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ABSTRACT 

 

 

We developed eight polymorphic microsatellites from the parasitic nematode Baylisascaris procyonis.  

Amplification of these loci in a sample of 74 worms collected from 10 raccoons in Western Michigan 

revealed significant population structure.  Bayesian clustering indicates two subpopulations, one on either 

side of the Grand River which bisects the region sampled.  Estimates of FST, and results from AMOVA 

and isolation by distance, further corroborate a scenario whereby the river is acting as a barrier to gene 

flow, a rather unusual finding given the high vagility of raccoons and microgeographic scale of the 

analysis.  We describe one possible mechanism for how this pattern of structure could have become 

established.    
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INTRODUCTION 

Baylisascaris procyonis, a.k.a. raccoon roundworm, is a gastrointestinal nematode for which 

raccoons serve as definitive hosts.  They become infected either via the fecal-oral route by ingesting 

embryonated eggs at latrine sites or by consuming an infected intermediate host.  More than 100 animal 

species, including humans, are known to act as intermediate or ‘dead end’ hosts, in whose tissues and 

organs the larval stages of B. procyonis migrate causing debilitating, often fatal disease (Kazacos, 2001).  

The zoonotic importance of this parasite is increasingly being recognized for its impact on wildlife 

populations (Page, 2013), zoological gardens (Thompson et al., 2008; Ball et al., 1998), commercial 

poultry operations (Sorvillo et al., 2002), domestic animals (Rudmann et al., 1996; Kazacos, 2006), and 

humans (Wise et al., 2005).  Given that raccoons adapt well to living in close proximity to humans, and 

their populations are expanding in size and range in North America (Troyer et al., 2014), as well as in 

Europe and Asia (Popiolek et al., 2011; Hayama et al., 2007), a better understanding of the population 

dynamics of B. procyonis would assist public health and wildlife management efforts to control this 

parasite. 

 To this end, molecular tools have the potential to greatly improve our understanding of the genetic 

architecture and microevolution of B. procyonis populations.  Ribosomal DNA (rDNA), their internal 

transcribed spacers (ITS), and mitochondrial cytochrome oxidase genes have provided genetic markers 

for diagnosis, species discrimination, phylogenetic analysis, and detecting variation between B. procyonis 

populations (Nadler and Hudspeth, 1998: Nadler and Hudspeth, 2000; Blizzard et al., 2010).  However, 

for the purpose of inferring microevolutionary events, these markers have several limitations.  Population 

genetic inferences based solely on mtDNA can be misleading due to incomplete lineage sorting, 

introgression via hybridization (Anderson, 2001), and non-neutral evolution (Ballard and Whitlock, 

2004).  Low polymorphism limits the utility of rDNA, and the presence of variation both within and 

between repeat arrays can complicate interpretation of ITS sequence data (Vilas et al., 2005).   
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 Microsatellites by contrast offer a number of advantages, high development cost notwithstanding.  

These bi-parentally inherited, co-dominant markers consist of small motifs of one to six nucleotides 

repeated in tandem.  They are abundant, often highly polymorphic, easily typed, selectively neutral (but 

see Haasl and Payseur, 2013), and are well distributed throughout the genome.  They have been employed 

as genetic markers at many scales of analysis—genome mapping, forensics, parentage analysis, 

phylogeography—and their high mutation rates make them excellent tools for assaying evolutionary 

forces acting at the population level (Abdul-Muneer, 2014; Barker, 2002).  

The past decade has seen microsatellites developed for the population genetic analysis of a number 

of parasitic helminth species, e.g. Ascaris lumbricoides (Betson et al., 2014), Schistosoma haematobium 

(Glenn et al., 2013; Gower et al., 2011), Trichinella spirallis (La Rosa et al., 2012), Fasciola hepatica 

(Vilas et al., 2012), Dirofilaria immitis (Belanger et al., 2011), Opisthorchis viverrini (Laoprom et al., 

2010), Trichostrongylus tenuis (Johnson et al., 2006), Teladorsagia circumcincta 

and Haemonchus contortus (Silvestre et al., 2009).  Our objectives in the current study were to add B. 

procyonis to this list by 1) developing a panel of polymorphic microsatellite markers for this species, and 

2) employing these to get a first glimpse of its population structure at a microgeographic level. 

