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Abstract 
 

The epidemic of obesity-related metabolic and cardiovascular diseases is linked to 

elevated fatty acids (FA).  Epidemiological data argue that trans FA contribute to the 

development and progression of these disease processes.  Previous work suggests the 

similarity in structure between saturated and trans FA may stimulate inflammation 

through trans FA interactions with toll-like receptor 4 (TLR4).  To evaluate the impact of 

trans FA on cardiovascular health, the response of endothelial cells to trans FA was 

evaluated.  Specifically, responses to the 18-carbon trans FA elaidic acid (EA) were 

compared to the same length cis FA oleic acid (OA).  Endothelial cells were exposed to 

FA treatments for up to 48 hours and protein samples collected at specific times (1.5, 3, 

6, 12, 24, and 48 hr).  The expression of connexin43 (Cx43) was evaluated using Western 

blot analysis as a measure of their health (increasing in unhealthy endothelial cells).  

Lipopolysaccharide (LPS; 10 µg/mL), a TLR4 agonist, stimulated an increase in 

endothelial cell Cx43 expression at 12 hours.  As the endothelial cells responded to a 

TLR4 agonist, they were then exposed to OA (30 µM), which decreased the expression of 

Cx43 at 3, 12, and 24 hours.  In contrast, EA (30 µM) increased Cx43 expression at 12 

hours.  These results suggest that trans FA alter Cx43 expression in a similar pathway as 

LPS in endothelial cells (likely TLR4 signaling), whereas OA decreased Cx43, likely 

through a different mechanism.   
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I. Literature Review 

Introduction: The entrenchment of the Western diet, one high in fats and processed 

sugars, around the world and is frequently accompanied by limited physical activity.  

These factors have contributed substantially to the global obesity epidemic.  Recent 

epidemiological studies indicate that 20% of the world population is overweight, with 

300 million currently considered obese and with an especially high prevalence in the U.S. 

(Fig. 1).4,9,43 The consequence of this epidemic is a marked increase in the incidence of 

cardiovascular pathologies caused by obesity, including atherosclerosis, hypertension, 

endothelial dysfunction, and insulin resistance (type II diabetes).  A significant 

contributor to the pathology of cardiovascular disease (CVD) is the chronic state of low-

grade inflammation that accompanies obesity and the resulting vascular dysfunction (a 

decreased response to vasodilatory stimuli pervasive in obese individuals).16,27,36 This 

inflammation usually involves an increased release of cytokines from adipocytes, 

leukocytes, and endothelial cells in response to chemical cues from infected or damaged 

tissue to limit the extent of the damage.38 Recent work has suggested that certain fatty 

acids (FA), typically elevated in obese individuals (dyslipidemia), may activate receptors 

that mediate the inflammatory response.16 In particular, the trans FA, which are rare in 

nature but have become a regular part of the American diet, as they are generated via the 

heating of partially hydrogenated oils.  These FA are deemed unhealthy as they have 

been shown to increase inflammation.22,45 Thus, components of the Western diet could 

contribute to the chronic inflammatory response and thereby the development of CVD.   
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Figure 1:  Obesity trends among U.S. Adults:9 This image shows the increase in body 
mass index (BMI) in the U.S. Across the last three decades.  BMI (mass in kg divided by 
the square of height in m) of 30 kg/m2 or greater are considered obese. 
 
FA and cardiovascular health implications: The dyslipidemia of obesity is associated 

with an increase in circulating triglycerides, free FA, and a decreased HDL: LDL ratio.28 

The free FA are synthesized by the enzyme FA synthase in the presence of excess acetyl-

CoA (a glycolytic product) to store energy or to be used as a signaling lipid precursor 

(e.g., arachidonic acid).  This energy storage involves binding of three FA to one glycerol 

to form a triglyceride molecule.  FA consist of a carboxyl end, a long aliphatic tail, and a 

hydrocarbon backbone [(CH2)nCH3].  These molecules can be synthesized in multiple 

conformations that vary by carbon backbone length (between 4 and 28 carbons long), 

number of double bonds (mono and polyunsaturated), and stereochemistry of those 

double bonds (cis and trans isomers; Fig. 2).  While cis isomers (adjacent hydrogens on 

the same side of the alkene bond) are naturally produced by desaturating enzymes, trans 

