
Grand Valley State University
ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

4-26-2007

Constraining Protein Structure Simulation with
Aggregate Data Using Robotic Techniques
Eric Bracey
Grand Valley State University

Follow this and additional works at: http://scholarworks.gvsu.edu/theses

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted
for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact
scholarworks@gvsu.edu.

Recommended Citation
Bracey, Eric, "Constraining Protein Structure Simulation with Aggregate Data Using Robotic Techniques" (2007). Masters Theses. 725.
http://scholarworks.gvsu.edu/theses/725

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarworks@GVSU

https://core.ac.uk/display/32451403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.gvsu.edu?utm_source=scholarworks.gvsu.edu%2Ftheses%2F725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gvsu.edu/grcp?utm_source=scholarworks.gvsu.edu%2Ftheses%2F725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gvsu.edu/theses/725?utm_source=scholarworks.gvsu.edu%2Ftheses%2F725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu


Constraining Protein Structure Simulation with 
Aggregate Data Using Robotic Techniques 

Eric Bracey, Grand Valley State University 
Hansye Dulimarta, Ph.D., Advisor

April 26, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

This approach to protein simulation uses Protein Data Bank information to construct 

useful, simple, geometric constraints that can be applied to a protein simulation. We 

compiled experimental data for proteins with between 30-90 residues and analyzed the 

relationship between their sizes, defined as the radius of a sphere that encloses the 3D 

structure; the maximum distanee between any two residues and the number of residues in 

the protein. A significant relationship was found and the analysis was used to predict the 

ranges that the size and maximum distance between residues would have for a protein 

with a given number of residues. These ranges were used to constrain folding from 

secondary structures for proteins IROP and IHDD and, using a random path planning 

approaeh, produced results that were not terribly aeeurate, but quite fast, suggesting that 

the constraint would be most useful as an inexpensive addition to an existing technique.
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1. Introduction

Perhaps the most challenging and important problem in molecular biology today is the 

prediction of protein structure. As the building blocks of all living organisms, proteins 

are the focus of biochemical research. Understanding their chemistry, their construction 

and their function is vital to understanding how life works. And the key to understanding 

their function lies in understanding their structure.

The gold standard for determining protein structure is x-ray crystallography, but this 

technique is not suitable for all proteins, nor is it always possible to interpret the results.

If certain conditions can’t be met, and this is not uncommon, x-ray crystallography alone 

can’t tell the observer what the protein looks like. (Branden 1991) One important use of 

computer simulations of protein structure is to suggest, with a fairly high degree of 

certainty, what a protein might look like, either by filling in gaps (references) or by 

suggesting a complete structure.

To date, there have been many attempts, using many different approaches, to find a 

reliable way to prediet the structure of proteins and the way they fold into that structure. 

While there have been successes, especially with smaller proteins, simulating protein 

structure has proven to be a difficult problem for several reasons. The primary one is that 

even though a protein has a structure it is most likely to assume, finding that most likely 

strueture can be prohibitively expensive beeause of the large number of degrees of 

freedom involved. Theoretically, it is possible to compute the structure of a protein given 

only its amino acid sequence, but, because of the huge number of possible configurations.
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calculating that structure for larger proteins would take until the end of time given current 

methods and technology.

For this reason, much of the research on the subject has tried to find ways to shorten the 

time needed to do a simulation. Many methods have been tried and some of those will be 

discussed below, but one of the more ingenious has been the application of robotic 

motion planning techniques to the problem of protein formation. (Amato, Dill et al.

2003)

At first glance, the connection between the two is not obvious, but the key lies in viewing 

a protein as a chain of amino acids (figure here). In robotics, one of the most studied 

problems is how to move an articulated robot arm. An arm can be viewed as a chain, 

with one or more degrees of freedom at each joint, and so can a protein. By making this 

connection, it is possible to apply some of the concepts and algorithms of robotics to 

protein structure simulation, (references) Since robot arms are designed to move in real 

time, there has been a considerable amount of effort devoted to inventing faster 

algorithms for robot motion planning (references to robot motion planning algorigthms) 

and this research has been productively applied to proteins. (Gupta 1998)

One kind of motion planning algorithm, known as random path planning, takes advantage 

of the likelihood that there is more than one path from one configuration to another, 

(reference) According to recent research, proteins likely have the same property, 

(reference) so the algorithm has been applied productively to the study of protein folding.
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(reference) The disadvantage of random path planning as applied to proteins is that the 

configuration space is based on two known configuration, the protein’s fully extended 

state and its fully folded state. A useful extension would be an alternative method of 

creating configurations, which is what the experiment described in this paper attempts to 

do, by using the information compiled on many proteins to make some predictions about 

the expected size of a protein, which is used as a basis for creating a configuration space.

In this paper, we will focus primarily on the reasoning and the techniques involved in 

creating such a configuration space as a means of exploring the idea’s feasibility. 

Possible applications, which will be discussed in greater detail in the Future Directions 

section of this paper, could include using the technique as a filter, limiting the 

configuration space another technique works with, (reference) or as the basis for the 

creation of an ab initio configuration space. The rest of this paper will give some 

background on proteins, robotic techniques and their intersection, in order to provide a 

context for the actual experiment.

2. Basics of Proteins

2.1. The Central Dogma

The process of building a protein starts in the cell’s DNA. While exploring all the 

complexities of DNA and the translation of its information into a protein is beyond the 

scope of this paper, a brief, and simplified, summary of the process is in order.
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An organism’s genome is the complete set of DNA that encodes all the information 

needed to build the proteins that constitute it. DNA itself is composed of two connected 

strands of nitrogenous bases, linked by a sugar-phosphate backbone. The four bases are 

Adenine (A), Thymine (T), Cytosine (C) and Guanine (G). The two strands mirror each 

other in a predetermined fashion, with A always linked to T and C always linked to G. 

