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State to state He–CO rotationally inelastic scattering
Stiliana Antonova,a) Ao Lin, Antonis P. Tsakotellis, and George C. McBane
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

~Received 15 September 1998; accepted 27 October 1998!

Relative integral cross sections for rotational excitation of CO in collisions with He were measured
at energies of 72 and 89 meV. The cross sections are sensitive to anisotropy in the repulsive wall
of the He–CO interaction. The experiments were done in crossed molecular beams with resonance
enhanced multiphoton ionization detection. The observed cross sections display interference
structure at lowD j , despite the average over the initial CO rotational distribution. At higherD j , the
cross sections decrease smoothly. The results are compared with cross sections calculated from two
high quality potential energy surfaces for the He–CO interaction. Theab initio SAPT surface of
Heijmenet al.@J. Chem. Phys.107, 9921~1997!#agrees with the data better than the XC~fit! surface
of Le Roy et al. @Farad. Disc.97, 81 ~1994!#. © 1999 American Institute of Physics.
@S0021-9606~99!00105-1#

I. INTRODUCTION

This article presents experiments that are sensitive to
anisotropy in the repulsive part of the He–CO interaction.
Thachuket al. gave a thorough review of experimental and
theoretical work on He–CO interactions in their 1996 paper.1

We will give a brief review that concentrates on develop-
ments since then and on the work most relevant to the repul-
sive part of the potential energy surface.

The first molecular beam experiment on He–CO colli-
sions was the 1971 total scattering cross section measure-
ment of Paulyet al. over the energy range 1–100 meV,
which detected no effects of anisotropy.2 Pressure broaden-
ing data reported by Nerf and Sonnenberg in 1975 were the
first experimental data sensitive to the anisotropy of the
He–CO potential.3 In 1979 Keil et al. measured total differ-
ential cross sections for He–CO scattering and estimated a
single anisotropy parameter.4 In 1980 Faubelet al.published
a time-of-flight spectrum of He scattered from CO at one
laboratory angle that showed partial resolution of the CO
rotationally inelastic transitions.5 Transitions up toD j 53
were apparent at their collision energy of 27.3 meV. Around
the same time Bassiet al.studied rotational relaxation of CO
in a free jet of He with infrared spectroscopy.6

Thomaset al. published anab initio potential energy
surface~‘‘TKD’’! in 1980 that served as the standard for
about fifteen years.7 With minor modifications suggested by
Dilling8 and Gianturcoet al.,9 it matched the available scat-
tering, pressure broadening, and bulk property data satisfac-
torily.

In 1994, McKellar and co-workers reported a high reso-
lution infrared spectrum of the He–CO van der Waals
complex.10 The TKD potential was unable to explain the
observed spectrum, so McKellaret al. developed a new em-
pirical surface, calledV(3,3,3), by fitting an analytic model to
the spectrum. Le Royet al. then fitted a different potential

model, the exchange-Coulomb~XC! model, to the same
spectrum and obtained equally good agreement with the
spectroscopic observations.11 The XC model uses a physi-
cally sensible form in the repulsive region and so might pro-
vide a good representation there even though the IR data to
which it was fitted are not sensitive to that region.

Three newab initio potentials appeared between 1994
and 1996.12–14 Thachuket al.1 and Dham and Meath15 sub-
sequently tested the different potentials’ predictions against
several experimental observables and found that the XC~fit!
potential was at least as good as the others.

Since the comparative study of Thachuket al., two new
sets of experimental measurements have appeared: thermal
diffusion constants measured by Gianturcoet al.,16 and a
much more complete IR spectrum from Chan and
McKellar.17

Heck and Dickinson18 and Gianturcoet al.16 tested sev-
eral potential surfaces against a variety of transport property
measurements, concentrating on data that should be sensitive
to the repulsive wall of the potential. They agree that the
XC~fit! potential works as well as any, and that the modified
TKD potential that Gianturcoet al. call POT11 has deficien-
cies in the attractive well.