FA are much less common in nature (found in less than 1% in the gut of ruminant 

animals as a by-product of fermentation).33 The main source of trans FA in the diet is 

through consumption of partially hydrogenated oils, produced by heating vegetable oils 

in presence of a metal catalyst, as such is the case in deep-fryers, and they are estimated 

to account for 4-12% of American fat caloric intake.22 In people, trans FA originate 
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solely from the diet since they are not synthesized as energy storage molecules in the 

body.22,45 

 

Figure 2: Structural comparison of cis and trans monounsaturated to saturated 
fatty acids: The structure of three 18-carbon FA are shown.  Unsaturated FA may be cis 
(oleic acid) or trans (elaidic acid).  Note that the linear structure of elaidic acid is similar 
to that of stearic acid, the saturated FA. 
 
 Epidemiological data argue that trans FA negatively impact human health,33 with 

no shortage of public health studies linking diets high in trans and saturated FA with 

greater incidence in CVD, especially atherosclerosis,22,45 whereas diets higher in cis 

monounsaturated and polyunsaturated FA are, to the contrary,  atheroprotective.6 The 

differences in the impact of the molecules on human health is based upon their structures.  

The linear carbon chains of trans FA have chemical properties analogous to saturated FA 

rather than cis isomers45 and exhibit the same negative health outcomes11,28 whereas the 

cis monounsaturated and omega-3 FA exhibit anti-inflammatory benefits, which likely 

explains their atheroprotective properties.21,44 This anti-inflammatory quality of cis and 

omega-3 FA is largely attributed to a suppression of inflammatory cytokine production in 

the endothelium of blood vessels.26,28,32 Conversely, trans and saturated FA increase 



 10 

cytokine expression.22 Whether these are through the same pathway has yet to be 

resolved.  However, the mechanism linking FA to the inflammatory pathways is their 

ability to bind and act as pathogen-associated molecular patterns (PAMPs) and activate 

pattern recognition receptors (PRRs).40,41 Recent studies have suggested that binding of 

saturated and trans FA to PRRs initiates and perpetuates an inflammatory response.16 

 

FA and Toll-like recptors: The chronic low-grade inflammation that characterizes 

obesity results from a process intrinsic to innate immunity.  Innate responses are initiated 

by the recognition of common molecular structures rather than by specific epitopes.  

PRRs expressed on endothelial and phagocytic cells initiate the non-adaptive innate 

response upon binding to PAMPs.3,16 Of the PRRs utilized by cells of innate immunity, 

toll-like receptors (TLRs), membrane-bound PRRs integral to functional immunity, 

appear to provide the link between FA and inflammation.40 Multiple TLR4 ligands have 

been identified, including lipopolysaccharide (LPS, an endotoxin and component of gram 

negative bacteria membranes) and alarmins (molecules released by injured or dying cells 

such as heat shock proteins, mitochondrial DNA, and histone H3).19 Of particular 

interest, TLR4 has been shown to bind the saturated FA palmitate and stearate and thus 

these saturated FA act analogously to PAMPs.27,38 Based on similarity in structure 

between saturated and trans FA,45 we propose that TLR4 may be activated by trans FA.  

Thus, the Western diet promotes a chronic inflammatory response due to the presence of 

circulating saturated and trans FA, which potentially bind to the PRRs.27 

 Binding of a PAMP to TLR4 leads to activation of the transcription factor NF-

κB.16 Translocation of NF-κB into the nucleus initiates transcription of genes coding for 
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nitric oxide synthase (NOS), an enzyme that produces the vasodilator nitric oxide in 

blood vessels, and the cytokines TNF-α, IL-1β, and IL-6 (Fig. 3).  These cytokines are 

known as the triad of inflammatory cytokines due to their role in producing vascular 

changes to facilitate leukocyte recruitment.4,17 These changes in vascular permeability are 

the hallmarks of inflammation.16 As a result of this inflammatory state, the extent of 

coupling between cells has been shifted7 by alterations in the expression of connexin (Cx) 

proteins responsible for mediating cell-cell communication.1,10,13 

 

 

Figure 3: Activation of TLRs in obesity16 FA interact with TLRs to stimulate the 
release of inflammatory cytokines in dyslipidemia.   
 
