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ABSTRACT 

Approximately 94% of Puerto Rico’s forests were converted into agricultural 

systems by 1950. Since then, extensive abandonment of agricultural land has resulted in a 

considerable amount of forest regeneration throughout the main island. Ferns are a major 

non-woody component of oceanic, tropical island forests comprising up to seventy 

percent of the flora. Consequently, the composition and community structure of ferns 

may be indicative of the relative richness of these secondary forests. I used Maximum 

Entropy (Maxent), a widely-used mathematical tool for distinguishing suitable versus 

unsuitable fern niche space, along with ENMTools, a tool that assists Maxent with proper 

model selection, for accurately predicting 29 common, rare, terrestrial, and epiphytic 

tropical fern species’ distributions. Model discrimination was assessed via area under the 

receiver operating characteristic curve values, a common metric for model evaluation. 

Akaike information criteria were utilized for assessing model complexity and in selecting 

the most parsimonious model for each species. I highlight the importance of modeling 

with proper model complexity and emphasize the use of information criteria to accurately 

infer AUC values. Field testing of model predictions also reinforced that these models are 

successful at identifying suitable habitat for ferns in Puerto Rico and conservation 

recommendations are explored.   

 

Key words: conservation management; Puerto Rico; secondary forests; Maxent; AUC; 

species distribution modeling; Akaike information criteria; complexity; fern.  
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INTRODUCTION 

Predictive modeling of plant and animal distributions using geographic 

information systems (GIS) and statistical algorithms such as Maxent, GARP, GLM, 

GAM, BIOCLIM, or MARS (to name a few) has become prevalent due to their accuracy 

in estimating unknown species distributions and has great value in decision making and 

conservation prioritization (Peterson et al. 2011). Incorporating biologically and 

ecologically relevant environmental variables into species distribution models (SDM) can 

lead to the identification of suitable locations for species based on previously documented 

occurrences at local, regional, and global scales. These models are useful to 

conservationists because they can provide visual probabilities of occurrence for desired 

species when their potential distributions are unknown (Elith et al. 2011, Rotenberry et al. 

2006, Elith et al. 2006, Phillips et al. 2006). 

Many predictive modeling techniques have become widely used with presence 

and absence location data of plant and animal species (Peterson et al. 2011, Rotenberry et 

al. 2006, Elith et al. 2006, Guisan et al. 2002, Guisan and Zimmerman 2000). In most 

cases, however, due to biased sampling and travel limitations, true absence data rarely 

exists among large, available museum or herbarium datasets especially for species in 

remote, tropical geographies where ecological modeling and conservation management 

has the greatest value (Elith et al. 2006, Phillips et al. 2006). Maxent has become a 

widely used tool designed for predictive modeling of species distributions across 

geographic regions with presence-only data (Phillips et al. 2006, Phillips and Dudík 

2008, Elith et al. 2011). It uses the theory of maximum entropy, one that is least biased 

based on partial information (e.g., environmental conditions at only known species 
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locations) for setting up probability distributions (Jaynes 1957). Maxent has become 

favored among spatial ecologists and is used by governmental and non-governmental 

organizations for biogeographical mapping projects for a number of reasons aside from 

its ability to utilize presence-only data: (1) it has proven robust with very few species 

occurrence locations (Hernandez et al. 2006, Guisan et al. 2007); (2) categorical data 

such as geologic substrate or soil type can be incorporated; and (3) it has consistently 

outperformed other modeling techniques based on discrimination success (Wisz et al. 

2008, Guisan et al. 2007, Elith et al. 2006, but see Renner and Warton 2013). Maxent 

provides a logistic output in which cells throughout the geography contain habitat 

suitability values ranging from 0 to 1. Cells exhibiting values closer to 0 would be least 

suitable while cells closer to 1 would indicate high suitability. 

Puerto Rican secondary forests are now older than most revegetating tropical 

landscapes found elsewhere. Thus, they provide an exceptional opportunity to study 

tropical forest redevelopment after large scale clearing and deforestation (Chinea and 

Helmer 2003). The original forests of Puerto Rico nearly disappeared completely by the 

early 20th century due to large-scale agriculture, primarily the production of coffee and 

sugarcane, and the introduction of cattle, depleting the original forest to a mere 6% of its 

original area (Proctor 1989, Chinea and Helmer 2003, Kennaway and Helmer 2007). 

Although the increase in human population in Puerto Rico over the past few decades 

[now totaling over 3.72 million equating to 2818 people per km2 (2010 U.S. Census)], 

has put pressure on the island’s natural resources, forest cover has and continues to 

increase. This results from an economic shift to services and industry during the past 70 

years and forest now covers over 57% of the main island of Puerto Rico, increasing 
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211,653 hectares since the forest inventory of 1980 (Kennaway and Helmer 2007, 

Brandeis et al. 2003).  