 

MATERIALS AND METHODS 

Worm collection.  In the fall of 2012, 74 adult and juvenile specimens of B. procyonis were collected from 

a ~ 500 km2 region in Michigan’s lower peninsula bisected by the Grand River (Figure 3).  These worms 

were dissected from euthanized raccoons donated by animal control operations, fur trappers, and from 

road-kills.  They were initially stored in 70% ethanol at RT, then transferred to individual tubes and kept 

at -20C.   

DNA extraction.  DNA was isolated using the QIAgen DNeasy blood and tissue kit according to the 

handbook instructions.  Concentration and purity were measured using a NanoDrop 2000 
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spectrophotometer (Thermo Scientific).  Only the anterior 1/10 of each worm was digested in order to 

avoid, in the case of adult females, contamination from sperm and fertilized eggs (Anderson et al., 2003). 

Development of microsatellite primers.  Two genomic libraries were prepared and enriched for either 

tetranucleotide [(GATA)7 , (GATC)7, and (GACA)7 ] or dinucleotide [(GT)12 and (CT)12 ] repeats using a 

microsatellite cloning protocol based on Hamilton et al. (1999) and Hauswaldt & Glenn (2003), modified 

as reported earlier (Beheler et al. 2004). The library was constructed using a pooled sample of genomic 

DNA from two male B. procyonis worms, collected from fresh (< 1 hr old) road-killed raccoons in 

Northern Indiana, USA. DNA was extracted from the worms using a standard phenol:chloroform 

extraction procedure (Green and Sambrook, 2012).   

A total of 2000 recombinant clones were sequenced and the sequence data were imported into 

SEQUENCHER 4.1 (Gene Codes Corporation) for analysis. A subset (n = 160) of microsatellite-containing 

sequences was selected, and primers designed for PCR amplification were developed using PRIMER3 

(Rozen & Skaletsky 2000). The 160 microsatellite loci were amplified in 10L PCRs using a Master-

cycler ep gradient (Eppendorf) and 20 ng of template DNA, 0.2 mM of each dNTP, 0.2 M of each 

primer, 1 U of Taq DNA polymerase (NEB) and 1X Thermopol reaction buffer (20 mM Tris-HCl, 

10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 0.1 % Triton X-100; NEB). The amplification conditions 

were as follows: 94 oC for 2 min, then 94 oC for 30 s, annealing temperature (Table 1) for 30 s, 72 oC for 

30 s for 35 cycles, then 72 oC for 10 min and a final extension at 60 oC for 45 min. PCR products were 

initially screened on 2 % agarose gels stained with ethidium bromide to check for positive amplification.  

A total of 99 of the 160 loci consistently produced products of the expected size and subsequently were 

screened for polymorphism in a panel of 23 individuals (i.e. a locus would need to have approximately 

one allele at a frequency of ≥98% to be scored as monomorphic). The protocols for the above 

polymorphism screening were the same as those given above, except that 1) in each reaction, the 

concentration of dTTP was reduced to 1.5 mM and 0.5 mM of chromatide rhodamine green 5dUTP 
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(Molecular Probes) was added, and 2) electrophoresis was performed through a 5% polyacrylamide gel on 

an ABI 377 automated sequencer (Applied Biosystems). Of the 99 primer sets screened, 8 loci were found 

to be polymorphic (average allelelic richness: 3.75; Table 1). After optimizing PCR conditions we 

screened the 8 polymorphic loci using a screening set of 47 individual worms collected from 22 

individual raccoons using the protocol outlined above. We calculated observed heterozygosity (HO) and 

expected heterozygosity (HE) using the software CERVUS 1.0 (Marshall et al. 1998).   

PCR amplification.  The 5’ end of one oligo from each primer pair was ligated with the following 

universal tag sequence (UTS): 5’-CAGTCGGGCGTCATCA-3’.  The choice of whether it was the F or 

the R primer in each pair that received the UTS was based on which potential combination (i.e. UTS-F 

and R vs. F and UTS-R) received the highest efficiency rating using NetPrimer (Premiere Biosoft).  In 

addition to the F and R primers, each reaction also contained a third oligo consisting of one of the four 

dyes in Applied Biosystems’ Dye Set 33 (6FAM, VIC, NED, and PET) ligated to the 5’ end of the UTS.  

