
Grand Valley State University Grand Valley State University 

ScholarWorks@GVSU ScholarWorks@GVSU 

Technical Library School of Computing and Information Systems 

2014 

A Portfolio View of a Microsoft Enterprise Architecture A Portfolio View of a Microsoft Enterprise Architecture 

Jerod Gawne 
Grand Valley State University 

Follow this and additional works at: https://scholarworks.gvsu.edu/cistechlib 

ScholarWorks Citation ScholarWorks Citation 
Gawne, Jerod, "A Portfolio View of a Microsoft Enterprise Architecture" (2014). Technical Library. 198. 
https://scholarworks.gvsu.edu/cistechlib/198 

This Project is brought to you for free and open access by the School of Computing and Information Systems at 
ScholarWorks@GVSU. It has been accepted for inclusion in Technical Library by an authorized administrator of 
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarworks@GVSU

https://core.ac.uk/display/32451692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/cistechlib
https://scholarworks.gvsu.edu/cis
https://scholarworks.gvsu.edu/cistechlib?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/cistechlib/198?utm_source=scholarworks.gvsu.edu%2Fcistechlib%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu


	
  

	
  

 
 
 
 
 
 
 
 
 

A Portfolio View of a Microsoft Enterprise 
Architecture 

By 
Jerod Gawne 

December, 2014 
  



	
  

	
  

A Portfolio View of a Microsoft Enterprise 
Architecture 
By  
Jerod Gawne 
 
 
 
A project submitted in partial fulfillment of the requirements for the degree:  
 
Master of Science in  
Computer Information Systems 
 
 
 
At 
Grand Valley State University 
December, 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gregory B. Schymik, Ph.D.



	
  

	
  

Contents 

Abstract ................................................................................................................................ 4 

1. Introduction ............................................................................................................. 4 

Enterprise Architecture ...................................................................................................... 4 

Architectural Perspective ................................................................................................... 4 

The Business Perspective ................................................................................................... 4 

The Application Perspective ................................................................................................ 5 

The Information Perspective ............................................................................................... 5 

The Technology Perspective ............................................................................................... 5 

Application and Technology Architecture .............................................................................. 5 

Application Patterns ............................................................................................................. 7 

Logical view ..................................................................................................................... 8 

Technology Patterns .......................................................................................................... 8 

2. Background and Related Work ................................................................................. 8 

3. Program Requirements ............................................................................................ 9 

Project Goals .................................................................................................................... 9 

Project Objectives ............................................................................................................. 9 

4. Implementation ....................................................................................................... 9 

Premise ........................................................................................................................... 9 

Motivation ..................................................................................................................... 10 

Application & Technology Implementation .......................................................................... 10 

5. Results ................................................................................................................... 11 

Real-World Use-Case ....................................................................................................... 11 

6. Conclusions and Future Work ................................................................................. 12 

7. Appendices and Annexures .................................................................................... 14 

 
 



	
  

	
  

Abstract 
An enterprise architecture (EA) establishes the organization-wide roadmap to achieve an 
organization’s mission through optimal performance of its core business processes within an efficient 
information technology (IT) environment. Simply stated, enterprise architectures are “blueprints” for 
systematically and completely defining an organization’s current (baseline) or desired (target) 
environment (Schekkerman, 2011). 

If defined, maintained, and implemented effectively, these blueprints assist in optimizing the 
interdependencies and interrelationships among the business operations of the enterprise and the 
underlying IT that support these operations. It has shown that without a complete and enforced EA 
(Strategic) Business Units, the enterprise run the risk of buying and building systems that are 
duplicative, incompatible, and unnecessarily costly to maintain and interface. 

While all the perspectives are key elements of the enterprise architecture, the focus of this project is 
scoped to three EA perspectives. The first two perspectives are EA’s application and technology 
architectures, their concepts and key patterns for construction of service oriented and message-based 
applications that exploit the emerging technology of asynchronous communication services. The third 
perspective covered is EA’s implementation perspective, which includes the design, development, 
setup, deployment, and administration of enterprise systems that enable enterprise architecture and 
modern agile software development and project management.  

