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Abstract 

 During the Neolithic transition into the Early Bronze Age (EBA) in the North Pontic 

steppe region (NPR), people, cultures, and technologies were rapidly changing. Farming was on 

the decline and Indo-European languages were spreading through the region along with 

pastoralist way of life. In this study we used mitochondrial DNA (mtDNA) haplotyping to study 

the people living in the NPR during these times. Additionally, we used next-generation 

sequencing (NGS) technologies in attempts to develop novel methods to assess the degradation 

of ancient DNA (aDNA). We extracted ancient mtDNA from remains of 11 individuals 

belonging to late Neolithic and EBA populations of the NPR. Using single nucleotide 

polymorphisms (SNPs) as markers, we established mtDNA haplogroups of nine out of 11 

individuals. Using our data, as well as mtDNA haplogroup frequencies from literature, we 

visualized genetic relationships among various Eurasian populations spanning the Mesolithic 

through EBA using principal component analysis (PCA). We then examined the changes in 

haplogroup frequencies through time using an FST analysis, comparing representatives of the 

Yamna (Pit Grave) and Catacomb groups, the main pastoralist EBA cultures of the NPR, and 

modern European populations. We found genetic evidence through mtDNA haplogroup 

frequencies and PCA linking the Catacomb people to hunter-gatherer populations from northern 

Europe and Russia. On the other hand, data on mtDNA haplogroup frequencies of individuals 

from the Yamna culture associated them with farming and pastoralist type populations from 

southwest and central Europe. An FST analysis of mtDNA haplogroup frequency distribution 

showed that the Yamna are most closely related to the Boyko group of ethnic Carpathian 

highlanders than to other modern European groups used in the study. The Catacomb people 

appeared genetically different from all other population groups in the FST analysis, including the 
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Yamna group, challenging the current understanding of the relationship between the Yamna and 

Catacomb populations. Further statistical analysis using an exact test of population 

differentiation confirmed genetic differences in mtDNA haplogroup frequencies between Yamna 

and Catacomb. The exact test also revealed a lack of genetic differentiation between the Yamna 

and the modern Ukrainian population, as well as Lemko, another group of Carpathian 

highlanders. Data gathered from the NGS aspect of the study was not informative in its original 

design. Modifications to the methods and techniques outlined in our NGS assay could provide 

useful information in building a more comprehensive understanding of DNA damage through 

time.   
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Introduction 

With the advent of modern molecular technologies for manipulation of DNA, population 

genetics has been enhanced with powerful tools to study the human evolutionary past (Nikitin et 

al., 2012, Brandt et al., 2013, and Lizaridis et al., 2013). Population genetic analyses, such as 

phylogeography, can attempt to answer questions we are no longer able to directly observe. 

Maternal DNA lineages, using mitochondrial DNA (mtDNA) single nucleotide polymorphisms 

(SNPs) as markers, give insight into the relatedness of people as they populated the Earth 

through time (Richards et al., 2006, van Oven and Kayser, 2009). In turn, this information can 

help resolve questions about where certain people came from, or how they genetically admixed 

with people from a different population. Cultures have already been attributed with the spread of 

technologies, such as the spread of language and the domesticated horse, through archaeological 

studies (Piazza et al., 1995). DNA sequencing now allows us to study the genetics of the cultures 

of people linked to these technologies, learning about the relatedness of these cultures. 

Moreover, we are now able to use molecular techniques to directly study the individuals that 

lived many thousands of years ago. 

 While useful for directly studying the genomes of the ancient past, such as constructing 

the sequence of a Neanderthal (Homo neanderthalensis), ancient DNA (aDNA) is not without its 

difficulties (Green et al., 2010). Without the living cell’s DNA repair mechanisms, other 

chemicals in the environment, such as water, have the ability to damage and change the structure 

of the DNA (Lindhal, 1993). Ancient DNA is highly damaged and fragmented due to post-

mortem degradation through hydrolysis, existing in fragment sizes typically no larger than 250 

base pairs (Adler et al., 2011 and Fu et al., 2013). Damage to aDNA can also occur at each 

nucleotide as hydrolytic damage (deamination and fragmentation) and oxidative damage causing 
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cytosine to thymidine (CT) and adenine to guanine (AG) transitions in the DNA sequence 

(Lindhal, 1993). This damage effectively changes the natural variation occurring from mutation 

in the endogenous DNA sequence.  

 In addition to aDNA’s fragile state, specimens are almost always contaminated with 

modern DNA from archaeologists, bacteria, animals, and many other sources. The presence of 

inevitable modern contamination often obscures endogenous aDNA within samples. Thus, there 

is a need for an effective method to discriminate between endogenous aDNA from modern 

contamination. Conventional aDNA processing techniques have relied on the sequencing of 

DNA fragments produced through multiple rounds of handling (amplification, cloning, etc.) 

where the difference between contamination and genuine aDNA can become obscured or vanish 

altogether.  

 One of the criteria to determine if an examined DNA molecule is genuine aDNA is to 

look for the presence of deaminated cytosines (Skoglund et al., 2014). Deamination, a hydrolytic 

reaction, chemically turns cytosine nucleotides into a uracil nucleotide. This modified nucleotide 

is then interpreted by DNA polymerase as thymine during downstream DNA amplification and 

sequencing. Current literature states that between 20-50% of cytosines in a genuine aDNA 

sequence should be deaminated (Fu et al., 2013, Skoglund et al., 2014). To view deamination 

rates in a particular aDNA sample, polymerase chain reaction (PCR) fragments are cloned into E. 

coli and sequenced to determine where genuine mutation variation (consistent in all reads) 

occurs and where deamination occurs (not consistent across all reads) in each of the amplified 

fragments of aDNA.  
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 The highly degraded state of aDNA requires further procedures outside of deamination 

rate alone to authenticate endogenous ancient template DNA from modern contamination. Since 

aDNA is also highly fragmented, high sensitivity DNA quality control instruments, such as a 

Bioanalyzer (Agilent), can be used to determine the concentrations and fragment lengths of DNA 

within a given extraction. Samples which do not contain the expected size range of endogenous 

aDNA (<250bp) and are highly skewed to larger DNA fragment sizes may indicate more 

contaminant molecules in an extraction. With aDNA samples being inevitably contaminated by 

modern DNA, PCR bias also allows further authentication checks through fragment size as 

smaller fragments are preferentially amplified in a PCR reaction. Primer design becomes 

increasingly important for amplification of your locus of interest in an ancient sample. Due to the 

high fragmentation and low concentration of endogenous DNA, small fragment regions (between 

60-200bp) are typically targeted (Nikitin et al., 2012). When using primers targeting DNA 

regions larger than 250bp, lower rates of successful amplification should be seen with genuine 

aDNA template.  

 Beginning with DNA extraction, ancient samples are typically prepared in a UV 

sterilized hood in a location separate from downstream DNA molecular biology to minimize the 

risk of modern DNA contamination (Cooper and Poinar, 2000, Adler et al., 2011). In further 

downstream applications, being able to replicate results over multiple DNA extractions, 

amplification, and sequencing events becomes imperative to the authentication of genuine aDNA 

(Cooper and Poinar, 2000). Low copy numbers of endogenous aDNA template molecules as well 

as small fragment size existing in a typical aDNA extraction, should mean that a PCR reaction 

may not amplify the target molecule in every reaction. Once successfully amplified, cloning is 

then required to parse out damaged nucleotide sites from endogenous nucleotide variation in a 
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particular sample (Cooper and Poinar, 2000). Recently, statistical methods using likelihood 

analyses have been used to combine authentication checks through post-mortem damage sites as 

well as fragment size to parse out modern DNA contamination from endogenous aDNA 

(Skoglund et al, 2014). To quantify authentication criteria including deamination rate, fragment 

size and modern contamination ratios, aDNA samples are sequenced using DNA sequencing 

technologies. 

Currently within the field of archaeogenetics there exists two large overarching methods 

for directly studying the genetics of our ancient past. With one method, the whole-genome next-

generation sequencing (NGS) approach, genetic studies have gained access to ever increasing 

amounts of data in comparison to older DNA sequencing technologies. However, the whole-

genome NGS does not yet have the same power for population comparison across the field as the 

older method, sequencing only mitochondrial DNA (mtDNA), does.  NGS offers exceedingly 

large amounts of data in comparison to older Sanger sequencing methods (Lazaridis et al., 2013, 

Brotherton et al., 2013, and Fu et al., 2013). While older capillary methods are limited to one run 

of ~800bp per sample, NGS technologies can retrieve DNA sequence from entire genomes with 

data of up to 60 gigabases in size (McCormick et al., 2013). Another stark contrast in data 

generation between these two technologies is the range across the genome that is possible to be 

covered by NGS. Specific targeting of the mtDNA through NGS may be achieved; using NGS to 

sequence only the targeted mtDNA genome negates the use for cloning in standard Sanger 

sequencing runs. The large amount of sequencing reads for NGS allows all possible mtDNA 

fragments to be sequenced in a single run. Furthermore, while Sanger sequencing runs are 

limited to one locus at a time per sample run, while NGS on the other hand can obtain DNA 

sequence for multiple loci or even the entire genome (Marguiles et al., 2005, McCormick et al., 
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2013, Eid et al., 2008).  Data from other loci across the genome can then be used in population 

genetic analyses to more clearly depict gene flow and is not limited to one locus inherited in one 

particular fashion. Specific areas within the genome may also be targeted and enriched for 

increasing the coverage and amount of data received for a particular locus of interest (Brotherton 

et al., 2013). In archaeogenetics, the mitochondria has been studied extensively for population 

genetic analyses and a significant amount of data for population comparison through time has 

been obtained (Brandt et al., 2013,  Brotherton et al., 2013,  Nikitin et al., 2012, Malmström et 

al., 2009 Hääk et al., 2008).  
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Chapter 1 

Mitochondrial DNA (mtDNA) 

 Due to the degradation of DNA in ancient specimens, mtDNA has been used regularly by 

researchers in this field (Bramanti et al., 2009; Mälmstrom et al., 2009, Haak et al., 2005, 2010; 

Nikitin et al., 2010, 2012, Brandt et al., 2013). While each cell only contains two copies of 

nuclear DNA, each cell may carry multiple hundreds (100-1,000) of mitochondria each 

containing an mtDNA genome (Robin and Wang, 1988). Due to these properties, copies of the 

mitochondrial genome are more abundant in the cell than the nuclear genome. Human mtDNA is 

a maternally inherited, non-recombining, circular DNA sequence 16,569 base pairs (bp) in length 

and inherited separately from nuclear DNA (Andrews et al., 1999). Considering these properties 

of mtDNA, it becomes a useful molecule for tracking human lineages due to not recombining, 

meaning it is not greatly changed from generation to generation (Richards et al., 2000). Mutation 

motifs that occur within certain diagnostic regions of the mitochondrial genome are used to 

determine maternal lineages of ancient humans in population genetic studies (Richards et al., 

2000 and references therein).  

 Within the human mitochondria, geneticists use SNP variation to group each individual 

into a haplogroup based on the mutation motif in each person’s mitochondrial genome (Andrews 

et al., 1999). A combination of the SNPs located with the non-coding control region and the 

coding region form the mutation motif of each designated haplogroup (Andrews et al., 1999). 

The hypervariable region (HV1) is the non-coding region of the human mitochondrial genome 

ranging from base pair 16,000 to base pair 16,569. In the HV1 region, diagnostic mutations are 

noted and added to coding region mutations, together used to determine maternal lineage 

(Bramanti et al., 2009, Andrews et al., 1999). Mutation motifs are grouped into haplogroups 
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which are used to describe a maternal kinship of the ancient humans tested. There are two 

options when denoting mutation motifs for haplotyping when dealing with human genetic 

information, the revised Cambridge Reference Sequence (rCRS), and the reconstructed Sapiens 

Reference Sequence (rSRS) (Andrews et al., 1999 and Behar et al., 2012). The rCRS belongs to 

haplogroup H2 and is more commonly used as the baseline for determining mutations for 

haplogroup identification (Andrews et al., 1999). However, H2 is not the mtDNA sequence of 

the mitochondrial most recent common ancestor (MRCA), and due to the way in which 

mutations occur through time, researchers later constructed the rSRS (Behar et al., 2012). A 

human mitochondrial reference genome created with data from 8,000+ genomes, the rSRS 

provides increased resolution for haplogroup delimitation (Behar et al., 2012). Since the 

haplogroup of the rCRS, H2, is not the ancestral mtDNA sequence of the human MRCA, the 

rSRS was constructed to provide such a sequence allowing the quantity of mutations 

accumulated through time to be determined from a true ancestral human mtDNA sequence 

(Behar et al., 2012). To determine haplogroup calls, mutations are noted along the 16,569bp 

human mitochondrial genome, including both control region and coding region mutations. These 

mutations are then checked against the rCRS (or rSRS) with each mutation motif belonging to a 

specific mitochondrial haplogroup. For example, mutations at base pairs 16224 and 16311 in the 

HV1 segment of the mtDNA genome would give a haplogroup from the K clade when compared 

using the rCRS (Figure1 and Phylotree.org, mtDNA tree build 16, Feb. 19
th

 2014).   

Human mtDNA Haplotypes 

For humans, the MCRA of all maternal lineages coalesces to a lineage in Africa around 

200,000 years ago denoted haplogroup L (Walker et al., 1987, Gonder et al., 2006). The L clade 

contains seven sub-clades, six of which stayed in Africa and one, L3, which migrated into the 
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Middle East around 70,000 years ago (Gonder et al., 2006). The L3 clade, through mutation and 

genetic drift, became the base for all genetic variation in maternal lineage outside of Africa 

(Richards et al., 1998). Once out of Africa, L3 split into two major clades, M and N, which, in 

turn, branched into the major haplogroups that populated the rest of the world outside of Africa 

(Maca-Meyer et al., 2001).  