The bases are grouped into triplets, known as codons, which can potentially represent an 

amino acid, a protein’s starting point or a protein’s ending point. Though there are sixty- 

four possible combinations of codons (43), they only represent twenty-five distinct 

entities. Of these, twenty-two are amino acids, though two of these are extremely rare; 

two are stop codons; and one is the start codon. Often, only the first two elements of the 

codon are sufficient to encode the amino acid and the third element of the codon is 

redundant. (Bergeron 2003)

A protein is derived from a sequence of codons in the DNA which are delimited by start 

and stop codons. When a protein needs to be formed, the appropriate DNA is chemically 

split and one of the strands is replicated as messenger RNA (mRNA). The messenger 

RNA is passed through the nucleus membrane and into the cytoplasm where the 

particular sequence needed to produce the desired protein is edited out. Once the correct 

sequence has been assembled, it is fed into a ribosome, which is a cone-shaped biological 

factory that creates proteins. Beginning from the start codon, the codons tell the 

ribosome which amino acids to form and in what order, continuing to the stop codon. As
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the amino acids are produced, they emerge, linked together in a long chain, from the 

ribosome.

mRNA

DNA

fiponscr’ipfhtt

RNA

tn a tsh th f!

Protein

Figure 1. DNA transcription and transport 

2.2. Basic Chemistry of Proteins

As mentioned before, a protein is a long chain of amino acids linked together. 

Structurally and chemically, each amino acid is built around a central carbon atom
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(Calpha) which is linked to four distinct elements: an amino group, a carboxyl group, a.

Side
chain

I
p j  C  Carboxyl

Amino |

H  ^

Figure 2. Generic Amino Acid Structure

lone hydrogen atom and a side chain. Only the side chains differ amongst the twenty 

common amino acids, the other elements are common to all.

The amino acids are linked end-to-end by peptide bonds, which are formed when the 

amino group of one amino acid combines with the carboxyl group of the one following it, 

linking the nitrogen atom of the amino group with the carbon of the carboxyl group and 

shedding a water molecule.

carboKyl 
tertmnus

»
H3N Y

Figure 3. Protein chain

This means that the protein will always start with a free amino group at the start and a 

free carboxyl group at the end. (Clote 2000) Each link in the chain, therefore, is made
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up of the central carbon atom, which is still linked to the side chain and hydrogen atom it 

began with, flanked by one (at the ends of the chain) or two peptide bonds. Links in the 

chain are commonly called residues. Other types of chemical bonds can develop between 

the residues in a protein, and can influence or stabilize its final structure. Proteins found 

in nature can range from as few as ten residues (though proteins that have fewer than 20 

residues are often referred to as peptides and do not form complex 3-D structures) to as 

many as a 1000, but tend to average around 200 -  350 residues.

The peptide bonds between the residues are nearly rigid, but the connections between 

Calpha and the peptide bonds flanking it are not. On one side, Calpha is connected to the 

nitrogen atom remaining from its amino group and on the other to the carbon atom (C ) 

remaining from its carboxyl group. Therefore, each residue has two dihedral degrees of 

freedom at these points which give the protein the flexibility to fold. The angle of 

rotation around the N-Calpha bond is commonly called phi (0) and that around the 

Calpha-C’ bond is commonly called psi (T). Generally, these are assumed to rotate 

around the Z-axis. The range of motion for these two angles is limited by possible 

collisions between the side chains and the main chain. These physical limits are 

commonly referred to as steric limits and the collisions are referred to as steric collisions. 

It is possible to plot what combinations of angles are possible for phi and psi depending 

on the composition of the side chains. This diagram is called a Ramachandran plot after 

its originator. (Ramachandran 1968)
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Figure 4. Ramachandran plot showing secondary structure correlation

For most residues, the same combinations of angles are possible, and these substantially 

limit the range of motion. The chief exception is the amino acid Glycine which has only 

an hydrogen atom for a side chain, giving it a much wider range of motion without steric 

clashes because of its small size. (Branden 1991)

Steric collisions are not the only important constraint on a protein’s possible 

configuration. Most residues have side chains that are hydrophobic, repelled by water, or 

hydrophilic, attracted by water, and this has a major influence on how a protein is 

structured. In general, a protein folds so that its hydrophobic side chains are clustered in 

the core of the protein, away from the water that permeates the cell, and with its 

hydrophilic side chains on the outside of the protein.

10
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2.3. The Folding Process

As soon as the protein begins to emerge from the ribosome, it begins the folding process, 

so the protein begins assuming its final shape even before the ribosome finishes 

producing it. There are many different types of proteins, and great variation in structure 

between them. As a protein folds, the hydrophobic and hydrophilic side chains interact 

with the watery medium in the cell and begin pushing the protein into the shape it will 

assume. Steric collisions and intra-molecular forces limit the protein’s range of motion 

and push or pull its residues apart. In some cases, helper molecules interact with the 

protein chain and further influence the folding process. Given all this complexity, how 

can any system, any pattern, be determined for the folding process?

As mentioned above, there is no way to accurately compute what a protein’s structure 

should be based only on its amino acid sequence. Molecular biologists have used x-ray 

crystallography to determine what the actual structure of proteins is. While this hasn’t 

yielded a general, over-arching rule for protein formation, it has given biologists enough 

information to talk about the folding process as having three or four stages, depending on 

the protein. These are called, naturally enough, the primary, secondary, tertiary and 

quaternary structures. On its journey to its final shape, the protein passes through these 

structures, which are intermediate steps on its way to its final, stable form

The primary structure is a line consisting of the long chain of amino acids and is more 

theoretical than actual, since folding begins as soon as the protein starts forming. The

11
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secondary structure forms largely as the result of the interaction of hydrophobic and 

hydrophilic side chains. The main chain of a protein, the backbone, is hydrophilic and so 

resists being folded into the core away from water. Because of this, an hydrophobic side 

chain and the hydrophobe main chain it is attached to pull in opposite directions, making 

it difficult for the protein to stably fold. The secondary structure of a protein deals with 

this by folding in such a way that the hydrophilic properties of the main chain are 

neutralized by hydrogen bonds between residues on the chain. (Branden 1991)

In general, this means that local areas of the protein from into secondary structures of one 

of two types: alpha helices or beta sheets. These are regular structures which occur 

when the forces at play in the protein force phi and psi angles to be the same, causing the 

creation of hydrogen bonds that stabilize the structure into a helice or sheet shape. Most 

proteins consist of combinations of the two types, though the beta sheet formation is 

more common. The secondary structures are connected to each other by portions of the 

amino acid chain of the protein that have not coalesced into helice or sheet forms.