Keywords: enterprise architecture, software as a service, asynchronous, networking protocols 
1. INTRODUCTION 

Enterprise Architecture 
As defined by ANSI/IEEE Std. 1471-2000 (IEEE 
1471) Recommended Practice for Architecture 
Description of Software-Intensive Systems, 
enterprise architecture (EA) is "the fundamental 
organization of a system, embodied in its 
components, their relationships to each other 
and the environment, and the principles 
governing its design and evolution." (ANSI/IEEE, 
2001) The primary goal of an EA is to "translate 
business vision and strategy into effective 
enterprise,” (Gartner, 2013). 

Although terminology differs from framework to 
framework, many include at least a distinction 
between a business layer, an application layer, 
information layer, and a technology layer. 
Enterprise architecture addresses among others 
the alignment between these layers, usually in a 
top-down approach.  

EA is a conceptual tool that assists organizations 
with the understanding of their own structure 
and the way it works. It provides a map of the 
enterprise and is a route planner for business 
and technology change. Typically an EA takes 
the form of a comprehensive set of cohesive 
models that describe the structure and the 
functions of an enterprise. Important uses of it 

are in systematic IT planning and architecting, 
and in enhanced decision making. 

The individual models in an EA are arranged in a 
logical manner, and this provides an ever-
increasing level of detail about the enterprise, 
including:  

§ Its objectives and goals 
§ Its processes and organization 
§ Its systems and data 
§ The technology used 

Architectural Perspective 
The information in the enterprise architecture 
can be viewed from many perspectives and it 
can satisfy many needs. Architectural users 
include business managers and analysts, system 
architects and designers, workflow and 
procedures analysts, logistics specialists, 
organizational analysts, and so on. These people 
require high-level summary information, detailed 
data, and all levels in between. These demands 
are met through the creation of conceptual 
views, logical analyses, and physical 
implementations (Platt, 2002). 

Research shows that four general perspectives 
are important and are commonly used. These 
are the business, application, information, and 
technology perspectives.  

The Business Perspective 



	
  

	
  

The business perspective describes how a 
business works. It includes broad business 
strategies along with plans for moving the 
organization from its current state to an 
envisaged future state. It will typically include 
the following:  

§ The enterprise's high-level objectives 
and goals. 

§ The business processes carried out by 
the entire enterprise, or a significant 
portion of the enterprise. 

§ The business functions performed. 
§ Major organizational structures. 
§ The relationships between these 

elements. 

The Application Perspective  
The application perspective defines the 
enterprise's application portfolio and is 
application-centric. This view will typically 
include:  

§ Descriptions of automated services that 
support the business processes. 

§ Descriptions of the interaction and 
interdependencies (interfaces) of the 
organization's application systems.  

§ Plans for developing new applications 
and revising old applications based on 
the enterprises objectives, goals, and 
evolving technology platforms.  

§ The application perspective may 
represent cross-organization services, 
information, and functionality, linking 
users of different skills and job functions 
in order to achieve common business 
objectives. 

The Information Perspective 
The information perspective describes what the 
organization needs to know to run its business 
processes and operations. It includes:  

§ Standard data models. 
§ Data management policies. 
§ Descriptions of the patterns of 

information production and consumption 
in the organization.  

The information perspective also describes how 
data is bound into the work flow, including 
structured data stores such as databases, and 
unstructured data stores such as documents, 

spreadsheets, and presentations that exist 
throughout the organization.  

The Technology Perspective 
The technology perspective lays out the 
hardware and software supporting the 
organization. It includes, but is not limited to:  

§ Desktop and server hardware. 
§ Operating systems. 
§ Network connectivity components. 
§ Printers. 
§ Modems. 

The technology perspective provides a logical, 
vendor-independent description of infrastructure 
and system components that are necessary to 
support the application and information 
perspectives. It defines the set of technology 
standards and services needed to execute the 
business mission.  

