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Instability dynamics and breather formation in a horizontally shaken pendulum chain
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(Received 28 May 2014; published 22 October 2014)

Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider
theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and
subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion
of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic
resonance. We examine the development of modulational instability in a driven pendulum chain and find both a
critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions
and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency
breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather
states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation
of on-site and off-site breathers.

DOI: 10.1103/PhysRevE.90.042921 PACS number(s): 05.45.Xt, 63.20.Pw, 45.50.−j, 45.05.+x

I. INTRODUCTION

Driving of the pivot point of a single pendulum has long
been known to lead to parametric driving of the pendulum
motion (see, e.g., Ref. [1] for a textbook treatment). The
majority of research has focused on vertical driving (see, e.g.,
Refs. [2,3], and references therein), where the well-known
stabilization of the inverted pendulum may be observed [4].
Horizontal driving has received less attention, with early
works considering the nature of the periodic solutions [5]
and the appearance of subharmonic excitations [6]. More
recently, interest in this problem has been revived, with
recent results exploring the appearance of chaotic motion
[7], dynamic stabilization of two off-center equilibrium
points [8], and complex bifurcation behavior of the period-1
oscillation [9].

In this work, motivated by the experimental setup of
Ref. [10], we consider a setup of pendula subject to a
horizontal driving force. The progression of our study starts
with the case of a single pendulum. There, we identify
period-1 solutions near the nonlinear resonance and reveal
the familiar fold-over effect for a driven pendulum and the
appearance of subharmonic, period-3, solutions. This is a
building block of relevance towards the study of the pendulum
chain, to which we then turn our attention. In the latter,
we find similar results for the period-1 solutions, albeit
with the appearance of instability at a critical chain length.
We examine this instability in some detail, identifying the
characteristic instability wave numbers through modulational
instability analysis. We then examine the breather solutions in
the system, and in agreement with the results of [10] we find
families of breather solutions existing in the bistable region.
We examine the instability dynamics and breather formation
near this region and provide a prescription for the generation
of breather solutions. We also explore the possibility of multi-
frequency breathers supported by the subharmonic pendulum

*t.alexander@unsw.edu.au

response and show that these solutions may persist for long
times.

Our presentation will be structured as follows. In Sec. II we
present the relevant model in connection to the experiments
of Ref. [10], while in Sec. III we study the single-pendulum
dynamical features. Section IV extends this to multipendulum
dynamics and the modulational stability and breather existence
and stability, as well as multifrequency generalizations, that
can arise. Finally, Sec. V presents our conclusions, as well as
some potential future challenges.

II. MODEL

The Lagrangian in the absence of damping for a chain of N

pendulums subjected to a periodic horizontal displacement of
the pivot point with frequency ωd and amplitude A (as shown
in Fig. 1) takes the following form [11]:

L =
N∑

i=1

1

2

(
Ml + m

l

2

)
[2Aωd sin(ωdt) cos θnθ̇n]

+ 1

2
I θ̇n

2 +
(

Ml + m
l

2

)
g cos θn

− 1

2
β[(θn − θn−1)2 + (θn − θn+1)2], (1)

where m is the mass of the thin rod of length l supporting the
pendulum bob of mass M , and θn and θ̇i are the angle relative to
vertical and angular speed, respectively, for the ith pendulum.
The moment of inertia is given by I = Ml2 + ml2/3, g is
the acceleration due to gravity, and β is the linear coupling
between pendulums through a torsion spring. We consider
the case with end pendulums defined by taking θN+1 = θN ,
θ̇N+1 = θ̇N , and θ0 = θ1, θ̇0 = θ̇1.

As discussed in Ref. [10] in a physical system there is also
on-site damping due to velocity-dependent friction (due to air
resistance) and intersite damping due to frictional loss in the
torsion spring. The equation of motion for the nth pendulum
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FIG. 1. Schematic of experimental arrangement for horizontally
shaken pendulum chain showing chain in (a) side and (b) profile
views.

therefore takes the following form [10]:

θ̈n − β

I
(θn+1 + θn−1 − 2θn) + γ̃1

I
θ̇n

− γ̃2

I
(θ̇n+1 + θ̇n−1 − 2θ̇n) + ω2

0 sin(θn)