In addition, Heijmenet al. developed a newab initio
potential19 by symmetry adapted perturbation theory
~SAPT!; it is an improved version of the earlier SAPT sur-
face of Moszynskiet al.12 that was used in several of the
comparative studies. This new surface includes the depen-
dence on the CO vibrational coordinate~as most others do
not! and is probably the most accurateab initio one now
available. The grid of nuclear arrangements used in the quan-
tum chemistry calculations extended into the repulsive re-
gion to a minimum distance of 5 bohr. The SAPT potential
predicts the He–CO infrared spectrum with a maximum line
position error of 0.1 cm21 and an rms deviation of 0.038
cm21, so its accuracy in the well region is nearly as good as
that of the XC~fit!potential. Reidet al.used this new surface
to evaluate temperature-dependent vibrational deactivation
rate coefficients and found that it described the qualitative

a!Present address: Department of Physics, Bryn Mawr College, Bryn Mawr,
PA 19010.
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behavior well though it was not in complete agreement with
the experiments.20 Their results support optimism that the
repulsive part of the potential may be accurately represented
by the SAPT surface.

Very recently Gianturcoet al. calculated a new He–CO
surface by a mixture of relatively inexpensiveab initio
methods.21 Their potential agrees fairly closely with the pre-
liminary SAPT potential of Moszynskiet al. in the repulsive
region, but disagrees in the van der Waals well. It has not
been tested against the infrared spectra.

In this article we report measurements of state to state
integral cross sections for rotationally inelastic He–CO col-
lisions at 72 and 89 meV. These cross sections are sensitive
to the shape of the repulsive wall, and have the advantage
that they can be computed with confidence from any poten-
tial surface. We compare our experimental results with pre-
dictions of the two best available potential surfaces, the
XC~fit! potential of Le Royet al. and the new SAPT poten-
tial of Heijmen et al.. The previous measurements most
closely related to ours are the rotationally inelastic TOF
spectra of Faubelet al.5 and the relative totalT→R cross
sections measured in crossed supersonic jets by Kruus.22

Oscillatory structure in the postcollision rotational distri-
butions is prominent in our results. Brumer identified oscil-
lations in calculated H1HCN cross sections as interference
effects related to near-symmetry of the potential surface in
1974.23 Green and Thaddeus saw similar oscillations in their
computational study of low energy He–CO collisions,24 and
Augustin and Miller pointed out that the oscillations must be
due to interference since they did not appear in classical
trajectory calculations.25 McCurdy and Miller then used clas-
sical S-matrix theory to show26 that the structure appears
because of interference between collisions at the two ends of
the CO molecule. In the homonuclear limit, the interference
is complete and results in the well known restriction to even
D j . In heteronuclear molecules, either even or oddD j can be
favored, and the propensity can change from one to the other
asD j changes. The propensities are determined by competi-
tion between terms with even and odd orders in the Legendre
expansion of the potential. Maricq27 and Alexander and
co-workers28,29 have also discussed the effect.

Andresenet al. observed this interference first in experi-
ments on Ar–NO(X) collisions.30,31 Similar structure also
appears in later data on NO(X),32,33NO(A),32 CN(X),34 and
CN(A)35–37 collisions. The interference oscillations do not
change rapidly as the collision energy changes, so they are
fairly robust toward experimental averages over collision en-
ergy. They can, however, be washed out easily by imperfect
exerimental preparation of a single precollision state. Double
resonance collision experiments provide nearly ideal initial
state preparation, but with a wide range of collision energies.
Crossed molecular beam experiments, on the other hand, de-
fine the collision energy well but their success at clean initial
state preparation varies. Macdonald and Liu38 therefore in-
terpreted the absence of oscillations in their NCO–He
crossed beam data cautiously. The double resonance results
of Smith and Johnson32 on NO(A) –He showed no oscilla-
tions though oscillations were present for the other rare gas
colliders; the lack of alternations in the He data certainly

reflects properties of the NO(A) –He potential surface. In the
crossed beam work presented here, the amplitudes of the
interference oscillations remaining after the average over the
precollision state distribution serve as sensitive probes of the
He–CO potential surface.

II. EXPERIMENT

Two skimmed supersonic beams, one of pure He and the
other of CO diluted in argon, intersected in a high vacuum
chamber. The changes in the rotational populations of CO
caused by collisions were determined by resonance enhanced
multiphoton ionization~REMPI!. Figure 1 shows a simple
diagram of the apparatus.