Application and Technology Architecture 
The functional requirements of a software 
system describe the business value that the 
software delivers. For a communication service, 
a functional requirement might be stated as 
"given well-formed message ‘A’ as input, the 
service will return message ‘B’ correct for the 
intended recipients as represented in message 
A." 

An application architecture is the architecture of 
any automated services that support and 
implement such functional requirements, 
including the interfaces to the business and 
other applications. It describes the structure of 

	
  

Figure	
  1	
  Relationships	
  between	
  



	
  

	
  

an application and how that structure 
implements the functional requirements of the 
organization. Whilst there should ideally be one 
application architecture in an organization, in 
practice there are typically many different 
application architectures. 

The operational requirements of a software 
system define the reliability, manageability, 
performance, security, and interoperability 
requirements of the software (to list just a few). 
Common examples might be that the service is 
only available to authorized subscribers, and 
that the service be functioning properly 99.999 
percent of the time.  

In order to arrive at the operational rules of a 
software system requirements gathering must 
take place. However, requirements gathering is 
only half of the work involved in requirements 
specification. Translating those ideas into 
features, back-log items, and tasks in enough 
detail to provide the developer with the requisite 
instructions and without spending a lot of time 
can be difficult. When I began this project I 
started in a very agile fashion by loosely defining 
product features and given that I didn’t know C# 
set forth to start implementing. About half way 
through the project I began to understand what 
it takes to define software requirements. Writing 
out what I thought the app should do and then 
actually coding it I learned how to better write 
user-stories and acceptance criteria. 

A technology architecture is the architecture of 
the hardware and software infrastructure that 
supports the organization and implements the 
operational (or non-functional) requirements, 
particularly the application and information 
architectures of the organization. It describes 
the structure and inter-relationships of the 
technologies used, and how those technologies 
support the operational requirements of the 
organization. 

A good technology architecture can provide 
security, availability, and reliability, and can 
support a variety of other operational 
requirements, but if the application is not 
designed to take advantage of the 
characteristics of the technology architecture, it 
can still perform poorly or be difficult to deploy 
and operate. Similarly, a well-designed 
application structure that matches business 

process requirements precisely—and has been 
constructed from reusable software components 
using the latest technology—may map poorly to 
an actual technology configuration, with servers 
inappropriately configured to support the 
application components and network hardware 
settings unable to support information flow. This 
demonstrates the relationship between the 
application architecture and the technology 
architecture.  

In the past, applications have been built by 
integrating local system services such as file 
systems and device drivers. This model was very 
flexible in providing access to a rich set of 
development resources and precise control over 
how the application behaved; however, this was 
very error-prone, costly, and time-consuming.  

Today, complex distributed applications are 
being constructed that integrate existing 
applications and services from all over their 
networks and then add unique value on top by 
using elements such as business entities, data 
entities, and façades. This enables developers to 
focus on delivering unique business value. The 
result is reduced time-to-market, higher 
developer productivity, and ultimately, higher-
quality software. This has been a powerful 
architectural model for a number of years; 
however, it creates "application stovepipes" or 
"islands of information" that cause significant 
problems in architectural reuse (Platt, 2002). 

Each of the elements in the application model 
requires mapping to elements of real 
technologies. In this way application models are 
realized as implementation models. Part of this 
task is undertaken during conventional 
development when programmers write detailed 
business logic as code, but much of the 
implementation activities are properly classed as 
framework completion—a technique for 
development where much of the infrastructure 
of distributed applications and data management 
is handled by sophisticated frameworks that are 
extended by custom application logic and 
declarative control structures. Framework 
completion shields developers from the 
intricacies of, for instance, asynchronous 
message handling, and allows developers with 
modest skills to make effective contributions to 
the project.  



	
  

	
  

Architecting and building these models for an 
organization at each of the different levels is 
clearly a considerable amount of work and 
effort. Additionally, the correct definition of 
these models is critical for an organization. An 
incorrect architectural model almost always 
results in serious design or operational issues 
such as scalability or reliability problems or, in 
the worst cases, project non-completion and 
business impact. Architects are looking for 
frameworks and roadmaps to assist them in 
creation and implementation of these models 
and to minimize the risks associated with the 
use of incorrect models. 