 Once diverged from the L clade, carriers of haplogroup N moved into the Middle East 

(Torroni et al., 2006). From the major N clade, two major sub-clades diverged in N* and R 

(Andrews et al., 1999). In modern European populations, mitochondrial haplogroup H, a division 

of the R sub-clade, is the most frequent at around 40% (Brandt et al., 2012 and Brotherton et al., 

2012). Haplogroup U, which also diverged from the R clade, is one of the oldest haplogroups in 

Europe (Fu et al., 2013, van Oven and Kayser, 2009). However, while U was prevalent in ancient 

Europe (before early Neolithic), modern European populations have a much lower frequency of 

U at 11% (Brandt et al., 2012 and Brotherton et al., 2012).  

 Once diverged from haplogroup L3, the M clade migrated from the Middle East into 

southern Asia (Gonzales et al., 2007). The M clade eventually gave raise to most of the Asian 

specific lineages including the C, E, G, Q and Z clades (van Oven and Kayser, 2009). 

Haplogroups C and Z share a common ancestor, with C originating around Lake Baikal in Russia 

around 27,000 years ago (Derenko et al., 2010). While rare in studies concerning ancient 

European populations, M clade individuals however have been identified previously in both 

modern and ancient populations of eastern and southeastern Europe (Nikitin et al., 2009, 2012; 

Newton, 2011; Guba et al., 2011).   
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Methods for aDNA Studies- Single Locus and Multi-locus Studies 

  While the study of mtDNA nucleotide variation can be essentially viewed as a single-

locus analysis, which limits its scope, not enough characterization has been done with nuclear 

loci in aDNA to use for population comparison studies (Brandt et al., 2013, and Brotherton et al., 

2013). Due to copy number and the probability of mtDNA remaining salvageable after thousands 

of years of chemical damage, mtDNA might be the only genetic information able to be retrieved 

from the majority of ancient specimens (Brandt et al., 2013, Brotherton et al., 2013, Adler et al., 

2011, Cooper and Poinar, 2000). Tracking maternal lineage over paternal lineages (Y 

chromosomal markers) is more effective for understanding the migration of populations, as 

during ancient time periods maternal lineage movement is more likely associated to population 

migration instead of movement associated with war or hunting.  Outside of the sex 

chromosomes, nuclear loci could give increased individual resolution at genes such as 

pigmentation or lactose persistence (Wilde et al., 2014, Burger et al., 2007). However, nuclear 

loci become less useful for population studies if insufficient ancient population data is available 

to compare different allele frequencies. Nuclear loci in this case would be effective for asking 

specific questions regarding an individual or specific population, such as determining if an 

ancient pastoralist (shepherd) population exhibited high allele frequencies of lactose persistence. 

In addition to its use for addressing different questions, nuclear loci are much less likely to 

survive thousands of years of DNA damage. In turn, studies able to sequence the whole genome 

of an ancient individual are severely limited (Fu et al. 2013, Keller et al., 2012, Green et al., 

2010). Studying only the maternal inheritance will help the migration resolution over nuclear 

loci, directly showing maternal relatedness and movement through time. Genetic data outside of 

the mitochondria for ancient populations suffer from a lack of characterization in comparison, 
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and therefore peopling events and sociocultural relatedness information is less likely to have the 

same resolution through nuclear loci as it would currently through mtDNA (Brotherton et al., 

2013).  

 When studying ancient DNA, degradation, damage, and innate modern contamination of 

the sample must be dealt with for accurate data analysis (Cooper and Poinar, 2000). Specifically 

when working with ancient humans, every person processing the bones from archaeologists to 

lab personnel, are possible contamination sources. Authenticating results for aDNA requires 

multiple rounds of PCR amplification and cloning checks to determine consistency in the 

determined SNP pattern such as haplogroup calls or damage sites (Cooper and Poinar, 2000, 

Brandt et al., 2013). To efficiently determine haplogroup calls, an assay commonly used in 

human haplogroup assignment, the GenCoRe22 assay (Hääk et al., 2010), checks for 

mitochondrial DNA mutations at diagnostic SNPs within the coding region of the mitochondrial 

genome (Brandt et al., 2013, Sarkissian, 2012). The combination of strict molecular methods to 

determine haplogroup calls, repetitive sequencing and cloning events and molecular assays all 

help determine the authenticity of aDNA (Brandt et al., 2013). 

 Once sufficient mitochondrial data is obtained and authenticated through aDNA 

methodology, it can be analyzed to determine haplogroups and their frequencies within the group 

studied (Cooper and Poinar, 2000, Brandt et al. 2013, Brotherton et al., 2013). Currently within 

the field, there has been a large focus on genetic discontinuity in haplogroup frequencies 

between the ancient peoples of Europe and the modern populations of Europe (Nikitin et al., 

2012, Brotherton et al., 2013, Brandt et al., 2013, Wilde et al., 2014).  Haplogroup frequencies 

can be used to compare among ancient populations and modern European populations as well, 

learning the most likely modern ancestors of these directly studied ancient populations 
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(Brotherton et al., 2013, Brandt et al., 2013, Wilde et al., 2014). Multidimensional analyses such 

as principal components analysis (PCA) can also use haplotype frequency information or allele 

frequencies to determine genetic relatedness among populations or individuals (Brotherton et al., 

2013, Brandt et al., 2013). Using PCA can determine relationships among individuals or cultures 

by showing the underlying patterns within the data on a multidimensional scale. Setting up this 

analysis in a way to determine the relatedness of cultural groups during ancient time periods to 

other cultures existing around the world, could give insight into the mechanisms for the peopling 

of Europe across time (Brotherton et al., 2013, Brandt et al., 2013).  

Population Characterization  

Modern genetic diversity in European populations has shown discontinuity with ancient 

populations studied (Brotherton et al., 2013, Brandt et al., 2013). To understand this discrepancy 

in haplogroup frequencies between ancient human populations and modern human populations, 

population genetic analyses have been used to study ancient populations directly. Population 

dynamics of central and southwestern Europe have been characterized by other research in 

regards to the cultures living within those regions beginning in the Mesolithic through the Early 

Bronze Age (EBA) (Brotherton et al., 2013, Brandt et al., 2013). Prior to the Neolithic, hunter-

gatherer populations across Europe were dominated by haplogroup clade U and its sub-clades 

(U4 and U5) (Brandt et al., 2013, Malmström, et al., 2009). However, beginning in the early 

Neolithic genetic evidence shows a drastic shift in the frequency of the U haplogroup in 

populations across Europe associated with the advancement of farming into central Europe, such 

as the Mittelebe-Saale region (Brotherton et al., 2013, Brandt et al., 2013). The Mittelebe-Saale 

region, and central Europe as a whole, has been primarily focused on for studies of maternal 

lineage discontinuity due to its consistent occupation by people from the Mesolithic through the 
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EBA (Brandt et al., 2013).  Important cultures living in the Mittelebe-Saale such as the Bell 

Beaker, Linear Pottery, and Corded Ware cultures are associated with the spread of farming 

during these time periods (Brandt et al., 2013). Mitochondrial haplogroup H exists in high 

frequencies in modern European populations at ~40%, while prior archaeogenetic studies have 

shown a much lower frequency of haplogroup H in ancient European populations (Brotherton et 

al., 2013, Brandt et al., 2013) except for eastern and southeastern Europe (Nikitin et al. 2010, 

2012). By using haplogroups as an indicator of genetic diversity changes across time, we may be 

able to understand the mechanism for the large shift in haplogroup frequencies between ancient 

populations and modern populations.  

 During the early Neolithic, cultures such as the Linear Pottery culture (LBK) and its 

descendants begin to see a large influx of haplogroup H, a clade typically associated with the 

expansion of farming during that time period (Brotherton et al., 2013). Due to genetic diversity 

based on FST comparisons with modern European populations, it has been hypothesized that the 

genetic variation existing in the modern H haplogroup is due to this influx of H during the 

Neolithic (Brotherton et al., 2013).  As farming expanded from Anatolia beginning around 

12,000 years ago the high frequencies of haplogroup U begin to diminish during the early 

Neolithic, transitioning into higher frequencies of N1a, T, and J clades also typically linked with 

the expansion of farming from the Anatolia region (Guba et al., 2011, Brandt et al., 2013).  

 The middle Neolithic in central Europe was mostly comprised of the Funnel Beaker 

culture and other smaller cultures associated with the Funnel Beakers in northern central Europe 

(Brandt et al., 2013). With frequencies of the H haplogroup on the rise from the influx of farming 

populations during the early Neolithic, hunter-gatherer populations are pushed to the outskirts of 

suitable farming land (Brandt et al., 2013). Hunter-gatherer haplogroup frequencies, typically 
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high in U (U4, U5) clades, begin having their numbers diminish as farming becomes more 

prevalent in central Europe (Brandt et al., 2013). Sub-H haplogroups from the early Neolithic 

seem to have become extinct or are at very low frequencies in modern central European 

populations (Brotherton et al., 2013). Middle to late Neolithic sub-H groups, however, are much 

more common in modern European populations (Brotherton et al., 2013). This could mean that 

the majority of the genetic diversity changes happened in the middle to late Neolithic and 

possibly into the EBA depending on the region. Based on this change in the genetic variation of 

the H haplogroup clade, other research has suggested that the main component in forming the 

modern genetic variation of haplogroup H came from the middle to late Neolithic (Brotherton et 

al., 2013).  

During the late Neolithic and EBA, population dynamics begin to change rapidly across 

Europe. The Corded Ware culture (CWC) and the Bell Beaker cultures (BBC) predominate in 

central Europe with ever increasing frequencies of haplogroup H (H1 and H3) and other farming 

associated haplogroups such as T and J (Brotherton et al., 2013, Brandt et al., 2013). During this 

time, further influx of haplogroup H can be seen from the Iberian Peninsula in association with 

the Unetice culture complex, a culture in which the CWC and BBC eventually combine to form 

(Brotherton et al., 2013, Brandt et al., 2013). The presence of sub-H haplogroups, such as H1 and 

H3, have been associated with this influx of people from the Iberian Peninsula into central 

Europe during the middle to late Neolithic (Brotherton et al., 2013, Brandt et al., 2013).  

Haplogroup frequencies in central Europe become much more similar to modern day European 

populations during the Early Bronze Age, with differences in sub-clade frequencies being 

attributed to genetic drift and population migrations (Brotherton et al., 2013). However, while 

central and southwestern Europe have been extensively characterized through maternal lineages 
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and haplogroup frequencies, southeastern Europe remains understudied (Brotherton et al., 2013, 

Brandt et al., 2013).  

Two previous studies have researched mtDNA haplotypes of individuals living in 

southeastern Europe during the Neolithic and into the Eneolithic, one studying the Neolithic 

hunter-gatherer Dnieper-Donets (DD) culture from the North Pontic region (NPR) and the other 

studying the Eneolithic farming Trypillian culture from eastern Carpathian Mountains (Nikitin et 

al., 2012, Nikitin et al., 2010). The Neolithic DD culture exhibited a rather dissimilar pattern of 

mtDNA haplogroup frequencies to central Europe. The DD culture had a higher frequency of 

haplogroup H than their Neolithic farming counterparts from central and southwest Europe, but 

lacking the H1 and H3 sub-clades commonly seen in central Europe (Brandt et al., 2013). The 

high frequencies of H in the DD culture were also accompanied by hunter-gatherer associated U 

clade haplotypes, as well as east Eurasian lineages of haplogroup C (Nikitin et al., 2012, Newton, 

2011). The Eneolithic Trypillia culture from the region further northwest shows haplogroup H at 

high frequency comparable to DD (no H1 or H3 sub-clades), as well as including individuals 

with farming associated haplogroups belonging to T and J clades (Nikitin et al., 2010). Notably, 

the H clade haplogroups in the Neolithic NPR and Eneolithic Trypillia were not characterized by 

the same H1 and H3 sub-clades as were seen in southwestern and central Europe during this 

time.  Since it remains unclear if southeastern European haplogroup frequencies influenced those 

of ancient central Europe, characterizing the populations of southeastern Europe can determine 

genetic relationships between these regions. Fitting southeastern Europe into the larger picture of 

haplogroup frequency distributions helps to clarify interpopulation genetic relationships as well 

as determine the source for the large shift in major haplogroups during the late Neolithic into the 

Early Bronze Age (Figure 2).   
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Cultures of the North Pontic Steppe Region 

During the transition between the Neolithic (7,500-5,500 years before present (yBP)) and 

EBA (EBA, 4,100-3,700 yBP) a cultural and technological shift was taking place throughout 

Eurasia. The Holocene Climatic Optimum (HCO), beginning around 10,000 years ago shifted the 

climate in Europe to be much warmer and wetter (Schroder et al., 2004). These climate 

conditions made farming an effective way of life at areas much further north than previously 

possible. At the end of the HCO at around 4,200yBP this unusually warm period began to end 

returning climate to a cooler and drier environment (Schroder et al., 2004). Due to this shift in 

climate, farming cultures had to move south and southeast from central and northern Europe to 

find land that would sustain agriculture such as the North Pontic steppe region of Ukraine (NPR) 

(Kalis et al., 2003).  