Anatomy of gap junctions: Gap junctions allow electrical and chemical communication 

between adjacent cells.  These gap junctions are aggregates of hemichannels (pores) 

formed by hexamers of the connexin (Cx) protein.  Hemichannels dock between 

neighboring cells and, when gated-open, allow ions, second messengers, and molecules 

less than 1kD to diffuse between cells (Fig. 4).7,23 Cx proteins, of which 21 are known, 

are identified by their apparent molecular weight, e.g., Cx43 being a 43 kD connexin.7,8 

The permeability, charge selectivity of permeants, and conductance are specific for each 
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connexin isoform; Cx40 is cation-selective (cations diffuse more  freely than anions) 

whereas Cx43 is non-selective.23  The permeation properties of channels are regulated by 

post-translational modifications, e.g., phosphorylation of the C-terminus of Cx43 which 

significantly reduces its electrophoretic mobility.23,34 

 

 

Figure 4: Membrane topology of a connexin protein, hemichannels, and gap 
junctions37 A Cx protein contains four membrane-spanning regions, with two 
extracellular loops (which influence hemichannel docking), the carboxyl terminus, and 
the amino terminus located in the intracellular compartment.  Six Cx proteins oligomerize 
to assemble a pore-containing hemichannel.  Hemichannels of adjacent cells dock 
together to form a gap junction channel. 
 

 Gap junction coupling in vascular endothelium and in vascular smooth muscle 

cells is unevenly distributed, with the endothelial layer exhibiting extensive coupling 

compared to the smooth muscle cells and even more than the coupling between the 

muscular and endothelial layers.20 Healthy endothelial cells are preferentially coupled by 

Cx37 and Cx40.13 When the blood flow is disturbed, Cx43 expression increases and 

Cx37 decreases.13 In addition, Cx43 expression is elevated in regions where 

atherosclerotic lesions are common, which supports their use as a marker of 
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cardiovascular pathology.13,14,15 Vascular health, therefore, may be evaluated by assessing 

Cx43 expression within the endothelium. 

 In endothelial cells, engagement of TLR4 has been shown to reduce the coupling 

between neighboring endothelial cells.7 The cytokines associated with inflammation 

(TNF-α, IL-1β, and IL-6) upregulate endothelial cell Cx431,30 and downregulate Cx40 

functional expression.5,18 Cx40 downregulation by LPS is associated with inhibition of 

endothelial responses in sepsis7 and upregulation of endothelial Cx43 is associated with 

vascular dysfunction.10,13,29 Thus, inflammation alters endothelial Cx43 in a manner that 

contributes to the endothelial dysfunction.  The mechanisms of trans FA on 

cardiovascular pathology have yet to be completely understood.  Since saturated FA 

activate the TLR4 pathway40 and trans FA are similar in structure, endothelial Cx43 

expression should be altered30 by trans FA.  To test the importance of the double bond 

isomerism, response of endothelial cells to trans FA must be compared to cis FA of the 

same length (18 carbons each).  We hypothesize that elaidic acid (EA), an 18-carbon 

monounsaturated trans FA, will increase endothelial cell Cx43 expression whereas oleic 

acid (OA), the 18-carbon monounsaturated cis fatty acid, will not alter Cx43 expression.  