There are two main types of architectural 
guidance and assistance that can be provided to 
architects to speed up model generation and 
minimize risk.  

The first of these is a set of architectural 
concepts that provide:  

§ A common understanding and 
communication. 

§ Guidance as to how and when specific 
concepts should be used, and 
information about their attributes. 

§ An indication as to when these concepts 
will be realized and available, either in 
terms of guidance or real technology. 

The second, which the development portion of 
my project implements, is a set of patterns, 
based on real-world experience harvested from 
a large number of successful distributed 
applications, which are composed from these 
fundamental concepts. These patterns 
encapsulate important best practices for 
distributed application design and minimize the 
risk of project failure by providing known good, 
tested architectural models. 

Application Patterns 
A pattern is a solution to a problem in a context. 
A pattern codifies specific knowledge collected 
from experience in a domain. An application 
pattern is an architectural-level design that 
defines best practices in architectural design for 
a specific application environment.  

A key requirement for organizations is the 
integration of these disparate technology 
architectures into one all-encompassing 
architecture to allow the reuse of present-day 

applications and the rationalization of these 
technology architectures to a minimum set. The 
provision of this single, common architecture is 
vital to the creation of efficient, effective, and 
flexible organizations. 

The technology conceptual architecture is the 
technology basis for achieving enterprise-scale 
services in an organization. The high-level 
diagram of the technology conceptual 
architecture shows a set of generic levels that 
provide enterprise-based services for service 
generation. These levels contain the common 
elements that are required by any service 
application or system. At the bottom of the 
diagram is the Service Platform, providing 
operating system, hardware, storage, 
networking, and the trust and management 
services for the whole system.  

The Service Framework hosts the process, logic, 
functions, and state management required by a 
Web service–based application and is the full 
Enterprise Application Server with specific 
support for Web services.  

Service Delivery contains the portal and client 
services that focus on presentation issues and 
technologies, including support for all types of 
devices. 

Service Integration provides integration and 
interoperation between services and present-day 
operational systems: legacy applications, 
commercial applications, databases, and other 
Web services. This is commonly called Enterprise 
Application Integration (EAI).  

Figure	
  5.	
  Conceptual	
  view	
  of	
  technology	
  architecture.	
  
(Sourced	
  MSDN)	
  



	
  

	
  

Finally, Service Creation provides the tools, 
process, methodologies, and patterns required 
to design, develop, assemble, manage, deploy, 
and test Web services. 

Logical view 
The logical view of the technology architecture is 
where the major functional elements that 
provide support for enterprise-scale operational 
requirements and their interrelationships are 
provided. Enterprise technology elements such 
as databases, mail systems, transaction support, 
and reliable messaging are provided in the 
logical view. The technologies that are provided 
at this level are normally packaged together as 
servers by enterprise software vendors.  

Technology Patterns 
A technology pattern is an architectural-level 
pattern that defines the best practice 
architectural design for a specific technology 
environment. Enterprise architects should refer 
to best practice for their organizations in the 
following critical areas:  

§ Security, identity, and trust. 
§ Integration and interoperation, both with 

future systems and present day 
operational (legacy) systems. 

§ Deployment, administration, and 
management. 

§ Distributed technology architectures for 
scalability and performance. 

§ Technology architecture for reliability 
and availability. 

 
2. BACKGROUND AND RELATED 

WORK 
The value of an enterprise architecture (EA) is 
not in any one individual perspective, but in the 
relationships, interactions, and dependencies 
among perspectives (Platt, 2002). For EAs to be 
useful and provide business value, their 
development, maintenance, and implementation 
should be managed effectively and supported by 
tools (Schekkerman, 2011). 

There are many different product suites, 
platforms, and topologies out in the market to 
choose from. Many people are trying to get away 
from Microsoft products and are going to what 
they think is ‘Open-Source’. Platforms based 
around Linux such as RedHat, Suse, or Oracle 
are among the top ‘Open-Source’ enterprise 

operating platforms. Linux carries with it a 
license that prevents anyone who uses the 
source from charging money for any products 
derived from that code. Which sounds great, and 
many people wishing to reduce infrastructure 
costs are quick to jump off the Microsoft ship 
thinking that they can easily switch to a ‘free’ 
open-source platform. This way of thinking is, 
however, entirely incorrect. 

