u>dbia CG9376</u> Approximate location in project (from 5' end to 3' end): <u>27919-27209</u> Number of isoforms in *D. melanogaster:* <u>1</u> Number of isoforms in this project: <u>1</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding	List of isoforms with identical coding sequences
sequence	
CG9376-PA	

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form

Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. **Paste a screenshot with the list of sequence changes below:**

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia 9376-PA</u> Names of the isoforms with identical coding sequences as this isoform

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end:

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

-												
	Gene Model Checker											
1	Configure Gene Model				~	С	necklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exons	Downloads
ſ	Model Details					22	Expand Al	I 📔 Colla	ipse All			
	Fosmid Sequence File:	C:\fakepath\contig70.fa	asta	Browse			View	Criteria			Status M	lessage
	Errors in Consensus Sequence?	⊖ Yes	No			×	Q	Check for	Start Codon		© Pass	
	Ortholog in D. melanogaster:	CG9376-PA				Ð		Acceptor 1	for CDS 1		Skip A	Iready checked for Start Codon
	Codina Evan Coordinatory	27010 27212				Ð		Donor for	CDS 1		Skip A	Iready checked for Stop Codon
	Coding Exon Coordinates:	2/919-2/212				۲	Q	Check for	Stop Codon		Pass	
						Ð	Q	Additional	Checks		Pass	
						Ð	Q	Number o	f coding exons matched	D. melanogaster or	Pass	
	Annotated Untranslated Regions?	⊖ Yes	 No 									
	Orientation of Gene Relative to Query Sequence:	O Plus	 Minus 									
	Completeness of Gene Model Translation:	 Complete 	Partial									
	Stop Codon Coordinates:	27211-27209										
	Project Details											
	Project Group:	D. biarmipes 3L Control										
	Project Name:	contig7.0										

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at <u>http://gep.wustl.edu</u>). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 13. A sequence alignment track (D. mel Protein or Other RefSeq)
- 14. At least one gene prediction track (e.g. Genscan)
- 15. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 16. A comparative genomics track
 - (e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of CG9376-PA vs. Submitted_Seq

View plain text version

Identity: 232/236 (98.3%), Similarity: 234/236 (99.2%), Gaps: 0/236 (0.0%)						
CG9376-PA	1	MVSRFDQQKTKHQLFHVSLSLATILICMAYMQYRRNWAHLGSFWDSLVVPIVFLGELLKV	60			
Submitted_Seq	1	MVSRFDQQKTKHQLFHVSLSLATILICMAYMQYRRNWAHLGSFWDSLVVPIVFLGELLKV	60			
CG9376-PA	61	VLARFYGKVEDGVLTAKQRQKKNSYFTPRELLGGFTLQFLCTLLYAFICIILGAPVLGNY	120			
Submitted_Seq	61	ILARFYGKVEDGVLTVKQRQKKASYFTPRELLGGFTLQFLCTLLYAFICIILGAPVLGNY	120			
CG9376-PA	121	EQTFVLALLMTLLTVSPTVFLLGGGGALQVCFCEKPDFVTKCEDTALNLFKYNALGGILG	180			
Submitted_Seq	121	EQTFVLALLMTLLTVSPTVFLLGGGGALQVCFCEKPDFVTKCEDTALNLFKYNALGGILG	180			
CG9376-PA	181	AWAGSVVAPLDWGRDWQAYPIPNVIGALLGSALGNIYACTHVLYATARVYMTKKRT 236				
Submitted_Seq	181	AWAGSVVAPLDWGRDWQAYPIPNVIGALLGSALGNIYACTHVLYATARVYMSKKRT 236				

4. Dot plot between the submitted model and the *D. melanogaster ortholog*Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). Provide an explanation for any anomalies on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
CG9376-PA	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): <u>dbia_CG9376-PA</u> Names of the isoforms with the same TSS as this isoform:

Type of core promoter: (Peaked or Broad): <u>Peaked</u> Coordinates of the first transcribed exon: <u>28007-26980</u> Coordinate(s) of TSS position(s): <u>28008</u> Coordinate(s) of TSS search region(s): <u>27970-28140</u>

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from D. melanogaster	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The core promoters in the area do not support the predicted TSS of 28,008. There are BRE_d motifs at 28142, 28121, and 28117. There is an InR motif at 28047 and a DPE motif at 28023. The proximity relationship of the DPE and InR motifs gives a possible indication of another TSS. However, there is not enough evidence to add this as a prediction, and more analysis may need to be done.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Range	1: 26992	to 28004 Graphics		•	Next Mate	ch 🔺 Previor
Score 1016	bits(710)	Expect 0.0	Identities 876/1026(85%)	Gaps 19/1026(1%)	Stra Plus	and s/Minus
Query	4	TCAGTGTTGATAGGCG	GCGAAATACAAACGAAAG	бСАБСААААТАТТСТССААС	TTTAAG	63
Sbjct	28004	TCAGTGTTGATAACCG	GCGAAAAACAAACGGTGG/	ACGGGACGACGGCA	TTGACG	27951
Query	64	ΑΤΤΤΑCCAAAATTGTA	ТТТАТСТӨСАТТТААТСА	TGGTTTCCCGATTCGACCAA	CAAAAG	123
Sbjct	27950	ATTTTAGAAAAGTA	TTTAACTGTATTTAACCA	TGGTTTCCCGATTTGATCAA	CAGAAG	27893
Query	124	ACCAAGCACCAGCTCT	TCCACGTGTCCCTCAGCC	TCGCCACCATCCTGATCTGC	ATGGCG	183
Sbjct	27892	ACCAAGCACCAGCTCT	TCCACGTGTCCCTCAGCC	TGGCCACCATCCTGATCTGC	ATGGCG	27833
Query	184	TACATGCAGTATCGCC	GGAATTGGGCACATCTCG	GCAGCTTCTGGGATTCTCTT	GTCGTC	243
Sbjct	27832	TACATGCAGTATCGGC	GGAACTGGGCGCATCTCG	SCAGCTTCTGGGATTCTTTG	GTGGTC	27773
Query	244	CCTATTGTTTTCCTCG	GAGAGCTGCTAAAAGTTG	TTTTGGCTCGCTTCTACGGG	AAGGTT	303
Sbjct	27772	CCGATTGTTTTTCTCG	GTGAGCTTCTGAAAGTTA	TACTGGCCCGCTTCTATGGG	AAAGTT	27713
Query	304	GAGGATGGCGTCCTAA	CCGCCAAACAGCGCCAGA	AAAAGAACTCGTACTTTACG	CCGCGG	363
Sbjct	27712	GAGGATGGCGTCCTGA	CTGTTAAACAGCGCCAGA	AAAAGGCCTCGTACTTTACA	CCGCGG	27653
Query	364	GAGCTCCTCGGAGGAT	TCACCCTGCAGTTCCTGT	GTACACTCCTCTACGCCTTT	ATCTGC	423
Sbjct	27652	GAGCTCCTCGGGGGGAT	TCACTCTGCAGTTTCTTT	GCACGCTGCTTTACGCCTTT	ATCTGC	27593
Query	424	ATAATTTTGGGAGCCC	CGGTGCTGGGCAACTATG/	AGCAGACCTTCGTCTTGGCC	TTACTG	483
Sbjct	27592	ATCATTTTGGGAGCCC	CGGTGCTGGGCAACTACG	AGCAGACCTTTGTCCTGGCC	TTACTT	27533
Query	484	ATGACCTTGTTGACGG	TGTCACCCACGGTTTTCC	TCCTCGGTGGCGGAGGAGCA	СТАСАА	543
Sbjct	27532	ATGACACTGCTGACGG	TGTCGCCAACTGTTTTCC	TGCTCGGGGGGCGGCGGAGCC	CTCCAG	27473

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|13631 Length: 40000 Number of Matches: 17