 The NPR, located in modern day southern Ukraine was home to an important pastoralist 

culture, the Yamna, and to other pastoralist cultures during the Neolithic and EBA (Mallory, 

1997).  The Yamna (Pit Grave) culture is thought to have been a key component in the spread of 

proto-Indo-European language across this steppe region of Ukraine (Piazza et al., 1995) and 

beyond. Current archeological research suggests Yamna had been succeeded in the region by a 

culture known as Catacomb, based on the burial type used by the culture. It is also becoming 

increasingly clear that these cultures coexisted for an extended period of time (Wilde et al., 

2014). The Catacomb people are thought to have borrowed some of the technologies from the 

Yamna culture, but it is unclear if they also exchanged genes. Studying the genetics of the people 

inhabiting the NPR during the Neolithic and EBA we may be able to see genetic evidence 

linking these cultures of the NPR to other cultures around Europe and Eurasia further clarifying 

the genetic story of Europe.  
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The current genetic story of Europe excludes southeastern Europe, but is yet it is 

hypothesized that Europe has been influenced by haplogroup frequencies from the North Pontic 

Steppe region (Brandt et al., 2013, Figure 2). Previous studies into other cultures of the NPR 

have shown haplogroup H occurring in individuals at relatively high frequency during the 

Neolithic, which has not been seen in central Europe (Newton, 2011, Nikitin et al., 2012). This 

previous characterization of the populations of the NPR also showed high frequencies of the 

Asian associated haplogroup C (Newton, 2011, Nikitin et al., 2012). Previous research has both 

hypothesized and shown evidence for genetic influence on central European populations through 

maternal lineages by the cultures existing in southeastern Europe (Nikitin et al., 2012, Nikitin et 

al., 2010, Brandt et al., 2013). Genetically characterizing NPR populations could further explain 

genetic variation existing in modern European human populations and further refine the view of 

the movement of people, cultures, and technologies during the late Neolithic and EBA.  

Study Objectives 

We extracted ancient human DNA from the Eneolithic and EBA people in the NPR to 

better understand population dynamics during the Neolithic through EBA in the steppe region of 

Ukraine. The objective of this part of the study was to use mtDNA haplogroups and their 

frequencies within the NPR to understand how the late Neolithic and Bronze Age individuals fit 

with other populations around Europe that have been studied to date. To analyze mtDNA data we 

used principal components analysis (PCA) on haplogroup frequencies of populations within our 

geographic area and that of the rest of ancient Europe and Eurasia ultimately showing maternal 

lineages and relatedness of the cultures inhabiting the NPR. To understand changes in population 

dynamics through time, we used FST and an exact test of population differentiation to test genetic 
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differentiation between our study cultures and between ancient individuals and modern European 

populations. 

Methods - Haplotyping 

Sample Collection and Preparation 

 Human remains of 11 individuals were gathered from burial mounds (kurgans) in the 

North Pontic Region of Ukraine, obtained courtesy of Dr. Svetlana Ivanova, Institute of 

Archaeology, Odessa, Ukraine. The remains dated from 5,500yBP to 3,000yBP (Table 1). Of the 

11 samples, three individuals belonged to the Catacomb culture, three were from unidentified 

Eneolithic culture of the NPR region, three from the Yamna culture, and a final individual from 

the KMK culture (Table 1).  To minimize risk of contamination prior to DNA extraction, all 

surfaces in the extraction lab were UV sterilized for up to 12 hours before extraction began. The 

extraction lab is separately located from the rest of the analytical labs as is standard practice 

when extracting DNA from ancient bones (Cooper and Poinar, 2000, Adler et al., 2011). Bones 

themselves were washed with bleach and UV sterilized on each side for one hour. Bones were 

then cut with a dremel tool to remove the outside layers of bone, which are the most exposed to 

outside contaminants, inside a laminar flow hood (Adler et al., 2011). Prior to extraction bones 

were ground with a sterile, bleached and autoclaved, mortar and pestle to obtain around 500mg 

of bone power to use in extraction.  

Genetic Analysis 

 DNA was extracted using a QIAGEN QIAmp DNA Investigator Kit (Qiagen). DNA 

from the extract was then eluted in 20µl 18MΩ deionizedH2O. Keeping with aDNA 

authentication procedures, each bone was extracted one to four times, depending on the amount 
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of starting tissue (Table 1).To obtain the HV1 region of the mtDNA for haplotyping of each 

sample, primers for four overlapping fragments (Nikitin et al., 2012 and Newton, 2011) were 

used and polymerase chain reaction (PCR) was run in replicates of three for each fragment to test 

low copy number and distinguish ancient DNA from modern contamination (Cooper and Poinar, 

2000) (Table 1, Table 2). To overcome small aDNA fragment size (<250bp) we have subdivided 

the HV1 region into four fragments with a maximum size of 164bp for one set of primers and a 

maximum size of 84bp for another set (Table 2) (Nikitin et al., 2012 and Newton, 2011). For 

coding region SNPs, primers designed to flank restriction digest cut sites were used to check 

diagnostic SNPs for major clades H (7025) and U/K (12308) (Table 2) (Santos et al., 2004). PCR 

reactions to amplify the mtDNA coding and control regions were carried out using a QIAGEN 

FastCycling Kit with reaction volumes of 9.1µl H2O, 10µl FastCycling Master Mix, 0.2µl of 

10µM forward primer, 0.2 of 10µM reverse primer, and 0.5µL of template DNA. The 

thermocycler program was carried out as described in the FastCycling protocol with 50 cycles 

due to small amounts of template DNA (QIAGEN).  After the original PCR, amplicons of the 

HV1 region of the mitochondria were cloned into E. coli (QIAGEN EZ competent cells) for 

further replication and damage determination. Much like obtaining DNA sequence for multiple 

alleles, only one aDNA template molecule is transformed into a bacterial plasmid. Since only 

one copy of the mtDNA template is present in each specimen, any discrepancies between 

sequences (such as C in some with T in others) at the same base pair, but not across all sequence 

reads from the same locus, can be identified. PCR was then carried out on successful clones, 

using T7 and SP6 bacterial primer pairs to amplify target DNA inserted into the E. coli using 30 

cycles in the thermocycler based on the Genscript Green Taq protocol. These PCR reactions 

were done using 39.75µl H2O, 5µl 10x Green Taq Buffer, 1µl of 2µM DNTPs, 1µl of 10µM T7, 
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1µl of 10µM SP6, 0.25µL of Green Taq and 2µL of template DNA(Genscript). Coding region 

SNP checks were directly sequenced, specifically to check for presence or absence of mutations 

at site 7028 (diagnostic for haplogroup H) or 12308 (diagnostic for U/K) in the mitochondria. 

PCR products were then cleaned using the ExoSap system to prepare for sequencing. Cleaned 

PCR products were sequenced using a BigDye terminator sequencing PCR and run on an 

ABI3130xl sequencer from Applied Biosystems (Life Technologies). Each sequence was then 

base-called using software from Applied Biosystems that is coupled with the sequencer. This 

base-calling software uses chromatogram quality information to determine the accuracy of each 

base called in the output DNA sequence.  Once base called, sequences were edited using the 

program Sequencher (GeneCodes Corp. version 4.9).  

 To determine mutations and denote mtDNA haplogroups, sample sequences were aligned 

against the Cambridge Reference Sequence (rCRS), a reference sequence of the entire human 

mitochondrial genome, and mutations were determined using the program MEGA (version 5.2, 

Tamura et al., 2011). Approximate nucleotide deamination rates and rates of successful 

amplifications per fragment were used to determine authenticity of an ancient sample. Cytosine 

to Thymidine and Guanine to Adenine deamination damage has been shown to exist in 50% of 

the damaged sites of ancient DNA which can be seen through multiple amplification and cloning 

events (Lamers et al., 2009, Gilbert et al., 2003). Samples were assigned haplogroups based on 

nucleotide mutation motifs on phylotree.org (mtDNA tree build 16, Feb. 19
th

 2014). The entire 

process was repeated three separate times per fragment from different amplifications of the HV1 

region and diagnostic control region to determine accuracy of haplogroup determination (Cooper 

and Poinar, 2000). In order to show low copy number of aDNA as well as distinguish 

contamination from authentic aDNA repeated extractions and amplifications of each fragment is 
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necessary (Cooper and Poinar, 2000). In addition to the standard methods for aDNA 

authentication, we also used a Bioanalyzer (Agilent) to determine DNA concentration and 

distribution of fragment sizes within a given extraction. Bioanalyzer data was gathered for all 

samples in this study excluding R3.7, R3.16 and the first extraction of K1.10. Due to typically 

low concentrations of DNA in a genuine aDNA sample, the Bioanalyzer was run using a high 

sensitivity assay to distinguish small changes in concentration and fragment size.  

Statistics 

 To obtain genetic relationships among the individuals in this study when compared to the 

rest of the ancient world during the Neolithic through EBA, a PCA was run using haplogroup 

frequencies of cultures from various published datasets (Table 5). PCA, an Eigen vector based, 

multivariate, and non-parametric test that works to show the variance of the individual data 

points in an analysis by grouping them depending on the amount of variation explained by the 

vectors. The advantage of a PCA in the case of determining relatedness among populations is 

that none of the data on phylogenetic sense, geographic location, or relatedness of the individuals 

comprising a population influence the analysis. PCAs are known to reveal trends within the data 

without any prior knowledge of the data itself, making it an effective analysis for determining 

relatedness through grouping in haplogroup frequency analysis of ancient European and Asian 

populations (Brandt et al., 2013). Only haplogroup information from studies that followed strict 

aDNA protocols with results that make phylogenetic sense were used in the haplogroup 

frequencies dataset, such as we would not expect to see African specific lineages of the L clade 

in European datasets (Brandt et al., 2013).  For a substantial number of populations to compare 

our data against, data of cultures haplogroup frequencies from around Europe and Asia from 

Brandt et al.2013 were used as well as their PCA methodology (Brandt et al., 2013). Data in our 
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study was also combined with genetic information from the same cultures from Wilde et al., 

2014 as well as two individuals from the NPR Yamna population from Newton, 2011 to increase 

sample size thus enhancing the statistical power required for haplogroup frequency analysis. 

Combining the individuals studied here with other Yamna and Catacomb individuals from the 

Wilde et al. study and Newton, 2011 allowed the exploration of population based analyses. Once 

combined with Wilde et al. and Newton, 2011 data, the Yamna population was n=30 with the 

Catacomb at n=28. With individuals combined from this study, Wilde et al., 2014 and Newton, 

2011, the undetermined Eneolithic culture population had n=13 samples. PCA on population 

haplogroup frequency data was performed with the R Statistics Package v3.0.2 with graphical 

output generated using the ggplot2 package within R.  

 To determine genetic affinities with modern European populations, the combined dataset 

containing Yamna and Catacomb haplogroup frequencies was compared with modern European 

population haplogroup frequencies through a pairwise FST analysis using Arlequin v3.5 

(Excoffier and Lischer, 2010). FST, a measure of genetic diversity between subpopulations and 

the total population, provide a single number for characterizing genetic diversity to test the 

similarity and differences among populations based on allele frequency data (heterozygosity). 

The closer an FST value is to zero, the more genetically similar two subpopulations are, and a 

value closer to one, the more genetically different those subpopulations are. FST calculations were 

completed with 100 permutations to determine the significance of the differences between the 

cultures. Modern European population haplogroup frequency data was obtained from the 

literature for this comparison (Nikitin et al., 2009 and references therein) (Table 3). Data from 

this thesis was combined with Yamna and Catacomb individuals from Wilde et al., 2014 as well 

as, two individuals from the Yamna group included in Newton, 2011, for the ancient populations 
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in both the PCA and FST analyses. Modern European population data was gathered from the 

literature (Nikitin et al., 2009 and references therein) (Table 3).  

 Following the pairwise FST, an exact test of population differentiation was run to correct 

for the small sample size of the ancient population data. The exact test was run using the same 

Yamna, Catacomb, and modern European population haplogroup frequencies data from the FST 

analysis using Arlequin v3.5 (Excoffier and Lischer, 2010, Raymond and Roussett, 1995, Nikitin 

et al., 2009 and references therein). An exact test of population differentiation was chosen to 

more clearly interpret the genetic relatedness of the Yamna and Catacomb populations given 

their small combined sample size from this study, Wilde et al. 2014, and Newton, 2011 

(Raymond and Roussett, 1995 and Waples, 1998). The exact test of population differentiation 

tests the hypothesis of panmixia, meaning that a significant p-value (<0.05) indicates population 

differentiation (Raymond and Roussett, 1995). In the case of small sample size and populations 

with high gene flow, the exact test of population differentiation can be an effective test for 

determining population differentiation (Waples, 1998). The exact test was run through a Markov 

chain method with 10,000 Markov chain permutations (Raymond and Roussett, 1995).  

Results 

Genetics 

Of the eleven human remains tested for mtDNA haplogrouping, nine were able to be 

repeated and verified in this study over multiple (1-4 repeat extractions, see Table 1) extractions 

and sequencing events while meeting standard aDNA authentication criteria (Table 1). Due to 

the strict criteria for establishing genuine aDNA, two samples were unable to be used in data 

analysis, D1.10 and K2.1. Sequencing of D1.10 showed a consistent deamination pattern across 
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multiple extractions and sequencing attempts, but the SNP pattern showed some inconsistency in 

amplicons from the two separate extractions performed. However, when run on the Bioanalyzer, 

D1.10 showed the largest concentration of fragment sizes at greater than 1,000bp, again making 

it suspicious for a high degree of bacterial contamination. K2.1 showed large amounts of high 

fragment sizes (>10,000bp) on Bioanalyzer runs of all extractions performed for this specimen, 

as well as an absence of low molecular weight DNA (small fragments, <250bp). Sequencing 

attempts for K2.1 sample produced high numbers of chimeras composed of bacterial and human 

DNA, indicating high amounts of bacterial contamination.  