+ f ω2
d cos(ωdt) cos(θn) = 0, (2)

where the natural pendulum frequency is given by ω2
0 =

(mgl/2 + Mgl)/I and the dimensionless forcing coefficient
is f = Aω2

0/g. We use parameter values consistent with
the experimental setup of Ref. [10]: β = 0.0165 Nm/rad,
m = 13 g, l = 25.4 cm, A = 1.12 cm, γ̃1 = 284 g cm2/s, and
γ̃2 = 70 g cm2/s. The driving frequency ωd is an experimental
control parameter. In principle the pendulum bob mass can
also be varied; however, we take M = 1.8 g. The model can be
further simplified by scaling time using the natural frequency,
t → t/ω0, to reach the dimensionless form,

θ̈n − c (θn+1 + θn−1 − 2θn) + γ1θ̇n

− γ2(θ̇n+1 + θ̇n−1 − 2θ̇n)

+ sin(θn) + f ω2 cos(ωt) cos(θn) = 0, (3)

where c = β/(Iω2
0), ω = ωd/ω0, and γi = γ̃i/(Iω0). In this

dimensionless model the parameters take the values c = 0.799,
f = 0.060, γ1 = 0.010, γ2 = 0.0024. We consider the effect
of varying the frequency ratio ω and to a lesser extent the
forcing amplitude f (corresponding to a variation of the lateral
driving amplitude A in the physical parameters).

III. SINGLE-PENDULUM DYNAMICS

Earlier analysis of a horizontally shaken single pendulum
has revealed the possibility of chaotic dynamics [7] and
oscillations about a nonzero equilibrium point [8]. We are
primarily interested in exploring some of the dynamics
possible in the experimental setup of Ref. [10], so we begin
by examining the period-1 solutions within the experimentally
accessible parameter space. To this end we consider Eq. (3) in
the limit of a single pendulum, i.e., N = 1, c = γ2 = 0.

A. Period-1 solutions

In the presence of damping and low-amplitude forcing we
expect to find regular solutions oscillating with the period
of the driving force. We search for these periodic solutions
numerically using the classical shooting method (see, e.g.,
the discussion in Ref. [7]), seeking a solution across one
forcing period. The advantage of the shooting method is that
the eigenvalues of the correction matrix (used in the shooting
iterations) correspond to the Floquet multipliers of the periodic
solutions and so determine the stability of the converged
solution. A periodic solution whose Floquet multipliers have
a magnitude less than or equal to one is stable.

Proceeding with our numerical method we find bistability
in a region near the resonance, as is evident in Fig. 2(a), where
we see the familiar fold-over effect for a driven sinusoidal
pendulum (the resonance drifts to lower frequencies with
higher amplitude, due to the softening nature of the sinusoidal
nonlinearity). We see that in the region ω = [0.718,0.9385],
we have two stable solutions, one at high amplitude, the other
at low amplitude. As evident in the inset in Fig. 2(a) the
low-amplitude solution is almost exactly out of phase with
the force, while the high-amplitude solution is closer to being
in phase. The phase here is calculated as

phase = ω

2π
mod

(
tθmax ,2π/ω

)
, (4)

where tθmax is a time at which the pendulum has maximum
amplitude. This calculation for the phase thus indicates when
the pendulum is at maximum amplitude relative to the forcing
period (for instance, a value of 0.5 means it is exactly out of
phase with the force).

The stability of the solutions follows from the maximum
absolute values of the Floquet multipliers, shown in Fig. 2(b).
Both the high- and low-amplitude solutions have magnitudes
less than one and so are stable. The inset in Fig. 2(b) shows
details of the spectra at ω = 0.8. In Fig. 2(c) we show examples
of the stable solutions at ω = 0.8, with the phase and amplitude
relationships evident.

While it is not a focus of our work, it is interesting to
compare the resonance picture at large forcing amplitude f =
1, which has more in common with the analysis of Ref. [7].
As can be seen in Fig. 3(a) the amplitude response exhibits a
cross-over point, and a significantly more complex spectrum
[Fig. 3(b)]. The phase response [Fig. 3(a), inset] is still much
the same as that observed at low forcing amplitude. As a
final point, we note that the high-amplitude solution becomes
unstable at higher frequency, unlike the low forcing case.