A 5%CO/95%Ar mixture expanded from a piezoelectric
valve of the Proch and Trickl design.39 The valve was
mounted rigidly in a chamber attached to a large rotatable
disk, and the beam traveled parallel to the surface of the disk.
Different orientations of the disk provided different intersec-
tion angles between the CO and He beams. Intersection
angles of 107° and 140° provided center of mass collision
energies of 72 and 89 meV~583 and 720 cm21), with DE/E
of about 6%. The valve nozzle was 25 mm from a conical
skimmer with a 1.5 mm diameter orifice~Beam Dynamics!
and was 79 mm from the center of the scattering chamber.
The pressure of the CO/Ar mixture was 3.7 bar throughout
the experiments. The pulse width as measured by a fast ion-
ization gauge~Beam Dynamics!was about 100ms, though
the coldest part of the beam as measured by REMPI on the
S~0! transition had a FWHM of only 55ms.

The He beam was produced by a commercial pulsed
valve of the current-loop design~R. M. Jordan!. It was
skimmed by a homemade rectangular skimmer with a 1.5
36 mm orifice that separated the He source chamber from
the scattering chamber. The longer axis of the rectangular He
beam was perpendicular to the CO and laser beams. The
back of the Jordan valve housing must be open to the air for
cooling; we mounted the valve in a long housing that ex-
tended all the way through the source chamber and its rear
flange. The valve was supported near the front by
feedthroughs that permitted adjustments of the position along
two axes perpendicular to the beam direction. The valve ori-
fice was approximately 30 mm from the skimmer orifice and

FIG. 1. Schematic diagram of the apparatus. The source chamber for the
CO/Ar valve is evacuated by a pump behind the plane of the figure. The ion
flight path extends out of the plane.
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130 mm from the intersection region. The valve was usually
operated with 4–5 bar He. The pulse width, measured with a
fast ionization gauge, was about 70ms and the maximum He
density at the crossing point was about 231013 atoms/cm3.

Oil diffusion pumps evacuated both source chambers
and the scattering chamber. The scattering chamber base
pressure was about 231027 Torr, and typical pressures dur-
ing operation were ten times higher~mostly from He!. The
room-temperature background of CO was negligible during
the experiments. The fragmentation pattern of the pump oil
has no peak at mass 28, though ringing from the large peak
at m/e 27 produced some noise.

The CO was probed by 211 REMPI through either the
B 1S1 or the E 1P states.40,41 The second harmonic of an
injection seeded Nd:YAG laser~Spectra-Physics/Larry Wol-
ford Services!pumped a Continuum dye laser, and the dye
laser output was doubled in a KDP crystal. The doubled
output was then mixed with the YAG fundamental in KDP
for probing through theB state near 230 nm, or with the dye
laser fundamental in BBO for probing through theE state
near 215 nm. The probe pulses were about 7 ns long and had
energies on the order of 100mJ. They were focused into the
scattering volume by 250 mm or 100 mm lenses mounted
inside the vacuum chamber. The probe laser beam propa-
gated in the same plane as the two molecular beams and
made an angle of 135° with the He beam. Its polarization
was slightly elliptical with the major axis perpendicular to
the beam plane. Most data came from theS branch of the
E←X transition and theQ branch of theB←X transition.

DC electric fields accelerated the ions through a field-
free flight tube 600 mm long and onto a 25 mm diameter
microsphere plate detector~El-Mul!. In Fig. 1, the ion flight
path extends out of the page. The ion optics included a grid-
less extraction lens similar to that recently described by Ep-
pink and Parker for velocity mapping experiments,42 and a
standard Einzel lens. The electron multiplier output current
was preamplified and then collected by a Stanford Research
Systems gated integrator for digitization. No analog averag-
ing was used; the integrated signal atm/e528 from each
laser shot was digitized and all the data processing was per-
formed afterwards. We usually collected eight samples with
the He beam on and eight with it off at each wavelength.

During the experiments the He beam fired for two laser
pulses and then remained off for two. We used the 2/2 alter-
nation because the SRS integrator inserted a small error into
its output that changed sign after each trigger, and therefore
canceled if successive pairs of outputs were added together.

The timing of the experiment was controlled by a Real
Time Devices programmable timer board and an SRS digital
delay generator. A master 10 Hz clock with a fixed phase
with respect to the ac power line reduced errors associated
with 60 Hz interference.

III. RESULTS

Several measurements of the precollision CO rotational
distribution all gave fractional populations inj 50 of 70%
< f 0<80%. Most of the remaining molecules hadj 51, but
the CO beam always contains a small population of higherj
states that are not well cooled in the expansion; their rota-

tional distribution corresponds to a temperature of approxi-
mately 250 K. For all final statesj >3, the collision-induced
change in the population was at least equal to, and often
several times larger than, the initial population. The observed
depletion of thej 50 state was about 5%.