Haplotyping information for all individuals in this study and the culture in which each 

individual belonged based on archaeological findings was used to characterize the Yamna, 

Catacomb and Eneolithic populations (Table 1).Of the three Catacomb individuals tested, our 

data included two individuals of the H clade and one belonging to U5. The three Yamna 

individuals haplotyped in this study all belonged to haplogroup U5.  Haplogroup frequencies for 

the cultures tested with PCA were generated by combining relevant individual data into cultures 

from our study and comparing to mtDNA haplogroup frequencies from corresponding 

population groups of the same time period (Table 5). The Yamna (YAM) culture had high 

frequencies of haplogroups T and H, but, also contained individuals of the C clade, a group 

associated with cultures further east into Siberia and Asia. Catacomb (CAT) people had high 

frequencies of individuals belonging to the U and H clades, while the Eneolithic NPR people had 

highest frequencies of H among the three groups.  
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PCA and Population Relatedness 

Axes 1 and 2 of the PCA explained a combined 31% of the total variance within the data. 

The Yamna (YAM) culture groups out with people belonging to the Trypillia culture, Corded 

Ware culture and other cultures belonging to farming as well as pastoralist populations in 

southwest and central Europe during the Eneolithic EBA (Nikitin et al., 2010,  Brandt et al, 

2013, Brotherton et al., 2013). The cultures located in this area of the PCA are characterized by 

haplogroups typically belonging to farming people during these time periods such as the H, T, 

N1a and J clades (Figure 3).  Catacomb culture people (CAT) grouped together with hunter-

gatherer type peoples from northern Russia and the Pitted Ware culture from Scandinavia. 

Cultures within this region of the PCA are characterized by the high frequencies of hunter-

gatherer associated haplogroup clades such as U4 and U5 (Figure 3). The Eneolithic NPR 

population (ENE) groups out in-between the hunter-gatherers and the farming populations. 

Overall, the farming populations form two clusters in the top right quadrant of the PCA output. 

The top most cluster being formed by older central European farming cultures, and the bottom 

cluster consisting of younger central European farming populations as well as the Yamna culture 

from this study. Only three cultures fall out in the top left quadrant of the PCA, Neolithic Siberia 

(NSI), Bronze Age Siberia (SEBA), and the Alfold (ALF) populations. Populations here are 

characterized by East Eurasian haplogroups such as the D, A, G and C clades. At the bottom of 

the PCA chart, populations associated with hunter-gatherer type lifestyles and characterized by U 

clades group together.  
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FST with Modern European Populations 

 When comparing Yamna mtDNA haplogroup frequencies to that of modern European 

populations, we see non-significant p-values through pairwise comparison between Yamna and 

an isolated highlander population of Eastern Europe known as the Boyko (p=0.90090±0.0236) 

(Table 3). The Boyko are modern highlander population living in the Carpathian Mountains of 

Ukraine and Poland. Together with Hutsul and Lemko people living in the Carpathian region, the 

Boyko live in relative isolation from their lowland neighbors (Nikitin et al., 2009). Non-

significant p-values are based on low FST values (closer to zero) meaning the populations are 

very similar. The remaining pairwise FST calculations between the Yamna and other modern 

European populations all had significant p-values (p<0.05) implying population differentiation 

given haplogroup frequencies. The Catacomb culture was significantly different from all other 

cultures in this analysis (p-values <0.05). 

FST and Exact Test of Population Differentiation- Yamna and Catacomb 

 When directly comparing the mtDNA haplogroup frequency distribution in the Yamna 

and Catacomb populations, the FST value between them was 0.07882 implying little genetic 

substructure (panmixia, or the same population). At the same time, a significant p-value for this 

pairwise comparison was obtained (Table 3), implying genetic differentiation. To test the 

influence of low sample size on FST calculations, an exact test of population differentiation was 

run, correcting for the small sample size of the ancient population data through a Markov chain 

method (Raymond and Roussett, 1995). A significant p-value of 0.003 was obtained after 10,000 

Markov chain permutations confirming that the Yamna and Catacomb populations are different 

in their mtDNA haplogroup composition (Table 4). The exact test also confirmed the lack of 
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differentiation between Yamna and Boyko, at the same time revealing a lack of genetic 

substructure between Yamna and Lemko, as well as the modern Ukrainian population (Table 4, 

respective p-values of 0.932, 0.243, and 0.051). 

Discussion 

Genetics of the Yamna and Catacomb Cultures 

During the Neolithic and EBA important transitions were taking place in the people of 

the NPR. New people bringing the proto Indo-European language and new subsistence 

techologies were moving into the region (Mallory, 1997). Using maternal lineages and mtDNA 

haplogroup frequencies of cultures around the rest of Europe and Asia, we can begin to 

understand the population dynamics of the NPR during this critical time period for technological 

advancements in Europe. While maternal lineages only tell one side of the story, obtaining Y-

chromosome or other autosomal marker information with aDNA is difficult due to preservation 

quality and its degraded state (Adler et al., 2011, Lamers et al., 2009). Using genetic information 

from other markers within the genome would increase the resolution for determining specific 

questions at the individual level, and increase marker numbers for resolution into mechanisms 

for cultural admixture during the Neolithic through EBA.  For our study however, we focused on 

mtDNA and therefore our conclusions are only based on maternal lineage analysis.  

 Nine of the 11 total individuals in this study were able to be accurately characterized and 

haplotyped through mtDNA SNP markers (Wilde et al., 2014, Burger et al., 2007). Adhering to 

the strict authentication procedures in aDNA studies, the samples that were excluded for analyses 

(D1.10 and K2.1) were not able to be resolved accurately to a single haplotype through multiple 

extraction and amplification events. The addition in the use of the Bioanalyzer to this study also 
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helped resolve the authenticity of the samples allowing those which contained large amounts of 

high molecular weight DNA to be classified as at least mostly bacterial contaminant (fragment 

sizes >1,000bp) while also showing samples with small amounts of low molecular weight DNA.   

Within the nine individuals of this study, high numbers of the U and H clades are not 

particularly surprising. Other research has shown that in central and southwestern European 

farming populations, especially during the EBA, begin to show high frequencies of the H clade 

and, in particular, haplogroups H1 and H3 (Brandt et al., 2013, Brotherton et al., 2013). At the 

same time, no H1 of H3 clade individuals have been unequivocally identified in southeastern 

European EBA specimens studied to date. The presence of the U clade haplogroups such as U4 

and U5 are indicative of hunter-gatherer populations as typically seen in other studies as well, 

though, with the highest frequencies occurring before the EBA (Malmström et al., 2009, Brandt 

et al., 2013).  

Comparing the Yamna in this study and Newton, 2011 (individuals from the NPR) to 

individuals from Wilde et al. (2014), we see differences in their haplogroup composition. The 

Yamna individuals haplotyped in this study all belonged to the U clade, which while present in 

the Wilde et al. data, is much less frequent than haplogroup H. Likely due to small sample size, 

the Yamna individuals haplotyped in this study also do not have individuals belonging to 

haplogroups X, T, W or J which are all present in the Wilde data. Haplogroups typically 

associated with farming in Anatolia such as N1a and I have been found in Yamna samples in the 

Wilde et al. dataset, possibly showing a link between the farming cultures in Anatolia and the 

influence of southeastern European haplogroups in central Europe (Wilde et al., 2014, Brandt et 

al., 2013). At the same time, in Newton, 2011 two individuals with east Eurasian specific 

haplogroup C were identified among representatives of the Yamna culture from the NPR. The C 
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lineage has not been found in EBA representatives studied elsewhere in southeast Europe (Wilde 

et al., 2014). Haplogroup C likely originated in south Siberia (Derenko et al., 2010) and the 

presence of this east Eurasian haplogroup in the NPR points at a genetic affinity of Yamna 

people with east Eurasian population groups. At the same time, the presence of haplogroup C in 

the Neolithic populations (Dnieper-Donets culture) of the NPR (Newton, 2011, Nikitin et al., 

2012) could mean that the Yamna could have actually picked up the C’s from the Neolithic NPR, 

rather than somehow directly acquiring these from the source of haplogroup origin. This would 

mean that Yamna may have local roots in the NPR.  

Comparing the Catacomb people in our dataset to that of Wilde et al. we see similarities 

in the haplogroup distribution. In our sample, two Catacomb individuals belong to the H clade, 

and one belonging to the U clade (U5). Overall, the larger dataset in Wilde shows a higher 

frequency of hunter-gatherer U4 and U5 clades, while still containing H clade individuals.    

 Based on the grouping of the PCA output of mtDNA haplogroup frequencies, the 

Catacomb people seem to have a common origin with hunter-gatherer people from northern 

Europe and Russia (Malmström et al., 2009). Other research has already shown archaeological 

evidence in the similarity of burial practices found in the NPR to Scandinavian and northern 

European cultures (Nikitin et al., 2012). This study however, adds evidence of a genetic 

continuum between the hunter-gatherers of the north and the Catacomb people residing in the 

NPR. The high frequencies of the U clades, U4 and U5, isolate the Catacomb people from 

modern European cultures in the pairwise FST analysis. The lower frequencies of the U clade in 

modern European populations indicate that it is unlikely that the Catacomb and its nortern 

European hunter-gatherer counterparts were the main genetic contributors moving past the EBA 

and into modern human populations.  
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  The Yamna people on the other hand, group together with mainly farming cultures from 

southwestern and central Europe (Nikitin et al., 2010, Brandt et al., 2013).  Based on haplogroup 

frequencies it appears that the Yamna people were influenced by the advancement of European 

farmers into the NPR and admixing with the local population of the time. High prevalence of 

lineages associated with farming cultures, such as T and J, while also showing hunter-gatherer 

lineages such as U4 and U5 could be an admixture event in the NPR around 4,000 years ago as 

farming cultures and pastoralist type cultures met (Brotherton et al., 2013). While the FST value 

(0.07882) was low between the Yamna and Catacomb, humans overall are not highly genetically 

diverse, with some of the most diverse populations only having an FST value of ~0.2 between 

them (Nelis et al., 2009). Since human overall FST values are quite low between even the most 

genetically distinct populations, and our sample size for the Yamna and Catacomb populations 

was small, we ran an exact test of population differentiation to confirm the FST results. The 

significant p-value obtained from the exact text using the Markov chain method, correcting for 

small sample size, between the Yamna and Catacomb cultures from the EBA shows that these 

two cultures were unlikely to have admixed (Table 4).  

 Other research has suggested that the Catacomb people grew out of the Yamna culture 

and continued Yamna’s burial practices and pastoralist way of living (Wilde et al., 2014). 

However, our data indicates the absence of demic introgression of Yamna into Catacomb, at least 

based on maternal genetic lineage marker analysis.  While both cultures lived in the NPR during 

the same time period, it does not appear that they were genetically admixed to any great extent. 

A low FST value of 0.07882 between the Yamna and Catacomb cultures indicates genetically 

similar populations, however, significant p-values in both the FST and the exact test of population 

differentiation analyses show that these populations are genetically differentiated.  Based on 
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burial type alone, there seems to be cultural exchange between these people as both used kurgan 

type burials with slight variation between them. Yamna using pit-graves dug straight into the 

kurgan mound and Catacomb people using pits with more of an L shape, giving a catacomb type 

burial in same kurgans erected by the Yamna people. Catacomb people seem to carry the same 

genetic signature during the Neolithic through EBA, while the Yamna pick up higher frequencies 

of farming maternal lineages such as T and J moving closer to the end of the EBA. In example, 

six of the 25 Yamna individuals haplotyped in Wilde et al. study belonged to haplogroup T, 

while Catacomb individuals in both this study and Wilde do not show any individuals belonging 

to T (Wilde et al., 2014).  Overall, this could suggest that the Catacomb people retained their 

own distinct gene pool after being pushed to the outskirts of the steppe by farming type cultures, 

only taking in cultural and technological aspects from the Yamna instead of admixing with them 

genetically.  The high frequencies of U4 and U5 in the Catacomb culture could also suggest that 

while they co-existed with the Yamna culture in the NPR, the Catacomb culture comprised of 

alleles from a different genetic pool than the Yamna. Statistical analyses presented in this report 

support this hypothesis. The PCA analysis presented in this study utilized mtDNA haplogroup 

frequencies from populations spanning a time period of thousands of years between the 

Mesolithic and EBA, and since the Catacomb people group together with hunter-gatherer 

cultures from five through ten thousand yBP (southern and northern European Mesolithic and 

Neolithic hunter-gatherers) we can assume based on haplogroup composition that their origins 

are similar. It is possible, since the Yamna origins exhibit different alleles than the Catacomb, 

and have higher frequencies of H, T and J haplogroups, they were associated with an influx of 

farming-associated gene lineages in the NPR.  
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 While aDNA is typically difficult to work with, using it as a tool coupled with 

archaeology can help researchers further understand human population dynamics during the 

peopling of Europe and Asia. Since this study uses only maternal lineages to determine genetic 

relatedness, further research into other markers within the genome could show different 

population dynamics during the study period. Increasing the number of individuals studied from 

these important populations may also further resolve genetic affinities with other populations 

during this critical time period in the history of Europe. 
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Chapter 2 –Next Generation Sequencing 

Sequencing Methodology 

 For archaeogenetic studies, the ultimate goal is to be able to sequence genuine aDNA and 

to confirm its authenticity for use in downstream population genetic analyses. Overall, there are 

three generations of sequencing technology that may be used to sequence the DNA in a 

particular sample, and each has their own specific application and methodology. Capillary 

sequencing using Sanger chemistry, is the oldest technology, next-generation sequencing was 

developed after Sanger in 2005, and the third generation of sequencing (PacBio) having been 

developed in 2009 (Sanger et al., 1977, Marguiles et al., 2005, Eid et al., 2009).  