Preceding human occupancy, Puerto Rico was primarily composed of tall 

mesophytic forests and rain forests in the wettest areas (Proctor 1989). According to 

Proctor (1989), Puerto Rican forests contained over 400 species of ferns, an important 

non-woody component to Puerto Rico’s flora. The ecological significance of ferns is 

often underestimated due to the fact that most ecological research has been conducted in 

temperate zones where they are – overall – a minor component of forest flora (Mehltreter 

et al. 2010), but with notable exceptions (Gilliam 2007; George and Bazzaz 2003). Ferns 

disseminate via minute spores (20-60 μm; < 0.01 mg; Tryon 1970, Westoby et al. 1990) 

and are hence extremely successful at long distance dispersal. As a result, ferns are a 

major component of forests on remote, montane islands, comprising on average 15.3% 

and up to 70% of the vascular flora (Mehltreter et al. 2010). Thus, ferns are large 

contributors to energy, water, and nutrient dynamics in these island ecosystems, some of 

which include organic matter buildup, soil fertility and stability, hydraulic balance, 

facilitation of succession, and stabilization of slopes in areas frequently stricken by 

hurricanes and landslides (Drake and Pratt 2001, Walker et al. 2001).  

Oceanic islands tend to have large numbers of endemic fern species resulting 

from geographic or elevational isolation and subsequent barriers to cross-breeding 

inducing speciation events (Carlquist 1974, Palmer 2003). As a result, many tropical 

species are more sensitive to alterations or destruction of habitat (Stevens 1989). Ferns in 

general are therefore of great concern for conservation management in tropical 

environments due to their coevolutionary history and interaction among other plant and 
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animal species which depend upon them as sources of food, shelter, or habitable space in 

these unique habitats. Due to their ubiquity in tropical forests and relatively well-known 

taxonomy, ferns have been used as surrogates for patterns of community composition and 

species richness in tropical forests (Kessler 2001, Kreft et al. 2010). 

Of the 400 plus species of ferns on the main island of Puerto Rico, approximately 

20% are known from only one or two locations, 22 are endemic, and eight (all endemic) 

are endangered according to the United States Department of Agriculture (Proctor 1989, 

Miller and Lugo 2009). The composition and richness of fern species throughout the 

majority of secondary forests has yet to be assessed and may be indicative of overall 

species richness and abundance. Understanding the distributional patterns and 

environmental covariates of select fern species can lead to well developed management 

plans and conservation prioritization for protecting species richness in sensitive tropical 

areas (Gould et al. 2011). 

The goals of this project were to: (1) use Maxent to predict the distributions of 

twenty-nine fern species that characterize a range of niche’s (terrestrial and epiphytic) 

and frequency (rare to common); (2) to test model accuracy at differing levels of 

complexities; (3) to asses secondary forest structure (i.e., canopy cover and tree size) and 

environmental conditions (GIS variables) on fern species richness; and (4) to explore 

conservation recommendations in Puerto Rico. 
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METHODS 

Study area – The study area consists of the entire main island of Puerto Rico. 

Puerto Rico is a small (8497 km2), montane Caribbean island of the Greater Antilles 

lying between latitudes 17°45’ N and 18°30’ N, and longitudes 65°45’ W and 67°15’ W, 

just east of the Dominican Republic and ~810 km north of Venezuela, South America 

(coast to coast). The uplands peak in two distinctly separated ranges reaching heights of 

1074 m in El Yunque National Forest in the northeastern end of the island, and 1338 m in 

the Cordillera Central or central mountain range (Figure 1). The Cordillera Central splits 

the island roughly into northern and southern halves causing a great range in climatic 

conditions throughout the year with greater average annual rainfall in the northern 

regions than in the southern regions due to a rain shadow effect (Daly et al. 2003). The 

wettest regions on the island occur in the Luquillo Mountains in El Yunque National 

Forest which receive up to 4500 mm of annual rainfall followed by the higher extents and 

foothills of the Cordillera Central with approximately 2500 mm of average annual 

rainfall. The southern coast is the driest region receiving less than 850 mm of average 

rainfall annually (Daly et al. 2003). Temperatures on the main island are highly 

correlated with elevation, however, the warmest temperatures are recorded in regions 

where relatively little precipitation occurs annually (Daly et al. 2003). 

Species and environmental data 

Species data – Species presence data were collected from herbaria at the 

University of Puerto Rico (UPR) Río Piedras campus and UPR Mayagüez campus. 

Additional presence locations were obtained from the New York Botanical Garden 

herbarium database (NYBG 2009). All fern species with a minimum of 15 non-



 

13 

duplicated presence locations were used in modeling (Table 1). This minimum was 

chosen as a conservative threshold as Maxent predictions remain robust at sample sizes 

as low as ten (Guisan et al. 2007). 

Environmental data – As suggested by Franklin (1995), climatic variables are the 

primary determinants for plant species distributions followed by geology, land cover, and 

finally topography. Additional research demonstrates fern richness and geographic 

distributions are primarily determined by rainfall and topographic complexity (Kreft et al. 

2010, Mehltreter et al. 2010, Tuomisto and Poulsen 1996, 2000). Kreft et al. (2010) 

confirmed that fern richness was highly positively correlated with potential 

evapotranspiration on a global scale (r = 0.77 for island floras), while Kessler (2001) 

found precipitation and humidity to be the two primary drivers of fern species richness in 

montane Andean forests of Bolivia. Although edaphic factors such as pH, NO3
-, P, K, and 

slope were important in determining fern niche space, Karst et al. (2005) concluded soil 

moisture gradients had the strongest effect.  