Microsatellite loci were amplified in a reaction volume of 25 l with Promega’s GoTaq Core System II 

using 1l (~ 10ng) of DNA template and 1 M of each primer; the quantities of the remaining reactants 

were per the manufacturer’s guidelines.   Amplification was carried out using a BioRad T-100 thermal 

cycler as follows.  After 2 min of initial denaturing at 95C: [95C 30 sec, 60C 1 min, 72C 1 min] (x3), 

[95C 30 sec, 55C 1 min, 72C 1 min] (x30), 72C 10 min, 4C hold.  PCR products were screened on 1 % 

agarose gels stained with ethidium bromide to check for positive amplification.  As a quality control step, 

following genotyping (below), a randomly chosen subset of samples for each locus was reamplified to 

verify reliability in allele size.  The program MICRO-CHECKER (Oosterhout et al. 2004) was used to screen 

for technical errors that can occur during PCR amplification, such as stuttering, large allele dropout, and 

null alleles. 

Genotyping.  Fragment analysis was performed with an ABI 3130xL genetic analyzer (Life 

Technologies).  Alleles were sized in Geneious 7.1.5 (Biomatters) using the LIZ500 size standard. 
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Population structure.  We used STRUCTURE v. 2.3.4 (Pritchard et al., 2000) to test for evidence of cryptic 

population structure or physical barriers to dispersal.  Structure uses a Markov chain Monte Carlo 

(MCMC) algorithm to minimize Hardy-Weinberg and linkage disequilibrium within each of K clusters, 

and generates a probability Q of an individual belonging to each cluster.  We used STRUCTURE to calculate 

the likelihood of the data assuming the entire population was composed of K = 1 to 10 distinct clusters 

using a model that assumes admixture and independent allele frequencies.  To identify the most likely 

number of clusters K, we performed 5 independent runs for each K with a burn-in value of 105 steps 

followed by 106 MCMC simulations.  The most likely K was determined by following the guidelines of 

Pritchard et al. (2000), and using the second order rate of change in the likelihood distribution, the ΔK 

algorithm of Evanno et al. (2005).  Output for ΔK was visualized with Structure Harvester (Earl and 

vonHoldt, 2012). 

Population heterozygosity was assessed by calculating the number of effective alleles (Ne), mean 

observed heterozygosity (HO), and the mean expected heterozygosity (HE) under Hardy-Weinberg 

equilibrium.  Deviation from Hardy-Weinberg equilibrium was assessed at each locus using an exact test 

as implemented in GENEPOP (Raymond and Rousset, 1995).  Hierarchical partitioning of genetic variation 

among and within infrapopulations, and among regions was performed by AMOVA (Excoffier et al., 

1992) as implemented in GENALEX 6.5 (Peakall and Smouse, 2012).  Wright’s F-statistics, as 

implemented by Weir and Cockerham (1984), were also estimated within the AMOVA framework since 

it allows for statistical testing.  With panmixia (FST  = 0) as the null hypothesis, to determine whether an 

observed value of FST was significantly greater than that expected by chance, it was compared against the 

outcomes of 999 random permutations; if the observed value was greater than the permuted value 95% or 

more of the time, the results were deemed significant at the 5% level. 

Isolation by distance was tested for all infrapopulations, and separately for those North and those 

South of the Grand River, using Mantel’s test of matrix correspondence (Mantel, 1967) applied to a 

comparison of all pairwise FST/(1-FST) values (Rousset, 1997) with all pairwise log-transformed 
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geographic distances.  For each comparison (total, North, and South), statistical significance was tested 

via random permutation, as described above, using GENALEX 6.5.  

 

 

RESULTS 

We detected 27 alleles at eight microsatellite loci in 74 individual worms.  Estimated variability at the 

eight loci is summarized in Table 2.  Allele frequencies at two loci (Bp107 and Bp122) showed slight 

deviation from Hardy-Weinberg equilibrium; significance on exact tests was P = 0.038 and 0.044 

respectively.  There were no null alleles, stuttering errors or evidence of allelic dropout in any of the 

loci, as analyzed by MICRO-CHECKER. 

The results from the Bayesian cluster analysis clearly indicate a subdivision of the population into 

two genetic groups (K = 2; Figures 1 and 2).  Interestingly, there appears to be very little admixture 

between groups (Figure 2), and the probability of a given worm’s belonging to one or the other inferred 

cluster corresponds strikingly well to its geography: the two inferred subpopulations lie on either side of 

the Grand River (Figure 3).  