Query	544	GTGTGCTTCTGCGAGAAACCGGACTTTGTGACCAAGTGCGAGGACACGGCTCTGAATCTG	603
Sbjct	27472	GTTTGCTTCTGTGAGAAGCCGGACTTTGTGACCAAGTGCGAGGATACGGCGCTGAACCTG	27413
Query	604	TTCAAGTACAATGCACTGGGCGGGATATTCTGGGAGCTTGGGCCGGGAGCGTGGTCGCTCCA	663
Sbjct	27412	TTTAAGTACAATGCGCTGGGCGGGATTCTGGGCGCCTGGGCCGGAAGTGTGGTAGCTCCT	27353
Query	664	CTAGACTGGGGACGTGACTGGCAGGCTTATCCCATTCCCAACGTGATCGGAGCACTGCTG	723
Sbjct	27352	CTAGACTGGGGACGCGACTGGCAGGCATACCCTATTCCGAATGTGATTGGAGCACTATTG	27293
Query	724	GGAAGCGCTCTGGGCAATATATACGCTTGTACGCATGTCCTCTACGCCACAGCTCGAGTT	783
Sbjct	27292	docAdcdctctdodtAAcAtAtAcdcctdtAcAcdtcctttAtdccAcddcccdtdtt	27233
Query	784	TACATGACCAAGAAACGCACTTAAATCTAATAATAAAA-CTCTTCATTCTGCCACCAAGA	842
Sbjct	27232	TATATGAGCAAGAAACGCACTTAAACCTTGCAATAAATGCTATTAATCCTGCCACCAAGA	27173
Query	843	TTATTACGTTGCGCTGCCACTGAAATCCACTCATCCACTAAGAACCACGTCATCAT	898
Sbjct	27172	TTATTACGTTGCGCTGCCTCTGAATTCCACACACTCATCCACTAAGAACCACGTCATCAT	27113
Query	899	CCCGTCTAGTCAGCAGCTTAGGAACTACCAAAAAGCAATTACCACTTTAATGTTACATGT	958
Sbjct	27112	ctcgactagtcagcagcttaggaactaccaaaaagcaattaacaatttaaagttacatat	27053
Query	959	TTAATCATATTACTAGCGTGGATTATTAATGAATTCTTTTTAAATCAATC	1017
Sbjct	27052	TTAAGCATTTTACTAGTGTAGTATTAAATTCTTTTTAAATCAATCAATTAATAAA	26998
Query	1018	CTAACA 1023	
Sbjct	26997	CTAACA 26992	

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, <mark>paste a Genome</mark> Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 7. Short Match results for the Inr motif (TCAKTY)
- 8. RNA-Seq Alignment Summary
- 9. RNA-Seq TopHat

The predicted TSS of 28,008 is supported by the RNA-seq data from the mixed embryos and the adult females. The base of the red arrow in the figure above indicates the start of the 5' UTR. The adult males RNA-seq data seems to continue further upstream. This gene may actually be a broad promoter that have a different TSS for the sexes.

If the TSS annotation is supported by sequence conservation with other Drosophila species, <mark>paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the</mark> multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

7 Drosophila Species Multiz Alignments & phastCons Scores

Conservation score statistics

Capitalize coding v ex	tons based on Augustus 🔹 show all 🔹 bases
Place cursor over specie	es for alignment detail. Click on 'B' to link to browser for aligned species, click or
-	5 · · ·
Alignment block 1 of	1 in window, 27896 - 28002, 107 bps
<u>B</u> D. biarmipes	ctgttgatcaaatcgggaaaccatggttaaatacagttaaatacttttctaaaatcgtcaa
<u>B</u> D. melanogaster	ttgttggtcgaatcgggaaaccatgattaaatgcagataaatac-aattttggtaaatcttaaacttgga
<u>BD</u> D. yakuba	ttgttggtcaaaacgggaaaccattgttaaatgcagataaaaac-aattttgttaaatcttaga
<u>BD</u> D. erecta	ttgttggtcaaatcgggaaaccatggttaaatgcagataaatac-aattttgttaaatcttagacttggt
<u>B</u> D D. eugracilis	ctgttggtcaaatcgggaaaccatgattaaatgcaataaaatat-agttttctaaaacctccga
<u>B</u> D. ficusphila	ttgttggtcaaatcgggaaaccatgattaaatgcagttaaatct-aaattt-tacaatctt
<u>B</u> D D. takahashii	ctgttggtcaaatcgggaaaccatggttaaatgcagttcaatagaattttctgaagttccttaa
D. biarmipes	tgccgtcgtcccgtccaccgtttgtttttcgccggttatcaacact
D. melanogaster	caatattttcctgcctttcgtttgtatttcgccgcctatcaacact
D. yakuba	tgtcgcttatattttttttctctcttccgtttgtatttcgccggttatcaacact
D. erecta	tgatattttcctgtcttccgtttatatttcgccggttatcaacact
D. eugracilis	tgcttcttcctgccctccgtttatttttcgccggttatcaacact
D. ficusphila	tgccgtctttctgactgccgtttgatttttgccgattatcaacact
D. takahashii	tgccgttttcctgacatccgtttgttttacgcccgttatcaacact

The Multiz alignments support the TSS as there is a high level of conservation near the start of the 5' UTR. The conservation is good starting at 28,002.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	-28142, -28121, -28117, -	+19612155, +19612157,
	27913, -27763	+19612227, +19612252,
		+19612317, +19612326,
		+19612338, +19612347,
		+19612387, +19612436,
		+19612500, +19612551,
		+19612701, +19612728,
		+19612731
Inr	-28047	NA
МТЕ	NA	NA
DPE	-28023, -27738	+19612727
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): *D. biarmipes Lon*

Gene symbol (i.e. dmoj_ey): <u>dbia Lon</u> Approximate location in project (from 5' end to 3' end): <u>28806-32932</u> Number of isoforms in *D. melanogaster:* <u>2</u> Number of isoforms in this project: <u>2</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding sequence	List of isoforms with identical coding sequences
Lon-PA	
Lon-PC	

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. **Paste a screenshot with the list of sequence changes below:**

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia Lon-PA</u> Names of the isoforms with identical coding sequences as this isoform

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: ______

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Mo	odel Checker														
Configure G	ene Model					hecklis	at D	ot Plot	Transcript Sequer	nce Peptide Sequen	Extracted Coding	Exons	Downloads		
Model Details			÷	Expand All		E Collapse All									
Fosmid Se	quence File:	C:\fakepath\contig70.fasta Browse			View	С	riteria			Status	Me	ssage			
Errors in C	Consensus Sequence?	Yes ● No		Ŧ	Q	С	heck for S	Start Codon		Pass					
Ortholog i	in D. melanogaster:	Lon-PA		Ħ		A	cceptor fo	r CDS 1		Skip	Aire	eady checked f	or Start Codon		
Coding Ex	on Coordinates:	28806-29150, 29567-2	9822, 29941-3034	3, 30400-	Ħ	Q	D	onor for C	DS 1		Pass				
-		30529, 30586-30890, 3	0948-31370, 3143	35-32163,	Ð	٩.	A	cceptor fo	r CDS 2		Pass				
		32447-32636, 32699-32929		Ð	Q	D	onor for C	DS 2		Pass					
					Q	A	cceptor fo	r CDS 3		Pass					
		Ð	Q	D	onor for C	DS 3		Pass							
Annotated Untranslated Yes		 Yes 	 No 		H	Q	A	cceptor fo	r CDS 4		Pass				
Regions?					Ð	Q	D	onor for C	DS 4		Pass				
Orientation of Gene Kelative to ● Plus ○ Minus Query Sequence: Completeness of Gene Model ● Complete ○ Partial		Ð	Q	A	cceptor fo	r CDS 5		Pass							
		Complete O Partial		Ð	Q	D	onor for C	DS 5		Pass					
Translation	n:		0.111		ŧ	Q	A	cceptor fo	r CDS 6		Pass				
Stop Codon Coordinates: 32930-32932		32930-32932	930-32932		H	Q.	D	onor for C	DS 6		Pass				
					H	Q	A	cceptor fo	r CDS 7		Pass				
Project D	etails				H	Q	D	onor for C	DS 7		Pass				
Project Gr	oup:	D. biarmipes 3L Contro	I	~	Ð	Q	A	cceptor fo	r CDS 8		Pass				
Project Na	Project Name: contig70			Q	D	onor for C	DS 8		Pass						
		H	Q	A	cceptor fo	r CDS 9		Pass							
					H		D	onor for C	DS 9		Skip	Aire	ady checked f	or Stop Codon	
					H	Q	C	heck for S	Stop Codon		Pass				
					Ŧ	Q	A	dditional (Checks		Pass				
						Q	N	umber of	coding exons matcl	hed D. melanogaster or	🕲 Pass				

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

17. A sequence alignment track (D. mel Protein or Other RefSeq)

- 18. At least one gene prediction track (e.g. Genscan)
- 19. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 20. A comparative genomics track

(e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the D. melanogaster ortholog