Four primary categories of ecologically relevant predictors were chosen: climate, 

topography, vegetation indices, and geology (Table 2). Pearson correlation matrices were 

created to test collinearity among variables using the “stats” package in R version 2.15.1 

(www.r-project.org). Only one predictor was selected for use in the model when two or 

more variables were highly correlated (r ≥ 0.8). All transformations and calculations were 

performed with ArcGIS version 10 (ESRI 2011). 

Temperature and precipitation data, provided by the International Institute of 

Tropical Forestry, were developed from 32 years of daily data collected at 47 

(temperature) and 108 (precipitation) National Oceanic and Atmospheric Administration 



 

14 

(NOAA) stations throughout Puerto Rico (Daly et al. 2003). Data were interpolated into 

average monthly and annual maximum and minimum temperatures, and average monthly 

and annual precipitation in 450-m2 grid raster datasets (Daly et al. 2003). Two climatic 

variables that promote and two climatic variables that reduce evapotranspiration were 

chosen. Temperature variables represent the average highs and average lows during the 

warmest and coldest months of the year respectively, while precipitation variables 

represent the average monthly rainfall during the driest and wettest months (Table 2). 

These variables represent extremes that likely facilitate growth and reproduction versus 

impose drought stress.  

Differences in topographic properties have shown to be primary controls of fern 

richness and abundance in Amazonian communities, and hence slope and aspect variables 

were included in modeling (Tuomisto and Poulsen 1996, 2000). Slope and aspect were 

derived from NOAA Puerto Rico 1-arc-second (~30-m2) digital elevation models (Taylor 

et al. 2008) and rendered operational with DEM Surface Tools (Jenness 2013). Aspect 

was transformed to linear variables “northness” and “eastness” ranging from 1 (closest to 

north or east) to -1 (furthest from north or east) with the following expressions: 

Northness = [aspect in degrees(π/180)]cosine 

Eastness = [aspect in degrees(π/180)]sine 

Both northness and eastness were utilized as they each may have predictive value. For 

example, fern species in Columbia and Ecuador have been found to inhabit western 

slopes but not eastern slopes which may be indicative of a dispersal barrier or 

environmental differences among slopes (Mehltreter et al. 2010 and citations therein, 

Peterson et al. 2011). Additionally, some species may require increased or consistent 
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insolation or increased evapotranspiration on southern facing slopes relative to northern 

facing slopes that receive less direct sunlight annually.  

Despite high dispersal potential, ranges of fern species distributions have also 

been strongly attributed to habitat availability (Kreft et al. 2010, Mehltreter et al. 2010 

and citations therein). Pearson et al. (2004) found that the inclusion of land cover data 

significantly improved model performance. In a highly altered landscape, such as Puerto 

Rico, including land cover allows incorporation of habitat availability and may aid in 

discrimination of climatically suitable yet physically uninhabitable areas (Gogol-Prokurat 

2011, Pearson et al. 2004, Franklin 1995). Many fern species rely on moderately to 

almost completely closed canopies which alleviate direct insolation and regulate humidity 

levels (Mehltreter et al. 2010, Kessler 2001). Hence, these indices will likely improve the 

discrimination of realistic species distributions rather than map broad scaled climatically 

suitable habitats.  

Tasseled cap (TC) vegetation indices were calculated in IDRISI 17.0 (Eastman 

2012) using cloud-free, atmospherically corrected mosaicked Landsat satellite imagery 

(Helmer and Ruefenacht 2005). These TC indices include: greenness, indicating the 

denseness of vegetation; wetness, indicating moisture retained by vegetation and soil; and 

brightness, indicating exposed soil and concrete (Crist and Cicone 1984, Gogol-Prokurat 

2011).  

Geologic substrate (Bawiec 1999), the only categorical variable, was removed 

from most species’ models as it erroneously swayed predicted distributions towards 

specific substrates during initial runs (an issue likely caused by few occurrences and 

biased sampling in more readily accessible locations). This variable should only be 
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utilized for species known to specialize on specific substrates (Table 1) and was utilized 

on said species. All models were run at 30-m2 grain resolutions. 

Model optimization and assessment 

 Use of an excessive number of predictor variables can produce models that are 

overfit (i.e., overly restricted predicted distributions and hence unrealistically confined). 

Maxent uses the provided environmental variables to derive simple functions called 

“features.” As the number of variables used increases, more complex features are created. 

With small occurrence data sets, however, Maxent will match the data too closely, known 

as “overfitting,” creating constricted, unrealistic distributions (Phillips and Dudík 2008). 

The regulation multiplier, or simply beta (β), setting in Maxent can be increased which 

relaxes the constraints generating a predicted distribution for a species that is increasingly 

broad [see Phillips and Dudík (2008) for a detailed statistical discussion]. Information 

criteria can then be used to compare models varying in complexity. Akaike information 

criterion (AIC) was used to identify the most parsimonious model that maintained high 

predictive discrimination referred to as the most “robust” model hereon. 