Once the protein has settled into its secondary structure, it folds into its tertiary structure. 

The tertiary structure arranges the secondary structural elements, usually alpha-helices 

and beta-sheets into a final shape, arranging regions that didn’t fall into a secondary 

structure appropriately, generally into different loop configurations that arrange the 

hydrophobic sides of the secondary structure so that they face into the core of the protein, 

away from the watery medium of the organism. For proteins that consist of only one 

amino acid chain, this is the final step in the folding process.

12
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For proteins consisting of more than one amino acid chain, there is one more step in the 

folding process: quaternary structure. These proteins are especially idiosyncratic and are 

often referred to as protein complexes to differentiate them from proteins that consist of a 

single chain. The simulation techniques discussed in this paper do not attempt to 

describe quaternary structure.

As mentioned in the introduction, in the course of folding, a protein can potentially take 

many paths to its native state, or minimum energy configuration, (reference) This 

configuration is defined as the one in which the protein has the least possible free energy 

and is at its most stable. As shown in the figure below, the transition from an unfolded to 

folded state is not usually a smooth one, as its possible for the protein to become 

temporarily stuck in local minima before reaching the native state. As the protein nears 

its native state, the number of potential pathways decreases and local minima may 

become harder to recognize. In reality, some proteins may not have one stable low 

energy configuration, but several, though simulations assume only one.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



«*f Mrt

m 1*
Ui i *

nnvfntnp' of r.jud-w
^|wr't“Di

Figure 5. Free energy landscape

2.4. Protein Simulation

Since proteins can be x-rayed, why is finding a way to simulate their structure so 

important? The primary reason, as briefly mentioned in the introduction, is that x-ray 

crystallography has serious limitations. Not all proteins can he crystallized, especially 

membrane proteins, and making a crystal is a painstaking process that doesn’t always 

produce usable crystals. Even if  one gets an usable crystal, the medium of the crystal is 

very different from the medium the protein works in, so there are likely differences 

between the measured configuration and the real world configuration. But the biggest

14
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obstacle is that not all the results from doing x-ray crystallography of protein crystals can 

be interpreted, because of the phase angle problem. (Branden 1991) An x-ray 

crystallography is taken by sending an x-ray stream through the crystal which diffracts 

and creates a pattern on the film or electronic device. Since the results are saved in a 2-D 

form, an interpreter needs to know enough information to translate them back into a 3-D 

form. Unfortunately, the film only shows the amplitude of the wave that created it. The 

wavelength is known because this is controlled by the experimenter, but the phase of the 

wave, which is the last piece of information needed to figure out where the atom 

represented by a spot on the film is, is not.

In crystallography, there are a couple of methods used to work around this problem. 

These are molecular replacement and heavy metal soaking, which involve comparisons to 

known structures and trying to insert heavy metal atoms into the crystal, respectively. 

Unfortunately, these methods do not work in all cases and, even if  a result is obtained, 

not all results are reliable. Many variables, including the quality of the crystal, can cause 

them to be inaccurate. One way to double-check results or to provide a basis for 

interpreting what a protein x-ray shows is to do a computer simulation.

Given infinite time, a computer simulation could examine all possible configurations of a 

protein and diseover its preferred or native configuration. Since no one has infinite time, 

the big challenge in computer simulation of protein structure is to find a way to produee 

reasonably accurate simulations in a reasonable amount of time. The obvious way to do 

this is to try to find ways of limiting the number of configurations you need to examine

15
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while doing your simulation. Unfortunately, the simplifications and assumptions needed 

to bring the computation time down to a reasonable level force a tradeoff between time 

and the quality of the simulation.

As you look at larger proteins, and the average protein is considered quite large when 

doing simulations, the computation time becomes an insurmountable obstacle, though 

large advances have been made over the years. Even so, existing simulation techniques 

have proven useful, especially in conjunction with x-ray crystallography, in providing a 

realistic starting point for the interpretation of crystallographic data. For smaller proteins, 

simulations are capable of generating precise models. Most simulation approaches fall 

into two broad categories, comparative and structural. This paper’s approach is a 

synthesis of the two, so both will be discussed.

2.4.1. Comparative Approaches to Simulation

Comparative approaches use the existing data on protein structure gained from prior 

x-ray crystallography. The genetic sequence or amino acid sequence of a protein of 

unknown structure is compared to the sequences of proteins with known structures in 

an attempt to find the closest fit. Where the sequences match, it is probable that their 

structures will also match. Obviously, sequences that exactly match are the best 

indicator, but near matches are also likely to have similar structures since protein 

structure and function are often not affected by the substitution for one amino acid for 

another in a protein’s sequence. Such substitutions are common over time, due to 

mutations, and biologists have determined the likelihood that one amino acid will

16
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mutate to another. This information is usually presented in grid form, like the 

Blosum substitution matrix, which lists the twenty common amino acids on each axis 

and lists the probability that one will mutate to another. (Bergeron 2003) This kind 

of data is a useful tool for refining possible matches. Often, proteins with small 

variations in their amino acid sequences due to mutations will maintain the same 

shape as their predecessors, so this can be an effective way of predicting the novel 

structure. Protein threading, which tries to match both the sequence and the shape 

simultaneously, is an interesting example of this approach. (Clote 2000)

In the absence of strongly similar proteins, however, the comparative method gives poor 

results. The method can instead focus on trying to resolve secondary structure by 

identifying the portions of the structure most likely to resolve themselves into alpha- 

helices, beta-sheets or combinations. This has met with some success, but a high success 

rate for secondary structure predictions is still only in the 75% range, (Rost 2001) which 

leaves plenty of room for improvement.