B. Approximate solution

Looking ahead to our multipendulum analysis we seek an
approximate solution for the period-1 response. We find that
we can obtain a good prediction of this response by simply
assuming the solution takes the harmonic form:

θ = Vc cos(ωt + φ), (5)

where Vc is the amplitude of the pendulum oscillation and φ

is the phase offset from the driving phase ωt . To proceed, we
make two assumptions which allow us to simplify the problem.
First, we simplify our equation of motion Eq. (3) by replacing
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FIG. 2. (Color online) Families of period-1 solutions in the
driven system at low forcing amplitude. f = 0.0597,γ1 = 0.01.
(a) The amplitudes of stable and unstable solutions (solid and
dashed lines, respectively) as a function of ω with the inset showing
the corresponding phase; (b) the maximum absolute value of the
corresponding Floquet multipliers and the inset showing the spectrum
corresponding to the three different solutions at ω = 0.8 (triangles
down: dashed line family; triangles to side: thin solid line family;
triangles up: thick solid line family); (c) the appearance of the two
stable solutions corresponding to, respectively, nearly in-phase [thin
solid line family in (a) and (b)] and out-of-phase [thick solid line
family in (a) and (b)]. For comparison, force is shown as a dashed
line.

the trigonometric nonlinearities with their low-order algebraic
expansions, i.e., sin θ ≈ θ − 1

6θ3 and cos θ ≈ 1 − 1
2θ2. This

leads to the new (approximate) equation of motion:

θ̈ + γ1θ̇ + (
θ − 1

6θ3
) + f ω2 cos(ωt)

(
1 − 1

2θ2
) = 0. (6)

Second, remembering the trigonometric identity cos3(ωt +
φ) = 3

4 cos(ωt + φ) + 1
4 cos[3(ωt + φ)], we assume all con-

tributions not at the frequency of the driving force are weak and
can be neglected (the so-called rotating wave approximation).
Incorporating this assumption into our simplified model (6) we

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

ω

A
m

pl
itu

de

0 0.5 1 1.5
0

0.5

0.8

ω

ph
as

e

0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

ω
m

ax
 lo

g1
0
| ρ

i|

(a)

(b)

FIG. 3. (Color online) Family of period-1 solutions in the driven
system at large forcing amplitude, f = 1.0,γ1 = 0.01. (a) The
amplitudes of stable and unstable solutions (solid and dashed lines,
respectively) with the inset showing the corresponding phase; (b) the
maximum absolute value of the stability matrix eigenvalues.

obtain two equations for (Vc,φ) by multiplying by cos(ωt) and
sin(ωt), respectively, and integrating out the time dependence
(integration over [0,2π/ω]):

−πVc

8ω

[
2ω2f Vc cos(φ)2 + f ω2Vc − 8f ω2 + 8γ1ω sin(φ)

+ 8ω2 cos(φ) − 8ω2
0 cos(φ) + V 2

c ω2
0 cos(φ)

] = 0 (7)

πVc

8ω

[
8ω2 sin(φ) − 8ω2

0 sin(φ) + 2ω2f Vc cos(φ)

+V 2
c ω2

0 sin(φ) − 8γ1ω cos(φ)
] = 0. (8)

We solve these equations using the symbolic mathematics
package Maple after setting values for γ1 and ω. The results
are shown in Fig. 4 with γ1 = 0.01 and ω varying, showing
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FIG. 4. (Color online) Comparison between single-pendulum
period-1 amplitudes found numerically (lines) and using the ansatz
(5) (circles) for f = 0.0597,γ1 = 0.001.
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FIG. 5. (Color online) Bifurcation plot of θ vs ω constructed
from a fixed initial condition θ = 0.5, θ̇ = 0, where θ (t) is plotted
every t = 2π/ω from t = 4000 to t = 5000. (a) f = 0.059 showing
appearance of period-1 and multiperiod solutions and (b) f = 1.0
showing predominantly aperiodic dynamics.

good qualitative agreement with the numerical results, even
when Vc is large.

C. Dynamical response

We turn now to the dynamical response of the single
pendulum with the nonzero initial condition θ (0) = 0.5 and
θ̇ (0) = 0. We represent the dynamical response as a bifurcation
plot, plotting all values of θ sampled at the forcing frequency
(between t = 4000 and t = 5000 to allow initial transients to
die out), for a given forcing frequency ω. A single value of
θ indicates a period-1 solution. Multiple values for a given ω

indicate a longer period solution. At the low forcing amplitude
of f = 0.0597 we see in Fig. 5(a) a relatively simple plot, with
the generation of a single-period solution from the given initial
condition for most of the frequency values, except around
ω = 3 where it appears the dynamics has converged to a
multiperiod solution. Note that this has appeared only in the
dynamics because we have chosen a nonzero initial condition.
For small (or zero) initial amplitudes we find instead that the
dynamics converge to the low-amplitude solution. The jump
around ω = 0.9 is due to the change in convergence from the
low-amplitude solution to the high-amplitude solution (thus
the jump indicates the presence of bistability).