 Each species’ distribution model was re-ran, altering complexity by setting β at 1 

(default), 2, 3, 4, 5, 6, 7, and 8. ENMTools version 1.3 was utilized in generating sample 

size corrected AIC (AICc) values for identifying the most robust model as this indicator 

demonstrated the best average performance at estimating model complexity with fewer 

species’ occurrences (Warren et al. 2010, Warren and Seifert 2011).  

A common approach to testing model performance is use of the receiver operating 

characteristic curve or commonly, area under the curve (AUC) value. The AUC reports 

the probability that randomly chosen presence cells (i.e., 30-m2 cells within the 
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geography containing species’ locations used in modeling) will be ranked higher than 

randomly chosen absence cells (i.e., 30-m2 cells within the geography not containing 

species’ locations used in modeling; Phillips and Dudík 2008, Fielding and Bell 1997). 

Its appeal is that it quantifies a model’s discrimination (i.e., measures whether presence 

cells have higher habitat suitability values than do randomly selected absence cells) with 

a single value that can be compared to other models. (Phillips et al. 2006, Peterson et al. 

2011). An AUC value of 0.5 indicates that a model is no better than random at predicting 

species’ distributions while values closest to 1 indicate optimal model discrimination of 

suitable vs. unsuitable habitats. 

 There are two main AUC values, training (AUCTrain) and test (AUCTest). AUCTrain 

is calculated with a randomly selected set of presence locations utilized in model 

construction and represents how well the location data “fits” the environmental data 

(Phillips et al. 2006). AUCTrain is reported to estimate model quality, favoring models 

with greater variables, and therefore should be interpreted with caution (Warren and 

Seifert 2011). AUCTest is calculated with a randomly selected set of withheld presence 

locations and is the true test of model predictiveness (Phillips et al. 2006, Phillips and 

Dudík 2008). The difference between AUCTrain and AUCTest (AUCDiff) can be used to 

investigate over-parameterization in models as overfit models are likely to perform well 

on training data but poor on test data (Sarkar et al. 2010, Warren and Seifert 2011). 

Average AUC values for models at default and robust settings for each species were 

compared. 

 Maxent version 3.3.3k was utilized for all model runs with the following settings 

for each species: “random test percentage” was set to 25% to generate AUC values; 
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“random seed” was selected ensuring differing test and train species’ locations for 

repeated model runs; “replicated run type” was set to subsample ensuring test locations 

are withheld and independent of training locations used during model building; 

“replicates” was set to 30; “maximum iterations” was set to 5000 allowing ample time for 

each run; and no samples were added to the background (Phillips et al. 2006). All other 

settings were default. 

 Habitat suitability – The average habitat suitability map for each species were 

overlaid and summed displaying predicted habitat suitability of fern community 

reassembly. Maximum test sensitivity plus specificity was the threshold selected during 

modeling at robust settings to create binary maps depicting suitable versus unsuitable 

habitat for each species. This threshold was chosen based on results from Liu et al. 

(2013) stating that threshold selection should be based on maximizing the sum of 

sensitivity and specificity when modeling with presence-only data. The median of 30 

replicated thresholds for each species was calculated and overlaid. These overlaid outputs 

were compared to modeled species documented in secondary forest plots as well as total 

fern species documented in plots. Additionally, each species was assigned a categorical 

variable based on Proctor (1989), 0 for rare species or species restricted to extreme 

habitats (e.g., restricted to steep or mountainous areas) and 1 for common species (Table 

1), and a polyserial correlation was conducted on the rate at which models accurately 

predicted species present or absent at secondary forests sites using each species’ averaged 

threshold. 

 

 



 

19 

Field testing and secondary forest assessment 

Twenty-two 20 m × 20 m plots were surveyed in secondary forest scattered across 

the main island of Puerto Rico from July 26th 2012 – August 25th 2012 (Figure 1). Plots 

were chosen based on accessibility using the latest forest stand data by Brandeis et al. 

(2003) prior to modeling, eliminating potential bias. All fern species were identified in 

each plot and a voucher specimen was submitted to the Grand Valley State University 

herbarium. Canopy cover was determined in the center and at four more evenly spaced 

positions using a densiometer at a north, south, east, and west direction within each plot. 

The diameter at breast height (DBH) of the ten largest trees within each plot were 

measured. 

All statistical analyses were computed in R version 2.15.1 (www.r-project.org). 

Average model discrimination values were compared via Student’s t-tests, or Wilcoxon 

signed-rank tests when normality was not met, paired by species. Canopy cover and DBH 

measurements were compared to species richness in plots via Spearman rank correlations. 

Species richness in plots was compared to environmental variables used in modeling via 

Spearman rank correlations. Additionally, species richness in secondary forest plots was 

compared to Maxent habitat suitability and average overlaid thresholds via Pearson’s 

correlation and Spearman rank correlation respectively. Significance was determined at 

an alpha value of 0.05. 
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RESULTS 

 Model discrimination – Average AUCTrain values ranged from 0.835 to 0.980 and 

average AUCTest values ranged from 0.625 to 0.961 for all species with models run at β = 

1 (default). Average AUCTrain values ranged from 0.717 to 0.969 and average AUCTest 

values ranged from 0.618 to 0.958 for all species run at robust β values (Table 3). 