While the physiological ramifications of Cx43 upregulation are not completely 

understood, it is hypothesized that the shift in Cx43-containing hemichannels influences 

the nature of gap junction communication on the basis of altered permselectivity 

properties.   
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II. Experimental Manuscript 

Introduction 

 Recent epidemiological studies have shown that 20% of the world is 

overweight.4,43 The health risks associated with this obesity epidemic include the increase 

in the incidence of cardiovascular disease (CVD) and type II diabetes that is accompanied 

by a chronic state of low-grade inflammation due to elevated circulating cytokines.16,27,36 

Evidence suggests this inflammatory state may be a direct result of dietary fatty acids 

(FA).39 Saturated FA, whose concentration is elevated in obese individuals, can bind to 

toll-like receptors (TLRs) found on the vascular endothelium and initiate the 

inflammatory response.16,40 As trans and saturated FA are similar in structure, a common 

pathway would explain the similarity in development of an inflammatory response and 

thereby atherosclerotic lesions.22,45 

 The precise mechanism by which trans FA stimulate cardiovascular pathology has 

yet to be understood.  The TLR4 pathway, a pattern recognition receptor (PRRs) on 

endothelial cells, could contribute by activation of the transcription factor NF-κB and 

thereby de novo synthesis of the cytokines TNF-α, IL-1β, and IL-6.16,17,38,40 An important 

determinant of endothelial cell function is their ability to communicate directly with 

adjacent cells via gap junction.7,12 Gap junctions are formed when hemichannels 

(composed of 6 connexin (Cx) proteins each) dock with another on a neighboring cell to 

allow chemical and electrical communication.7,23 Cx expression on endothelial cells 

includes three isoforms: Cx37, Cx40, and Cx43.20 While Cx40 and Cx37 are the principal 

connexins expressed in healthy endothelial cells,20 Cx43 is upregulated in areas of 

disturbed flow as well as regions that are inflamed (as in atherosclerosis).13,15,35 



 15 

Interestingly, the pathway stimulated by cytokines can increase Cx43 expression.2 This 

same pathway is activated by lipopolysaccharide (LPS), a component of gram-negative 

bacteria and the natural ligand of TLR4, which leads to sepsis due to dysfunction of the 

endothelium.7,17 Hemichannels consisting of Cx43 exhibit less permselectivity (increase 

gap junction permeability) than those without, which may contribute to associated 

endothelial dysfunction pathologies.1,23 Thus, detection of endothelial Cx43 is likely 

indicative of poor vascular health.12,35 

 If trans FA upregulate expression of inflammatory cytokines via the TLR4 

pathway (NF-κB), then Cx43 expression in endothelial cells should be elevated by 

inflammatory conditions.22,27,30 As trans FA have been suggested to activate 

inflammation via this pathway, we evaluated the impact of FA isomerization on 

endothelial Cx43 expression.  In particular, endothelial cell responses to the 18-carbon 

oleic acid (OA; cis) were compared to the trans isomer, elaidic acid (EA).  We 

hypothesized that EA would increase Cx43 expression while OA would not affect Cx43 

expression. 
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Materials and Methods 

Solutions: Cell culture media was prepared using high-glucose (25 mM) Dulbecco's 

modified eagle's medium (HG-DMEM; Thermo Scientific, SH30243.02) supplemented 

with penicillin/streptomycin and 10% fetal bovine serum (FBS; Atlanta Biologicals; v/v).  

A 10 µg/mL LPS solution was prepared from stock LPS (5 mg/mL, Sigma L28880).  A 

30 mM stock FA solution was prepared for sodium oleate (TCI, O0057, in ddH2O) and 

elaidic acid (TCI, O0010, in DMSO, Research Organics).  The stock solution was added 

to HG-DMEM to make 30 µM treatment solutions.  As water was the vehicle for LPS 

and OA, controls were unaltered HG-DMEM while EA vehicle was prepared by adding 

the same volume of sterile DMSO (Research Organics) to the media as the treatment.  

Running buffer was made from a stock 10X solution (BioRad, final concentrations: 25 

mM Tris, 192 mM glycine, and 0.1% (w/v) SDS, pH 8.3).  Transfer buffer was made 

from 100 mL of 10X transfer salt solution (final concentration: 25 mM Tris, and 192 mM 

glycine), 700 mL ddH2O, and 200 mL methanol.  Tris-buffered saline (TBS) was 

prepared from a 10X solution (final concentration: 20 mM Tris, 500 mM, pH 7.5). TBST 

was prepared by supplementing TBS with 0.05% Tween-20.  Powdered nonfat dry milk 

(NFDM) was added to TBST to produce the 5% NFDM-TBST.   