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of Lon-PA vs. Submitted_Seq

4. Dot plot between the submitted model and the D. melanogaster ortholog

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): dbia_Lon-PC Names of the isoforms with identical coding sequences as this isoform

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: _____

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated

above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker										
Configure Gene Model		~	C	hecklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exo	ns Downloads	_
Model Details				Expand All	E Collapse All					
Fosmid Sequence File:	C:\fakepath\contig70.fasta Browse			View	Criteria		Status Message			
Errors in Consensus Sequence?	us Sequence? Yes No elanogaster: Lon-PC		۲	Q	Check for 8	Start Codon		Pass		
Ortholog in D. melanogaster:					Acceptor fo	or CDS 1		Skip	Already checked for Start Codon	
Coding Exon Coordinates:	28806-29150, 29567-29822, 29887-303	43, 30400-		Q	Donor for C	CDS 1		© Pass		
	30529, 30586-30890, 30948-31370, 31 32447-32636, 32699-32929	435-32163,		<u> </u>	Acceptor to	or CDS 2		© Pass		
					Donor for C	205 Z		© Pass		
					Donor for (0053		Pass Pass		
Annotated Untranslated	Yes No				Acceptor fo	or CDS 4		© Pass		
Regions?	0.00			Q	Donor for 0	CDS 4		© Pass		
Orientation of Gene Relative to Query Sequence:	Plus Olinus			Q	Acceptor fo	or CDS 5		© Pass		
Completeness of Gene Model Complete Partial			Ħ	Q	Donor for 0	CDS 5		© Pass		
Translation:			H	Q	Acceptor fo	or CDS 6		O Pass		
Stop Codon Coordinates:	32930-32932		H	Q	Donor for 0	CDS 6		O Pass		
			۲	Q	Acceptor fo	or CDS 7		Pass		
Project Details			Ħ	Q	Donor for C	CDS 7		Pass		
Project Group:	D. biarmipes 3L Control	~	Ħ	Q	Acceptor fo	or CDS 8		Pass		
Project Name:	contig70		Ш	Q	Donor for 0	CDS 8		Pass		
			۲	Q	Acceptor fo	or CDS 9		Pass		
					Donor for C	CDS 9		Skip	Already checked for Stop Codon	
				~	Additional (Chaoka		© Pass		
					Number of	continue exons matched D	melanogaster or	© Fass		
				~		ooung onone matched b	. molunoyabiti ti	W1 400		

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 5. A sequence alignment track (D. mel Protein or Other RefSeq)
- 6. At least one gene prediction track (e.g. Genscan)
- 7. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 8. A comparative genomics track (e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the D. melanogaster ortholog

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of Lon-PC vs. Submitted_Seq

4. Dot plot between the submitted model and the *D. melanogaster ortholog*

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Dot plot of Lon-PC vs. Submitted_Sequence

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
Lon-PA	Lon-PC

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_Lon-PA Names of the isoforms with the same TSS as this isoform: dbia_Lon-PC Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 28,683-29,150 Coordinate(s) of TSS position(s): 28,683 Coordinate(s) of TSS search region(s): 28,600-28,805

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from D. melanogaster	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The core promoters in the search region do not support my TSS prediction, indicated by the red star. Also, none of the core promoters would support the same TSS.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Range 1: 28693 to 29150 Graphics Vext Match 🔺 Prev							
Score		Expect	Identities	Gaps	Stra	Strand	
416 bits(290)		6e-119	5e-119 377/458(82%) 1		 Plus/Plus 		
Query	10	ATTTCACCAGCCGT	CACATAATCACTCACCA	CACATTTGGACTGCAAATTGT		54	
Sbjct	28693	ATTTTACCAGCCGTTCCG	STCACATAATCACTCCCCA	CACATTTGGACTGCAAATTGT		28752	
Query	65	TCTACCATTTCTAGTTA	TTCTAAGTAAATTGCGAG	TGGATATTGCTTTCAATATGT	TAG 1	124	
Sbjct	28753	TATACTATTTCTAGTTA	TTCTAAGTAAATTGCGAG	TGGGAACTGCGATCGAAATGC	TAG	28812	
Query	125	CCCGCGCTATCCGAGTG	GCCCCATGATGCGTGGCA	TCGCCTCGTCGTCAGTGTGGA	ACC 1	184	
Sbjct	28813	CCCGCGCTATCCGAGTG	GTCCTATGATGCGGAGCA	TCGCCTCGTCGTCGGTGTGGA	kccc a	28872	
Query	185	GGAATCGTCCCATTCAG/	AGTTCCCTGATGCAATACT	GCCGGGATCGGTCGTTGCGCC	тсс а	244	
Sbjct	28873	GCAACCGTCCCGCCCAGA	AGTTCCCTGGTGCAATGCT	GCCGGGTTCGGGCGACGCACC	tcc a	28932	
Query	245	AGCGGCTCCACGGAGCCA	ATTTGATGGTGCAGCGCT	TCTACAGCCGCAAGCGGGATG	ATT :	304	
Sbjct	28933	AGCGATTTCATGGAGCA	ACATGATGGTCCAACGTT	TCTACAGCCGCAAGCGGGACG	ACT 2	28992	
Query	305	CCAACGGGGATATTAT-1	ATGGGACCCGATC	TTATGTCCGATCAAGATACCC	ATC :	358	
Sbjct	28993	CCGACGAGGATCTCATG	SACGGTCATAATCCCGAGC	TAATGTCCGATCGGGAAGCCC	AGT 2	29052	
Query	359	TTCCGGCAACTGTGGCGG	GTGCCGGACGTGTGGCCAC/	ATGTTCCGTTGTTGGCCATGC	GCA 4	418	
Sbjct	29053	TGCCGGCCACTGTTGCGG	TGCCGGATGTGTGGCCAC	ATGTCCCGCTGTTGGCCATGC	GAA 2	29112	
Query	419	AGAATCCTCTCTTTCCCC	GCTTTATGAAGATAGTGG	AG 456			
Sbjct	29113	AGAATCCCCTCTTTCCGC	GCTTCATGAAGATTGTAG	AG 29150			

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|Query_39683 Length: 40000 Number of Matches: 11

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 10. Short Match results for the Inr motif (TCAKTY)
- 11. RNA-Seq Alignment Summary
- 12. RNA-Seq TopHat

There does not seem to be much difference in RNA expression in the different cell lines. All of the RNA-Seq alignments support my TSS prediction.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alig	nment block 1 of	1 in window, 28708 - 28832, 125 bps
<u>B</u> <u>D</u>	D. biarmipes	ccgtcacataatcactccccacacatttggactgcaaattg-tttttatactatttctagttatttctaa
<u>B</u> D	D. melanogaster	ccgtcacataatcactcaccacacatttggactgcaaattg-tttttctaccatttctagttatttctaa
<u>B</u> D	D. yakuba	ccgtcacataatcactcaccacacatttggactgcaaattg-tttttctactatttctagttatttctaa
<u>B</u> D	D. erecta	ccgtcacataatcactcaccacacatttggactgcaaattg-tttttctaccatttctagttatttctaa
<u>B</u> D	D. eugracilis	ccgtcacataatcactcctcacacactaggactgcaaattg-tttttataccatttctagatatttctaa
<u>B</u> D	D. ficusphila	ccgtcacataatcactcctcacacatttggactgcaaattgtttttttt
<u>B</u> D	D. takahashii	ccgtcacataatcactcctcacacatttggt-tgcaaattg-tttttataccatttctagttatttctaa
	D. biarmipes	gtaaattgcgagtgggaactgcgatcgaaatgctagcccgcgctatccgagtgcgt
	D. melanogaster	gtaaattgcgagtggatattgctttcaatatgttagcccgcgctatccgagtgcgc
	D. yakuba	gtaaattgcgagtggatattgctttcaatatgttagcccgcgctatccgagtgcgc
	D. erecta	gtaaattgcgagtggatactgctttcaatatgttagcccgcgctatccgagtgcgc
	D. eugracilis	gtaaattgcgattgggaattgtcatcaagatgctagcccgcgctatccgagtgcgt
	D. ficusphila	gtaaattgcgagtgggaattgtcatcgaaatgctagcccgcgctattcgagtgcgt
	D. takahashii	gtaaattgcgagtgggaattgccatcgagatgctagcccgcgctatccgagtgcgt

The conservation from Multiz only weakly supports my TSS prediction as the conservation does not start until 28,708.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+28403, +28435, +28463,	-19612078, -19612137, -
	+28508, +28535, +28537,	19612279
	+28616, +28745	
Inr	+28601, +28658	-19612187
MTE	NA	NA
DPE	+28765	-19611965, -19612093, -
		19612118
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	-19612201
Ohler_motif8	NA	NA