 Sanger sequencing chemistry was developed in 1977 by Fred Sanger using DNA strand 

termination to sequence the molecule (Sanger et al., 1977). 3’-dideoxy nucleotide triphosphates 

(ddNTPs) are randomly incorporated into the growing DNA strand in place of standard 

deoxynucleotide triphosphates (Sanger et al., 1977). The addition of the ddNTPs terminates the 

newly synthesized DNA strand, theoretically creating DNA fragments of varying sizes and each 

ending at a specific and different base pair in the targeted sequenced region (Sanger et al., 1977). 

These different size fragments may in turn be separated through electrophoresis and visualized 

through dye staining on a gel or fluorescently tagged ddNTPs excited by a laser (Sanger et al., 

1977, Lee et al., 1992). Each nucleotide in the sequence is then ordered by the size of the 

terminated fragments and the ddNTP that terminated the sequence is determined. Sanger 

sequencing chemistry using capillary electrophoresis produces one sequence read per reaction 

and averages around 700 base pairs per sequence.  
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Next-generation sequencing (NGS), first developed in 2005 through the Roche 454 

pyrosequencing application, drastically changed the through-put of DNA sequencing 

technologies (Marguiles et al., 2005). Compared with the previous Sanger sequencing 

technologies, NGS increased the sequence read number per sample from one with Sanger to 

millions with NGS (Marguiles et al., 2005). Each run on a NGS machine typically contains 

hundreds of thousands of reactions simultaneously, with each of those hundreds of thousands of 

growing DNA strands visualized through the systematic addition of fluorescently labeled 

nucleotides (Marguiles et al., 2005). When a nucleotide is added to the growing DNA strand, a 

fluorescent tag is cleaved off the nucleotide, allowing the laser to pick up on the specific 

nucleotide that was added to each specific DNA strand. DNA sequence is determined by the 

systematic order in which each nucleotide is added to the reaction (Marguiles et al., 2005). The 

amount of sequencing reads and nucleotides sequenced using NGS technologies far surpasses 

Sanger methods allowing the sequencing of whole genomes within a single run on these 

machines (Marguiles et al., 2005).  

 In 2009 Pacific Biosciences developed a third generation of sequencing technology 

allowing the real-time visualization of polymerase kinetics as a sequence is being generated (Eid 

et al., 2009). This technology uses a SMRT bell adapter to anchor a single DNA molecule to a 

well in a micro-perforated chip with each well containing a DNA polymerase molecule (Eid et 

al., 2009). The SMRT bell adapter, added during the preparation of the sample for sequencing, 

creates a circular molecule using a bell shaped adapter on either side of the double stranded 

template DNA molecule. Circular consensus and sequence validation is obtained through the 

repeated circular replication of the DNA molecule in each of the micro-perforations (Eid et al., 

2009) Polymerase kinetic information during the real-time sequencing of each molecule can 
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show polymerase stops and stalls while it replicates the DNA molecule, leading to information 

about methylation, DNA strand damage and secondary DNA structure (Eid et al., 2009). While 

the resolution at each of the sequencing reads is increased through the addition of polymerase 

kinetic information, the PacBio sequencer has very specific applications. The only limitation to 

sequence read length on the PacBio machine is polymerase exhaustion, and due to that, read 

lengths can be upwards of 15kB long far exceeding any other sequencing technology (Eid et al., 

2009). However, the longer the sequenced read, the less number of times circular consensus can 

be achieved, lowering the quality score of each base pair in the sequence read.   

Building a Method- NGS for aDNA Authentication 

 Taking aDNA authentication criteria into account, methodology and applications of NGS 

technologies could drastically increase the ability to determine genuine aDNA apart from its 

inevitable modern contamination in a sample. With the innate properties of endogenous aDNA 

damage and degradation, studying humans for aDNA studies has a unique problem; the 

researcher provides another possible source of contamination. While Sanger chemistries give one 

read of a targeted DNA sequence, NGS can sequence a much larger number of DNA strands in a 

sample. If a sample contained DNA sequence from multiple different species, as is common in 

aDNA contamination, NGS would be able to sequence all of those molecules. In turn, NGS 

technologies could have significantly increased resolution for studying aDNA and allow damage 

sites and contamination rates to be characterized for all DNA within a sample.  

 NGS offers a large increase in the amount of data on a particular DNA sample in a much 

shorter amount of time. Compared with a single read per run Sanger sequencing, NGS offers 

sequencing reads in the range of hundreds of thousands to hundreds of millions from one run 
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(Marguiles et al., 2005, Eid et al., 2009). Concentrations of genuine aDNA in an extract are 

likely to be small after thousands of years of degradation (Adler et al., 2011). However, since 

NGS technologies offer sequencing reads from loci across the genome, it is likely to sequence all 

of the aDNA in a sample as well as sequencing all of the contaminant molecules. When aligning 

NGS data to a reference genome, the source of the contamination in a particular aDNA extract 

becomes apparent. The determination of contamination ratios (aDNA:other), where sources of 

contamination are, and what DNA a sample is contaminated with (bacteria, plant, modern 

human, etc.) can all be pinpointed using NGS technologies.  

 Being able to view the rate of nucleotide damage (deamination and oxidation) is 

imperative in distinguishing aDNA from modern contaminant (Skoglund et al., 2014). Paired-

end NGS applications offer the resolution to determine mutation variation from  nucleotide 

damage without the need of the time consuming process of cloning and Sanger sequencing one 

clone at a time. Paired-end sequencing, while reducing overall genome coverage depth, increases 

the resolution of a sequencing run to both strands of DNA. Determining the mismatching in 

nucleotide pairing (T matched with G in the case of deamination) between paired-end reads from 

the same locus gives an accurate characterization of the damage rates across the sequenced 

portion of the genome (Skoglund et al., 2014). Recent research has used paired-end sequencing 

of ancient humans and a likelihood statistical model to use deamination rates and paired-end 

mismatches to pull genuine aDNA sequencing reads out of a pool of modern contaminants 

(Skoglund et al., 2014).  

 PacBio sequencing technology, the most recent incarnation of NGS, could allow the 

visualization of deamination and fragment size as they exist in un-amplified original DNA 

template, while increasing resolution of damage sites to oxidative damage, or possibly damage 
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types not yet identified in aDNA (Eid et al., 2009). Increasing resolution to entire single 

molecules of DNA in real time will allow studies of ancient genomes to have a more specific set 

of authenticity criteria to tell genuine aDNA apart from modern contamination. The PacBio 

sequencer uses polymerase kinetics to determine nucleotide modification in the template strand 

(ex: methylation) and could also show the cytosine to uracil switch in a deamination reaction 

(Eid et al., 2009, Fang et al., 2012). The circular consensus sequencing method for validation 

innately built into PacBio sequencing technologies could also show direct mismatches in 

nucleotides in real time on an unmodified (no library amplification) aDNA template molecule. 

However, the current state of the PacBio technology has a difficult time dealing with nucleotide 

damage sites as the DNA polymerase stalls or stops completely during replication (Eid et al., 

2009, Fang et al., 2012, personal communication, Bob Lyons).    

 Duplex consensus sequencing (DCS), a method for detecting rare mutations and 

distinguishing them from PCR errors was developed for use in the medical field for cancer 

research and tumor sequencing (Schmitt et al., 2012). DCS uses a modified method of paired-end 

sequencing to determine the original template molecule from which an amplified cluster of 

paired-end reads originated (Schmitt et al., 2012). Through tags consisting of 12 random 

nucleotides and 5 static nucleotides as barcodes, called αβ tags, clusters of paired-end reads are 

grouped with their initial template molecule in downstream bioinformatics analyses (Schmitt et 

al., 2012). This allows determination of PCR error apart from natural sequence variation due to 

mutation in a particular sequenced sample (Schmitt et al., 2014). For aDNA, this could be used 

to distinguish deamination sites in the original template molecule and allow those deamination 

modifications to be validated against PCR error incorporated during NGS library preparation and 

amplification.  
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 Using a combination of the different NGS technologies available today could allow the 

visualization of deamination, fragment size and contamination rates as they exist in an aDNA 

sample. Increasing resolution and understanding of endogenous aDNA in an ancient sample 

could significantly impact authentication criteria in determination of genuine aDNA apart from 

modern contamination. In a field where authentication of genuine aDNA is of utmost 

importance, NGS technology may offer a quality of information this field does not yet utilize 

(Paijmans et al., 2012). 

Study Objectives 

The second part of this study focused on the development of NGS technologies for use 

with aDNA authenticity. Using NGS technologies and modified methods for NGS sequencing 

runs, we sought to further understand aDNA damage patterns, contamination rates and types, and 

preservation status. From this information we planned on using NGS sequence data obtained 

from human aDNA samples in hopes to develop a method for more accurately identifying 

genuine aDNA and improving authentication criteria. The ultimate goal of this portion of the 

study was to quantify the extent and types of damage on a per molecule basis, linking that 

damage to a specific preservation and burial type which has not yet been done in aDNA research. 

Methods- NGS Technology 

 All samples for analysis with NGS technologies were extracted using the same 

procedures as outlined above (p.26-27). Bones were processed and ground using a mortar and 

pestle in a UV sterilized laminar flow hood. DNA was extracted using a QIAGEN QiaAmp 

Investigator kit (Qiagen) and eluted in 20ul 18MΩ deionized H2O. NGS technology requires 
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strict DNA concentrations for the preparation of the sequencing library. To determine which of 

our aDNA specimens were most appropriate for NGS analysis, the following criteria were used.  

1) The sample must have detailed archaeological information such as burial environment. 

2) The sample had to contain an appreciable concentration of DNA. NGS targets 1µg of 

DNA in an extract for library preparation and sequencing. Since aDNA is highly 

degraded and in small concentration, choosing an aDNA sample with the highest 

concentration of DNA was required. 

3) The sample had to show the above concentration of DNA mostly in the low molecular 

weight region, increasing the chances for that DNA to be genuine ancient DNA existing 

in fragment sizes less than 250bp (Adler et al., 2011).  

To determine the concentration of DNA in our samples, we used an Agilent Bioanalyzer 

running a high-sensitivity assay due to the known small concentrations of aDNA. This 

instrument allowed the visualization of the distribution of all DNA within the sample, 

specifically showing the concentration of DNA at each of the fragment sizes. Following the 

Bioanalyzer analysis of possible NGS samples, L8 was chosen due to the high concentration 

(1.6ng/µl, 40ng total DNA) of low molecular weight (small fragment size, median=311bp) DNA 

(Figure 4) as well as detailed archaeological information including the skull being covered with a 

red pigment. While this sample still had a relatively small concentration of DNA, out of all bones 

tested using the Bioanalyzer L8 had the highest concentrations of low molecular weight DNA. 

Since aDNA is very low in concentration and DNA damage and fragmentation is prevalent, a test 

run using an artificially fragmented PhiX DNA to simulate aDNA was sequenced. Running an 

artificially generated sample to mimic aDNA allowed us to test the DCS adapter tagging, low 

concentration, and innate small DNA fragments that are typical for aDNA.  
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Following sample selection, the entirety of the L8 extract was sent to the University of 

Michigan sequencing core for library preparation and sequencing on the Illumina HiSeq 2500 

platform (Illumina). Library preparation for this sample was completed using Illumina TruSeq 

adapter sequences as well as αβ tags from the DCS method following the Illumina TruSeq DNA 

protocol (Illumina). The addition of αβ DCS tags were constructed into the library to allow 

increased resolution in determining the original aDNA template molecule from which each 

sequencing read came from. In turn, this method could allow us to specifically determine 

deamination sites, SNP variation, and PCR errors from library amplification of this sample. The 

Illumina HiSeq 2500 platform was chosen for this process due to the still small DNA 

concentration in the L8 sample, as well as, for issues PacBio sequencers have when dealing with 

highly damaged DNA molecules (personal communication, Bob Lyons).   

After sequencing, raw NGS data was cleaned and then analyzed using bioinformatics 

software. First, to clean raw sequence data, Illumina TruSeq adapter sequences were removed 

from each of the sequencing reads and high quality sequencing reads were determined using the 

web-based software FastQC (Bahbraham Bioinformatics). NGS raw sequence files include 

quality based scores coupled with each base pair in a given sequence, much like Sanger based 

methods. In this analysis, any sequence read with an average quality score of less than 30 was 

removed from downstream analysis. Once sequence reads were cleaned, reads were separated 

into two files, one file for single-end sequencing reads (not paired with opposite strand) and one 

for paired-end sequencing reads (both strands paired back together). Single-end and paired-end 

cleaned sequencing data files were constructed using the SAMtools v1.19 software package (Li 

et al., 2009). Finally, both single-end and paired-end sequencing read files were aligned to the 

human hg19 reference genome using the BWA v0.7.9 software package (Li and Durbin, 2009) 
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and visualized using the Integrative Genomics Viewer (IGV) v2.3 (Thorvaldsdóttir et al.,2012). 

For alignment purposes, it was expected that genuine aDNA would have a higher number of 

variable sites due to deamination. To be able align reads to the reference genome, up to 5 

nucleotide differences were allowed for each sequencing read.  