2.4.2 Structural Approaches to Simulation

Purely structural approaches try to determine what a protein’s structure is based only on 

its amino acid sequence, or an ab initio approach. The basic assumption behind these 

approaches, which has not yet been proven, is that there exists a configuration for the 

protein that results in the lowest possible total energy to maintain it, and this 

configuration is the preferred or native configuration for that protein. The total energy is 

viewed as a combination of the different forces at work in the protein, including Van der

17
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Waals forces, the hydrophobic factor, electrostatic force between charged amino acids 

and the Leonard-Jones potential. Currently, there is no accepted standard energy function 

and several different approximations have been used.

A key for many energy functions is the Boltzmaim distribution. This was originally 

devised in the late nineteenth century by L. Boltzmann to describe the energy level of a 

volume of molecules in an ideal gas at a certain temperature. It has been discovered by 

compiling tables of relationships between amino acid residues in known struetures that 

the distance and, presumably, the energy, between pairs also follows a Boltzmann 

distribution. (Clote 2000)

acW tion
ewEY

energy

Figure 6. Boltzmann distribution for gases

Therefore, an energy function for a protein can be derived by comparing the Euclidean 

distances between proteins to the experimentally observed distances to get the probability 

that a given configuration is near the energy minimum. By summing these values for all 

pairs of contiguous amino acids, you get the total energy for the entire configuration. 

(Sippl 1990) One of the interesting characteristics of this distribution is that it is based on 

temperature. At low positive temperatures the distribution assumes the shape shown in 

the diagram above; at high temperatures it approaches a normal distribution.

18
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With an energy function based on distance between residues, it is now possible to 

simulate a protein from ab initio. By changing a configuration randomly a few residues 

at a time and retesting the energy function, it is theoretically possible to eventually find 

the lowest energy configuration, though special provisions have to be made to avoid local 

minima. This is commonly referred to as the Monte Carlo technique and many 

refinements and variations exist. Simulated annealing is one variant of Monte Carlo 

simulation that adds the technique of changing the simulated temperature in order to 

cause greater perturbations by altering the probabilities of the Boltzmann distribution, 

which changes shape as the temperature increases. The expectation is that greater 

variations will give a greater chance of avoiding local minima, but this is not guaranteed. 

This process is designed to shake the simulated protein out of any local minima by 

simulating its heating and cooling, causing it to unfold and refold. (Kirkpatrick 1983) 

Unfortunately, these approaches are NP-hard, i.e. there is no guarantee of finding a 

solution without searching the entire problem space, which is practically unsolvable with 

a protein of any size. (Clote 2000)

A common method of representing a protein is to abstract it as a 2D or 3D lattice with the 

following assumptions:

• All bond lengths are equal.

• All residues are the same size.

• All residues must be located at points in the lattice. (Clote 2000)

19
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Sippl’s energy model, based on Euclidean distance, doesn’t work well with the 

assumption that all bond lengths are equal, so other energy models are used in a lattice 

model. One example is the HP model, which simplifies the problem by focusing on 

protein’s hydrophobic properties. The energy between pairs is represented by a simple 

matrix, where hydrophobic residues are represented by H and other residues are 

represented by P:

rl H P

H -1 0

P 0 0

Hydrophobic residues that are adjacent to each other in the lattice, whether they are 

connected or not, contribute -1 to the total energy, all other combinations contribute 0. 

The total energy is determined by comparing all adjacent pairs in the matrix. As with 

SippTs method, random moves that lower the total energy are accepted. (Lau 1989) 

Again, local minimas are a problem and the technique has also proved to be NP hard.

3. Robot Path Planning

Before discussing protein simulation further, it is important to explore some of the basic 

premises of robot path planning, so that the intersection between the two can be clearly 

understood. One of the basic problems in robotics is navigation. The problem of how to 

get a robot from point A to point B, or, for a robot fixed at one end, like a robotic arm.

20
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how to get it from configuration A to configuration B, has been approached from several 

angles. Robots that physically change location and move through changing or unknown 

environments generally rely on sensors. Their algorithms tend to be a mix of reactive 

techniques, which are simple behaviors activated by a stimulus, and some sort of path- 

planning, using maps, landmarks or some combination. In the case where a robot 

functions in a completely known environment, which is rare in the real world but a useful 

assumption for simulations, the preferred navigation method uses some kind of path 

planning technique.

3.1. Collision Detection

The most basic task involved in trying to figure out how to move a robot is detecting 

when the robot collides with itself or something else. Without an efficient means of 

testing for possible collisions, possible paths can take too long to compute. Touch 

sensors can send a signal when the robot physically hits something, and a reactive 

algorithm could react appropriately, as in the case where a toy car runs into a wall and 

spins to face in a different, randomly chosen, direction before moving forward again. In 

most situations, including simulations, different techniques must be used both because 

not all situations can rely on sensors and because the preferred goal is to avoid collisions 

rather than dealing with them after they occur.

21
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In situations where all the objects involved and their dimensions are known, the 

Euclidean distance between different parts of the robot and different obstacles can be 

computed. Unfortunately, if  the robot moves, these distances all need to be computed 

again, which becomes computationally expensive. (Mirtich) One way of limiting the 

amount of work done at each step, is to take advantage of the notion of coherence, which 

is the realization that the relationship between most of the objects in a scene and each 

other doesn’t change much every time something moves, so only the changes need to be 

considered. To do this, a scene must have some kind of memory.

One way to describe where things are in a scene is by using bounding volumes to 

describe the objects involved. A bounding volume is a geometric shape that completely 

encloses an object. It can then be recursively broken down to more precisely describe 

where its elements are in space and stored as a tree.