The *D. melanogaster* sequence has an Ohler_motif7 just upstream of the TSS. This could be significant and something to investigate more, as this motif is relatively rare to occur by chance.
Gene report form

Gene name (i.e. *D. mojavensis eyeless*): <u>*D. biarmipes asf1*</u> Gene symbol (i.e. dmoj_ey): <u>dbia asf1</u> Approximate location in project (from 5' end to 3' end): <u>21025-20375</u> Number of isoforms in *D. melanogaster:* <u>2</u> Number of isoforms in this project: <u>2</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding sequence	List of isoforms with identical coding sequences
asf1-PA	asf1-PB

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence

Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes

to the consensus sequence you have identified above. <mark>Paste a screenshot with the list of</mark> <mark>sequence changes below:</mark>

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): dbia asf1-PA

Names of the isoforms with identical coding sequences as this isoform <u>dbia asf1-PB</u>

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end:

Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: _____

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

5												
ł	Gene Model Checker											
	Configure Gene Model				«	Chec	klist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exc	ns Downloads
	Model Details				6	Ex	pand All	E Colla	pse All			
	Fosmid Sequence File:	C:\fakepath\contig70.f	asta	Browse		Vi	ew	Criteria			Status	Message
	Errors in Consensus Sequence?	 Yes 	No		8		R,	Check for	Start Codon		Pass	
	Ortholog in D. melanogaster:	asf1-PA			8			Acceptor fe	or CDS 1		Skip	Already checked for Start Codon
	Coding Even Coordinates:	21025-20279			9			Donor for	CDS 1		Skip	Already checked for Stop Codon
	coung Exon coordinates.	21025-20378			G	•	R	Check for	Stop Codon		Pass	
					G		R,	Additional	Checks		Pass	
					8		R	Number of	coding exons matched	D. melanogaster or	Pass	
	Annotated Untranslated Regions?) Yes	 No 									
	Orientation of Gene Relative to Query Sequence:	O Plus	 Minus 									
	Completeness of Gene Model Translation:	 Complete 	Partial									
	Stop Codon Coordinates:	20377-20375										
	Project Details											
	Project Group:	D. biarmipes 3L Contro	k	~								
	Project Name:	contig70										

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 21. A sequence alignment track (D. mel Protein or Other RefSeq)
- 22. At least one gene prediction track (e.g. Genscan)
- 23. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 24. A comparative genomics track

(e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of asf1-PA vs. Submitted_Seq

View plain text version								
Identity: 206/218 (94.5%), Similarity: 210/218 (96.3%), Gaps: 2/218 (0.9%)								
asf1-PA	1	MAKVHITNVVVLDNPSSFFNPFQFELTFECIEELKEDLEWKMIYVGSAESEEHDQVLDTI	60					

Submitted_Seq	1	MAKVHITNVVVLDNPSSFFNPFQFELTFECIEELKEDLEWKMIYVGSAESEEHDQVLDTI	60					
asf1-PA	61	YVGPVPEGRHIFVFQADPPDVSKIPEPDAVGVTIVLLTCSYRGQEFVRVGYYVNNDYADP	120					

Submitted_Seq	61	YVGPVPEGRHIFVFQADPPDVSKIPEPDAVGVTIVLLTCSYRGQEFVRVGYYVNNDYADP	120					
asf1-PA	121	EMRENPPTKPLFEKLTRNILASKPRVTRFKINWDYGHINGNGNGVENGHQDEMATDGPST	180					
		******* *******************************						
Submitted_Seq	121	EMRENPPPKPLFDKLTRNILASKPRVTRFKINWDYGHINGNGVENGHDEEMVTDGPST	178					
asf1-PA	181	SEAASAVIHPEDDNSLAMPMENGIKALNENSNSLAMEC 218						
		..*::******************************						
Submitted_Seq	179	SEVASVVVQPEDDNSLAMPIENGIKALNENSNSLAMEC 216						

4. Dot plot between the submitted model and the *D. melanogaster ortholog*

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

The two lines near the end of the plot arise from the alignment with another part of the sequence due to a repetitive segment. The sequence that is repeated is "NSLAM". It is seen twice in the last line of the protein alignment figure.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
asf1-PA	asf1-PB

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_asf1-PA Names of the isoforms with the same TSS as this isoform: dbia_asf1-PB Type of core promoter: (Peaked or Broad): Peaked Coordinates of the first transcribed exon: 21,329-19,824(asf1-PA); 21,329-21,200(asf1-PB) Coordinate(s) of TSS position(s): 21,329 Coordinate(s) of TSS search region(s): 21,200-21,500

1. Evidence that supports the TSS annotation postulated above

Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs		Х
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

None of the surrounding core promoters seem to support my TSS prediction or strongly support another location. It is interesting to note the variety of motifs in the search region. This variety was not seen in any of the other genes in the project.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Range 1: 20147 to 21329 Graphics 💎 Next Match 🔺									
Score		Expect	Identities	Gaps	Strand				
900 bi	its(629)	0.0	929/1191(78%)	60/1191(5%)	Plus/Minus				
Query	1	CGCGGGAAAGAAGT	CAGCTGTCACCATTTG	TGCGAAGACAAGCGGAA	TAATTGC 54				
Sbjct	21329	CGCGGGAAAGCCAT	CAGCTGTCATCACAAATTT	TGCAACGAAAGAAAGCGAAC	AAATTGA 21270				
Query	55	GATAAATAAAAGCA	SAATAGCGACAGACAAT-T	GCACAAACCTGATTCATGT	GTAACCA 113				
Sbjct	21269	GATATATAAACGAA	AAATT-CGGCATAAAAAGT	TTACAAACCTTACCCATCAT	ATTGAAA 21211				
Query	114	АААСАААСТАСТАС	CATTACAGTACATATATCA	AGTATTTGCTGAGCGTTTTG	CAGGTGA 173				
Sbjct	21210	TATCAATCAGCTAG	CATTACATCACGAAACGCA	AGTATTTGGCGAGTGTTCTG	CAGGTTG 21151				
Query	174	ATTTCGCAAAG	СААТТСССТАСТСССА	CAAAAGCAGAACCT-CTAAA	AAAAGCG 226				
Sbjct	21150	ATTTCGACAAGGGG	SCGCCATTTCTGCACAGAA		AAAAGCG 21091				
Query	227	CGCAGTCGAAGGAG	ГСТТТААААТАТСБӨТСТА	CGCTCTGCAATCTCCGAGGT	ACA 282				
Sbjct	21090	CGCCGTTGAAGGCG	TCTGGAAAAACTCCGCCTC	CGTTTTCCAATCCGCGAGGT	ACATTCA 21031				
Query	283	GTCATGGCCAAG	STGCACATCACCAACGTGG	TGGTGCTGGACAACCCGAGC	AGCTTCT 340				
Sbjct	21030	CAGTCATGGCCAAG	STGCACATCACCAATGTGG	TGGTGCTGGACAACCCCAG	AGCTTTT 20971				
Query	341	TCAACCCCTTTCAG	TTCGAACTCACGTTCGAGT	GCATTGAGGAGCTAAAAGAG	GATCTAG 400				
Shict	20970		TCGAACTGACCTTTGAGT	GCATCGAGGAGCTGAAGGAA	GACCTCG 20911				

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: lcl|Query_32003 Length: 40000 Number of Matches: 22

The entire BLAST alignment would not fit in one screen-shot since it included both the UTR's and the coding exon. The alignment predicts a TSS at 21,329.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 13. Short Match results for the Inr motif (TCAKTY)
- 14. RNA-Seq Alignment Summary
- 15. RNA-Seq TopHat