By way of contrast we consider also the dynamics at
large forcing amplitude f = 1.0 in Fig. 5(b), where we see
the appearance of aperiodic solutions, which we surmise to
be chaotic, for large ranges of ω. A deeper analysis of the
nature of the dynamics in this regime, and the possible routes
to chaos, is beyond the scope of this work.

D. Period-3 solutions

We find that the jump observed near ω = 3 in Fig. 5(a)
is due to the existence of a stable three-period solution. This
subharmonic response is well known in the pendulum system
(see, e.g., Ref. [12], or for a textbook treatment Ref. [1]).
To examine in more detail this solution we turn again to
our numerical shooting method but this time seek solutions
with period T = 6π

ω
. We find the existence of a saddle-node

bifurcation of periodic orbits near ω = 3 and the appearance
of lower-amplitude (unstable) and higher-amplitude (stable)
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FIG. 6. (Color online) Period-3 solutions (isola) compared with
period-1 solutions (fold-over). The dashed and solid lines correspond
to unstable and stable solutions, respectively. Inset: Zoom in showing
the left-hand bifurcation point.

solutions, as can be seen in Fig. 6. Perhaps somewhat
surprisingly the stability region in driving frequency for the
upper branch solution is large, extending to less than ω = 2.
The two solutions are of much larger amplitude than the
period-1 solutions and appear to form an isola (as seen in
Ref. [12]), well separated from the low-amplitude solution.

IV. MULTIPENDULUM DYNAMICS

We now turn to the multipendulum case, i.e., the system (3)
with N > 1. We begin by examining the fundamental oscil-
lation mode (all pendulums synchronized) and find similar
results to those of the single-pendulum case, albeit with
the emergence of instability for N � Ncr. We then turn our
attention to the nature of the breather solutions (localized
energy states), examine their connection to the fundamental
mode solution. and explore methods for their generation.

A. Fundamental oscillation mode

We find that the period-1 solutions mirror those found in the
single-pendulum case, except for the appearance of instability
in the large-amplitude solution beyond a critical chain length.
We show in Fig. 7 the dependence of the period-1 solutions on
ω for N = 41. The solid lines indicate stable solutions, and the
dashed lines indicate unstable ones. The instability in this case
appears at ω = 1.07. As can be seen in the inset of Fig. 7(b) the
instability appears through the collision of complex multipliers
producing real ones with magnitude greater than 1.

In Fig. 8 we compare the results for chains with different
numbers of pendulums and find the critical chain length for
the appearance of the instability is Ncr = 4. Also evident in
Fig. 8 is a suggestion of convergence to a maximum ω beyond
which we have stability, even for longer chains. The instability
threshold for N = 20 is ω = 1.07, while for N = 100 it is
ω = 1.14. We should note that this analysis is focused only
on the solutions for which all pendulums behave identically.
The full bifurcation picture is expected to be significantly more
complicated (as, for instance, seen in a recent work considering
coupling between two Duffing oscillators [13]). The detailed
bifurcation study is beyond the scope of this work; instead,
we study the nature of the instability development for the
fundamental oscillation mode at long chain lengths, through
modulational instability analysis.
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FIG. 7. (Color online) Family of period-1 solutions in the driven
system at low forcing amplitude for N = 41. f = 0.0597,γ1 =
0.001,γ2 = 0.020,c = 0.799 showing (a) amplitude response and
(b) associated maximum instability eigenvalue with (inset) spectrum
on either side of the stability change (ω = 1.06 and ω = 1.07) for the
high-amplitude solution.

B. Modulational instability analysis

We look for the emergence of modulational instability
(MI) in the oscillator chain, using standard MI analysis, as,
for instance, carried out for chains of periodically forced
anharmonic oscillators [14].