Average AUCTrain values did not differ significantly between default and robust β 

settings, however, average AUCTest values were significantly greater at robust settings (n 

= 29, t = 1.85, P = 0.03). Model performance therefore increased at robust settings on 

average for the majority of species. Ten of the twenty-nine species exhibited very similar 

yet slightly lower average AUCTest values at robust settings rather than default settings 

(Table 3). AUCDiff values were significantly lower at robust settings on average (n = 29, 

V = 9, P < 0.0001), indicating that models run at defaults settings are overfit creating 

limited suitable habitat distributions. 

 The species with the greatest performing models (i.e., average AUCTest > 0.9) 

include Cyathea bryophila, Grammitis serrulata, Tectaria cicutaria, Odontosoria 

scandens, Oleandra articulata, Polypodium loriceum, and Trichomanes scandens 

respectively (Table 3). SDM have been shown to perform well on rare and endemic 

species in addition to species restricted to specific habitats or minute geographic ranges 

(McPherson and Jetz 2007, Franklin et al. 2009). These seven species are all restricted to 

high elevation, mountainous rain forests, aside from T. cicutaria, which is restricted to 

low elevation, calcareous substrates. Additionally, C. bryophila is endemic and its model 

performed the greatest compared to all species (average AUCTest = 0.958). The only other 

endemic modeled, Cyathea portoricensis, also performed relatively well (average 
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AUCTest = 0.824) but has a much broader geographic distribution and elevational range 

than that of C. bryophila (Table 1). 

 Although numerous species had low field success rates, model performance 

should not be considered poor. The ten least successful models (<60% success rate) 

contain five of the nine rare species used in modeling. In addition, these ten species all 

exhibited AUC values between 0.674 and 0.927, indicating relatively good model 

performance. Polybotrya cervina (average AUCTest = 0.833) performed poorest at 32% 

field success rate; however, this species only occurs in wet, mountainous regions difficult 

to access. Similarly, Odontosoria aculeata (average AUCTest = 0.674) with a 41% field 

success rate, only occurs in scattered localities across the island in mountainous regions. 

At 41% field success, Oleandra articulata (average AUCTest = 0.927) was once common 

across the island in most moist regions. This species is now confined to mature forests 

due to its sensitivity to human disturbance (Proctor 1989). Aracnioides chareophylloides 

(average AUCTest = 0.755; 50% field success) was found across the island in widely 

ranging habitat types, moisture gradients, and elevations (Schmidt personal observation) 

reducing model predictability. More occurrence data is likely necessary for this generalist 

species. Polypodium crassifolium (AUC 0.737; 55% success rate) is primarily confined to 

protected, mature forests which were not assessed (Proctor 1989). Finally, Trichomanes 

crispum (AUC 0.851; 59% success rate) is widely scattered across the island but 

uncommon in all localities (Proctor 1989). 

 Habitat suitability – Each species’ habitat suitability and threshold map were 

averaged from 30 replicated runs at robust settings (Figure 2). Summed habitat suitability 

(all species; Figure 3) was positively correlated with modeled species documented in 
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secondary forest plots (r = 0.58, P = 0.002, Figure 4), validating the accuracy of Maxent 

to detect suitable habitat for species at robust settings. Total fern species documented in 

secondary forest sites was not significantly correlated with neither summed habitat 

suitability nor number of species predicted present. The polyserial correlation coefficient 

was 0.551 indicating that common species were more frequent in plots than were rarer 

species (test of bivariate normality: chisquare = 1.275, df = 5, P = 0.937).  

 Field testing and secondary forest assessment – Species richness decreased with 

increasing variation in canopy cover (rho = -0.49, P = 0.01), which was primarily driven 

by terrestrial species (rho = -0.53, P = 0.005). Species richness increased on northern 

facing slopes (rho = 0.35, P = 0.05). Species richness decreased with increasing average 

annual temperature (rho = -0.45, P = 0.01). There was a weak, positive correlation 

between species richness and elevation (rho = 0.33, P = 0.06). Epiphyte species richness 

increased as February precipitation increased (rho = 0.49, P = 0.01). Surprisingly, there 

was a negative correlation between total species richness and average annual 

precipitation (rho = -0.43, P = 0.02). 
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DISCUSSION 

Increasing β to find proper complexity is necessary for model accuracy and 

reliable AUC interpretation, indicated by significantly greater AUCTest values for the 

majority of species at robust settings. Few SDM studies investigate complexity and treat 

it as unimportant in Maxent. Results here demonstrate that model complexity affects 

performance in Maxent and likely most applications, coinciding with Warren and Seifert 