Figure 2 shows the relative densities of postcollision CO
rotational states we observed. These densities were extracted
from the observed signals via the expression

n~ j !}
~2 j 11!~ I on2I off!

Sj
. ~1!

I on and I off are the integrated line intensities observed with
and without the He beam. Line strength factorsSj for the
two-photon transitions were taken from Bray and Hoch-
strasser’s paper.43 Data points withj ,10 were all obtained
with the E intermediate state, and those withj .14 were all
obtained with theB state. The two data sets were scaled to
match at the intermediate levels and the points plotted there
are averages of the two sets.

The error bars in Fig. 2 show62s in the weighted
means of several separate experimental runs; they represent
both random error present in individual experiments and the
reproducibility from one experiment to another, but do not
include any estimates of possible systematic errors. The ex-
periment provides only relative densities; the vertical scales
in Fig. 2 are linear but arbitrary, and we did not attempt to
compare intensities at the two different collision energies.

FIG. 2. Relative densities observed in the beam intersection region.
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Systematic errors would occur if the relative intensities
were dependent on the position of the laser beam waist
within the scattering volume. We tested for such errors by
deliberately placing the probe beam at four different posi-
tions in the intersection volume, but always within the cold
central part of the CO beam, and collecting sample data sets.
These experiments showed no systematic differences.

Another possible error was pointed out by Hineset al. in
their paper on REMPI of CO through theE state.41 Some
ionized molecules appear in the C1 mass channel rather than
the CO1 channel, and the branching ratio between the two
depends on the probe pulse intensity, the spectroscopic
branch and the rotational quantum number. The primary ef-
fect is systematic undercounting of high-j populations at
high pulse energies. Hineset al. recommended that ions in
both the C1 and CO1 channels should be collected and their
spectra added before analysis. A background signal at mass
12 in our apparatus prevented us from taking that approach.
Instead, we made several scans of thermal CO introduced
into the chamber through a leak valve, with probe conditions
identical to those used during the scattering experiment.
Over the range of rotational states probed in our experiment,
we found that straightforward analysis of the line intensities
produced Boltzmann population distributions with accurate
~299 K! temperatures. We concluded that under our condi-
tions the branching ratio into the C1 channel was either
small or constant, and made no corrections for it in our data
analysis.

If the scattered molecules have a net alignment in the
laboratory, our measurements through theE state could be
affected since we used only one laser polarization. Alexander
and co-workers,44–46Mayne and Keil,47 Follmeget al.,48 and
Pullman et al.49 have all published theoretical studies of
alignment induced by rotationally inelastic collisions. The
general conclusion of these studies is that the quadrupole
alignment parameterA0

(2) is likely to be near zero for low
D j , but become negative asD j increases. This conclusion is
borne out in the experimental measurements of Meyer on
He-NO collisions at 1185 cm21; he determined alignment
parametersA0

(2) that decreased from zero at lowD j to ap-
proximately20.4 at the highestD j observed.33 ~A sample
with mj50 for all molecules, where the projection is taken
along the initial relative velocity, would haveA0

(2)521.)
We have used formulas given by Mo and Suzuki50 and

by Orr-Ewing and Zare51 to evaluate the effect of such an
alignment on our experimental distributions. For our geom-
etry, the observed signal intensity is roughly

I ~ j !}n~ j !@11c~ j !A0
~2!#, ~2!

wherec( j ) increases slowly from about 0.24 atj 53 to 0.32
at j 511. We therefore expect that alignment effects cause a
systematicunderestimationof the densities asD j increases,
and that the error is on the order of 10% at the highestD j we
observe. We hope to determine these alignment parameters
directly in a future experiment.