22
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Figure 5. Hierarchical bounding voiume example

When checking for collision between two objects, their trees can be compared to see if 

any of their top-level objects intersect. If so, the next level is compared, and so on, in a 

binary search of the tree until the bottom level is reached and a precise determination (or 

as precise as the tree’s resolution will allow) can be made. The tree can be saved as a 

linked list or as a set of hash tables, with each table representing on level of the tree, a 

technique known as hierarchical spatial hashing. (Murphy 2000) This kind of 

representation generally treats all objects as concave.

23
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Other techniques for collision detection include coordinate sorting, where the coordinates 

of bounding volumes are maintained in a sorted list. The volumes overlap if  and only if 

their coordinates overlap in all dimensions. The Lin-Canny closest features algorithm is 

used when precise measurements of distances between objects are needed. It creates 

geometric volumes between shapes by extending lines from their vertices to make 

Voronoi regions. If the regions of two vertices intersect, then they are oriented towards 

each other and can be tested for closeness between the edges, vertices and planes of the 

objects. (Murphy 2000)

3.2. Configuration Space

In order to do path planning or many reactive techniques, you need some sort of abstract 

representation of the space that the robot exists in, or a map. A basic map shows the 

limits of the space and the obstacles contained in it. The representation should accurately 

show the location and orientation of the robot and any obstacles, and allow the robot to 

assume any configuration possible for it. This map and its corresponding data structure 

are often referred to as the configuration space or Cspace of a problem. A Cspace 

representation is created by using some method to abstract the actual space into a useful 

data structure. Some methods of breaking up the space are regular grids, Voronoi 

diagrams (which compute a line equidistant from all obstacles), or bounding trees (which 

are trees describing the possible obstacles recursively using progressively smaller 

bounding volumes). (Murphy 2000)

24
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Figure 8. A Sample Voronol Diagram

The espace representation is often also used to condense the degrees of freedom of the 

robot so that the problem can be represented in 2D or 3D space. Robots that move from 

one point to another in 3D space actually have up to six degrees of freedom. They can 

move in X or y direction, they have a height, z, and three more degrees, pitch, yaw, and 

roll, are needed to represent the robot’s facing and tilt with respect to the plane it moves 

on. In most cases, a robot of this type can be treated as having only three degrees of 

freedom (x, y and pitch) if  they are assumed to be able to turn in place (holonomie), so 

that facing is not an issue. This is a reasonable approximation for some robots, but a 

robotic arm has a degree of freedom at each joint which is intrinsic to its function, and so 

cannot be abstracted away. This means that the Cspace for a robot with multiple degrees 

of freedom can rapidly become very large. A robot arm with six joints, or six degrees of 

freedom, each having a range of motion of 90 degrees would, if you broke the range up 

into one degree increments, have 90^, or more than 500 billion configurations. [Challou 

in Gupta] So how you construct a Cspace is an important part of the problem.
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Once a Cspace has been created, it can be used to determine bow a robot will go from 

one configuration to another. An algorithm for this purpose can be resolution complete, 

which means that it will find a path if  one exists, or probabilistically complete, which 

means that it approaches a probability of one for finding the path if  one exists. 

Probabilistically complete algorithms approximate a solution in order to arrive at a 

conclusion more quickly. The tradeoff is that a higher degree of certainty requires more 

computing tim e.. [Gupta 4]

The popular Cspace representations lend themselves well to treatment as a graph and the 

algorithms used to compute a path take advantage of this. The classic algorithm is known 

as A search and incrementally calculates a path from a start node to a goal node by using 

a fimction to calculate which possible node gets it closest to its goal. [Murphy 361] A 

complete version of this examines all possible paths from start to finish. Another version, 

known as A*, instead creates an ideal path, ignoring obstacles and computes the next best 

node by its closeness to the ideal path. These methods can be computationally expensive 

and break down when a robot has more than six degrees of freedom.

A popular reactive technique that uses a Cspace representation is the potential field 

algorithm. This models the space as an array of vectors whose magnitude and direction 

function as a kind of force field, pushing the robot away from obstacles and toward the 

goal state. Obstacles will be surrounded by vectors that tend to push the robot away from 

them and the rest of the space will have vectors pointing towards the goal state. If there
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is no specific goal, the technique is still useful as a way of controlling where in the space 

the robot may move.

3 3 . Probabilistic Roadmaps

A technique designed to deal with robots with high degrees of freedom is the 

probabilistic roadmap planner approach of Kavraki and Latombe. (Kavraki 1998) As 

above, the Cspace must be defined in some way, but instead of trying to find different, 

specific, collision-free paths in a linear fashion, the goal is to create a space where many 

possible paths may exist. The key insight of the probabilistic roadmap is that there may 

be multiple collision-free paths between a start state and a goal state.

The first phase of the process generates a subset of Cspace which is called Cfree. Cfree 

is the configuration space where the robot can exist without colliding with itself or other 

obstacles. Of course, to completely define Cfree would be too expensive, so the first 

phase consists of selecting possible configurations at random within the Cspace and 

checking that they are collision free before adding them to Cfree, which is stored as a 

data structure, or file if  the configuration space is extremely large, to be referenced by the 

next phase of the planner. The configurations in Cfree are further categorized by 

determining which configurations can be reached directly by other configurations. This 

is done by a simple local planner which can use any path-planning technique, such as 

linear distance, potential fields, etc, but the best results are obtained if  it is fast, simple
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and deterministic. The resulting map is a directed graph, where each configuration is a 

node, connected by edges to other configurations it is possible to move to from it.

In its simplest form, the next phase tries to create a path that answers a specific query, 

where the query is a request to find a path that connects a start configuration (Q) to a goal 

configuration (Q’). For any query that is possible, if  the Cfree configuration has 

sufficient coverage, the probability that the local planner will find a path should approach 

one. The classic algorithm for computing the path is to start at both Q and Q’ and move 

in a stepwise fashion through the map and towards each other until the two paths are 

linked. If the link is difficult, the process will probably have to backtrack in order to find 

it. For extremely difficult paths, the initial map creation may not have found them or it 

may take an extremely long time to find them. For this reason, an implementation of a 

probabilistic roadmap will probably have some kind of backtracking limit (either time or 

number of iterations), which, when reached, will signal that a path can not be found.