We begin with the approximate solution θn = Vc cos(ωt +
φ), equivalent to the single-pendulum solution calculated in
Sec. III B. We then add a perturbation to this solution in the

0.7 0.8 0.9 1 1.1 1.2
0

2

4

6

8

10

ω

m
ax

 e
ig

en
va

lu
e

np=2
np=4
np=11
np=20
np=100

FIG. 8. (Color online) Appearance of maximum instability
eigenvalue for the period-1 solution at different chain lengths,
showing the appearance of a critical chain length for the appearance
of instability. Also evident is a critical value of driving frequency ω

beyond which the period-1 solution appears to be stable for all chain
lengths.

following form:

δθ (n) = 1
2 cos(qn){Vp1 exp[i(ω − 	)t]

+Vp2 exp[i(−ω − 	)t]} + const. (9)

where Vpj is the complex amplitude, and q and 	 are the
wave number and (in principle) complex frequency of the
perturbation, respectively. Substituting θn + δθn into (3) and
keeping only terms to first order in the perturbation (9), we
obtain an equation for Vp1 and for Vp2. Multiplying these two
equations together and integrating over a single forcing period
[0,2π/ω] to remove the time dependence we end up with the
following equation relating the instability wave number q and
growth rate 	:

{−(ω − 	)2 + iγ1(ω − 	) − c[2 cos(q) − 2]

+ ω2
0(ω − 	) − 2iγ2[cos(q) − 1] − 1

4ω2
0V

2
c

}
× {−(−ω − 	)2 − iγ1(ω + 	) − c[2 cos(q) − 2]

+ ω2
0 + 2iγ2[cos(q) − 1](ω + 	) − 1

4ω2
0V

2
c

}
= 1

32

[
ω4

0V
2
c + 4ω2

0Vcf ω2 cos(φ)

+ 4f 2ω4 + 8f 2ω2 cos(φ)2
]
. (10)

To proceed, we substitute the Vc and φ associated with the
fundamental mode of interest at a given ω [found from solving
Eqs. (7) and (8)] and solve for 	 at a given q. We see from
the nature of the perturbation (9) that for any 	 with a positive
imaginary part we will have growth of the perturbation and a
resultant instability with wave number given by q.

As we can see in Fig. 9 for ω = 1.09 (top panel) we
find instability for a small range of wave numbers around
q = 0.165π . This suggests the instability development will
progress with a characteristic periodicity corresponding to
about 12 pendula. As we move deeper into the unstable
region we see in Fig. 9 for ω = 0.95 (bottom panel) that
the interval of unstable wave numbers increases, as well as
the instability growth rate. Examining the dependence of the
maximum growth rate Im 	 versus ω we see in Fig. 10 some

(a)

(b)

Im
)

(
Im

)
(

FIG. 9. (Color online) (a) The maximal growth rates associated
with the modulational stability analysis when (a) ω = 1.09 and
(b) ω = 0.95.
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])    (

FIG. 10. (Color online) The maximum imaginary part of 	 vari-
ation as a function of the driving frequency ω, showing extended
stability beyond ω > 1.15.

oscillations around the critical threshold, but extended stability
above ω = 1.15.

C. Instability dynamics

We turn now to an investigation of the time-dependent
response of the pendulum chain, i.e., evolution of system (3)
given initial conditions for each pendulum amplitude and
velocity. While there are some interesting questions concern-
ing the basins of attraction of the various periodic solutions
we have found, we shall consider here only the dynamics
following from the initial conditions θn(0) = θ̇n(0) = 0.

First, we see in Fig. 11 for ω = 1.09 the spontaneous sym-
metry breaking accompanying the appearance of modulational

FIG. 11. (Color online) Development of modulational instability
at ω = 1.09 for a chain of 41 pendulums. (a) Plot of total energy per
pendulum (black: −1, white: −0.8), showing formation of regular
high-energy peaks. (b) The spatial profiles at the dashed line in
(a), given by t = 4001 (up triangles), t = 4002 (right triangles),
t = 4003 (down triangles), and t = 4004 (left triangles) showing
larger oscillations at high-energy areas. Lines through the pendulum
amplitudes are shown to aid the eye. Initial conditions θn = 0, θ̇n = 0.