Among the top operating platforms, only one is 
actually free. Oracle’s implementation uses 
RedHat’s source as a base and primarily 
maintains it so that they can guarantee 
compatibility with the host of server applications 
they sell. RedHat and Suse on the other hand 
have an interesting scheme in place to charge 
for essentially free software. In order to charge 
for their software they offer to give you the 
software for free along with a costly support 
contract. While some may think this is a ‘this or 
that’ situation and that they are happy to have 
support, this is only the first cost of open-source 
platforms. 

So great, you’ve got an open-source operating 
platform and even if you went with a completely 
free package what are you going to do with it? 
The platforms usually come with an ecosystem 
of free server applications that you can use to 
setup basic infrastructures, however, the 
technologies used require quite a bit of know-
how and often frustrating configurations in order 
to get them to work with all the devices on the 
network. This also requires people that have 
expert knowledge of Linux platforms. 

After finally getting a basic infrastructure setup 
you now have to implement the major server 
applications such as an SQL server. Sure there 
are free SQL servers that will probably work 
quite well for smaller enterprises, however the 
major SQL server implementations (that work on 
Linux) IBM’s DB2 and Oracle’s 11g or 12c cost a 
significant amount of money which is added to 
the amount paid for Microsoft SQL Server if 
using that previously. Delving into the enterprise 
application eco-system is beyond the scope of 
this project, however, of note is that the server 
applications available on Linux platforms are 
also available for Windows platforms while the 
opposite doesn’t stand. 

 



	
  

	
  

3. PROGRAM REQUIREMENTS 
The primary reason for choosing the Microsoft 
platform is the richness, and guaranteed 
interoperability of the Microsoft server 
ecosystem. Microsoft has operating platforms, 
server applications, and user applications all 
designed in concert that facilitate relationships, 
interactions, and dependencies among 
enterprise architecture perspectives that provide 
business value. 

The second reason for choosing the Microsoft 
platform is its alignment with current job-market 
requirements. Among the lessons learned from 
my job-search I discovered the most prolific set 
of skills sought after by employers were 
connected to Microsoft platforms. According to 
(CyberCoders Team, 2013) an I.T. Staffing firm 
the top 10 most in-demand jobs for 2014 are: 

1) Java / JavaScript  
2) C# / ASP.NET 
3) C++ 
4) Python 
5) PHP 
6) SQL / MySQL 
7) HTML5 / CSS3 
8) Ruby on Rails 
9) Hadoop 
10) iOS / Android 

The final and most practical reason is because it 
was available to me with no direct cost. Having 
access to DreamSpark as well as an MSDN 
subscription through my recently obtained job I 
have access to more Microsoft products than I 
can find a use for. 

Project Goals 
§ To acquire a deeper knowledge and 

experience pool containing more 
relevant and modern technologies, 
platforms, and methodologies utilized by 
enterprises today. 

§ To enhance theoretical knowledge 
gained from formal education via 
translation to associated skills and 
experiences. 

§ To create an enterprise class 
development environment including 
hardware infrastructure, servers, server 
software, project management, team 
collaboration and source control, and 
lastly software development.  

§ To create artifacts as proof of experience 
to be used in a portfolio demonstrating a 
broad range of capabilities. 

Project Objectives 
§ Learn Hardware1 Server and Networking 

Topology in support of n-tier application 
architecture (physical and virtual as 
Windows Server and Cloud as Microsoft 
Azure). 

§ Learn Windows Server 2012 r2 
deployment, configuration, and 
administration of server roles required to 
enable server software (Active Directory, 
DNS, IIS, App Fabric, PowerShell). 

§ Learn Microsoft SQL Server 2014, 
SharePoint 2013, and Team Foundation 
Server 2013 installation, configuration, 
and administration. 