Measurements through theB state are unaffected by
alignment, since we used theQ branch of this DL50
transition.52

IV. CALCULATIONS

A. Scattering calculations

We calculated integral and differential cross sections for
He–CO scattering with the MOLSCAT program of Green
and Hutson.53 We used both the SAPT potential energy sur-
face of Heijmenet al.19 and the XC~fit!surface of Le Roy
et al.11 All the calculations treated CO as a rigid rotor; we
used a version of the SAPT surface that was averaged over
the ground state vibration of CO. Converged close-coupled
~CC! calculations were performed at 583 cm21 while at 720
cm21 the coupled states~CS!approximation of McGuire and
Kouri54 was used. All calculations used the hybrid log-
derivative/Airy propagator of Alexander and
Manolopolous.55

MOLSCAT’s built-in angular expansion routines were
used; the potentials were expanded in a basis of thirteen Leg-
endre functions, and 24-point Gauss-Legendre quadrature
was used to evaluate the expansion coefficients. The rota-
tional basis sets included all rotational channelsj <18 at 583
cm21 and j <20 at 720 cm21, so that all the open rotational
channels and two closed channels were included. The sum
over total angular momentumJ terminated when the inelastic
integral cross sections had converged to within 0.005 Å2 and
the elastic cross sections to within 1 Å2. Convergence was
tested with a series of CS calculations at 583 cm21. The
results were insensitive to reasonable changes in propagator
step size, the changeover point between the short-range and
long-range propagators, the number of Legendre functions
and quadrature points in the potential expansion, the maxi-
mum distance for the propagation, the upper limit ofJ in the
partial wave sum, and the total number of rotational states
included in the basis.

We performed both CS and CC calculations at 583
cm21. At that energy, the CS calculations took about seven
minutes while the CC calculations took about two days on a
modest desktop computer. The differences between the CS
and CC integral cross sectionss i f for the j 5 i→ j 5 f rota-
tional transitions were smaller than our experimental uncer-
tainties in all cases. The agreement was better at higherD j ;
the largest difference between CC and CS results fors0 j was
0.13 Å2 at j 53, and for j >6 the differences were all less
than 0.07 Å2. Differential cross sections from CS calcula-
tions tended to have their rotational rainbow maxima shifted
a few degrees toward higher scattering angle from the CC
results, and the phases of the rapid oscillations at low angles
were quite different for some transitions. Nonetheless, the
shapes and amplitudes of the CS differential cross sections
usually agreed well with the CC ones.

The CS approximation is an impulsive approximation
and should become more accurate as the collision energy
increases. We concluded that the CS calculations were suf-
ficiently accurate for comparison with our integral cross sec-
tion data at the higher 720 cm21 collision energy, and did
not perform CC calculations there. The accuracy of the CS
calculations is not surprising; the He–CO attractive well is
only about 25 cm21 deep, so collisions at energies above 500
cm21 should be largely impulsive.

2387J. Chem. Phys., Vol. 110, No. 5, 1 February 1999 Antonova et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

148.61.109.103 On: Wed, 12 Nov 2014 18:20:42



B. Density to flux corrections

The REMPI signal measures the density of molecules in
the focal volume of the probe laser. The density is not nec-
essarily proportional to the cross section for production of
the detected state, since molecules in some final states will
tend to leave the detection volume more rapidly than others.
Several authors have discussed the necessary ‘‘density-to-
flux’’ transformation.56–59 It is necessary to know the state-
to-statedifferential cross sections in order to evaluate the
j-specific relative sensitivities needed for extraction of state-
to-stateintegral cross sections from experimental data.

Naulin et al. published the most general approach to the
density-to-flux transformation yet available.57 Their calcula-
tion accounts realistically for the shape of the molecular
beam intersection region and the time dependence of the
pulsed beams. In our experiment, the CO molecules are scat-
tered into a fairly small solid angle by the light He, the probe
volume is small compared to the molecular beam intersec-
tion volume, and the molecular beam durations are long
compared to the flight time through the detection volume.
Therefore the simpler approach of Dagdigian59 is appropri-
ate:

s i f 5
nf

nintRK g

v f
L

i f

. ~3!

In Eq. ~3!, s i f is the integral cross section for thei→ f tran-
sition,nf is the measured final-state density,ni andnt are the

initial densitities of the target~CO! and projectile ~He!
beams,R is the effective radius of the intersection region,g
is the initial relative velocity, andv f is the final laboratory
frame speed of a scattered molecule. The average is per-
formed over all scattering angles, weighted by the differen-
tial cross section:

K g

v f
L

i f

5E S g

v f
Ds i f

21S ds

dv D
i f

dv, ~4!

where s i f
21(ds/dv) i f is the normalized differential cross

section for thei→ f transition.
We used Eq.~4! to determine the density-to-flux correc-

tion factors^g/v f& i f for our experiment. To provide the fair-
est comparison between calculated and experimental cross
sections, we calculated the correction factors separately from
each potential surface and applied them to the calculated
cross sections as described below.