Despite the fine geographic scale of this analysis, population structure was significant at several 

levels.  Our estimate of FST for the entire population was 0.176 (P = 0.001).  Mean pairwise FST values 

between infrapopulations North of the Grand River was 0.049 (P = 0.002), and for those South of the 

Grand it was 0.051 (P = 0.005).  All pairwise comparisons of FST between infrapopulations are shown in 

Table 3.  These values of FST are largely consistent with a pattern of structure defined by the river: 

pairwise comparisons between infrapopulations within regions (i.e. between raccoons on one side of the 

river or the other) were mostly nonsignificant, whereas comparisons between regions were all significant 

(Table 3).  Of 45 possible pairwise comparisons, only six were inconsistent with this pattern (indicated in 

grey in Table 3). 
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The partitioning of variance in our AMOVA was also consistent with this North—South pattern: 

genetic differences between infrapopulations accounted for only 4% of the total variance, whereas 

differences between regions (North and South) accounted for over five times this amount (21%; Table 4).  

Tests of isolation by distance (IBD) tell a similar story.  Within each region, significant IBD was detected, 

whereas between regions, the IBD signal breaks down and is non-significant (Figure 4).  Collectively, 

these results suggest that the Grand River is acting as a barrier to gene flow between sampled populations 

of B. procyonis to its North and those to the South. 

 

 

DISCUSSION 

Here we report the development of eight microsatellite markers for B. procyonis, and provide the 

first description of the population genetics of this species on a local scale.  The polymorphism of these 

markers (mean number of alleles per locus = 3.375) was generally lower than that reported for 

microsatellites in other parasitic nematodes (e.g. the studies cited in the introduction all report higher 

mean allele numbers).  The observation of reduced microsatellite variability in other organisms has been 

variously ascribed to low effective population size (Bishop et al., 2009; Hauser et al., 2002); fluctuations 

in population density (Cimmaruta et al., 2010), low rates of recombination (Payseur and Nachman, 2000), 

and selection at linked loci (Olafsdottir et al., 2007).  The relative influences of these factors in the present 

study remain to be assessed.  Our sample size (n = 74) is more than sufficient to estimate allele richness 

and frequencies (Hale et al., 2012), although the restricted geographic scale of the sampling might 

possibly impact this; future studies of B. procyonis population genetic structure (PGS) on a broader 

geographic scale will shed light on this. 

PGS in parasitic nematodes runs the gamut from panmixia (Grillo et al., 2007; Johnson et al., 

2006; Webster et al., 2007) to moderate (Hawdon et al., 2001) to highly structured (Blouin et al., 1999; 

Redman et al., 2008).  This variation is influenced by ecological factors, differences in nematode life 
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history, and host biology (Nadler, 1995; Huyse et al., 2005).   Nematodes of domestic and companion 

animals generally exhibit low structure owing to high gene flow resulting from widespread host transport 

(Blouin et al., 1995; Grillo et al., 2007), whereas in wild host species, factors relating to vagility, 

territoriality, and ecological barriers will generally determine the degree to which structure is exhibited in 

their parasite populations.  Our results indicate that, at least in the case of Western Michigan, on a 

microgeographic scale B. procyonis exhibits significant PGS, and that this structure correlates strongly 

with a physiographic feature, the Grand River.  Global FST and pairwise values between infrapopulations 

separated by the Grand River (i.e. between regions, Table 3) were significant—but not among 

infrapopulations within regions.  With a few exceptions highlighted in grey in Table 3, these estimates are 

consistent with a pattern of gene flow being impeded by the river.  IBD and AMOVA results corroborate 

this.   

Although rivers have been implicated as dispersal barriers to raccoons under certain conditions 

(Smith et al., 2002), their permeability to dispersal varies depending on their width, whether or not they 

are frozen (Cullingham et al., 2009), and the presence of bridges (Rosatte et al., 2007).  The width of the 

Grand River in our collection area ranges from over 1,000 feet at several points near its mouth to under 

200 feet at a number of points East of Grand Rapids (as measured on Google Earth).  It is not 

inconceivable that raccoons might occasionally swim across this; however, it is more likely that they 

would walk across it during the winter months when it is frozen, as has been observed in other temperate 

regions (Cullingham et al., 2009).   