§ Learn how to integrate Microsoft Azure 
instances with on-site physical and 
virtual infrastructures. 

§ Learn source controlled, collaborative, 
and agile (SCRUM) team development 
using Microsoft Visual Studio 2013. 

§ Develop an application development 
project utilizing Team Foundation with 
the SCRUM methodology. 

§ Learn business analyst, quality 
assurance, and development roles while 
developing the project and creating an 
application written in C#. 
 

4. IMPLEMENTATION 
Although there can be many perspectives, there 
is only one enterprise architecture that the 
perspectives view. The value of the EA is not in 
any one individual perspective, but in the 
relationships, interactions, and dependencies 
among perspectives. While all the perspectives 
are key elements of the enterprise architecture, 
this paper will focus on the application and 
technology perspectives. In order to fill an 
experience gap and open up a broader array of 
jobs I ventured an ambitious project in order to 
facilitate a more specific understanding of the 
connected parts of an enterprise.  

Premise 
In today’s I.T./I.S. landscape there are a few 
prominent employee types. Specifically, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Physical	
  and/or	
  Virtualized.	
  



	
  

	
  

concerning how specialized or generalized their 
education, skillset, and experience is relative to 
their job title, role, or function. This relationship 
is directly influenced by the complexity of I.T. 
and business operations in today’s global 
economy.  

There are too many relationships to explore in 
the time allotted and any concrete research is 
beyond the scope of this paper; I will instead 
focus on two easily identifiable archetypes. 

1.1.1.1 Highly Specialized 
§ These employees are becoming 

increasingly difficult to manage as their 
work can be too complex for managers 
to understand, requires years of 
experience and or education to fully 
understand, or in combination with the 
previous two has intrinsic recency 
requisites to maintain relevancy.  

1.1.1.2 Highly Generalized 
§ The scope of this area is the primary 

management difficulty. Depending on 
the size of the enterprise the specific 
area of difficulty can take varying forms, 
however, the underlying issue of scope 
still persists. In small enterprises there 
might only be one or a few managers to 
handle many differing roles that are 
filled with employees that have similar 
experience in enough quantity to be 
seen as trainable. Finding a manager 
that knows enough about several 
different roles to be able provide 
guidance to employees as well as 
translate issues or progress to upper 
management could be a daunting task. 
Large Enterprises might have teams 
dedicated to each role, with one or more 
managers each. This can add to the 
complexity of communication, 
disconnecting the business roles from 
the implementers of the project. 

Given the complexity of today’s I.T. and 
business landscape I conclude that it takes a 
broad educational and experiential background 
combined with a functional knowledge base and 
understanding of how the parts interact with 
each other in order to successfully manage I.T..  

Motivation 
In the past I.T. firms would hire computer 
science and similar degree college graduates 
straight out of college and with little or no 
experience and then teach them the skills they 
needed to fulfill the role they were hired into. 
Being a candidate for my third degree in four 
years (two Computer Information Systems, one 
Business Administration, along with a minor in 
Communication, A+ certification, and continuing 
education) I thought myself a desirable 
candidate for entry level I.T. positions. Quite 
wrong I was as business has, out of necessity, 
learned to adapt I.T. for alignment with today’s 
business practices, specifically agile/lean/on-
demand processes. 

The job requirement I found to be most prolific 
was for jobs labeled as ‘entry level’ or had a ‘jr.’ 
prefix stated as a mandatory requisite as having 
one to three years of experience. Which is of 
course interesting given the ‘entry-level’ 
notation as a reasonable person could conclude 
that to mean zero to three years of experience, 
especially for college graduates.  

A year worth of internships could work but still 
seems a bit steep of a requisite for someone 
with plenty of work experience (just not in 
relevant areas) and can be hard to get. Many 
internships require application a year in advance 
and are limited to specific class-standing 
(sophomore/junior) and some go as far as to 
specify undergraduate only. This is especially 
difficult when you earn 180 semester credits in 
four years; I hit junior standing (in undergrad) 
after 38 weeks.  