(2011). Models run at the default β setting possessed significantly greater AUCDiff values 

than robust models and were by this measure overly-complex, utilizing too many 

environmental features relative to the number of occurrences for a given species. None of 

the models exhibited maximum parsimony at β = 1 (Table 3). AUCDiff values may be 

useful in revealing overfit models; however, information criteria should be the primary 

tool for identifying and adjusting for optimal model complexity, especially when 

modeling with few species’ locations (Warren and Seifert 2011). Warren and Seifert 

(2011) found that slightly overly complex models were less problematic than under-

parameterized models in most cases, however, models with appropriate complexity 

performed best. Complex models may produce conservative distributions, but overly 

complex models will likely only predict areas known to the modeling algorithm as 

present (or rather, areas adjacent to know presence locations) rather than identifying 

potential, fundamental niche space on revegetating landscapes (Peterson et al. 2011). It 

may be necessary to run and test models with large datasets at higher β values. With few 

occurrences and relatively few predictors (i.e., 16 – 46 and 10 respectively), increasing β 

greater than eight was not necessary for the species utilized here as lowest AICc values 

were observed at β values between two and seven (Table 3). 
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Summed logistic habitat suitability for the twenty-nine modeled fern species 

positively correlated with their occurrence in the twenty-two secondary forests plots 

surveyed throughout the main island of Puerto Rico. The success of these models to 

predict occurrence supports their use for identifying areas of conservation value.  In 

contrast, total fern species richness observed in the survey plots did not correlate with 

summed logistic nor summed threshold habitat suitability maps. The disconnect between 

the ability to predict species occurrence versus the ability to predict community richness 

may be due to a number of factors including, but not limited to, the number of species 

modeled relative to the number of species that occur on the island (>400), the rarity of 

some of the modeled species, or geographic sampling bias (e.g., inability to access 

montane regions). Supporting the hypothesis that the rarity of some of the modeled 

species may have compromised the ability of summed (logistic or threshold) maps to 

predict community richness in the survey plots, a polyserial correlation revealed that, not 

surprisingly, common species dominated the secondary forests in which these plots 

occurred.  

There are over 3098-km2 of secondary forest throughout the main island of Puerto 

Rico, of which, over 96% is unprotected as of May 2011 [Gould et al. 2011(2)]. 

Approximately 214-km2 of that unprotected forest lies along the Cordillera Central 

surrounding Monte Guilarte, Toro Negro, and Tres Picachos State Forests, in higher 

elevations surrounding Carite State Forest, and just west, south west of El Yunque 

National Forest where fern species richness is predicted to be greatest (Figure 5). These 

areas exhibited the greatest average habitat suitability scores of 0.5 or greater predicting 

fern community reassembly to be highest in these localities. These protected areas are 
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likely source locations for population reintroductions in these montane, wet forests. 

Expanding protected boundaries to lower elevations could increase overall species 

richness for source locations in these revegetating forests and should be explored. 

Secondary forest stand assessment further solidified that total species richness 

increases with reduced water stress. Species richness decreased as variation in canopy 

cover increased in secondary forest plots, primarily driven by terrestrial species. This is 

not surprising as many pteridophyte species cannot tolerate prolonged exposure to direct 

insolation and most tropical species rely on moist substrates. Species richness increased 

on northern facing slopes in secondary forest stands. Loriot et al. (2006) found a species 

of fern to be restricted to northern slopes in low light habitats in France, likely due to 

reduced water stress. Species richness decreased with average annual temperature and 

increased with elevation. These results are likely due to cooler temperatures subsequently 

alleviating evapotranspiration. The unexpected negative association between average 

annual rainfall and total species richness may indicate in addition to reduced water stress, 

ferns are likely dependent upon forest structure and canopy coverage. As secondary 

forests mature and canopies close, both moisture retention and habitable space for 

epiphytes increase. 

All models performed relatively well; however, this study began with 36 species. 

Plebodium aureum, Pityrogramma calomelanos, Pteris longifolia, Tectaria incisa, 

Thelypteris hildae, Thelypteris poiteana, and Thelypteris reticulata performed poorly 

(i.e., average AUCTest ≤ 0.5 meaning no better than random) across all models regardless 

of the β setting and therefore, were removed from the study. This likely resulted from too 

few occurrence locations (18-21 records) for species that may have broad distributions 
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and may be tolerant to extensive habitat types. For example T. incisa and T. poiteana 

were found in secondary forests throughout the entire main island in vastly differing 

habitats (Schmidt personal observation). 
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CONCLUSION 

This study highlights the importance of understanding complexity while modeling 

in Maxent, especially when modeling with few species occurrences (one of the main 

reasons Maxent is utilized and advocated). Extensive areas of realistically suitable habitat 

for species would not be accounted for without adjusting β and testing for parsimony, 

potentially leading to erroneous management decisions for rare, threatened, or endemic 

species. This could lead to unprotected or unmonitored patches of secondary forest 

suitable for select species of interest. Furthermore, a shortcoming of AUC values is that 

even overfit, unrealistic models may exhibit high discrimination values which may 

mislead management decisions and therefore other parameters should be considered for 

assessing model discrimination such as the true skill statistic proposed by Allouche et al. 