Cell Culture: The impact of FA structure on Cx43 expression in endothelial cells was 

evaluated utilizing a cell culture model.  Mouse endothelial cells (bEnd.3, from ATCC) 

were grown in an incubator at 10% CO2 and 37oC.  Cells were split using trypsin-EDTA 

and counted with a hemocytometer. Cells were plated in HG-DMEM at a final density of 

800,000 cells per 100mm plate and placed into the incubator for 2-3 hours to adhere to 

plates.  Once cells had adhered, the media was aspirated and 10 mL of treatment media 
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(LPS, OA, EA, or control) was pipetted onto each plate (time-zero).  To establish the 

time course of Cx43 protein expression, each experiment involved producing 12 plates: 

half with treatment media and the other six with control (vehicle) media. 

Western Blotting: At 1.5, 3, 6, 12, 24 and 48 hours, protein was isolated from two plates 

(treatment and control) using Laemmli sample buffer and sonication of cells.  Protein 

concentrations were determined using a biophotometeric analysis of a bicinchoninic acid 

(BCA) assay.  Equal amounts of total protein were loaded into BioRad Mini-PROTEAN 

TGX (4-20% gradient SDS-polyacrylamide gels) and run at 180V for 35 min.  Protein 

was transferred to a polyvinyl-difluoride membrane using ice-cold transfer buffer at 

100V for 2 hr.  Transfer of protein to membranes was confirmed using Ponceau S and 

rinsed with TBST.  Blotting was performed at room temperature.  Following one hour of 

blocking with 5% NFDM and three subsequent rinses with TBST, the membranes were 

probed for expression of Cx43 using rabbit anti-mouse Cx43 polyclonal antibody (Sigma, 

#C6219) in 1% NFDM (1:2,000) for one hour.  After three rinses, membranes were 

probed with biotinylated, anti-rabbit secondary (Sigma, #B8895) in 1% NFDM (1:3,300) 

for one hour.  Following three more rinses, membranes were probed with HRP-

conjugated streptavidin (Thermo, #21134) in 1% NFDM (1:330) for 30 minutes.  The 

HRP signal was detected with chemiluminescence (Dura Supersignal) and documented 

with a SenTech STC-TB152USB-AS camera.  Light intensities were quantified using 

ImageJ software (NIH). 

Statistics: At each time point, Cx43 expression after treatment was normalized to vehicle 

control.  Single-sample t-scores were used to determine whether Cx43 expression was 

changed.  As the treatment was normalized to control, change in expression requires the 
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ratio to be different from 1 (1 would mean no change).  Since LPS is reported to elevate 

Cx43, one-tailed t-tests were used for LPS samples.  Two-tailed t-tests were implemented 

for EA , OA, and time controls to measure change in either direction.  Significance 

between comparisons was set at the p ≤ 0.05 level.  To satisfy testing conditions, 

distribution was checked using a Q-Q plot and homogeneity of variance was confirmed 

with a Levene's test p-value greater than 0.05.   
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Results 

Effect of LPS on Cx43 expression: 

To ensure these endothelial cells expressed TLR4, the response to LPS was determined.  

Following treatment of 10 µg/mL LPS, Cx43 was upregulated after 12 hrs (p=0.0478; 

Fig. 5 and 6).  To address whether there were any changes in the control over time, 

control intensities were normalized to the first protein isolation (1.5 hrs; Fig. 5 and 7).  

Control Cx43 expression did not change relative to the 1.5 hour time.   

Effect of FA structure on Cx43 expression: 

Since endothelial cells respond to LPS and therefore have the capacity to be altered by 

trans FA, the effect of FA unsaturation stereochemistry on endothelial Cx43 expression 

was investigated by comparing responses to 30 µM OA (cis) and 30 µM EA (trans).  OA 

reduced Cx43 at 3 (p=0.028), 12 (p=0.0146), and 24 hrs (p=0.0048; Fig. 8 and 10).  In 

contrast, EA increased Cx43 at 12 hrs (p=0.048, fig. 9 and 10) without changing 

expression at other times.  As with LPS, normalizing controls to the 1.5 hr time showed 

no changes in Cx43 in the controls over time (Fig. 8 and 11). 