C. Results

The open symbols in Fig. 3 give the inelastic cross sec-
tions from scattering calculations on the XC~fit! and SAPT
potential surfaces. The symbols show the weighted cross sec-
tions

s~ j !5s0 j f 0K g

v f
L

0 j

1s1 j f 1K g

v f
L

1 j

, ~5!

FIG. 3. Calculated cross sections compared to data. Open circles show theoretical cross sections, weighted for the initial populations of rotational levels in the
beam and the density-to-flux transformation. Filled circles show experimental data, scaled to match the total inelastic cross section intoj >3.
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wheres0 j ands1 j are the calculated integral cross sections
and f 0 and f 1 are the fractional populations in the two lowest
rotational states in the CO beam.f 0 was taken as 70% in the
583 cm21 experiment and 76% in the 720 cm21 experiment,
corresponding to the averages of measurements made during
those experimental runs. The experimental data from Fig. 2
also appear in each panel, scaled so that the sum of all the
sexp( j ) for j >3 matched the corresponding sum from the
calculation.~The experimental point atj 52 is the result of a
single measurement and had the largest background correc-
tion; we did not use it in the scaling procedure.! The effects
of the density-to-flux corrections are small; He is so light
compared to CO that even strongly backscattered CO mol-
ecules do not deviate very much from their initial velocities,
so the density-to-flux factorŝg/v f& i f are all very similar.
We normalized the factors so that the vertical axis in Fig. 3
can still be interpreted as an absolute cross section.

V. DISCUSSION

Oscillatory structure is present in the low-j experimental
rotational distributions at both collision energies. As dis-
cussed in the Introduction, this structure arises from compe-
tition between terms with even and odd orders in the Leg-
endre expansion of the potential. Our experimental data
display a clear preference for oddj below j '8, and a less
convincing bump atj 510 in the 720 cm21 distribution.

The XC~fit! potential gives cross sections that show a
monotonic, though stepped, decrease withj at 583 cm21. At
720 cm21 the fall is again steady except forj 57. The SAPT
potential, on the other hand, does capture the low-j oscilla-
tions reasonably well. Both potentials predict nearly equal
populations inj 56 and 7 at 583 cm21, and a slight rise
from 6 to 7 at 720 cm21; the experiment shows a relatively
steep drop at the lower energy and nearly equal populations
at the higher one. The XC~fit! potential slightly overesti-
mates the importance of transitions withD j >10, especially
at 720 cm21.

Figure 4 shows the calculated cross sections for excita-
tion out of j 50 and 1 separately for the two potential sur-
faces at the collision energy 583 cm21. Oscillatory structure
is present for both initial states in both figures, but is more
pronounced in the SAPT result. The differences between the
two results must be due to differences in the potential sur-
faces, since the scattering calculations at this energy were
essentially exact.

The experiment measures a weighted sum of the cross
sections out ofj 50 and 1, where the weighting factors are
the fractional populations of the two initial states in the CO
beam. In the limit of a perfectly cold beam, the experimental
result would correspond to thes0→ j trace; if the initial popu-
lations f 0 and f 1 were equal, it would correspond to a simple
average of the two. Results ranging from strong oscillations
to a monotonic decrease could be expected for initial popu-
lation distributions between those two extremes. The SAPT
surface shows much deeper interference oscillations in the
unweighted cross sections than the XC~fit! surface, and those
oscillations are not entirely damped by the average over ini-
tial rotational populations in our beam. The weaker oscilla-
tions in the XC~fit! results do not survive the averaging over

initial populations. We conclude that the SAPT potential
gives a better account of the anisotropy of the He–CO inter-
action at the energies of our experiment.

Figure 5 shows the 200 cm21 and 583 cm21 contours
for both potential surfaces. The contours at 720 cm21 have
similar shapes but are shifted another 0.08 bohr to lower
distances. The contours shown in Fig. 5 are therefore repre-

FIG. 4. Cross sections out ofj 50 and 1 for the two surfaces at 583 cm21.

FIG. 5. Energy contours in the repulsive region for both surfaces.
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sentative of the differences in the two surfaces over most of
the repulsive region relevant to our experiment.