Results  

Next Generation Sequencing  

 Once completed, the NGS run on the Illumina HiSeq 2500 for the L8 specimen had 

198,000,000 sequencing reads. Once trimmed of Illumina TruSeq adapters as well as the created 

DCS 12-nucleotide tags, the number of reads drops to 7 million containing a an insert of DNA 

above 15bp (single-end reads). A total read length cutoff of 15bp for each sequence was used to 

avoid random alignment of small DNA fragments to the reference genome in downstream 

genome alignments. Overall the 7 million single-end reads had a tri-modal distribution of 

fragment sizes with peaks at 15-25bp, 35-40bp, and finally at 90-100bp. Pairing those 7 million 

reads back to their partner (αβ tag from DCS) the number of reads drops to around 2.5 million 

paired end reads. Out of the original 7 million single end reads 40% mapped to the hg19 

reference genome and all of the mapped reads were the 15-25 nucleotide insert reads.   

 Once fragments were mapped to the hg19 reference genome further checks were run to 

determine if the mapped fragments were human specific. The 7 million single end reads were 

also mapped to the mouse reference genome (Mus musculus). We chose to use another mammal 

species to see if conserved areas of the genome were being sequenced and mapped to the same 

regions in both humans and mice. We found that the same reads that mapped to humans, also 

mapped to mice and again were only the 15-25bp insert reads. However, while these reads 
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mapped to both mouse and human, they did not map to conserved areas across the two genomes. 

To examine the sequencing reads with 90-100bp inserts, a BLAST search was run on all 7 

million sequencing reads using an in-house constructed program at the University of Michigan. 

Sequence reads for Actinoplanes bacteria genome had BLAST hits from within our data. 

Alignments for the 7 million single end sequence reads to the Actinoplanes genome (Accession 

Number: NC_021191) produced 28,488 matches to the reference genome (Figure 5).  

Discussion 

Next-Generation Sequencing Methodology- Improving aDNA Authentication Protocols 

 Development of NGS technologies for use of aDNA authentication in this study was 

unable to address the original question of aDNA damage characterization or contamination rates. 

While this aspect of the study was unable to answer our questions, improving this method could 

allow for increased ability to study aDNA in future studies using NGS technologies.  

Concentrations of DNA become increasingly important for sequencing using NGS 

machines. Typically, when the library is created for sequencing around 1µg of total DNA is 

required. Due to the highly degraded state of aDNA it becomes difficult for one sample and one 

extraction to obtain concentrations high enough for this step of the protocol. In attempts to 

increase the concentration of DNA in the extractions used in this study, many of the bones were 

re-extracted using the protocol outlined in the methods above and multiple extractions of the 

same bone were combined to increase DNA amounts. However, when these samples were 

analyzed using the BioAnalyzer there was a much larger concentration of high molecular weight 

DNA, indicating a higher presence of bacterial contamination (Figure 4). While L8 was chosen 

as our best sample, it only contained ~100ng of total DNA, much lower than the suggested 1µg 
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suggested for DNA sequencing on NGS machines. Research into the extraction method for 

ancient specimens has shown that premade kits, such as the one used in this study, use lysis 

buffers which may be too harsh for the already compromised cells and degraded DNA (Rohland 

and Hofreiter, 2007). Using this silica-based extraction method may improve the starting 

material and allow higher concentrations of genuine aDNA in an extraction (Rohland and 

Hofreiter, 2007). 

Paired-end sequencing and DCS provides an increased depth of coverage at each 

sequenced locus in a NGS run. However, while providing increased depth and resolution, the use 

of paired-end sequencing and DCS reduces overall genome coverage. The adapters and tags 

added to each of the template DNA strands in a paired-end DCS library preparation significantly 

reduces the number of base pairs between the adapters that are sample sequences. Due to the 

smaller fragment size of the sample being sequenced, less of the overall genome retains the 

coverage of sequencing reads. On top of that, due to the small fragment inserts between the 

adapter sequences, sequencing into the adapter sequence commonly occurs in paired-end 

sequencing runs.  When cleaned of adapter sequences in this studies data, the number of 

sequencing reads dropped from 198 million down to 7 million. The remaining sequence between 

the two flanking adapter sequences in most cases was too small to accurately align to any 

genome (below 15bp), significantly reducing the quality and coverage across the alignment to 

the reference genome. In further studies, using a single-end sequencing run and using statistical 

methods to parse out contamination and identify deamination could lead to better genome 

coverage (Skoglund et al., 2014).  

Modification to PacBio methodology could give increased information about aDNA 

template molecules in real-time. Watching the DNA polymerase as it replicates the aDNA 
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template molecule could shed light on nucleotide damage sites not previously seen in aDNA 

research. Currently, the polymerase stalls too frequently along highly damaged template 

molecules during sequencing runs on the PacBio machine. In most studies this has been rectified 

by using DNA repair enzymes such as using uracil-DNA glycosylase (UDG) repairing uracil 

nucleotides in the template sequence (personal communication, Bob Lyons). However, this 

defeats the purpose for aDNA applications as the presence of deaminated cytosine nucleotides 

into uracil is a hallmark indication of genuine aDNA template (Skoglund et al., 2014).   

While method development in this study was unable to address aDNA damage and 

contamination rates, further research and method changes could provide an increased resolution 

for distinguishing aDNA authenticity. Changes to the way DNA was extracted, library 

preparation, sequencing run type, and possibly NGS platform type could have the impact needed 

to improve this method.  

 

 

 

 

 

 

 

 



53 
 

Conclusions 

 In this study nine of eleven ancient individuals belonging to pastoralist cultures from the 

North Pontic steppe region of southeast Europe during the late Neolithic and EBA were 

accurately haplotyped using mtDNA. Relatedness analyses in the form of PCA of mtDNA 

haplogroup frequencies of ancient cultures through time, FST with modern European populations 

and an exact test of population differentiation showed the genetic affinities of the Yamna and 

Catacomb cultures studied in this thesis. Haplogroup information based on the HV1 and coding 

sequence of the human mtDNA genome revealed that the Yamna and the Catacomb people 

living in the NPR during the EBA appear to have not been genetically admixed. The Yamna 

people have shared east Eurasian maternal lineages with the Dnieper-Donets culture, who had 

previously occupied the NPR during the Neolithic time period, likely indicating deep local roots 

of the Yamna population in the NPR. After pulling our mtDNA data together with data from 

literature, it became apparent that the Catacomb population, while also living in the NPR at the 

same time as the Yamna (late Neolithic through EBA), do not share the same mtDNA 

haplogroup frequencies as the Yamna. While the representatives of the Catacomb culture 

featured predominantly mtDNA lineages of the H and U haplogroup, of which U is characteristic 

of pre-farming hunter-gatherer populations of Europe, the Yamna representatives displayed a 

greater variety of mtDNA lineages characteristic to the Anatolian demic influx typically 

associated with the advancement of farming technologies. Unlike the Catacomb, the Yamna 

culture was genetically similar to the modern day Ukrainian population, as well as to two 

populations of Carpathian highlanders, Boyko and Lemko, showing that the gene pool of ancient 

farming type cultures more significantly influenced the modern European population structure 

than ancient hunter-gatherer populations. Catacomb people, on the other hand, seem to have been 
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more influenced by hunter-gatherer mtDNA lineages and their genes are not as significantly 

represented in modern European populations.  

 In this thesis method development for the authentication of aDNA using NGS 

technologies was also attempted. While this method produced data unable to answer the original 

question of aDNA damage characterization during this study, important information was 

gathered for the furthering of this method in future aDNA studies using NGS technologies. 

Changes to the way aDNA is extracted as well as downstream sequencing methodology may 

increase the ability for these new technologies to help understand ancient material.   

 

 

 

 

 

 

 

 

 

 

 



55 
 

Literature Cited 

  Andrews, R.M., Kubacka, I., Chinnery, P.F., Lightowlers, R.N., Turnbull, D.M., and 

Howell, N. (1999). Reanalysis and revision of the Cambridge reference sequence for human 

mitochondrial DNA. Nat. Genet. 23, 147. 

  Behar, D.M., van Oven, M., Rosset, S., Metspalu, M., Loogväli, E.-L., Silva, N.M., 

Kivisild, T., Torroni, A., and Villems, R. (2012). A “Copernican” reassessment of the human 

mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684. 

  Bramanti, B., Thomas, M., and Haak, W. (2009). Genetic discontinuity between local 

hunter-gatherers and central Europe’s first farmers. Science 80. 137. 

  Brandt, G., Haak, W., Adler, C.J., Roth, C., Szécsényi-Nagy, A., Karimnia, S., Möller-

Rieker, S., Meller, H., Ganslmeier, R., Friederich, S., et al. (2013). Ancient DNA reveals key 

stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–

261. 

  Brotherton, P., Haak, W., Templeton, J., Brandt, G., Soubrier, J., Jane Adler, C., 

Richards, S.M., Sarkissian, C. Der, Ganslmeier, R., Friederich, S., et al. (2013). Neolithic 

mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 

1764-1774. 

  Burger, J., Kirchner, M., Bramanti, B., Haak, W., and Thomas, M.G. (2007). Absence of 

the lactase-persistence-associated allele in early Neolithic Europeans. PNAS. U. S. A. 104, 

3736–3741. 

  Cooper, A., and Poinar, H. (2000). Ancient DNA: do it right or not at all. Science 80. 

289. 

  Derenko, M. V, Grzybowski, T., Malyarchuk, B. a, Dambueva, I.K., Denisova, G. a, 

Czarny, J., Dorzhu, C.M., Kakpakov, V.T., Miścicka-Sliwka, D., Woźniak, M., et al. (2003). 

Diversity of mitochondrial DNA lineages in South Siberia. Ann. Hum. Genet. 67, 391–411. 

  Derenko, M., Malyarchuk, B., Grzybowski, T., Denisova, G., Rogalla, U., Perkova, M., 

Dambueva, I., and Zakharov, I. (2010). Origin and post-glacial dispersal of mitochondrial DNA 

haplogroups C and D in northern Asia. PLoS One 5, e15214. 

  Der Sarkissian, C. (2011).”Mitochondrial DNA in ancient human populations of 

Europe”. PhD Diss. University of Adelaide Digital Library. 

  Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, 

P., Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase molecules. 

Science 323, 133–138. 



56 
 

 Fang, G., Munera, D., Friedman, D.I., Mandlik, A., Chao, M.C., Banerjee, O., Feng, Z., 

Losic, B., Mahajan, M.C., Jabado, O.J., et al. (2012). Genome-wide mapping of methylated 

adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. 

Biotechnol. 30, 1232–1239. 

  Fu, Q., Meyer, M., Gao, X., Stenzel, U., Burbano, H. a, Kelso, J., and Pääbo, S. (2013). 

DNA analysis of an early modern human from Tianyuan Cave, China. PNAS. U. S. A. 110, 

2223–2227. 

  Gilbert, M.T.P., Willerslev, E., Hansen, A.J., Barnes, I., Rudbeck, L., Lynnerup, N., and 

Cooper, A. (2003). Distribution patterns of postmortem damage in human mitochondrial DNA. 

Am. J. Hum. Genet. 72, 32–47. 

  Gonder, M.K., Mortensen, H.M., Reed, F. A, de Sousa, A., and Tishkoff, S. A (2007). 

Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evol. 24, 757–

768. 

  González, A.M., Larruga, J.M., Abu-Amero, K.K., Shi, Y., Pestano, J., and Cabrera, 

V.M. (2007). Mitochondrial lineage M1 traces an early human backflow to Africa. BMC 

Genomics 8, 223. 

  Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, 

N., Li, H., Zhai, W., Fritz, M.H.-Y., et al. (2010). A draft sequence of the Neanderthal genome. 

Science 328, 710–722. 

  Guba, Z., Hadadi, É., Major, Á., Furka, T., Juhász, E., Koós, J., Nagy, K., and Zeke, T. 

(2011). HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence 

for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary. J. Hum. Genet. 56, 

784–796. 

Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., 

Renfrew, C., Gronenborn, D., Alt, K.W., et al. (2005). Ancient DNA from the first European 

farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018. 

  Haak, W., Balanovsky, O., Sanchez, J.J., Koshel, S., Zaporozhchenko, V., Adler, C.J., 

Der Sarkissian, C.S.I., Brandt, G., Schwarz, C., Nicklisch, N., et al. (2010). Ancient DNA from 

European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 8, e1000536. 

  Haak, W., Brandt, G., de Jong, H.N., Meyer, C., Ganslmeier, R., Heyd, V., 

Hawkesworth, C., Pike, A.W.G., Meller, H., and Alt, K.W. (2008). Ancient DNA, Strontium 

isotopes, and osteological analyses shed light on social and kinship organization of the Later 

Stone Age. PNAS. U. S. A. 105, 18226–18231. 

 Ivanova SV, Petrenko VG, Betchinnikova NE. 2005. Kurgans of ancient herdsmen from 

the South Bug and Dnister interfluve. Odessa: KP OGT, 207 p. 

 



57 
 

 Kalis, A., Merkt, J., and Wunderlich, J. (2003). Environmental changes during the 

Holocene climatic optimum in central Europe-human impact and natural causes. Quat. Sci. Rev. 

22, 33–79. 

  Keller, A., Graefen, A., Ball, M., Matzas, M., Boisguerin, V., Maixner, F., Leidinger, P., 

Backes, C., Khairat, R., Forster, M., et al. (2012). New insights into the Tyrolean Iceman’s origin 

and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698. 