The RNA-seq alignments seem to support my TSS prediction, indicated by the red star, very well. The data depth increases soon after the TSS.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alignment block 1 of	1 in window, 21110 - 21411, 302 bps
<u>B</u> D. biarmipes	tgcttttgttctgtgcagaaatggcgcccccttgtcgaaatcaacctgcagaacactcgccaaatacttg
<u>B</u> D. melanogaster	tgcttttgtccgactagggaattgct-ttgcgaaattcacctgcaaaacgctcagcaaatacttg
<u>B</u> D. yakuba	tgggttagcccgtctagggaattgcgtgtct-ttgcgaaatgcacctgacaaacgctcgacaaacacttg
<u>B</u> D. erecta	tgcttttgcccgcctggggaattgcgtgtct-ttgcaaaatccacctgttaaacgctcggcaaacacttg
<u>B</u> D D. eugracilis	tacttctgttgcgagcaggacttacgtgctt-tgatgaaatacacctgctaaacactctactaacagttg
<u>B</u> D. ficusphila	tgcttttgttccgtgcaggaaaataacacct-tgaaaaagtgcgactgctgaaaccgcgatcaactcttg
<u>B</u> D. takahashii	tgcttttgtttcgggcaggaatttcgttccc-tgtcgaaatttgcctgctaaacactcgacaatcacttg
D. biarmipes	${\tt cgtttcgtgatgtaatgctagctgattgatatttcaatatgatgggtaaggtttgtaaactttttatgcc}$
D. melanogaster	a tatatgtactgtaatgctagtagtttgttttggttacaacatgaatcaggtttgtgcaattgtctgtc
D. yakuba	at att cgt agt gga atg ct agt gatt tg tt tt gg tt at a at a
D. erecta	${\tt atatttgtagtggaatgctagtaatttgttttggttataacataaatcaggtttgtgcaattgtctgtc$
D. eugracilis	tagttcgttgtacaatattaaatgattaggtttgtaataatttgactaagattcgtctactttcaaggct
D. ficusphila	cgttttgtgatgcaataatttctgattgttagtgtaactttcttt
D. takahashii	${\tt ctgttcgcgatgcaatgctagctgattgtttgcgtaatattttggatcaggtttgtgttcttttcacttg}$
D. biarmipes	gaa-tttttcgtttatatatctcaatttgttcgctttctttcgttgcaaaatttgtgatgaca
D. melanogaster	cta-ttctgcttttatttatcgcaattattccgcttgtcttcgcacaaatggtgaca
D. yakuba	cta-ttctgagtttatatatcgcaattattccgcttcttttctcacaaattttgtggtgaca
D. erecta	cta-ttttgagtttatttatcacaattattccgcttcttttctcacaaatttcgtggtgaca
D. eugracilis	tta-ttcttcttttatttatcggaatttcttcgctttctttgctcgcaaaatctgtgatgaca
D. ficusphila	cgacttttaggtttatttattgtaattctttcgcctagttgctcgcaaaatttgtgatgaca
D. takahashii	$\verb gta-atttccgtttatttattgcaagaagttcgctttcttctttct$
D. blarmipes	gctgatggctttcccgcgcttcagtgtgcccgtgttgcaaggcaagtggtggggaaaaactcaccacgcc
D. melanogaster	gctgacttctttcccgcgcttcagagggaccgttcggtgtcgcaagtggtggcgaaaaactcaccacgac
D. yakuba	gctgactgctttcccgcgcttcagtgtgaccgttctgtgacgcaagaggttgcggaaaattcaccacgac
D. erecta	gctgacttctttcccgcgcttcaaagtgaccgttttgtggcgcaagtggtggcggaaaactcaccacgac
D. eugracilis	gctgacggctttcccgcgcttcagtgtgaccgtcttagtggtgaaaatttcacaacgaa
D. ficusphila	gctgacggctttcccgcgcttcagtgtgaccgttttgaggagcaagcggtggtgaaaaactcaccacgac
D. takahashii	gctgacggctttcccgcgcttcagtgtgaccgttttccgacgcaagtggtggcgaaaaactcaccacaac
D. biarmines	aagtgacggaatgtcaaactgcaacgatag
D. melanogaster	aagtagggaatatcaaaagggaatag
D. vakuba	aagtticggaatgtcaaaatacaatgatag
D. erecta	aagtggcggaatgtcaaaatacaacgatag
D. eugracilis	aagtgacggaatgtcaaaatgcagggtag
D. ficusphila	aagtgacagaatgtcaaaacgcggggggg
D. takabashij	aagtgacggaatgtcaaaatgcaacgatag
D. CakandShill	aay eya eya eya ea aa

The Multiz alignments show a large increase in depth, at 21,234, just prior to my predicted TSS. The red box in the above figure shows what bases the peak refers to when looking at the UCSC Genome Browser overall.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	-21087, -21132	NA
TATA Box	-21260	NA
BRE ^d	-21170	+19618608, +19618652,
		+19618660, +19618666,
		+19618668, +19618715,
		+19618774, +19618776,
		+19618919, +19618995,
		+19619041
Inr	-21469, -21517	NA
MTE	NA	NA
DPE	-21024, -21265, -21503	+19618747, +19618783,
		+19619175
Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

None of the nearby core promoters support my TSS prediction

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): *D. biarmipes ms(3)76Cc* Gene symbol (i.e. dmoj_ey): <u>dbia ms(3)76Cc</u> Approximate location in project (from 5' end to 3' end): <u>19540-15863</u> Number of isoforms in *D. melanogaster:* <u>1</u> Number of isoforms in this project: <u>1</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding	List of isoforms with identical coding sequences
sequence	
ms(3)76Cc-PA	

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. Paste a screenshot with the list of sequence changes below:

Isoform report form Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia ms(3)76Cc-PA</u> Names of the isoforms with identical coding sequences as this isoform

Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: ______ Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: ______

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker													
Configure Gene Model				~	C	hecklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exo	ns Downloads		
Model Details					¥7.	Expand All 📃 Collapse All							
Fosmid Sequence File:	C:\fakepath\contig70.1	asta	Browse			View	Criteria			Status	Message		
Errors in Consensus Sequence?) Yes	No			۲	Q	Check for	Start Codon		Pass			
Ortholog in D. melanogaster:	ms(3)76Cc-PA						Acceptor f	or CDS 1		Skip	Already checked for Start Codon		
Coding Exon Coordinates:	19540-19455, 19391-1	15866				Q	Donor for	CDS 1		Pass			
	Lion Coolumbres. 19970-1993, 1992-1900			۲	Q	Acceptor f	or CDS 2		Pass				
				۲		Donor for	CDS 2		Skip	Already checked for Stop Codon			
				۲	Q	Check for	Stop Codon		Pass				
					۲	Q	Additional	Checks		Pass			
Annotated Untranslated Regions?) Yes	 No 			۲	Q	Number of	f coding exons matched	D. melanogaster or	Pass			
Orientation of Gene Relative to Query Sequence:	O Plus	 Minus 											
Completeness of Gene Model Translation:	 Complete 	Partial											
Stop Codon Coordinates:	15865-15863												
Project Details													
Project Group:	D. biarmipes 3L Contro	l	*										
Project Name:	contig7.0												

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 25. A sequence alignment track (D. mel Protein or Other RefSeq)
- 26. At least one gene prediction track (e.g. Genscan)
- 27. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 28. A comparative genomics track

(e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). **Paste a screenshot of the protein alignment below**:

Alignment of ms(3)76Cc-PA vs. Submitted_Seq

View plain text version

Identity: 765/1225 (62.4%), Similarity: 892/1225 (72.8%), Gaps: 72/1225 (5.9%)

4. Dot plot between the submitted model and the *D. melanogaster ortholog*

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Relative to many other orthologs, these sequences do not have a large amount of identity. They are 62.4% identical. The first exon is very short and also does not have the best alignment. When compared to the entire sequence in the dot plot, it appears to not align at all. This is not the case, as seen in the protein alignment figure. The middle of the second exon does not align very well and many gaps are forced in both sequences.