I did find, however, that a few employers were 
willing to entertain portfolios of projects that 
demonstrated ability, experience, or knowledge. 
I had those items available, however, when I 
started school Java and PHP were the prolific 
technologies, by the time I found myself looking 
for employment all of the jobs (at least the ones 
I came across) were for .Net technologies (C#, 
VB, ASP) and a few for mobile but those were 
experienced to expert level. 

Application & Technology Implementation 
To summarize my project; I planned to 
implement an n-tier server architecture that 
supported an agile methodology (SCRUM) and 
team-based project management approach to 



	
  

	
  

application development. The primary focus was 
around designing and developing the enterprise 
architecture implementation. Secondary was to 
gain experience using team collaborative, 
project management, and versioning systems 
based around the .Net framework, specifically 
c#. Tertiary was to design and develop a 
networking library framework using C# and the 
windows forms approach to not only learn C# 
but provide proof that the EA architecture was 
working as intended. 

I’ve had experience installing software and 
working with computers and systems for many 
years, consequently, I inferred from the 
beginning that this would involve a fair amount 
of learning but shouldn’t cause me too much 
trouble. I was a bit mistaken. The one thing that 
necessitated a significant amount of learning 
was the dependencies among server 
applications. The minimal requirement was for 
the implementation of a database server and 
team foundation server. Team foundation server 
requires SharePoint, SharePoint requires a 
correctly configured database server and if the 
database server is on the same server instance 
as SharePoint, assuming one is following best 
practices, it can cause permissions conflict and 
processor conention, if the database server is on 
the same instance as active directory you again 
run into problems. While these dependencies are 
readily available in documentation there isn’t a 
complete mapping, probably due to the vast 
scope of the Microsoft framework as well as 
several past versions currently still in support.  

Installing windows server 2012 r2 was as easy 
as installing any operating system. The trouble 
started when I began adding roles (Active 
Directory, DNS, DHCP, WINS) with Active 
Directory and DNS being the most troublesome. 
Again the reason was the learning curve; these 
roles are infrastructure framework systems in of 
themselves. Learning about DNS and how to 
configure it to forward to my externally hosted 
DNS domain, and learning about Active 
Directory permissions took some time. 

Microsoft has done a great job of having an 
initial configuration of their server applications 
available on install. This enables developers or 
administrators to have a system up and running 
(once all dependencies are satisfied) and ready 
to start testing or learning immediately without 

also having to learn how to configure it. 
Microsoft also offers pre-built virtual machines 
with application packages already installed and 
configured to facilitate quicker learning and 
testing. I didn’t go with that option as I wanted 
to learn the complete server setup 
(install/configure/administer). 

5. RESULTS 
After finally getting the infrastructure necessary 
to support software development I began the 
next phase of the project. I wanted to learn C#; 
at least from a beginners perspective. I also 
wanted to put into practice the methodologies 
that I had learned theoretically in formal 
education and that are in use by many 
companies today. Using Visual Studio and an 
Azure Team Foundation Instance I created a 
SCRUM framework project. I defined sprints with 
timelines and in proper agile fashion I adjusted 
them as I went along. Using the SCRUM 
framework gave me experience writing user 
stories, estimating work, and seeing how they 
translated into software, which of course wasn’t 
that great in the beginning. I certainly 
accomplished my goal of learning how to use 
these development tools. And so upon verifying 
the EA was working, my user tools were properly 
connected to them, and that I understood how 
to use them in a meaningful way I began 
learning C# and developing my application. 

Real-World Use-Case 
We are entering the next phase of computing—a 
phase enabled by the Internet together with the 
concept of services, which enables the creation 
of powerful applications that can be used by 
anyone, anywhere. It increases the reach of 
applications and enables the continual delivery 
of software. In this context, software is a 
service—to subscribe to and use through a 
communication network. 