A useful refinement of the process is to add an intermediate phase where the roadmap’s 

graph is examined for regions where few or no nodes connect to neighboring nodes. It 

can be assumed that such regions are particularly difficult or impossible to navigate, so 

adding additional nodes in them will make it easier for a query to be answered. This is 

done by creating additional configurations (or nodes) in difficult regions and adding them 

to Cfree. (reference)
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4. Protein Structure and Robotic Path Planning Techniques

The key insight that needs to be made in order to apply robotic techniques to simulating 

protein structure is the understanding that a protein is, physically, a chain of amino acid 

residues. Each link of the chain has two degrees of freedom, described earlier as the psi 

and phi angles, whose range of motion is constrained by the limits described in the 

Ramachandran diagram (fig. 4). If some of the simplifying assumptions of the lattice 

method are also applied, like assuming that all bond lengths are equal, a protein starts to 

look a lot like a robot arm.

Elbow

Wrist, Flex

Wrist, rot- 
Ation

' c E '
PivotGripper

Figure 6. A Simple Robot Arm

The analogy extends further than the idea of a protein as a chain, however. There are 

similarities between techniques used to simulate proteins and some of the techniques used 

in robot path planning.

One of the more common techniques for protein simulation, Monte Carlo simulation, can 

be compared to the potential field technique for finding a path from one point to another. 

In the potential field technique, the configuration space is constructed of vectors that all 

point towards the goal state, in a sort of primitive energy function. If a move takes the
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robot doser to that state, as computed by summing the vectors of that region, it is 

accepted; otherwise, it is not. In Monte Carlo simulation, the lowest energy configuration 

is the desired goal and every random move that reduces the protein’s energy is accepted, 

while moves that increase the energy are generally rejected, (reference) For both 

potential field and Monte Carlo simulations, the chance of being trapped in local energy 

minima is very high, so they allow choosing sub-optimal moves with a certain 

probability. (Apaydin, Brutlag et al. 2003)

One of the more promising applications of robotics ideas is the use of the Probabilistic 

Roadmap technique to protein simulation by Amato and Song, (Amato and Song 2002) 

which is related to earlier work on ligand binding using the same technique. (Singh 1999) 

Their approach makes some of the simplifying assumptions discussed ahove, such as 

assuming that all bond lengths are equal, and that the psi and phi angles are the only 

flexor points in each residue. The major difference between using this approach with 

robotic motion planning and proteins is that, for robots, the configuration must only be 

collision-free; and for proteins, the protein seeks its lowest energy, or natural, state. 

Therefore, when constructing the roadmap for a protein simulation, nodes in the graph 

are linked together with edges weighted by a probability derived from an energy function 

that one node, or state, will change to the configuration of another, rather than being 

unweighted as in the classic Probabilistic Roadmap technique. By randomly creating 

configurations throughout the possible configuration space for the protein, it becomes 

much easier to avoid the local minima and maxima that can cause problems when using 

Monte Carlo methods.
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In Amato and Song’s initial work, modeling was done using known protein structures as 

a starting point for the simulation, as a way to explore how folding works, but other later 

papers (Amato, Dill et al. 2003) have explored ab initio folding. The random path 

planning technique makes it quicker to test many possible foldings by picking 

representative configurations randomly across the sample space. While the technique has 

shown some promise in the closeness of its simulations to known proteins, the authors 

have not published results for proteins greater than 60 residues in size in either paper.

In another recent development, Apaydin, et al have developed another application of the 

Probabilistic Roadmap technique to protein simulation, calling it the stochastic 

conformational roadmap. (Apaydin, Guestrin et al. 2002; Apaydin, Brutlag et al. 2003) 

This technique doesn’t try to simulate all possible individual configurations of the protein 

in detail, but instead tries to generate a field of possible configurations expressed as 

probabilities, according to a Markov Chain model. This technique takes advantage of 

some of the ensemble properties of molecular motion and the belief among some 

biologists that proteins can pass through a number of possible configurations before 

reaching their natural state. By representing the possible configurations as a Markov 

Chain, possible configurations are represented as energy values and assigned 

probabilities, rather than being some kind of 3D representation. The technique is not as 

precise as some others, but its results tend to follow the Boltzmann distribution in the 

limit, just as some of the other simulation techniques, like Monte Carlo, do.
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A recent paper by Bedem, et al, uses an inverse-kinematics approach to fill in gaps in 

protein structure in the case where portions of a structure have been determined by some 

other method. Using the sections that have been determined, the algorithm tries to figure 

out what the unknown loops might look like. Like roadmap planning, this technique 

generates a set of possible configurations randomly according to the expected distribution 

over the available space and selects the best fitting with a local planner.(van den Bedem 

2005)

5. Explanation - Using data to constrain structural searches

Any approach to simulation must, because of the enormous number of degrees of 

freedom of the typical protein, be an attempt to somehow limit the number of possible 

protein configurations being examined during the simulation. A random path planning 

approach is a reasonable way to approach this because it samples the configuration space 

randomly, under the assumption that there are multiple paths from one configuration to 

another.

Almost all the papers that use this technique, however, base their randomly sampled 

configurations on two non-random configurations, the native state of the protein and its 

fully extended configuration. The new configurations are created by randomly varying 

one or more of the degrees of freedom in the original configuration, assuming that these 

values are normally distributed, and testing the new configuration for an acceptable 

energy level before adding it to the configuration space, (some referenees here)
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While this approach has yielded interesting results, especially in looking at how proteins 

fold, the configuration space it uses is still quite large. How, then, can the configuration 

space be reasonably constrained?