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
ms(3)76Cc-PA	

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_ms(3)76Cc-PA Names of the isoforms with the same TSS as this isoform: ______ Type of core promoter: (Peaked or Broad): Peaked Coordinates of the first transcribed exon: 19,634-19455 Coordinate(s) of TSS position(s): 19,636 Coordinate(s) of TSS search region(s): 19,541-19,683

1. Evidence that supports the TSS annotation postulated above

Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from <i>D. melanogaster</i>	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs	Х	
Sequence conservation with other Drosophila species	Х	
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: Icl|1031 Length: 40000 Number of Matches: 31

Range 1: 19455 to 19634 Graphics Vext Match 🔺 Previous M								
Score 92.5 bi	its(63)	Expect 9e-22	Identities 129/191(68%)	Gaps 11/191(5%)	Strand Plus/Minus			
Query	1	CTTCCTTTGTGC	ATATTCAGCAACAATTAC	ATTAGAACAAAAACAG	AAAAAAACTCAAA	60		
Sbjct	19634	CTTCCTATCTAA	AATACTCAGCTAAATTTTA	AGTAGAACAAAAACT-	-AAAAAAGGAAAA	19577		
Query	61	TCTCAAATCTTT	GCTGTACAAAATTTAAGTA	ACAGACATCTTAGGAT	GCCTATCAGCCAA	120		
Sbjct	19576	$\mathbf{T}^{ }$	GTTGTGAAAAATTGGAGCT	CCAGACATTTGAACAT	GCCGATCAGCCGA	19526		
Query	121	CACGATCTTGCCC	CGTTTTGCCAGCGCCCCGG	GCAGTTGCCCTCGGAT	CAGCATGAGCAAC	180		
Sbjct	19525	CAGGATCTGCGCC	CGTTTGGCCAGCACTCCGA	GCTGTGGTCCTCGATT	AACCAAAAGCCAG	19466		
Query	181	TCGAGCAATAC	191					
Sbjct	19465	ACAAGCAACAC	19455					

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, **paste a Genome** Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

There are no Inr motifs, as shown by the core promoter motifs track. The TSS prediction is supported by a BRE_d motif found at 19659-19653. The RNA-seq also supports the TSS prediction well, specifically the adult males track. This makes sense, as the protein coded for is known to be needed for sperm differentiation.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

Alig	nment block 1 of	1 in window, 19375 - 19641, 267 bps
<u>B</u> D	D. biarmipes	${\tt cagtatagctgatgtacctatgaataatcgggaaaaaggattattatttgaatacggcccagtttgggag$
<u>B</u> D	D. melanogaster	ccgaatagctgagatacctaaggacgatcaggaggatggat
<u>B</u> D	D. yakuba	cagaatagctgagatacctaaggacgatcaggagaacggatcagt-aaaagcattagccaaattctggag
<u>B</u> D	D. erecta	ccgaatagctgagatacctaaggacgatcaggaggacggttcagt-ttaaacattagctaaattccggag
<u>B</u> D	D. eugracilis	${\tt cagtgtagctatgatatctaggggcaatcaggaacatggatcagttttcgagaaccgcccaatttcagag$
<u>B</u> D	D. ficusphila	${\tt caacgtagctaatgtatctaagggtaaacagga-cacagataagcactcaaaaaaccgctgcaattgggag$
<u>B</u> D	D. takahashii	ccgtatagctgatatacctgaggacaaggaaggatcagttttcgacaatcaccgcattgtgcag
	D. biarmipes	$\verb+ctctccccacgtgttgcttgtctggcttttggttaatcgaggaccacagctcggagtgctggccaaacgg+$
	D. melanogaster	${\tt tactctccacgtattgctcgagttgctcatgctgatccgagggcaactgcccggggcgctggcaaaacgg}$
	D. yakuba	tactctccacgtattgctcgaattgctcttgttaatgcgacagctcgggggggctgaccaaacgg
	D. erecta	${\tt tactctccacgtattgctcgagttgcccttagtactgcgaggacaacagctcggggcgctggccaaacgg}$
	D. eugracilis	${\tt taatacccacgtgttgctcgtgtgactcttcgagaacacaggacaacaacttggcgtgctggccaaacgg}$
	D. ficusphila	${\tt cacatctcacgtgttgctagatttgctattgctgaaccgaggacagcagctttgcatgctggccatacgg}$
	D. takahashii	cgccacccacgtattgctcgaccggcttttggcaactcgaggataacagctcggcgtgctggccaagcgg
	D. biarmipes	cgcagatcctgtcggctgatcggcatgttcaaatgtctggagctccaatttttcacaacaaatttt
	D. melanogaster	gcaagatcgtgttggctgataggcatcctaagatgtctgttacttaaattttgtacagcaaagatttgag
	D. yakuba	$\verb ccaaaatcctgttggctgatcggcatcctcagatgtctgttacttaaattttgtacagcaaaaattt $
	D. erecta	ccaagatcctgttggctgatcgacatcctcagaaatctgttactttaattttgtacagcaaaaattt
	D. eugracilis	tgcggttcctgttgactgatcggcatcctgggatgtcttaaaatcgaatttagtacaaaactaatt
	D. ficusphila	$\verb cacagatcctgttggctgatcggcatcct-ggctgtctagaattttaa-tttgcgtaaaaaaaattc $
	D. takahashii	cgcagatcctgttggctgattgccatcctcggatgtctaaaactctaatttgacacaaaaaattt
	D. biarmipes	ccttttttagtttttgttctacttaaaatttagctgagtattttagataggaagaattgat
	D. melanogaster	atttgag-tttttttctgtttttgttctaatgtaattgttgctgaatattgcacaaaggaagaattgat
	D. yakuba	- tccgagttttttttcggtttttgttctactggaa-ttttgctgaaaattgcagaaaggaagtattgat
	D. erecta	-tccgagtttttttagtttttgttctactggaatttttgctgaaaattgcagaaaggaagaattgat
	D. eugracilis	-ttccac - ttttttcagttttcgttttactagaattttaaatgaatattccagaaaggatgaactgat
	D. ficusphila	-ttacactttttgttttcgttttactaaaattttagctgaatattgcagaaaggaagatttgat
	D. takahashii	-ttacacctttttccgttttccttctacttggaatttagttgagtattgcagaagggaaaatttgat

The Multiz alignments show conservation with other species back to 19,641.

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: http://gander.wustl.edu/~wilson/core promoter motifs.html

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motif	Your project	D. melanogaster
BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	-19577, -19659, -19664, -	+19620429, 19620417
	19667, -19669, -19689	
Inr	NA	NA
MTE	NA	NA
DPE	-19552	+19620595

Ohler_motif1	NA	NA
DRE	NA	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	NA	NA
Ohler_motif8	NA	NA

Gene report form

Gene name (i.e. *D. mojavensis eyeless*): *D. biarmipes l(3)76BDm* Gene symbol (i.e. dmoj_ey): <u>dbia l(3)76BDm</u> Approximate location in project (from 5' end to 3' end): <u>21856-26514</u> Number of isoforms in *D. melanogaster:* <u>2</u> Number of isoforms in this project: <u>2</u> **Complete the following table for all the isoforms in this project:**

Name(s) of unique isoform(s) based on coding	List of isoforms with identical coding sequences
sequence	
l(3)76BDm-PB	l(3)76BDm-PA

Note: For isoforms with identical coding sequence, you only need to complete the Isoform Report Form for one of these isoforms (i.e. using the name of the isoform listed in the left column of the table above). However, you should generate GFF, transcript, and peptide sequence files for <u>ALL</u> isoforms, irrespective of whether they have identical coding sequences as other isoforms.

Consensus sequence errors report form

Complete this section if you have identified errors in your project consensus sequence:

All the coordinates reported in this section should be <u>relative to the coordinates of</u> <u>the original project sequence</u>.

Location(s) in the project sequence with consensus errors: NA

1. Evidence that supports the consensus errors postulated above

Note: Evidence which supports the hypothesis of errors in the consensus sequence include: CDS alignment with frame-shifts or in-frame stop codons, multiple RNA-seq reads with discrepant alignments compared to the project sequence, multiple high quality discrepancies in the *Consed* assembly.

2. Generate a VCF file which describes the changes to the consensus sequence Using the Sequencer Updater (available through the GEP web site under "Projects" -> "Annotation Resources"), create a VCF (Variant Call Format) file that describes the changes to the consensus sequence you have identified above. Paste a screenshot with the list of sequence changes below:

lsoform report form

Complete this report form for each unique isoform listed in the table above (copy and paste to create as many copies of this Isoform Report Form as needed):

Gene-isoform name (i.e. dmoj_ey-PA): <u>dbia l(3)76BDm-PB</u> Names of the isoforms with identical coding sequences as this isoform <u>dbia l(3)76BDm-PA</u> Is the 5' end of this isoform missing from the end of project: <u>No</u> If so, how many exons are missing from the 5' end: _____

Is the 3' end of this isoform missing from the end of the project: <u>No</u> If so, how many exons are missing from the 3' end: ______

1. Gene Model Checker checklist

Enter the coordinates of your final gene model for this isoform into the Gene Model Checker and **paste a screenshot of the checklist results below**:

Note: For projects with consensus sequence errors, report the exon coordinates relative to the <u>original project sequence</u>. Include the VCF file you have generated above when you submit the gene model to the Gene Model Checker. The Gene Model Checker will revise the submitted exon coordinates automatically using this VCF file.