This seasonal variation in river permeability, if considered in light of annual fluctuations in 

infection prevalence, may explain the PGS we observed.  The prevalence of B. procyonis infection among 

raccoons in our study area shows a pronounced seasonality; it exceeds 70% during the late spring and fall, 

and approaches zero during the winter months (data not shown), a pattern also observed in other 

temperate regions in the U.S. (Kidder et al., 1989; Kazacos, 2001).  Whether this is a function of worm 

life span, self-curing on the part of raccoons, starvation induced by host torpor, or other factors has yet to 
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be determined.  Each spring, a new generation of B. procyonis adults arises, in a manner analogous to the 

hatching of annual plant seedlings, via infections recruited into the raccoon population from latrine sites 

(in the case of juveniles) and infected intermediate hosts (in the case of adults).  Therefore, the time of 

year when raccoons are most likely to cross the Grand River is the time when they are least likely to be 

harboring worms.  This would permit gene flow among raccoon populations on either side of the river, 

but not among populations of B. procyonis.  Although microsatellites have been developed for the 

raccoon (Fike et al., 2007), as it was not our initial objective, we did not simultaneously assay genetic 

structure of the raccoons in this study (i.e. a co-structure analysis sensu Criscione (2008)), the results of 

which would have informed the above hypothesis.  A finding of little or no genetic structure in the 

raccoon population would lend support to our proposed explanation, whereas significant structure would 

suggest that the Grand River is a barrier to gene flow for both host and parasite in this particular case.   

It is worth noting that the prevalence and distribution of infection among intermediate hosts in this 

region is unknown.  In other regions, larva migrans has been detected in a number of bird species (Evans, 

2002), a host category for which a river would not pose a significant dispersal barrier.  To the degree that 

birds in West Michigan are infected with B. procyonis, they are not apparently contributing to gene flow 

across the Grand River. 

Future analyses that include additional microsatellite loci and other nuclear and mitochondrial 

markers will provide useful context for these results.  Additionally, the simultaneous assay of raccoon 

PGS offers the prospect of separating ecological barriers (i.e. the Grand River) from the possible role of 

host variables (e.g. demographic structure) in shaping the structure of B. procyonis populations in this 

region.  These efforts are ongoing. 
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Figure 1.  Identification of the best K as inferred by STRUCTURE using the K method of Evanno et al. 

(2005). 

 

 

 

 

 
 

Figure 2.  A box plot showing the results of the Bayesian clustering analysis performed by 

STRUCTURE.  Each of the 74 worms is represented by a column partitioned into two colored segments 

representing the worm’s probability of belonging to each of the two inferred genetic clusters.  The first 36 

columns are from worms collected North of the Grand River (red = North); the remaining 38 samples 

were collected from South of the Grand River (blue = South). 
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Figure 3.  B. procyonis sample collection area in Western Michigan.  Points represent the locations where 

raccoons were collected.  Color coding reflects the results of Bayesian cluster analysis; red = North of the 

Grand River; blue = South of the Grand River.  GR = Grand Rapids. 

 

 

 

 

 

 

Figure 4.  Pairwise geographic distance plotted against genetic distance for all 10 infrapopulations 

(Total), those North of the Grand River (North), and those South of the Grand River (South).  P values 

refer to the Mantel test of significance ( = 0.05) after 999 random permuations. Isolation by distance was 

detected within each subpopulation (North and South), but not within the total (Total) population. 
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Table 1.  Characterization of eight polymorphic microsatellite loci developed for Baylisascaris procyonis in a screening set of 47 individual 

worms. Reported are the numbers of individuals successfully genotyped at each locus (N), the annealing temperature of the primers (TM) 

allelic richness (A), as well as the observed (HO) and expected (HE) heterozygosities. No locus deviated significantly from Hardy-Weinberg 

equilibrium expectations.    