The online Protein Data Bank (rcsb.org/pdb) (reference) contains a great deal of 

information about protein configurations extracted firom the experimental literature. This 

information is often used for comparative (homogeneous) approaches to protein 

simulation, but rarely for structural approaches, though some variables like bond length 

are commonly based on estimates derived from experimental data. An example of an 

approach that has both structural and comparative components is the work of Ngan 

(Ngan, et al 2006) and Samudrala and Levitt (2002), which looks at the physical 

conformations of protein doubles or triplets in many proteins in order to create scoring 

functions used to build up a protein from fragments when simulating new configurations 

geometrically.

This suggests that one way to constrain the configuration space for a path planning 

approach is by using experimental data to create either physical limits or probabilities for 

ranges of motion. One gross approach, and the one used here, is to compile experimental 

data for a set of proteins and look at the relationship between their sizes, defined as the 

radius of a sphere that encloses all the 3D coordinates of a protein structure;b the 

maximum distance between any two residues and the number of residues in the protein. 

If there is a significant relationship, then the size and the maximum distance between 

points, or at least their likely range, can be predicted and used to constrain a simulation.
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Protein Size

Figure n. Example of a bounding sphere

6. Analysis of Experimental Data

From the Protein Data Bank, we pulled all single-stranded proteins which had between 30 

and 90 residues, the range typically used when looking at new protein simulation 

techniques, giving us about 2200 proteins. A simple Java program sorted through the pdb 

files and extracted the following pieces of information for each protein:

• Bounding sphere radius

• Maximum distance between residues

• Residue furthest from center of bounding sphere in a loop secondary structure 

(Boolean)

• Residue next furthest from center in a loop (Boolean)

The bounding sphere radius is based on the difference between the mean of all the Calpha 

coordinates in the protein configuration and the point furthest from that mean. The
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maximum distance between residues is not necessarily the same as the diameter as shown 

in the figure helow. A protein could have three or more equal sides, so choosing one of 

them as the diameter would create a hounding sphere that did not actually enclose the 

entire protein.

Given the uneven quality of the data, as many entries in the Protein Data Bank are 

incomplete or incorrectly formatted, it seemed reasonable to discard values that were 

more than three standard deviations from the mean for either radius or distance, or that 

had impossibly small values, leaving N=2158. For distance, the mean for the set was 

36.9057, with an SD = 10.06947. For radius, the mean was 21.0254, with an SD -  

6.17847. A scatter plot and histogram plotting distance versus number of residues and 

showing frequency of distance values, respectively, suggest that the data is skewed. The 

scatter plot and histogram for radius is similar, hut not included. This suggests that there 

is a hard floor for how small a protein with a given number of residues can he. Ideally, 

the data would show a clear normal distribution and it would he possible to accomplish 

this through a transformation around the mean. However, given the large N of the data 

set, it is reasonable to assume that the untransformed results are accurate, (reference)

Looking at which residues are furthest from the sphere is another way of using the 

available data. In this case, knowing which kind of secondary structure might be on the 

outside of the molecule could be useful information when doing a simulation, either by 

limiting the regions chosen as starting points or by suggesting what kind of secondary 

structure a region that ends up in that position during a simulation could be.
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The loop information, as shown in the table below, strongly suggests (85% chance) that 

the residue on the outside of the protein will be in a loop secondary structure, which 

makes sense since these are the most flexible areas of the protein and more easily make 

sharp turns back toward the center of the protein molecule. This suggests that looking at 

loop regions when choosing the point in a simulated structure that will be furthest from 

the center might be reasonable.

Furthest residue from center in ioop (loopa) *
Next furthest residue from center in ioop (loopb) Crosstabulation

loopb
Totalfais true

loopa fais Count
Expected Count 

true Count
Expected Count 

Total Count
Expected Count

245
99.7
399

544.3
644

644.0

89
234.3
1425

1279.7
1514

1514.0

334
334.0
1824

1824.0 
2158

2158.0
Fig. ?

The histograms and scatter plots for distance and radius suggest a linear relationship 

between the two variables and the number of residues, so linear regression was used to 

give predictions of the ranges of these variables. Though the data is not normally 

distributed, violating one of the assumptions of linear regression, the sample size is so 

large that, according to the central limit theorem, its normalized scores would approach 

the normal distribution. In this case, since we wanted real values for our prediction 

intervals, we chose not to transform the data as its unclear what transforming the 

prediction intervals back to real values means. In any case, the relationship between the 

two variables and the number of residues is highly significant with a p value of < .0001 

for both. Using the regression line, a prediction interval that will capture 95% of the
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cases can be constructed. Over the range of residues that we are looking at the 

prediction interval has a range of about 40 angstroms. For example, a protein with 68 

residues would be expected to range between 19 and 57 angstroms.

7. Methodology

The experiment focused on setting up a method that would quickly create candidate 

structures. Ideally, this could be accomplished without spending a lot of time rejecting 

possible candidates and the resulting configuration space would yield results comparable 

to those found using a configuration space based on modifying the native or fully 

extended configurations when submitted to a more refined simulation program.

Configurations were created by choosing discrete values from both the radius and 

distance ranges, decrementing by a program parameter (set from 2.5 Angstroms, the 

smallest distance across a residue, to 20) across the entire range of values. A sphere of 

the chosen radius was given a center point of (0, 0, radius), as seen in the figure below.
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For this experiment, the protein was treated as a collection of secondary structure 

elements rather than individual residues, primarily because this greatly decreases the 

computation time while still providing a way to test the idea. Each candidate structure 

was built in one or two chunks, starting with either the first secondary structure element 

or the first loop secondary structure element. Each chunk was built by adding on 

secondary structure elements with randomly assigned values for their degrees of freedom 

until the chunk reached a length exceeding the maximum distance chosen for that 

iteration, at which point the structure would be encouraged to reverse direction by 

weighting the vector angle towards an acute value. The degrees of freedom for each link 

were the vector angle between the current and previous vectors, the dihedral angle 

consisting of the planes formed by the current and prior two vectors, the twist angle for 

alpha helix and beta sheet secondary structures and the length for loop secondary 

structures.