The two surfaces are very similar. The difference be-
tween the two ends of the molecule is larger in the XC~fit!
potential, but the SAPT potential is steeper~has a stronger
local anisotropy!in the region around 35°. It is difficult to
make precise statements about the relation between the con-
tours in the repulsive region and the calculated integral cross
sections shown in Fig. 4. Nonetheless we speculate that the
larger difference between the C and O ends of the molecule
in the XC~fit! potential contributes a larger ‘‘odd anisotro-
py’’ and induces stronger damping in the even-odd oscilla-
tions as discussed by McCurdy and Miller.26

VI. CONCLUSIONS

Measured state-to-state rotational energy transfer cross
sections have been compared with scattering calculations on
two high-quality potential surfaces. The data are sensitive to
the repulsive wall of the He–CO interaction. The XC~fit!
surface, which is known to be very accurate in the van der
Waals region and also reproduces several different transport
properties accurately, does not reproduce the inelastic cross
sections as well as theab initio SAPT surface.

ACKNOWLEDGMENTS

The authors thank A. van der Avoird and R. J. Le Roy
for potential surface codes and for useful comments and sug-
gestions, and F. C. DeLucia and C. Ball for initial help with
the calculations. Acknowledgement is made to the Donors of
The Petroleum Research Fund, administered by the Ameri-
can Chemical Society, for support of this research. Addi-
tional support from the Department of Chemistry at Ohio
State University and the Ohio Supercomputer Center is
gratefully acknowledged.

1M. Thachuk, C. E. Chuaqui, and R. J. Le Roy, J. Chem. Phys.105, 4005
~1996!.

2H. P. Butz, R. Feltgen, H. Pauly, and H. Vehmeyer, Z. Phys.247, 70
~1971!.

3R. B. Nerf, Jr. and M. A. Sonnenberg, J. Mol. Spectrosc.58, 474~1975!.
4M. Keil, J. T. Slankas, and A. Kuppermann, J. Chem. Phys.70, 541
~1979!.

5M. Faubel, K. H. Kohl, and J. P. Toennies, J. Chem. Phys.73, 2506
~1980!.

6D. Bassi, A. Boschetti, S. Marchetti, G. Scoles, and M. Zen, J. Chem.
Phys.74, 2221~1981!.

7L. D. Thomas, W. P. Kraemer, and G. H. F. Diercksen, Chem. Phys.51,
131 ~1980!.

8W. Dilling, Ph.D. thesis, University of Go¨ttingen, Germany, 1985, cited in
Ref. 9.

9F. A. Gianturco, N. Sanna, and S. Serna-Molinera, Mol. Phys.81, 421
~1994!.

10C. E. Chuaqui, R. J. Le Roy, and A. R. W. McKellar, J. Chem. Phys.101,
39 ~1994!.

11R. J. Le Roy, C. Bissonnette, T. H. Wu, A. K. Dham, and W. J. Meath,
Faraday Discuss.97, 81~1994!.

12R. Moszynski, T. Korona, P. E. S. Wormer, and A. van der Avoird, J.
Chem. Phys.103, 321~1995!.

13F.-M. Tao, S. Drucker, R. C. Cohen, and W. Klemperer, J. Chem. Phys.
101, 8680~1994!.

14B. Kukawska-Tarnawska, G. Chałasin´ski, and K. Olszewski, J. Chem.
Phys.101, 4964~1994!.

15A. Dham and W. Meath, Mol. Phys.88, 339~1996!.
16F. A. Gianturco, F. Paesani, M. F. Laranjeira, V. Vassilenko, M. A.

Cunha, A. G. Shashkov, and A. F. Zolotoukhina, Mol. Phys.92, 957
~1997!.

17M.-C. Chan and A. R. W. McKellar, J. Chem. Phys.105, 7910~1996!.
18E. Heck and A. Dickinson, Mol. Phys.91, 31~1997!.
19T. G. A. Heijmen, R. Moszynski, P. E. S. Wormer, and A. van der Avoird,

J. Chem. Phys.107, 9921~1997!.
20J. P. Reid, P. W. Barnes, and C. J. S. M. Simpson, Chem. Phys. Lett.280,

359 ~1997!.
21F. A. Gianturco, F. Paesani, M. F. Laranjeira, V. Vassilenko, M. A.

Cunha, A. G. Shashkov, and A. F. Zolotoukhina, Mol. Phys.94, 605
~1998!.