Figure 5: Western blot representative of the endothelial cell response to LPS.  This 
membrane was probed for Cx43.  The 10 µg/mL LPS-treated (+) samples were compared 
to the control (-) at each time (1.5 – 48 hrs). Since two bands were detected, molecular 
weights markers were utilized to ascertain which corresponded with Cx43 (43 kD). 
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Figure 6: LPS alters connexin43 expression in endothelial cells under LPS 
treatment.  The expression of Cx43was normalized to the control at each time point.  
Exposure to 10 µg/mL LPS increased Cx43 expression in endothelial cells at 12 hours 
(n=6) without affecting other times. × - indicates increase in Cx43 at time point (p ≤ 0.05) 

 

Figure 7: Cx43 expression in LPS endothelial cell controls for treatment.  The 
expression of Cx43 was normalized to the 1.5 hour time.  No significant changes in Cx43 
expression were observed. 
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Figure 8: Western blot representative of endothelial cell response to OA.  This 
membrane was probed for Cx43.  The 30 µM OA-treated (+) samples were compared to 
the control (-) at each time (1.5 – 48 hrs). 
 

Figure 9: Western blot representative of endothelial cell response to EA.  This 
membrane was probed for Cx43.  The 30 µM EA-treated (+) samples were compared to 
the control (-) at each time (1.5 – 48 hrs). 

 

 

Figure 10: EA increases whereas OA decreases Cx43 expression in endothelial cells.  
Cx43 expression in OA or EA (30 µM) treated samples was normalized at each time to its 
vehicle control.  OA significantly decreased Cx43 by about 25% at 3, 12, and 24 hours 
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(n=6).  In contrast, EA increased Cx43 expression at 12 hrs (n=5), but was not altered at 
other times.  × indicates increase in Cx43 (p ≤ 0.05). * - indicates decrease in Cx43 (p ≤ 
0.05). 

 
Figure 11: Cx43 expression in endothelial cell vehicle controls for FA treatment.  
The expression of Cx43 was normalized to the 1.5 hour time.  No significant changes in 
Cx43 expression were observed.   
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Discussion 

 In this study, we examined the effects of monounsaturated FA double bond 

structure on Cx43 protein expression in endothelial cells.  Since the endothelial cells 

responded to LPS, they should respond to EA as the TLR4 response was evident (Fig.2).  

The atheroprotective OA decreased Cx43 expression whereas the inflammatory EA 

increased Cx43 expression (Fig. 6).  This increase in Cx43 expression and its time-course 

was consistent with the response to LPS, which suggests that these PAMPs may act 

through the same receptor and pathway.  The implications of these results for endothelial 

dysfunction along with the limitations of this work will be addressed below.   

 The cell culture technique is well-suited for understanding cellular responses to 

particular treatments.  By plating cells of a common origin and separating them into 

control and experimental treatment groups, any changes in Cx43 expression should result 

from the addition of FA to the media.  This was a strength of the study, as it allowed 

more accurate assessment of time-dependent changes due to treatment.  However, this 

type of work has limitations that impact our interpretation of the data (i.e., confounding 

factors).  First, the confluency state of the cells prior to splitting them for each 

experiment was not well controlled.  Often, the cells were super-confluent in order to 

ensure enough cells were available to complete an experiment, as each sample set 

required 9.6 million cells (12 plates of 800,000 cells each).  If confluency affected the 

TLR receptor of its signaling pathway, it would contribute to the variability in our results.  

Furthermore, the level of endotoxins in the FBS was not minimized.  While the treatment 

and control did not differ in FBS exposure, the basal level of endotoxin may have 
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influenced the response.  Last, early issues with immunoblotting optimization resulted in 

weak signal detection and led to high levels of background noise.     