Random values for each degree of freedom were normally distributed around the actual 

values for the native state of the protein. Structures that either collided with themselves 

or with the bounding sphere were rejected and the program attempted to create a new 

structure until hitting the limit on the number of attempts, another program parameter.

Once the chunks were created, they were fitted together using randomly chosen vector 

and dihedral angles, again based on the native state, which tried to minimize the distance 

between the two vectors while avoiding self-collision or collision with the bounding 

sphere by using a weight factor to make the vector angle tend to be more acute after each 

attempt. Once a configuration was created, its energy level was checked and the
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configuration was accepted if it was below a constant threshold. This was repeated for 

each combination of radius and distance steps possible in the predietion interval.

Statistics on the number of eonfigurations accepted or rejected for each set of parameters 

was collected and saved in a file. The eonfigurations themselves were saved in a format 

that allowed them to be used as seed values for a Monte Carlo simulation program, used 

in Apaydin, et al’s work. The program itself borrowed heavily from source code used in 

Apaydin's work and the work of Itay, Schwarzer and Latombe who used bounding 

volumes to simplify the computation of total energy in a Monte Carlo simulation. (Lotan 

2003) The simulations were run on a Pentium Celeron D 3.46Ghz system with 2Gb of 

memory.

Listed below is the pseudo-code for the main loop and function of the program that 

implements and tests the ideas in this paper.

Figure N. Pseudo-code for main algorithm and buildChain function

For radius = max to (native radius -  step); step- - 
For distance = max to (max distance -  step); step- - 
fo r each secondary structure element = type LOOP 

while ! Accepted 
i f  LOOP element index > 0 

chain 1 = buildChain(0, LOOP index); 
chain! = buildChain(LOOP index + 1, total elements); 
combineChains(chain 1, chain!); 

else
chain = buildChain(0, total elements);

If(! sphereCollide(chain)) 
i f  (!selfCollide(chain)) 

accepted — true; 
else
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accepted^ false; 
else

accepted = false;
}

}  / /  while

BuildChain(intfirstldx, int lastldx)
For each sse element firstldx to lastldx 

While (! Accepted) 
iffirstldx 
set base -  origin; 

else
set base = lastElement->end; 

paramers = changeParameters(vector, dihedral, 
length, twist); 

newSse = computeVector (parameters); 
if  (! Sphere Collide(newSSe) &&

! selfCollide(newSse)) 
accepted = true; 

else
accepted -fa lse ;

}  while

For this experiment, two proteins were used as the basis of the simulations, RNA 

modulator (IROP) and Engrailed Homeodomain (IHDD). IROP has 56 residues and its 

native state eonsists of three secondary structures, two alpha helices and a small loop. 

IHDD has 57 residues and five secondary structures, a mixture of all three types. The 

information on their native state’s secondary and tertiary structures was retrieved from 

the protein data bank and filtered through several routines, including the DSSP program 

by Kabsch and Sander (Kabsch and Sander, 1983), which puts secondary structure 

function into an easily processed format.
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Simulated Proteins

Engrailed Homeodomain (1HDD)

RNA modulator (1R0P)

Figure n.

For each protein, the roadmap construction program was run once with each combination 

of the following run-time parameters:

• Amount to decrement radius and distance at each step (3, 6, 9, 12 angstroms)

• Whether or not to focus on loop structures as a starting point (boolean)

• Number of attempts to make for each combination of radius, distance and starting 

point (25 -  75 by lO’s)

8 . Results
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9. Future Direction

The field of protein structure simulation is large and expanding daily, but the robotic 

approaches, especially the probabilistic path planning approaches, offer the possibility of 

doing simulations more quickly by using a probabilistically complete rather than an 

empirically complete approach. The main variations of the approach use it either to 

explore paths in detail or to explore a protein’s structure probabilistically using Markov 

Chain methods.

The technique described in this paper adds a constraint that can be used by other 

techniques to limit their configuration space. This is well-suited to a path-planning 

approach, which already works from a randomly distributed configuration space, but 

could be used as a method of seeding start configurations for other approaches. An 

obvious extension is to create an application that uses residues, rather than secondary 

structure elements, to build configurations. This could be plugged into a much wider 

variety of techniques.

Another way to use this approach would be as the basis for an ab initio configuration 

space for random path planning. Rather than working from the extended configuration to 

the native state, a path could be calculated from acceptable configurations at the 

maximum radius to acceptable configurations at lower radii.
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Finally, the technique suggests a different way of using the data already available on 

protein structure. By looking for significant patterns and relationships between 

characteristics of proteins and data, different possibilities for how to constrain the 

configuration space might be suggested that will further decrease the effort required to do 

a simulation.
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Figures

Figure 1. Illustration adapted from the National Human Genome Research Institute 

(NHGRI) Genetic Illustrations entry for mRNA,

http://\m^.ncbi.nlm.nih.ffov/Class/MLACourse/Modules/MolBioReview/imaees/central

dosm a.sif

Figure 2. Protein chain diagram, http://wiz2.pharm.wavne.edu/biochem/PR04.GIF. 

Figure 3. Ramachandran plot example, 

http://femto.cs.uiuc.edu/~sbond/reports/villin/rama.gif 

Figure 4. Boltzmann Distribution diagram,

http://www.webchem.net/notes/how far/kinetics/maxwel2.gif. 2005 

Figure 5. Free energy landscape

http://cnx.org/content/mll467/latest/funnel.ipg. Lydia Kavraki 

Figure 6. Lattice Model Diagram, dimacs.rutgers.edu/ -newmana/prot.gif.

Figure 7. Bounding volume diagram

http://wwwvis.informatik.unistuttgart.de/img/sommer/Autobench/BoundingVolumeHiera

chyLarge.gif

Figure 8. Sample Voronoi Diagram,

http://www.cs.utexas.edu/users/amenta/powercrust/unionspix/voronoi.gif 

Figure 9. Robot arm diagram,

http://www.ranchbots.com/robot_arm/images/arm_diagram.jpg
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