.NET facilitates this idea by joining the tightly 
coupled, highly productive aspects of n-tier 
computing2 with the loosely coupled, message-
oriented concepts of the Web. Services are 
network-capable units of software that 
implement logic, manage state, communicate 
via messages, and are governed by policy. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Also	
  referred	
  to	
  as	
  multi-­‐tier	
  



	
  

	
  

This fueled my decision to work within the .NET 
framework under C# to develop a networking 
library that I could implement in future 
applications. With server systems being 
separated by platform, physicality, and 
ownership, the best method for application 
communication is via messages. Messages are 
simply non-domain specific data packets that the 
receiver understands and takes action upon. An 
example of this is controlling a home-cinema pc. 
Instead of connecting directly to it you have a 
device connected to Wi-Fi and broadcast a UDP 
message on the network, any clients listening 
will ignore the package with the exception of the 
intended server. These messages can tell the 
server to stop/play/pause a specific movie or 
could be used to request a list of available titles. 
This is a simple consumer-based usage, 
however, it is upon this premise that I set out 
building an asynchronous networking platform 
upon which to implement a UDP-based 
client/server chat application(s).  

I chose a chat program because it visually 
demonstrates the passing of messages from 
client to client or client to server. It is easy to 
tell whether it is passing messages correctly and 
responding correctly to received messages. The 
applications were designed to be minimal as 
they were designed to demonstrate and test the 
networking framework I had developed. 

I ended up going through three iterations of the 
framework. The first was simply a test to see if I 
could make it happen, very simple user interface 
and simpleton classes. After that I worked on a 
new UI for a time but realized that I was 
spending a lot of time on it and doing very little 
coding. I scrapped that version and started on 
the framework as a console application. 
Continuing on the third implementation had a 
minimal UI but not barren along with a well-
formed library upon which to implement the 
client and server. 

6. CONCLUSIONS AND FUTURE WORK 
 
Moving forward with this I intend on furthering 
my C# skills to continue development on a client 
application. Given the nature of C# it isn’t best 
for high-performance/high-concurrency 
situations such as in a server I am going to 
recreate my server in Visual C++. These are 
excellent choices for further learning as they are 

number two and three on the top desired skills 
list. Additionally Microsoft’s next iteration of its 
application ecosystem that will begin release 
sometime next year is set to unify all of its 
platforms under common base along with 
Android and iOS. Being able to create a solution 
that has common code that works on all 
platforms (Windows Desktop, Windows Tablet 
Experience, Web, Windows RT, Windows Phone, 
Android, and iOS) will reduce effort required 
significantly. This can be done using C#, C++ or 
even F# (which is gaining popularity) is a leap 
forward in simplifying development of cross-
platform connected applications. 



	
  

	
  

7. WORKS CITED 
 

ANSI/IEEE. (2001). Recommended Practice for Architecture Description of Software-Intensive 
Systems. American National Standards Institute. Retrieved December 5, 2014 

CyberCoders Team. (2013, November 25). 10 Most In-Demand Software Development Skills for 2014. 
Retrieved December 10, 2014, from CyberCoders: http://www.cybercoders.com/insights/10-
most-in-demand-software-development-skills-for-2014/ 

Gartner. (2013). Enterprise Architecture (EA). Retrieved Dec 5, 2014, from 
http://www.gartner.com/it-glossary/enterprise-architecture-ea/ 

Platt, M. (2002, July). Microsoft Architecture Overview. Retrieved December 5, 2014, from Microsoft 
Developer Network (MSDN): http://msdn.microsoft.com/en-us/library/ms978007.aspx 

Schekkerman, J. (2011). Enterprise Architecture Tool Selection Guide. Institute For Enterprise 
Architecture Developments. Retrieved December 10, 2014, from 
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved
=0CDsQFjAE&url=http%3A%2F%2Fwww.enterprise-
architecture.info%2FImages%2FEA%2520Tools%2FEnterprise%2520Architecture%2520Tool
%2520Selection%2520Guide%2520v6.3.pdf&ei=N0GIVOHsBs 



	
  

	
  

8. APPENDICES AND ANNEXURES 
 

	
  
Figure	
  2	
  -­‐	
  Networking	
  Topology	
  

	
  

 

 


	A Portfolio View of a Microsoft Enterprise Architecture
	ScholarWorks Citation

	Gawne edited FINAL F2014