Gene Model Checker											
Configure Gene Model				«	Che	cklist	Dot Plot	Transcript Sequence	Peptide Sequence	Extracted Coding Exon	s Downloads
Model Details					St E	cpand All	Ind All E Collapse All				
Fosmid Sequence File:	C:\fakepath\contig70.fast	ta	Browse		V	fiew	Criteria			Status I	Message
Errors in Consensus Sequence?	O Yes	 No 			æ	Q	Check for S	start Codon		Pass	
Ortholog in D. melanogaster:	I(3)76BDm-PB					_	Acceptor fo	r CDS 1		Skip	Already checked for Start Codon
Coding Exon Coordinates:	21856-22021, 22371-225	32, 22590-2351	4, 23576-			Q	Donor for C	DS 1		© Pass	
	23824, 23883-24345, 244 25859-26511	403-25315, 2537	74-25799,		*	ų	Acceptor to	r CDS 2		© Pass	
					±	ų.	Donor for C	DS 2		© Pass	
				*	ų.	Acceptor to	r CDS 3		© Pass		
		~			*	ų	Donor for C	DS 3		© Pass	
Regions?	Yes	 No 				4	Acceptor to	r CDS 4		© Pass	
Orientation of Gene Relative to	Plus	Minus			*	ų,	Donor for C	- ODO 5		© Pass	
Query Sequence:	0	0				4	Acceptor to	r CDS 5		© Pass	
Completeness of Gene Model	 Complete 	Partial				ų –	Donor for C	- 000 0		© Pass	
Stan Coden Coordinatori	20512 20514					4	Acceptor to	PCDS 6		© Pass	
Stop Codon Coordinates.	20512-20514						DonoriorC	- 000 7		© Pass	
Project Dataile						4	Acceptor to			© Pass	
Project Details						4	Donor for C	- 050 0		© Pass	
Project Group:	D. biarmipes 3L Control		~			4	Acceptor to			© Pass	
Project Name:	Project Name: contig70					Donor for C	US 8		Skip /	Aiready checked for Stop Codon	
						~	Additional (Checke		© Pass	
						~	Auditional	Jnecks	0	© Pass	
					1	4	Number of	coding exons matched I	 melanogaster or 	© Pass	

2. View the gene model on the Genome Browser

Using the custom track feature from the Gene Model Checker (see page 10 of the Gene Model Checker user guide on how to do this; you can find the guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu). Capture a screenshot of your gene model shown on the Genome Browser for your project; zoom in so that <u>only this isoform is in the screenshot</u>. Include the following evidence tracks in the screenshot if they are available.

- 29. A sequence alignment track (D. mel Protein or Other RefSeq)
- 30. At least one gene prediction track (e.g. Genscan)
- 31. At least one RNA-Seq track (e.g. RNA-Seq Alignment Summary)
- 32. A comparative genomics track

(e.g. Conservation, D. mel. Net Alignment, 3-way, 5-way or 7-way multiz)

3. Alignment between the submitted model and the *D. melanogaster ortholog*

Show an alignment between the protein sequence for your gene model and the protein sequence from the putative *D. melanogaster* ortholog. You can use the protein alignment

generated by the Gene Model Checker or you can generate a new alignment using BLAST 2 Sequences (*bl2seq*). Paste a screenshot of the protein alignment below:

Alignment of l(3)76BDm-PB vs. Submitted_Seq

4. Dot plot between the submitted model and the *D. melanogaster ortholog*

Paste a screenshot of the dot plot of your submitted model against the putative *D. melanogaster* ortholog (generated by the Gene Model Checker). **Provide an explanation for any anomalies** on the dot plot (e.g. large gaps, regions with no sequence similarity).

Note: Large <u>vertical and horizontal gap</u> near exon boundaries in the dot plot often indicates that an incorrect splice site might have been picked. Please re-examine these regions and provide a detail justification as to why you have selected this particular set of donor and acceptor sites.

Dot plot of 1(3)76BDm-PB vs. Submitted_Sequence

Transcription start sites (TSS) report form (optional)

Note: Complete this section if you have annotated the TSS for the gene specified above. This section is <u>OPTIONAL</u> and you do not need to complete this section to submit the project.

Name(s) of isoform(s) with unique TSS	List of isoforms with identical TSS
l(3)76BDm-PB	l(3)76BDm-PA

Complete this report form for each unique TSS listed in the table above (copy and paste to create as many copies of TSS report form as needed):

Gene-isoform name (i.e. dbia_ey-RA): dbia_l(3)76BDm-PB Names of the isoforms with the same TSS as this isoform: dbia_l(3)76BDm-PA Type of core promoter: (Peaked or Broad): Broad Coordinates of the first transcribed exon: 21,790-22,021 Coordinate(s) of TSS position(s): 21,785 Coordinate(s) of TSS search region(s): 21,690-21,855

1. Evidence that supports the TSS annotation postulated above Specify the type of evidence used to support the TSS annotation:

Evidence type	Support TSS	Refute TSS
	annotation?	annotation?
blastn alignment of the initial exon from D. melanogaster	Х	
RNA-Seq coverage and TopHat splice junctions	Х	
Core promoter motifs	Х	
Sequence conservation with other Drosophila species		Х
Other (please specify)		

Provide an explanation if the TSS annotation is inconsistent with at least one of the evidence types specified above:

The predicted TSS is not supported by the conservation data given by the Multiz alignments. The predicted TSS is at 21,784 and the conservation begins at 21,830.

If the TSS annotation is supported by blastn alignment of the initial transcribed exon against the contig sequence, **paste a screenshot of the blastn alignment below**:

Dbia4_dna range=contig70:1-40000 5'pad=0 3'pad=0 strand=+ repeatMasking=none Sequence ID: Icl|19409 Length: 40000 Number of Matches: 10

Range 1: 21790 to 22021 Graphics Vext Match 🔺 Previous N								
Score		Expect	Identities	Gaps	Strand			
255 bit	s(177)	1e-70	209/237(88%)	5/237(2%)	Plus/Plus			
Query	6	AGTGCCATCTCCAGO	TGCTCCCTGCAATTGTTGTG	TGGTGTTCTGTATT	TCTTTGTAAA	65		
Sbjct	21790	AGTTCCAGCTCTAG	GTCTCCCC-CAGTTCG	AGGTGTCTTGGGTT	TCTTTGTAAA	21844		
Query	66	TAGTTGGAGTAATG	TGCACCTGACGGGCCAGAGT	TACAATGCTCGCGAC	ATCATCCGGA	125		
Sbjct	21845	TAGTTGAAGTAATG	TGCACCTGACGGGCCAGAAC	TACAATGCGCGCGAC	ATAATCCGGA	21904		
Query	126	ACATCTTCTCGCCGC	TGATCGGCGTGCTGTCCAGT	CCACAGGCGGACGAG	ATTTGCCACC	185		
Sbjct	21905	ACATCTTCTCGCCGC	TGATCGGCGTGCTGTCCAGT	CCGCAGGCGGACGAC	ATCTGCCACC	21964		
Query	186	GGAACAACCTCTCC	TTCGTGGAACTCCTGCAGCCG	TTCGCAAAGTTGCC	AATGATG 24	2		
Sbjct	21965	GCAACAACCTCTCCT	TCGTGGAGCTCCTGCAGCCG	TTCGCAAAGTTGCCZ	AATGATG 22	021		

The BLAST alignment, even with more sensitive parameters, could not align the first 5 bases of the melanogaster ortholog. However, to preserve length, I am placing the TSS prediction at 21,785.

If the TSS annotation is supported by RNA-Seq or RNA polymerase II data, <mark>paste a Genome</mark> Browser screenshot of the region around the TSS (±2kb) with the evidence tracks listed below:

- 1. Short Match results for the Inr motif (TCAKTY)
- 2. RNA-Seq Alignment Summary
- 3. RNA-Seq TopHat

There are no Inr motifs in the search region, as indicated by the core promoter motifs track. There is a DRE, as well as two Ohler_motif7's, that may or may not support the TSS prediction. These core promoter motifs can indicate the presence of a TSS, but do not support a specific location. The RNA-Seq tracks seem to support the TSS prediction well. The purple arrow on the figure is used to indicate the approximate location of the TSS prediction.