FIG. 12. (Color online) Rapid development of instability at ω =
0.95 for a chain of 41 pendulums. (a) Plot of total energy per pendulum
(black: −1, white: 2), showing formation of high-energy excitations.
(b) Amplitude at dashed line in (a), given by t = 800 (up triangles),
t = 801 (right triangles), t = 802 (down triangles), and t = 803 (left
triangles) showing a transient localized excitation. Lines through the
pendulum amplitudes are shown to aid the eye. Initial conditions
θn = 0, θ̇n = 0.

instability. We monitor the energy per pendulum to visualize
the dynamics, with the associated energy density given by

En = 1
2 θ̇2

n − cos(θn) + c 1
2 [(θn+1 − θn)2 + (θn − θn−1)2].

(11)

Figure 11(a) shows the energy per pendulum as a function of
time t and pendulum number n with white corresponding to
En = −0.8 and black En = −1. As can be seen after some
initial transient time the symmetry is spontaneously broken
through energy localization. We can see in Fig. 11(b) that the
periodicity of the emergent pattern is roughly 12 pendula, as
was earlier predicted by our modulational instability analysis.

Our MI analysis also showed that decreasing the driving
frequency increases both the instability growth rate and the
range of unstable wave numbers. To explore the effect of this
in the dynamics we consider ω = 0.95 with 101 pendulums.
As can be seen in Fig. 12 the instability appears much
more rapidly (in comparison with Fig. 11) and without a
clearly dominant wave number to the instability, as may be
expected from the wide interval of unstable wave numbers,
including many with roughly similar growth rates. Instead,
we see highly nonstationary dynamics and apparent energy
localization. This, in turn, motivates us to study in Sec. IV D
the localized states spontaneously arising in the instability
evolution.

Finally we consider the emergence of instability in short
chain lengths, below the 12 pendulum periodicity predicted
by our MI analysis. Our earlier analysis of the pendulum
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FIG. 13. (Color online) Instability development in a short chain
of five pendulums at ω = 0.94. No stationary pattern is evident;
instead energy appears to move through the chain and become
temporarily trapped at the end pendulums. The initial conditions
are θn = 0, θ̇n = 0. Color map indicates total energy per pendulum
(white: 1.76, black: −1).

chain indicated that the large-amplitude state becomes unstable
when consisting of four pendulums, for frequencies below
approximately ω = 0.9 (see Fig. 8). In practice at this driving
frequency we find the pendulum chain will converge to
the stable low-amplitude solution (which exists up until
approximately ω = 0.938). The instability region increases
with chain length, and in fact already a chain of five pendulums
is unstable beyond the low-amplitude existence region. We see
in Fig. 13 the instability dynamics which emerge at ω = 0.94.
The instability pattern of the long chain is gone, and instead
we see that the energy appears to move through the chain
becoming temporarily trapped at the ends. It is important to
note that the modulational stability analysis above applies to
the infinite chain, since the wave number parameter q was
taken to be a continuous variable. An interesting direction for
future work would be to consider separately the case of short
chains, with q suitably quantized.

D. Period-1 breather solutions

The energy localization we have observed in our instability
dynamics appears somewhat connected to the breather solu-
tions observed in Ref. [10]. Thus, we continue our analysis
by examining this problem, namely, the form and stability
of the period-1 breather solutions. In agreement with the
results of Ref. [10] we find two families of breather solutions
corresponding to on-site (Fig. 14) and off-site (Fig. 15)
configurations. We find these solutions by beginning in the an-
ticontinuous limit [15], with the central site(s) corresponding
to the high-amplitude single-pendulum solution and outer sites
the low-amplitude solution. Both families are only stable for
a limited, and (roughly) mutually exclusive, range of driving
frequencies ω, with the on-site state being stable at higher
frequencies.

Examining the Floquet multipliers at the instability crossing
we see that the on-site breather becomes unstable due to the
growth of a complex conjugate pair [Fig. 14(c)], while the
off-site breather becomes unstable through the growth of a
purely real Floquet multiplier [Fig. 15(c)].

The small range of ω for which the solutions exist is directly
related to the region of bistability in the single-pendulum case.
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FIG. 14. (Color online) Family of on-site breathers for N = 41.
(a) amplitude of central site (blue) and tails (red); (b) maximum
eigenvalue; (c) the eigenvalues from stable and unstable breathers in
the complex plane.