Locus GenBank Accession 

Number 

N Tm Primer sequence 

Micro-

satellite 

motif 

Expected 

Product 

size 

A Ho He 

BP_104 -- 37 62.1 F: AACCTCTGGAATAATCGTTGG 

R: AATTCGACCGGATATGTAAGC 

AC16 175 3 0.16 0.24 

BP_107 -- 45 63.4 F: TTGACCTTCACGAATATAGGAATG 

R: ATACGCCTCTGGTGGATCTG 

AG13 116 5 0.33 0.62 

BP_109 -- 45 63.3 F: ATTTGCCCCTTGAAAATTAGG 

R: TGTTCGCATACACTTGCACTC 

AG12 287 4 0.24 0.47 

BP_114 -- 45 60.0 F: CAATCAATCGCCATGAAG 

R: TGCAATATCACCTATTCACTCAC 

CA5CT25 130 2 0.13 0.35 

BP_117 -- 44 61.6 F: GTTCTTCCTCGTTTCCAGTTC 

R: CTTAACGATGAGTACACGATTATAGG 

AG12 275 4 0.48 0.54 

BP_122 -- 46 57.0 F: AGTTCATTATGCTCTTCAATTC 

R: TGAGAACGCTATATTGATGG 

AG42 160 3 0.17 0.56 

BP_131 -- 41 61.5 F: ACATAATGAGGGCATCAAATTC 

R: TTTCAACAAGTATGATTTCAATGAG 

GT20…GT4 190 3 0.27 0.56 

BP_138 -- 43 59.8 F: TATCTCATTCCTCAGCAGTCTT 

R: TTCGAATGTTCACTGAATAAGAG 

CT18 112 6 0.37 0.50 
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Table 2.  Estimated variability at eight microsatellite loci for B. procyonis in Western Michigan.  N: number of samples; A: number of 

alleles; Ne: effective number of alleles, 1/(sum of ith allele2); HO: observed heterozygosity, HE: expected heterozygosity; P: exact test 

probability of departure from Hardy-Weinberg equilibrium (* p < 0.05; ** p < 0.01; *** p < 0.001).   

 

Locus N A Ne HO HE P 

Bp104 73 3 1.953 0.411 0.488 0.142 

Bp107 74 3 2.343 0.432 0.573 0.038* 

Bp109 66 3 2.833 0.727 0.647 0.170 

Bp114 74 3 2.755 0.581 0.637 0.088 

Bp117 54 4 3.278 0.685 0.695 0.364 

Bp122 71 4 3.442 0.521 0.709 0.044* 

Bp131 74 4 2.223 0.689 0.550 0.126 

Bp138 74 3 2.505 0.568 0.601 0.107 

Mean 70 3.375 2.666 0.577 0.613  

SE 2.486 0.183 0.182 0.042 0.026  

 

 

Table 3. Pairwise comparison of FST values between all infrapopulations. R4 = Raccoon 4, R6 = Raccoon 6, etc… Red = within-region 

comparison, North; blue = within-region comparison, South; yellow = between region comparison.  Values below diagonal are FST; those 

above are P values based on 999 permutations.  Values in grey buck expectation at P = 0.05, see Discussion. 

 

 North South 

R4 R6 R8 R15 R16 R3 R12 R13 R9 R17 

North 

R4 -- 0.300 0.392 0.430 0.016 0.001 0.006 0.002 0.001 0.001 

R6 0.032 -- 0.165 0.327 0.114 0.001 0.005 0.001 0.001 0.001 

R8 0.006 0.037 -- 0.185 0.024 0.001 0.001 0.001 0.001 0.001 

R15 0.000 0.008 0.018 -- 0.005 0.001 0.001 0.001 0.001 0.001 

R16 0.188 0.049 0.067 0.089 -- 0.001 0.001 0.001 0.001 0.001 

South 

R3 0.251 0.180 0.236 0.212 0.204 -- 0.395 0.084 0.063 0.009 

R12 0.264 0.154 0.290 0.219 0.205 0.003 -- 0.086 0.047 0.163 

R13 0.311 0.177 0.279 0.205 0.212 0.035 0.065 -- 0.010 0.149 

R9 0.352 0.261 0.328 0.269 0.292 0.035 0.091 0.079 -- 0.053 

R17 0.365 0.246 0.337 0.249 0.281 0.074 0.045 0.028 0.056 -- 
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          Table 4.  Results of AMOVA. 

 df SS MS Est. Variance % 

Among regions 1 48.283 48.283 0.606 21% 

Among hosts 8 30.146 3.768 0.116 4% 

Within hosts 136 290.845 2.139 2.139 75% 

Total 145 369.274  2.860 100% 
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