 The time course of the response to LPS was consistent with previous studies.1,7,10 

The peak of the Cx43 response to LPS was at 12 hours.  As the half-life of Cx43 is 1-3 

hours,42 this suggests a secondary mediator is released by endothelial cells in response to 

LPS.  As the response to TLR4 binding involves the production and release of cytokines 

TNF-α, IL-1β, and IL-6 and LPS is an established ligand for the receptor, the response to 

LPS is likely mediated through TLR4.  LPS stimulation has also been shown to enhance 

hemichannel degradation by PKC, which phosphorylates Cx43.31,42 As this enhanced 

degradation is more rapid, it may explain the trend towards a reduction in Cx43 at 1.5 

hours (Fig. 2).   

 The similarity in the time course Cx43 response to EA suggests that a similar 

pathway may be involved.  However, without employing receptor blockers or antisense 

nucleic acids to inhibit the TLR pathway (TLR4 or cytokine receptors), that assertion is 

speculative.  Thus, the data collected herein on endothelial cell responses to EA are 

consistent with the involvement of TLR4, as it is similar to our LPS responses and data 

from others on saturated FA. 

 More importantly, the downregulation of Cx43 by OA is of greater interest, as it 

provides evidence that the conformation of FA double bonds determines endothelial cell 

responses to FA.  Downregulation observed as soon as 3 hours suggests a different 

mechanism (from EA) may mediate endothelial responses to OA.  The shorter time could 

be caused by the integration of OA into the membrane in a way that would affect gap 

junction communication and thereby expression.  Previous work has inferred that OA 
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integrates into the membrane to bind directly to Cx43 and destabilize gap junctions to 

completely block communication at 30 µM.24  Others have argued that this destabilization 

can also lead to Cx43 gap junction disassembly through increased phosphorylation by 

protein kinase C-ε and Src kinase.25 It should be noted that the studies above were 

performed on freshly isolated cardiac myocytes (not exposed to growth factors) and not 

immortalized endothelial cells .  As the nature of the response likely varies by cell type 

(cardiac vs endothelial) and by the conditions the cells were in when treated (primary 

isolate vs immortalized) future work will be necessary to determine the nature of the 

response in the endothelial cells specifically. Alternatively, the common aspects of the 

structure of OA and EA may lead OA to act as an antagonist blocking the TLR4 pathway.  

If that pathway was already activated by the endotoxins present in the media, then 

exposing these cells to an inhibitor of TLR4 would decrease Cx43 expression.  This may 

account for the previously described anti-inflammatory properties of OA and other cis 

monounsaturated FAs.21  

 Alterations in specific Cx levels have implications on communication between 

endothelial cells.12 As each connexin has very unique communication properties (unitary 

conductance, permselectivity, gating, etc), any changes in expression of a connexin can 

dramatically alter the message communicated between cells.  In endothelial cells that 

usually express Cx37 and Cx40, which are permselective with higher unitary 

conductances, increasing Cx43 in the junctions would reduce their permselectivity 

thereby the message.23  The challenge for the gap junction field is to understand the true 

importance of what is being communicated between cells.  Once that is known, we can 

hypothesize about the impact of changes in communication on the function of these cells.   
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Summary: These data provide further evidence supporting the drive to reduce 

(eliminate) trans FA from our diet.  Herein, we provide evidence trans FAs increase 

endothelial cell Cx43 expression that may contribute to the endothelial dysfunction that is 

observed in individuals with obesity and contribute to the resulting increase in CVDs.6,13  

The same was not the case for the cis FA that actually reduced the expression of Cx43 

thereby supporting their anti-inflammatory function. While these results are intriguing, 

further work will be required to address the mechanisms that underlie the changes 

reported. 

Implications: Trans FA pose a serious and unnecessary health risk for humans that we 

are only now trying to address.  These FAs are not typically observed in nature.  Rather, 

they are the product of a food manufacturing industry’s attempt to meet the demands of 

the public for quality food (taste and texture especially as that is part of the reason 

partially hydrogenated oils are used in processed foods).  These data provide supporting 

evidence for the assertion that trans FA may be contributing to the worldwide obesity 

epidemic.  Thus, the current attempts to reduce the levels of trans FA in our diet are to be 

lauded. We are hopeful that these reductions may lead to a reduction in the incidence of 

obesity and more importantly the CVD associated with obesity and hyperlipidemia. 
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