If the TSS annotation is supported by sequence conservation with other Drosophila species, paste a screenshot of the pairwise alignment (e.g. from blastn, matcher) or the multiple sequence alignment (e.g. from clustalw, EvoPrinter, Multiz) below:

2. Search for core promoter motifs

Note: The consensus sequences for the Drosophila core promoter motifs are available at: <u>http://gander.wustl.edu/~wilson/core_promoter_motifs.html</u>

Use the "Short Match" functionality in the GEP UCSC Genome Browser to search for each of the core promoter motifs listed below in the region surrounding the TSS (±300bp) in your project and in the TSS of the *D. melanogaster* ortholog. (For TSS annotations where you can only define a TSS search region, you should search for the core promoter motifs in the entire TSS search region).

Record the **orientation and the start coordinate** (e.g. +10000) of each motif match below. (Enter "**NA**" if the motif is not present.)

Core promoter motifYour projectD	D. melanogaster
----------------------------------	-----------------

BRE ^u	NA	NA
TATA Box	NA	NA
BRE ^d	+21844	-19618677, -19618603, -
		19618535, -19618484, -
		19618481, -19618478, -
		19618476, -19618466, -
		19618451
Inr	NA	NA
MTE	NA	NA
DPE	+21690	NA
Ohler_motif1	NA	NA
DRE	+21724, +21761	NA
Ohler_motif5	NA	NA
Ohler_motif6	NA	NA
Ohler_motif7	+21792	NA
Ohler_motif8	NA	NA

Preparing the project for submission

For each project, you should prepare the project GFF, transcripts and peptide sequence files (for <u>ALL</u> isoforms) along with this report. You can combine the individual files generated by the Gene Model Checker into a single file using the Annotation Files Merger.

The Annotation Files Merger also allows you to view all the gene models in the combined GFF file within the Genome Browser. Please refer to the Annotation Files Merger User Guide for detail instructions on how to view the combined GFF file on the Genome Browser (you can find the user guide under "Help" -> "Documentations" -> "Web Framework" on the GEP website at http://gep.wustl.edu).

For projects with multiple errors in the consensus sequence, you should combine all the VCF files into a single project VCF file using the Annotation Files Merger (see the Annotation Files Merger User Guide for details). Paste a screenshot (generated by the Annotation Files Merger) with all the consensus sequence errors you have identified in your project.

Have you annotated all the genes that are in your project?

For each region of the project with gene predictions that do not overlap with putative orthologs identified in the BLASTX track, perform a BLASTP search using the predicted amino acid sequence against the non-redundant protein database (*nr*). **Provide a screenshot of the search results.** Provide an explanation for any significant (E-value < 1e-5) hits to known genes in the *nr* database and why you believe these hits do not correspond to real genes in your project.

The Genome Browser included the gene CG4366 as a blastx prediction within the ms(3)76Cc-PA gene. Investigating this further, I took the region in which CG4366 was predicted and performed a BLAST search myself

CG4669 [Drosophila melanogaster]

Sequence ID: ref[NP_647956.2] Length: 611 Number of Matches: 1

See 2 more title(s)

Range 1	l: 106 to	574 GenPept Graphics		🛚 Next Match 🔺 Pr	evious Match	
Score		Expect Method	Identities	Positives	Gaps	Frame
396 bi	ts(1018	 1e-127 Compositional matrix adjust. 	210/489(43%)	300/489(61%)	24/489(4%)	-1
Query	1457	VNFATYLKAFALIYVLPEVDWTAEKIDMLLEEG V FA+ LKAFA V +W + IDM++ EG	TDLFRASSEVDQGK	DDQEEHKLLEPEI P+T	1278	
Sbjct	106	VRFASNLKAFAHSYYTRRDEWKPDTIDMVVNEG	QVLFNDSENMDPPN	ASDSPDI	159	
Query	1277	YTNEEKRIKRNFNLEGHTFTLALEPRYQGAGSK Y E+++ R+F + F + LE ++ G +	PLEEQPPHTIDNLR + I NLR	PVLLNFFKSSRYC	1098	
Sbjct	160	YDENEQKVTRHFKINDIEFAMELEAPFEVYGYE	NVIRNLR	RILRAFFKKAKYG	212	
Query	1097	LLLTRVGHLLVWRRRKVFFVLDVKGRRIEDLET + T +LL+W+ + V+ VLD+ GR ++	VQDNGVAMLVCLKT + G +L+ LK+	IDNVVHLASNLSG	918	
Sbjct	213	VFFTPNWYLLIWKEKGVWMVLDLNGRDKNTMKP	NNEEGYPLLLGLKS	FDNVVWLIKKESY	272	
Query	917	ISPQDEFTIRELVVVRLETPDGRIYMRDTSH + +F+TRE++VVRL TP C+ + R+	RSIEFRVVNKSYAY	LKATLHLSLNEHD	744	
Sbjct	273	LDKNAKFSIREILVVRLATPGSTGQSWEREHGM	RMSQFDVIASDYAY	VKSNLHLTLNSKD	332	
Query	743	PVRNRSSLMVAVGSILASKIDHPANWDTNMLDR +RNRS+L VAV + LASKIDHPA WD M D+	LICYGVELCRNCWS	DCLRDRRPIDLDT C+ +P+DLD	564	
Sbjct	333	ALRNRSALPVAVATALASKIDHPATWDQKMYDK	VMCYGVNMCKNCWE	PCMDPSKPMDLDD	392	
Query	563	FPTQLRMGQYVLELKLIPNVRAGHWKCGVRIIG FP O+R+GO+V E+ L PN G WKC	TDFEAHVSEALNEF DF + +AL++	GNVVFQINNQMYA ++FOINNOMY+	384	
Sbjct	393	FPRQIRLGQFVAEIMLTPNAYEGWWKCVPMYKF	NDFHLMLEKALDQN	DYIIFQINNQMYS	452	
Query	383	IWVKDEFYYLLDPYRHTIVGTHVAEDKGEGAKW +W K +F YL+DPYRH IVG + E GE K	ATVRMFRDQLTMLS	VFHQMLKESNRQS VFHO+L ESNR +	204	
Sbjct	453	LWKKSDFIYLMDPYRHNIVGRILEEGEDPKS	ATVRMFGNMDRLLS	VFHQILLESNRSA	510	
Query	203	AYYLHVVRIRNLAECPEGYALVPLSEDVGNA	DVKSLNEPILFNEQ	QGVRVCDKSLADI	30	
Sbjct	511	VFHIHTLRIRNITECPPGTAPALLPPDEDV	EVRSLNENIRFDEN	YDKCLQELGEI	565	
Query	29	SDYEEDVIS 3 SD+EED++S				
Sbjct	566	SDFEEDLVS 574				

CG4366 did appear as a match and the E-score is good. However, there are some concerns with the identity being only 43% and the 611 length protein only matching from 106-574.

contig70 (40000	letters)	
RID Query ID Description Molecule type Query Length	3589A40P113 (Expires on 04-15 04:03 am) Icl Query_20275 Subject II contig70 Description nucleic acid Molecule type 40000 Subject Lengti Program	 Icl Query_20277 CG4669:1_6708_0 amino acid 31 BLASTX 2.2.31+ ▷ <u>Citation</u>
No significant	similarity found. For reasons why, <u>click here</u>	
Other reports: N	Search Summary	

The first exon of CG4366 could not be found in my contig.

-+++++l+++++				*****	*****		*****					*****				
5130k	5140k	5150k	5160k	5170k	5180k	5190k	5200k	5210k	5220k	5230k	5240k	5250k	5260k	5270k	5280k	5290
I 🛛 🖾 🛏	I 🖉 🖬 G	ene Sp	an													
CG4	597 CHMP	2B Gen	shep													
Ð	D	<														
CG15212 CR45985											CG4669					
0045040 CC10571										I	>					
L.	615213 C	3														
ľ	G4603	Aats-a	la-m													
Ċ	>	\square														
	CR45160) Sr	°p54k													
	₽ CC1067/	1														
	1	+														
	CG4611															
	\triangleright															
	Prpk															
	9	~~~~														
	4	V672														
	Ğd.	ap1														
	. 1 73 mars															

I looked at the *Drosophila melanogaster* model to see where and how CG4366 fit in relation to ms(3)76Cc-PA. I found that CG4366 is not even found in the same general location and around the same genes. This further raised the question of why it appeared on the initial blast search with a good e-value. It turns out that ms(3)76Cc and CG4366 are very similar genes as they are both expressed in male testes.

Predictions around CG9372

The gene CG9372, in red, is what I annotated and the model fit very well. The Blast tracks predicted additional genes in brown around and overlapping CG9372. They are brown to indicate that the E-value was not as high as normally expected. It turns out that all of these genes are similar to CG9372 to the point where they align, all be it poorly, on Blast. There was no other support for these genes being located here.