22E. J. Kruus, J. Phys. Chem.98, 3099~1994!.
23P. Brumer, Chem. Phys. Lett.28, 345~1974!.
24S. Green and P. Thaddeus, Astrophys. J.205, 766~1976!.
25S. D. Augustin and W. H. Miller, Chem. Phys. Lett.28, 149~1974!.
26C. W. McCurdy and W. H. Miller, J. Chem. Phys.67, 463~1977!.
27M. M. Maricq, J. Chem. Phys.103, 5999~1995!.
28T. Orlikowski and M. H. Alexander, J. Chem. Phys.79, 6006~1983!.
29M. H. Alexander, J. Chem. Phys.99, 7725~1993!.
30P. Andresen, H. Joswig, H. Pauly, and R. Schinke, J. Chem. Phys.77,

2204 ~1982!.
31H. Joswig, P. Andresen, and R. Schinke, J. Chem. Phys.85, 1904~1986!.
32A. V. Smith and A. W. Johnson, Chem. Phys. Lett.93, 608~1982!.
33H. Meyer, J. Chem. Phys.102, 3151~1995!.
34R. Fei, H. M. Lambert, T. Carrington, S. V. Filseth, C. M. Sadowski, and

C. H. Dugan, J. Chem. Phys.100, 1190~1994!.
35N. Furio, A. Ali, and P. J. Dagdigian, J. Chem. Phys.85, 3860~1986!.
36G. Jihua, A. Ali, and P. J. Dagdigian, J. Chem. Phys.85, 7098~1986!.
37P. J. Dagdigian, D. Patel-Misra, A. Berning, H.-J. Werner, and M. H.

Alexander, J. Chem. Phys.98, 8580~1993!.
38R. G. Macdonald and K. Liu, J. Chem. Phys.97, 978~1992!.
39D. Proch and T. Trickl, Rev. Sci. Instrum.60, 713~1989!.
40G. W. Loge, J. J. Tiee, and F. B. Wampler, J. Chem. Phys.79, 196~1983!.
41M. A. Hines, H. A. Michelsen, and R. N. Zare, J. Chem. Phys.93, 8557

~1990!.
42A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum.68, 3477~1997!.
43R. G. Bray and R. M. Hochstrasser, Mol. Phys.31, 1199~1976!.
44M. H. Alexander and P. J. Dagdigian, J. Chem. Phys.66, 4126~1977!.
45M. H. Alexander, J. Chem. Phys.67, 2703~1977!.
46T. Orlikowski and M. H. Alexander, J. Chem. Phys.80, 4133~1984!.
47H. R. Mayne and M. Keil, J. Phys. Chem.88, 883~1984!.
48B. Follmeg, P. Rosmus, and H.-J. Werner, J. Chem. Phys.93, 4687

~1990!.
49D. Pullman, B. Friedrich, and D. Herschbach, J. Phys. Chem.99, 7407

~1995!.
50Y. Mo and T. Suzuki, J. Chem. Phys.109, 4691~1998!.
51A. J. Orr-Ewing and R. N. Zare, Annu. Rev. Phys. Chem.45, 315~1994!.
52R. J. Gordon and G. E. Hall, Adv. Chem. Phys.XCVI, 1 ~1996!.
53J. M. Hutson and S. Green, MOLSCAT computer code, version 14~1994!,

distributed by Collaborative Computational Project No. 6 of the Engineer-
ing and Physical Sciences Research Council~UK!.

54P. McGuire and D. J. Kouri, J. Chem. Phys.60, 2488~1974!.
55M. H. Alexander and D. E. Manolopoulos, J. Chem. Phys.86, 2044

~1987!.
56H. W. Cruse, P. J. Dagdigian, and R. N. Zare, Faraday Discuss. Chem.

Soc.55, 277~1973!.
57C. Naulin, M. Costes, A. Benseddik, and G. Dorthe, Laser Chem.8, 283

~1988!.
58D. M. Sonnenfroh and K. Liu, Chem. Phys. Lett.176, 183~1991!.
59P. J. Dagdigian, inAtomic and Molecular Beam Methods, Vol. I, edited by

G. Scoles~Oxford University Press, New York, 1988!.

2390 J. Chem. Phys., Vol. 110, No. 5, 1 February 1999 Antonova et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

148.61.109.103 On: Wed, 12 Nov 2014 18:20:42


	State to State He-CO Rotationally Inelastic Scattering
	ScholarWorks Citation

	tmp.1416579143.pdf.TaHd8