(2006). This statistic is independent of prevalence and thus, is not subjected to the same 

limitations as AUC values; however, when interpreted with caution and tested for 

parsimony, AUC values for models with fewer species occurrences can be utilized in 

management practices. Not surprisingly, total fern species richness in secondary forest 

plots was primarily dependent by reduced water stress. 
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Table 1. Puerto Rican fern species used for predictive model assessment along with the number of occurrences, physiognomy, 

elevational range, commonality, and field success rate.  

 

Species 
Number of 

Occurrences 
Physiognomy 

Elevational 

Range (m) 
Commonality 

Field Success 

Rate (%) 

Adiantum latifolium (Lamarck) 23 terrestrial 0 - 500 C 77 

Adiantum pyramidale (Linnaeus) 39 terrestrial 0 - 940 C 64 

Arachniodes chaerophylloides (Poiret) 43 terrestrial 200 - 1070 C 50 

Blechnum occidentale (Linnaeus) 31 terrestrial 20 - 950 C 68 

Cyathea bryophila (R. Tryon)* 26 tree 750 - 1300 C 91 

Cyathea horrida (Linnaeus) 23 tree 220 - 1000 C 64 

Cyathea portoricensis (Sprengel ex Kuhn)* 24 tree 175 - 1240 C 73 

Cyclopeltis semicordata (Swartz) 26 terrestrial; epipetric 10 - 250 C 86 

Dennstaedtia bipinnata (Cavanilles) 19 terrestrial 65 - 900 C 59 

Grammitis serrulata (Swartz) 19 terrestrial; epiphytic; epipetric 175 - 1300 C 77 

Lastreopsis effusa (Swartz) 16 terrestrial 180 - 1300 C 82 

Nephrolepis exaltata (Linnaeus) 16 terrestrial; epiphytic 300 - 1200 R 68 

Nephrolepis rivularis (Vahl) 17 terrestrial; epiphytic 220 - 970 C 64 
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Odontosoria aculeata (Linnaeus) 23 terrestrial 0 - 950 R 41 

Odontosoria scandens (Desvaux) 17 terrestrial 850 - 1300 C 82 

Oleandra articulata (Swartz) 31 epiphytic; epipetric  200 - 1065 R 45 

Olfersia cervina (Linnaeus) 20 terrestrial 200 - 1000 R 32 

Pecluma pectinata (Linnaeus) 30 epiphytic; epipetric  175 - 860 C 41 

Polypodium crassifolium (Linnaeus) 21 epiphytic; epipetric  300 - 1100 R 55 

Polypodium dissimile (Linnaeus) 17 epiphytic 430 - 900 R 64 

Polypodium heterophyllum (Linnaeus) 24 epiphytic 10 - 550 R 82 

Polypodium loriceum (Linnaeus) 26 epiphytic 600 - 1300 C 59 

Polypodium lycopodioides (Linnaeus) 36 epiphytic 0 - 1200 C 73 

Polypodium piloselloides (Linnaeus) 31 epiphytic; epipetric 130 - 1100 C 59 

Tectaria cicutaria (Linnaeus)† 17 terrestrial; epipetric ca. 100 C 95 

Tectaria heracleifolia (Willdenow) 46 terrestrial 10 - 450 C 82 

Thelypteris guadalupensis (Wikström)† 19 terrestrial 10 - 350 C 91 

Trichomanes crispum (Linnaeus) 16 epiphytic 200 - 900 R 59 
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Trichomanes scandens (Linnaeus) 20 epiphytic 500 - 1300 R 68 

† indicate species restricted to limestone or calcareous substrate (geology predictor used in mapping distribution). 

* indicate endemic species
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Table 2. Detailed descriptions of environmental predictors in each category utilized 

during modeling along with the cell size of the original data set and source in which it 

was provided and created. Elevation was not used in modeling. 

 

Category Predictor Cell (m2) Source 

Climate Average August (max) temperature 450 PRISM* 

      Average February (min) temperature 450 PRISM* 

 

Average October (max) precipitation 450 PRISM* 

  Average February (min) precipitation 450 PRISM* 

Topography 

 

Elevation 

Slope 

30 

30 

NOAA DEM† 

NOAA DEM† 

 Northness [aspect in radians(cosine)] 30 NOAA DEM† 

  Eastness [aspect in radians(sine)] 30 NOAA DEM† 

Vegetation Indices Tasseled Cap - Greenness 30 Landsat Mosaic• 

      Tasseled Cap - Wetness 30 Landsat Mosaic• 

  Tasseled Cap - Brightness 30 Landsat Mosaic• 

Geology+ Geologic substrate NA USGS° 

*Parameter-elevation Regressions on Independent Slopes Model (see Daly et al. 2003). 

†National Oceanic and Atmospheric Administration Digital Elevation Models (see Taylor et al. 2008). 

•Mosaicked Landsat satellite imagery (see Helmer and Ruefenacht 2005). 

°United States Geologic Survey (see Bawiec 1999). 

+Only used for select species (see Table 1). 
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Table 3. Average Test and Train AUC values for each species at default (D) and robust 

(R) settings along with the regulation multiplier (β) setting for parsimony. 