  Keyser, C., Bouakaze, C., Crubézy, E., Nikolaev, V.G., Montagnon, D., Reis, T., and 

Ludes, B. (2009). Ancient DNA provides new insights into the history of south Siberian Kurgan 

people. Hum. Genet. 126, 395–410. 

  Lamers, R., Hayter, S., and Matheson, C.D. (2009). Postmortem miscoding lesions in 

sequence analysis of human ancient mitochondrial DNA. J. Mol. Evol. 68, 40–55. 

  Lazaridis, I., Patterson, N., Mittnik, a., Renaud, G., Mallick, S., Sudmant, P.H., 

Schraiber, J.G., Castellano, S., Kirsanow, K., Economou, C., et al. (2013). Ancient human 

genomes suggest three ancestral populations for present-day Europeans. arXiv preprint 

arXiv:1312.6639. 

  Lee, E.J., Makarewicz, C., Renneberg, R., Harder, M., Krause-Kyora, B., Müller, S., 

Ostritz, S., Fehren-Schmitz, L., Schreiber, S., Müller, J., et al. (2012). Emerging genetic patterns 

of the european neolithic: Perspectives from a late neolithic bell beaker burial site in Germany. 

Am. J. Phys. Anthropol. 148, 571–579. 

  Lee, L.G., Connell, C.R., Woo, S.L., Cheng, R.D., McArdle, B.F., Fuller, C.W., 

Halloran, N.D., and Wilson, R.K. (1992). DNA sequencing with dye-labeled terminators and T7 

DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability 

analysis of termination fragments. Nucleic Acids Res. 20, 2471–2483. 

  Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25, 1754–1760. 

  Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 

Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. 

Bioinformatics 25, 2078–2079. 

  Lillie, M., Potekhina, I., Budd, C., and Nikitin, A.G. (2012) Prehistoric populations of 

Ukraine: Migration at the later Mesolithic to Neolithic transition. In: J. Burger, E. Kaiser und W. 

Schier (Eds.), Population dynamics in Pre- and Early History. New Approaches by using Stable 

Isotopes and Genetics. Berlin: de Gruyter, pp. 79-94 

  Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature. 362, 

709-715. 



58 
 

 Maca-Meyer, N., González, a M., Larruga, J.M., Flores, C., and Cabrera, V.M. (2001). 

Major genomic mitochondrial lineages delineate early human expansions. BMC Genet. 2, 13. 

  Malyarchuk, B., Derenko, M., Grzybowski, T., Perkova, M., Rogalla, U., Vanecek, T., 

and Tsybovsky, I. (2010). The peopling of Europe from the mitochondrial haplogroup U5 

perspective. PLoS One 5, e10285. 

  McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., and Brumfield, R.T. (2013). 

Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. 

Phylogenet. Evol. 66, 526–538. 

  Molodin, V.I., Pilipenko, A.S., Romaschenko, A.G., Zhuravlev, A.A., Trapezov, R.O., 

and Chikisheva, T.A. (2012) Human migrations in the southern region of the West Siberian Plain 

during the Bronze Age  in: J. Burger, E. Kaiser und W. Schier (Eds.), Population dynamics in 

Pre- and Early History. New Approaches by using Stable Isotopes and Genetics. Berlin: de 

Gruyter,. 93–112. 

Mooder, K.P., Tia A. Thomson, Andrzej W. Weber, Vladimir I. Bazaliiskii, and Fiona 

J.Bamforth., (2010). Uncovering the genetic landscape of prehistoric Cis-Baikal. In: Weber, 

A.W., Katzenberg, M.A., Schurr, T.G. (Eds.), Prehistoric Hunter- Gatherers of the Baikal 

Region, Siberia: Bioarchaeological Studies of Past Life Ways. University of Pennsylvania 

Museum of Archaeology and Anthropology, Philadelphia.107-120. 

Nelis, M., Esko, T., Mägi, R., Zimprich, F., Zimprich, A., Toncheva, D., Karachanak, S., 

Piskácková, T., Balascák, I., Peltonen, L., et al. (2009). Genetic structure of Europeans: a view 

from the North-East. PLoS One 4, e5472. 

 Newton, Jeremy R. (2011) "Ancient Mitochondrial DNA From Pre-historic Southeastern 

Europe: The Presence of East Eurasian Haplogroups Provides Evidence of Interactions with 

South Siberians Across the Central Asian Steppe Belt". Masters Theses.Paper 5. 

  Nikitin, A.G., Sokhatsky, M., Kovaliukh, M., and Videiko, M. (2010). Comprehensive 

site chronology and ancient mitochondrial DNA analysis from Verteba cave—a Trypillian 

culture site of Eneolithic Ukraine. Interdiscip Archaeol I, 9–18. 

 Nikitin, A.G., Kochkin, I., June, C., and Willis, C. (2009). Mitochondrial DNA sequence 

variation in the Boyko, Hutsul, and Lemko populations of the Carpathian Highlands. Hum. Biol. 

81, 43-58. 

  Nikitin, A.G. (2011). Bioarchaeological analysis of Bronze Age human remains from the 

Podillya region of Ukraine. Interdiscip. Archaeol. II, 9–14. 

  Nikitin, A.G., Newton, J.R., and Potekhina, I.D. (2012). Mitochondrial haplogroup C in 

ancient mitochondrial DNA from Ukraine extends the presence of East Eurasian genetic lineages 

in Neolithic Central and Eastern Europe. J. Hum. Genet. 00, 1–3. 



59 
 

  Piazza, a, Rendine, S., Minch, E., Menozzi, P., Mountain, J., and Cavalli-Sforza, L.L. 

(1995). Genetics and the origin of European languages. PNAS. U. S. A. 92, 5836–5840. 

 Richards, M.B., Macaulay, V. a, Bandelt, H.J., and Sykes, B.C. (1998). Phylogeography 

of mitochondrial DNA in western Europe. Ann. Hum. Genet. 62, 241–260. 

  Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B., Guida, V., Rengo, C., 

Sellitto, D., Cruciani, F., Kivisild, T., et al. (2000). Tracing European founder lineages in the 

Near Eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276. 

  Robin, E.D., and Wong, R. (1988). Mitochondrial DNA molecules and virtual number of 

mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513. 

  Rohland, N., and Hofreiter, M. (2007). Ancient DNA extraction from bones and teeth. 

Nat. Protoc. 2, 1756–1762. 

Santos, C., Montiel, R., Angle´s, N., Lima, M., Francalacci, P., Malgosa, A. et al. (2004). 

Determination of human Caucasian mitochondrial DNA haplogroups by means of a 

hierarchical approach. Hum. Biol. 76, 431–453. 

  Sanger, F. (1977). DNA sequencing with chain-terminating inhibitors. PNAS 74, 5463–

5467. 

  Schmitt, M.W., Kennedy, S.R., Salk, J.J., Fox, E.J., Hiatt, J.B., and Loeb, L.A. (2012). 

Detection of ultra-rare mutations by next-generation sequencing. PNAS U.S.A. (109), 36, 14508-

14513. 

  Schrøder, N., Pedersen, L., and Bitsch, R. (2004). 10,000 Years of Climate Change and 

Human Impact on the Environment in the Area Surrounding Lejre. JPES 3. 1-27. 

  Skoglund, P., Malmström, H., Raghavan, M., Storå, J., Hall, P., Willerslev, E., Gilbert, 

M.T.P., Götherström, A., and Jakobsson, M. (2012). Origins and genetic legacy of Neolithic 

farmers and hunter-gatherers in Europe. Science 336, 466–469. 

  Skoglund, P., Northoff, B.H., Shunkov, M. V, Derevianko, A.P., Pääbo, S., Krause, J., 

and Jakobsson, M. (2014). Separating endogenous ancient DNA from modern day contamination 

in a Siberian Neanderthal. PNAS. U. S. A. 111, 2229–2234. 

 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 

(2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, 

Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and 

Evolution 28, 2731-2739. 



60 
 

 Thorvaldsdóttir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics 

Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 

14, 178–192. 

  Walker, A., and Smith, S. (1987). Mitochondrial DNA and human evolution. Nature 17, 

127–143. 

  Waples, R.S. (1998). Separating the wheat from the chaff: patterns of genetic 

differentiation in high gene flow species. J. Hered. 89, 438–450.   



61 
 

Figure 1: A network representation of human mtDNA haplogroups from Newton, 2011. This 

diagram shows the mutations separating the major clades of the human mtDNA haplogroups as 

compared with the rCRS human reference mtDNA genome. Mutations, in red, starting with 

16,000 are from the HV1 region of the mtDNA. Mutations marked with restriction enzymes 

denote coding region mutations typically distinguished using restriction cut sites at that locus.  

Figure 2: A modified map from Brandt et al., 2013 Supplementary Information. In this figure, 

the movement of the H haplogroup clades from southwest Europe and the movement of U clades 

are shown. The North Pontic Steppe Region, the location of this study, is circled in blue.  

Table 1: All specimens tested for mitochondrial DNA haplotype in the North Pontic steppe 

region of Ukraine in this study. Superscript numbers next to sample names designate the number 

of repeat extractions from the same bone. Subscript β indicates samples checked on the 

Bioanalyzer for further aDNA quantification. Coding region mutations based on RFLP checks 

are in blue where information is available. Individuals are broken down into their corresponding 

culture based on archaeological findings (Yamna, Catacomb or Eneolithic). Samples in red were 

not able to be resolved over multiple replications and therefore not used in further analysis.  

Table 2: Primer information for all primer sets used in mitochondrial DNA haplotyping of 

people from the North Pontic steppe region in this study. Lower PCR product length primers 

(<84) were used to check for amplified fragment lengths and ratios to find endogenous aDNA 

template molecules. Primer sets H7025 and H12308 were used as mtDNA coding region checks 

for haplogroups H and U respectively.  

Table 3: Pairwise FST values for between modern European populations and the Yamna and 

Catacomb ancient populations. FST values are listed below the diagonal. All FST calculations were 

run using haplogroup frequencies for the cultures listed. Cells shaded green have a non-

significant p-value (>0.05) meaning those population pairs are statistically similar. Cells above 

the diagonal are p-values reported for the FST. 

Table 4: Exact test of population differentiation between the Yamna, Catacomb, and modern 

European populations. Significant p-values (p-value <0.05), in white cells, indicate genetic 

differentiation between population pairs. Green shaded cells indicate non-significant p-values 

(>0.05) and show populations that are genetically similar or are panmictic. 

Figure 3:  Principal Component Analysis of haplogroup frequencies of various cultures of 

different geographic regions during the Mesolithic through the Early Bronze Age. The Yamna 

(YAM) and Catacomb (CAT) cultures are abbreviated in the figure itself. More information 

about the specific cultures is presented and the studies from which the corresponding data 

originate is shown in table 5. Polygons describing the clustering of the cultures focused on in this 

study are labeled in blue.  
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Figure 4: An example Bioanalyzer output for the L8 sample. DNA concentrations are shown at 

the bottom of the output. For this sample, a concentration of 1,594 picograms per microliter was 

obtained. The total distribution and concentration of the varying DNA fragment sizes are shown 

on the graphical output.  

Figure 5: BWA and IGV genome alignment of the 7 million single-end sequencing reads 

generated in the sequencing of the L8 specimen in this study. The top picture shows an area 

where sequences are giving overlapping consensus coverage for a particular region of the 

Actinoplanes reference genome. The bottom picture shows the BWA output of the number of 

sequences aligned to the Actinoplanes reference genome. Colored dashes in the IGV alignment 

show variants between the mapped reads and the reference genome.  

Table 5: Culture haplogroup frequency data represented in the PCA analysis of Figure 1. 

Cultures are identified, and the abbreviations used in the PCA graph are given. Since data from 

the literature was combined for this analysis, the source of each cultures mtDNA haplogroup 

data is also listed in this table.  
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Figure 1: Schematic of Human mtDNA Haplogroups 
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Figure 2: Map of Europe with mtDNA Haplogroup Movement and the North Pontic Steppe Region 
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Specimen ID Culture Age (BP) Coding and HV1 SNPs Halogroup 

R3.13
3 Catacomb (Ingul) 3,940±60 16270T U5 

D1.12
2 Catacomb 3,900±80 rCRS H 

D1.11
2
 Catacomb (Ingul) 3,720±70 rCRS, 7028C H 

R3.19
3
 Eneolithic (main burial) 5,450±80 16356C, 12308G U4 

K1.10
2 Eneolithic (main burial) 4,950±70 rCRS H 

L11
2 KMK 3,230±70 16067T, 16192T HV1a2 

L19
1 Yamna 4,030±60 16241G, 16270T, 12308G U5 

R3.7
2 Yamna 3,910±60 16192T, 16256T, 16270T U5a 

R3.16
2 Yamna 4,135±60 16174C-A, 16311C, 

12308G 
U (U5b1c?) 

D1.10
2
 Catacomb N/A 16179T, 16224C, 

16265G, (16270T?), 

16295Ains, 16311C 

K / Contamination 

K2.1
4 Eneolithic (main burial) 4,270±90 Inconsistent pattern Not Determined 

Lab personnel 1   16134C-T, 16356T-C U4a1 

Lab personnel 2   16134C(ins), 16224T-C, 

16311T-C 
K 

Lab personnel 3   16007A-G, 16134C-T, 

16234C-T, 16356 T-C 
U4a1c 

Lab personnel 4   16126T-C, 16163A-G, 

16186C-T, 16189T-C, 

294C-T 

T1 

Lab personnel 5   16068T-C, 16126T-C, 

16235A-G, 16265A-C 
R* 

Lab personnel 6   16304T-C H5a 

Archeologist 1   rCRS H 

Table 1: Specimen data for individuals in this study  
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Table 2: Primers used for mtDNA Haplotyping  

Primer 

Name  

Primer Sequence Product 

length 

Region of Coverage 

(mtDNA) 

Primer Source 

HV1-1F CAAGCAAGTACAGCAATCAACC 64 16201-16264 This Study 

HV1-1R GAGGGGTGGCTTTGGAGT   This Study 

HV1-2F CACATCAACTGCAACTCCAAA 63 16234-16296 This Study 

HV1-2R GGGTGGGTAGGTTTGTTGGT   This Study 

HV1-3F CCCTCACCCACTAGGATACC 73 19260-16333 This Study 

HV1-3R TGTACGGTAAATGGCTTTATG   This Study 

HV1-4F CAAACCTACCCACCCTTAACA 84 16282-16365 This Study 

HV1-4R GGGACGAGAAGGGATTTGAC   This Study 

L15993 ACTCCACCATTAGCACCCAA 142  15994–16092 Nikitin et al., 2012 and 

Newton, 2011 

H16093 GGTGGCTGGCAGTAATGTACGAA   Nikitin et al., 2012 and 

Newton, 2011 

L16085  TGACTCACCCATCAACAACCGC 145 16086–16188 Nikitin et al., 2012 and 

Newton, 2011 

H16189  CTTGCTTGTAAGCATGGGGA   Nikitin et al., 2012 and 

Newton, 2011 

L16163 ACTTGACCACCTGTAGTACATAA 161 16164–16277 Nikitin et al., 2012 and 

Newton, 2011 

L16265  GTTAAGGGTGGGTAGGTTTGTTGG   Nikitin et al., 2012 and 

Newton, 2011 

H16278  GCAACTCCAAAGCCACCCCTCA 164 16266–16385 Nikitin et al., 2012 and 

Newton, 2011 

H16386  GATGGTGGTCAAGGGACCCCTA   Nikitin et al., 2012 and 

Newton, 2011 

7025H-F CCGTAGGTGGCCTGACTGGC 123 6950–7051 Santos et al., 2004 

7025H-R TGATGGCAAATACAGCTCCT   Santos et al., 2004 

12308U-F CACAAGAACTGCTAACTCATGC 123 12217–12308 Santos et al., 2004 

12308U-R ATTACTTTTATTTGGAGTTGCACCAAGATT   Santos et al., 2004 
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 Boyko Hutsul Lemko Hungary Poland Romania Belorussia Croatia(M

ainland) 

Czech Russia Ukraine Yamna 

(Ancient) 

Catacomb 

(Ancient) 

Boyko - 0.01802

+-0.0121 

0.20721

+-0.0451 

0.00901+

-0.0091 
 

0.01802

+-0.0121 

0.09910+

-0.0252 

0.03604+-

0.0148 

0.00901+-

0.0091 

0.02703+-

0.0139 

0.13514+-

0.0365 

0.08108+-

0.0286 

0.90090+-

0.0236 

0.00000+-

0.0000 

Hutsul 0.0758 - 0.05405

+-0.0201 

0.59459+

-0.0364 

0.34234

+-0.0354 

0.54955+

-0.0417 

0.17117+-

0.0316 

0.81081+-

0.0304 

0.62162+-

0.0438 

0.18919+-

0.0344 

0.56757+-

0.0651 

0.00901+-

0.0091 

0.00000+-

0.0000 

Lemko 0.00921 0.01664 - 0.00901+
-0.0091 

0.00901
+-0.0091 

0.22523+
-0.0244 

0.04505+-
0.0203 

0.00901+-
0.0091 

0.13514+-
0.0412 

0.05405+-
0.0201 

0.17117+-
0.0286 

0.03604+-
0.0148 

0.00000+-
0.0000 

 

Hungary 0.08505 -0.0063 0.0336 - 0.12613

+-0.0278 

0.13514+

-0.0339 

0.12613+-

0.0278 

0.29730+-

0.0490 

0.09910+-

0.0252 

0.07207+-

0.0297 

0.26126+-

0.0394 

0.00000+-

0.0000 

0.00000+-

0.0000 

Poland 0.04337 0.00039 0.01622 0.00394 - 0.09009+

-0.0235 

0.13514+-

0.0244 

0.09910+-

0.0212 

0.55856+-

0.0425 

0.65766+-

0.0385 

0.67568+-

0.0668 

0.00000+-

0.0000 

0.00000+-

0.0000 

Romania 0.03294 -0.0025 0.0028 0.00783 0.00271 - 0.00000+-

0.0000 

0.19820+-

0.0379 

0.57658+-

0.0609 

0.25225+-

0.0402 

0.48649+-

0.0364 

0.00000+-

0.0000 

0.00000+-

0.0000 

Belorussia 0.04079 0.01196 0.02787 0.00839 0.00493 0.01589 - 0.07207+-

0.0227 

0.10811+-

0.0227 

0.27928+-

0.0438 

0.45045+-

0.0407 

0.03604+-

0.0148 

0.00000+-

0.0000 

Croatia(Mainland) 0.06247 -0.0086 0.02434 0.00145 0.00356 0.0042 0.01179 - 0.26126+-

0.0566 

0.02703+-

0.0139 

0.76577+-

0.0455 

0.00000+-

0.0000 

0.00000+-

0.0000 

Czech 0.04085 -0.0047 0.00893 0.00539 -0.0015 -0.0024 0.01 0.00114 - 0.48649+-

0.0474 

0.50450+-

0.0546 

0.00000+-

0.0000 

0.00000+-

0.0000 

Russia 0.02968 0.00561 0.0113 0.00732 -0.0012 0.0013 0.0009 0.00672 -0.0004 - 0.64865+-

0.0446 

0.00000+-

0.0000 

0.00000+-

0.0000 

Ukraine 0.03276 -0.0057 0.01691 0.00405 -0.0039 -0.0006 -0.0009 -0.00639 -0.0039 -0.0025 - 0.02703+-

0.0139 

0.00000+-

0.0000 

Yamna(Ancient) -0.0224 0.08078 0.02349 0.09219 0.05685 0.05068 0.03639 0.07202 0.05651 0.04203 0.03899 - 0.00000+-

0.0000 

Catacomb 

(Ancient) 

0.13197 0.14082 0.13838 0.13538 0.13114 0.14026 0.07997 0.12288 0.13778 0.11885 0.10811 0.07882 - 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Pairwise FST with Yamna and Catacomb against modern European human populations.  
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Boyko Hutsul Lemko Hungary Poland Romania Belorussia 

Croatia(M

ainland) 
Czech Russia Ukraine 

Yamna 

(Ancient) 

Catacom

b 
(Ancient) 

Boyko 0             

Hutsul 0.01034+
-0.0021 

0            

Lemko 0.31218+

-0.0086 
0.26804+

-0.0101 
0           

Hungary 0.00019+
-0.0002 

0.06234+
-0.0059 

0.00016+
-0.0002 

0          

Poland 
0.00755+

-0.0019 
0.06202+

-0.0047 
0.00310+

-0.0007 

0.05411+

-0.0048 

 

0         

Romania 0.10425+

-0.0075 
0.51781+

-0.0121 
0.07727+

-0.0063 
0.01171+

-0.0012 
0.00461+

-0.0014 
0        

Belorussia 0.02308+
-0.0022 

0.06305+
-0.0056 

0.00407+
-0.0010 

0.06405+
-0.0086 

0.38251+
-0.0143 

0.00991+
-0.0019 

0       

Croatia(Mainland

) 

0.00237+

-0.0007 
0.46556+

-0.0077 
0.00002+

-0.0000 
0.00222+

-0.0007 
0.00000+

-0.0000 
0.00689+

-0.0019 
0.00000+-

0.0000 
0      

Czech 0.00881+
-0.0018 

0.50363+
-0.0129 

0.05498+
-0.0032 

0.00658+
-0.0018 

0.36067+
-0.0090 

0.23781+
-0.0153 

0.11766+-
0.0086 

0.00343+-
0.0007 

0     

Russia 0.01776+

-0.0029 
0.04225+

-0.0057 
0.00558+

-0.0015 
0.02436+

-0.0032 
0.54953+

-0.0139 
0.06819+

-0.0077 
0.57428+-

0.0115 
0.00000+-

0.0000 
0.20376+-

0.0154 
0    

Ukraine 0.08986+
-0.0080 

0.28263+
-0.0100 

0.02802+
-0.0030 

0.02189+
-0.0018 

0.11401+
-0.0084 

0.46261+
-0.0092 

0.09001+-
0.0050 

0.90393+-
0.0047 

0.20180+-
0.0081 

0.22343+
-0.0139 

0   

Yamna(Ancient) 0.93196+

-0.0028 
0.00615+

-0.0009 
0.24317+

-0.0062 
0.00000+

-0.0000 
0.00673+

-0.0022 
0.00806+

-0.0020 
0.02977+-

0.0031 
0.00013+-

0.0001 
0.00674+-

0.0018 
0.00606+

-0.0014 
0.05061+

-0.0032 
0  

Catacomb 
(Ancient) 

0.00198+
-0.0005 

0.00575+
-0.0016 

0.00024+
-0.0002 

0.00026+
-0.0002 

0.00000+
-0.0000 

0.00003+
-0.0000 

0.00811+-
0.0015 

0.00146+-
0.0008 

0.00000+-
0.0000 

0.00026+
-0.0001 

0.00326+
-0.0011 

0.00364+
-0.0012 

0 

 

 

Sources of Population Data for FST and Exact Test of Population Differentiation: 
Boyko: Nikitin, A et al.. (2009).  
Hutsul: Nikitin, A et al.. (2009).  

Lemko: Nikitin, A et al.. (2009).  

Hungary:Semino et al (2000).  
Poland:Malyarchuk  et al. (2002) 

Romania:Bosch et al. (2005) 

Belorussia:Belyaeva et al. (2003) 
Croatia (Mainland):Pericic et al. (2005) 

Czech:Malyarchuk et al. (2006) 

Russia:Malyarchuck and Derenko (2001) 
Ukraine: Malyarchuck and Derenko (2001)  

Yamna (Ancient): This study, Wilde et al., 2014 and Newton, 2011.  

Catacomb (Ancient): This study, Wilde et al., 2014. 

 

Table 4: Exact Test of Population Differentiation for Yamna and Catacomb against modern European human populations.  



69 
 

 

BANR 

LBK 

RSC 

SCG BAC 
SMC 

BEC 

CWC 

BBC 

UC FBC 

PWC 
HGS  

CAR 

NPO 

NBQ 

TRE 

MNR 

YAM 

CAT 

ENE 

TYP 

NNPR 

NSI 

ALF 

AND 

SEBA 

-4

-3

-2

-1

0

1

2

3

4

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

P
C

2
- 

1
1

.3
5

%
 

PC1- 19.82% 

PCA of Ancient Culture Haplogroup Frequencies 

BANR

LBK

RSC

SCG

BAC

SMC

BEC

CWC

BBC

UC

FBC

PWC

HGS

CAR

NPO

NBQ

TRE

MNR

YAM

CAT

ENE

TYP

NNPR

NSI

ALF

AND

SEBA

Figure 3: 



70 
 

 

Figure 4: L8 Bioanalyzer Output 
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Aligned Reads 

 

Variation from Reference Sequence 

Figure 5: Example IVG and BWA Actinoplanes Alignment 
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Population abbr. Papers 

Bronze Age Northern Russia BANR Der Sarkissian 2013 dissertation 

Linear Pottery culture LBK Haak et al. 2005, Haak et al. 

2010, Brandt et al. 2013 

Rössen culture RSC Brandt et al. 2013 

Schöningen group SCG Brandt et al. 2013 

Baalberge culture BAC Brandt et al. 2013 

Salzmönde culture SMC Brandt et al. 2013 

Bernburg culture BEC Brandt et al. 2013 

Corded Ware culture CWC Haak et al. 2008 , Brandt et al. 

2013 

Bell Beaker culture BBC Brandt et al. 2013 

Unetice culture UC Brandt et al. 2013 

Funnel Beaker culture FBC Malmström et al. 2009, Skoglund 

et al. 2012 , Bramanti et al. 2009  

Pitted Ware culture PWC Malmström et al. 2009, Skoglund 

et al. 2012  

Hunter-Gatherer south HGS  Chandler 2003, Chandler et al. 

2005 , Hervella 2010, Hervella et 

al. 2012 , Snchez-Quinto et al. 

2012  

(Epi)Cardial CAR Gamba et al. 2011 , Lacan 2011, 

Lacan et al. 2011b  

Neolithic Portugal NPO Chandler 2003, Chandler et al. 

2005  

Neolithic Basque Country & 

Navarre 

NBQ Hervella 2010, Hervella et al. 

2012  

Treilles culture TRE Lacan 2011, Lacan et al. 2011a  

Mesolithic Northern Russia MNR Der Sarkissian et al. 2013  

Yamna YAM This Study, Wilde et al. 2014, 

Newton 2011 

Catacomb CAT This Study, Wilde et al. 2014, 

Newton 2011 

Eneolithic ENE This Study, Wilde et al. 2014, 

Newton 2011 

Trypillia  TYP Nikitin 2010 

Neolithic NPR NNPR Nikitin 2012 

Neolithic Siberia NSI Mooder et al., 2010.  

Alfold ALF Guba 2011, Burger 2007 

Bronze Age Siberia- Androvo AND Molodin et al., 2012, Keyser et 

al. 2009.  

Siberia-Early Bronze Age SEBA Molodin et al. 2012, Mooder et 

al., 2010.  

 

Table 5: Source data and culture abbreviations for PCA.  
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