 

Species Avg Train 

AUC (D) 

Avg Test 

AUC (D) 

Avg Train 

AUC (R) 

Avg Test 

AUC (R) 

Beta 

Value (R) 

 

 

A. latifolium 0.892 0.705 0.716 0.693 5 

A. pyramidale 0.839 0.691 0.716 0.643 7 

A. chaerophylloides 0.867 0.748 0.805 0.755 5 

B. occidentale 0.896 0.749 0.782 0.733 6 

C. bryophila 0.980 0.953 0.965 0.958 5 

C. horrida 0.924 0.786 0.873 0.799 4 

C. portoricensis 0.919 0.816 0.874 0.824 6 

C. semicordata 0.906 0.758 0.826 0.786 4 

D. bipinnata 0.906 0.745 0.851 0.836 5 

G. serrulata 0.977 0.917 0.966 0.953 5 

L. effusa 0.857 0.657 0.821 0.727 2 

N. exaltata 0.892 0.802 0.874 0.791 4 

N. rivularis 0.880 0.836 0.878 0.806 2 

O. aculeata 0.899 0.745 0.758 0.674 5 

O. scandens 0.972 0.911 0.968 0.938 4 

O. articulata 0.964 0.916 0.957 0.927 5 

O. cervina 

P. pectinata 

0.936 

0.863 

0.818 

0.678 

0.866 

0.790 

0.833 

0.783 

5 

5 

P. crassifolium 0.896 0.677 0.781 0.737 4 
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P. dissimile 0.917 0.785 0.880 0.787 2 

P. heterophylla 0.899 0.739 0.762 0.751 5 

P. loriceum 0.956 0.898 0.935 0.924 5 

P. lycopodioides 0.835 0.695 0.777 0.751 4 

P. piloselloides 0.886 0.764 0.826 0.808 5 

T. cicutaria 0.977 0.961 0.958 0.951 4 

T. heracleifolia 0.844 0.624 0.748 0.617 3 

T. guadalupensis 0.906 0.648 0.760 0.647 5 

T. crispum 0.929 0.880 0.917 0.851 3 

T. scandens 0.971 0.916 0.943 0.921 4 

 
     

      



 42  

Table 4. Summary of twenty-two secondary forests plots sampled July 26th 2012 – August 25th 2012 including all species average 

habitat suitability (HS), predicted species present, species observed, physiognomy of species observed, and forest age. 

 

Site 
Species HS 

(average) 

Species HS 

(Sum) 

Species Predicted 

Present (Threshold) 

Modeled Species 

Present 

Total Species 

Present 

Total 

Terrestrial 

Total 

Epiphytic 

Forest Age 

(years) 

1 0.43 13.5 13 9 15 8 7 36 - 62 

2 0.39 12.2 8 5 15 11 4 36 - 62 

3 0.35 11.0 2 4 16 12 4 23 - 35 

4 0.41 12.8 15 6 14 9 5 14 - 22 

5 0.53 16.3 22 10 16 7 9 36 - 62 

6 0.43 13.4 11 9 21 11 10 36 - 62 

7 0.60 18.3 24 9 27 24 3 23 - 35 

8 0.37 11.7 5 7 19 17 2 23 - 35 

9 0.51 15.7 18 9 14 7 7 14 - 22 

10 0.34 11.0 2 7 21 14 7 14 - 22 

11 0.48 14.8 21 9 22 21 1 23 - 35 

12 0.45 14.0 16 10 22 15 7 23 - 35 

13 0.46 14.5 19 8 18 15 3 23 - 35 
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14 0.45 14.0 17 10 24 13 11 23 - 35 

15 0.51 15.7 21 11 21 17 4 23 - 35 

16 0.52 16.0 21 9 19 14 5 23 - 35 

17 0.34 10.9 6 7 21 13 8 23 - 35 

18 0.33 10.5 5 9 24 13 11 36 - 62 

19 0.42 13.1 13 8 14 10 4 23 - 35 

20 0.41 12.8 11 6 22 13 9 23 - 35 

21 0.39 12.3 10 9 19 13 6 23 - 35 

22 0.49 15.1 14 8 18 8 10 23 - 35 
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Figure 1. Study area: topography of the main island of Puerto Rico along with its location 

in the Caribbean, surrounding geographies, and secondary forest plots sampled in 

summer 2012. 
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Figure 2. Individual species’ average habitat suitability (HS; left) and threshold (T; right) 

map from 30 replicated runs at robust settings. Success rate (present or absent) is 

indicated below species’ names along with a rarity factor (C = common and R = rare). HS 

scores for each species at all secondary forest plots are displayed on HS maps. Points on 

T maps indicate where each species was documented in plots. 
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Figure 3. Summed logistic habitat suitability map for all modeled species along with 

secondary forest plots depicting number of modeled species observed. 
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Figure 4. Correlation between logistic habitat suitability and modeled species 

documented in secondary forest plots. 
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Figure 5. Study area depicting protected land as of May 2011, urban development, and 

areas with highest predicted fern community reassembly along the Cordillera Central and 

surrounding Carite State and El Yunque National Forests. 
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