This can be most clearly seen by superimposing a plot of the
amplitudes of the breather maximum and tails on the single-
pendulum amplitude response shown originally in Fig. 2(a).
We show this in Fig. 16 where the maximum amplitudes of the
central site(s) for the two breather families (upper dashed lines,
top: on-site, lower: off-site) are shown along with the regions
over which these families are stable (upper circles) and the
amplitudes of the breather tails (lower circles), superimposed
on the pendulum chain results (lower solid and dashed lines). It
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FIG. 15. (Color online) Family of off-site breathers for N = 41.
(a) amplitude of central site (blue) and tails (red); (b) maximum
eigenvalue; (c) the eigenvalues from stable and unstable breathers in
the complex plane.
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FIG. 16. (Color online) Breather solution for N = 41 compared
with period-1 solutions. The green and magenta lines stand for the
on-site and off-site breather, respectively, and the circles mean stable
states.

is evident in this figure that the breathers exist only in the region
of bistability for the period-1 solutions of the pendulum chain.
Interestingly there is a region in ω approximately [0.94,1.12]
where we find no stable solutions. We will exploit this fact in
our breather generation scheme discussed in Sec. IV F.

We finish this section by briefly examining the instability
dynamics of an unstable breather. As an example we consider
the on-site breather at ω = 0.9. For this driving frequency
the instability growth rate is weak, and we expect still
connected with complex conjugate Floquet multipliers. The
resultant break-up dynamics of the breather shown in Fig. 17
is indeed slow, showing amplitude oscillations and gradual

FIG. 17. (Color online) Dynamics of unstable on-site breather
at ω = 0.9 for a chain of 41 pendula. (a) Plot of total energy
per pendulum (black: −1, white: 4.8), showing large-amplitude
oscillations of central sites. (b) Amplitude at dashed line in (a),
given by t = 4001 (up triangles), t = 4002 (right triangles), t = 4003
(down triangles), and t = 4004 (left triangles) showing presence of
large-amplitude oscillations in breather tails.

emission of energy into the surrounding pendulum chain.
By t = 4000 the tails of the breather are showing significant
amplitude oscillations [see Fig. 17(b)], yet the energy is still
predominantly localized about the central site of the pendulum
chain, indicating the weak nature of the instability.

E. Mixed-frequency breather solutions

Inspired by the connection between the period-1 single-
pendulum solutions and the nature of the period-1 breathers
we also examine the possibility of breathers connected to
the period-3 single-pendulum solutions. In particular, the
possibility of breathers in the bistable region of low-amplitude
period-1 solutions and high-amplitude period-3 solutions.
We find that indeed breathers exist in this bistable region, with
the tails connected to the period-1 solution and the central
site(s) connected to the period-3 solution (see Fig. 18).

Due to their mixed frequency nature, more breather families
become possible. In particular, we find that the central sites
(moving with one third the frequency of the driving force)
may move either out of phase or in phase with the low-
amplitude tails (moving with the same frequency as the driving
force). These two classes are shown in Fig. 18(a) and 18(b),
respectively, where we have plotted θ (t) for each pendulum
over three forcing periods, for ω = 2.7 and N = 101. Such
so-called subharmonic breathers have also been found in
the context of electrical lattices recently [16]. Examining
the Floquet spectrum for these families we find that the
in-phase state is highly unstable (dashed line in Fig. 19), while
the out-of-phase state is only weakly unstable (solid line in
Fig. 19).

FIG. 18. Mixed-frequency breather trajectories across one period
(T = 6π/ω) for every pendulum (N = 101) with ω = 2.7. (a) Central
pendulums moving at three times the period of the driving force, and
out of phase with pendulums at edges (weakly unstable); (b) as above,
except central pendulums in phase with tails (strongly unstable).
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FIG. 19. Absolute value of maximum Floquet multiplier for
multifrequency breather solutions in a chain of 101 pendula. Solid line
corresponds to the out-of-phase solution, showing weak instability,
while the dashed line corresponds to the in-phase solution showing
strong instability.

While we find no stable examples of multifrequency
breathers for a chain of 101 pendulums, at shorter chain
lengths windows of stability appear. We show in Fig. 20
the dependence on driving frequency ω for the family of
on-site out-of-phase mixed-frequency breathers in a chain of
41 pendulums. The central site amplitude (solid line) and edge
site amplitude (dashed line) are shown in Fig. 20(a), with the
largest Floquet multiplier shown in Fig. 20(b). Around ω = 2.7
we see that this mixed-frequency breather is predicted to be
stable. As we approach ω = 3 the mixed-frequency breather
becomes more and more delocalized, evident in the apparent
collision of the central site and tail amplitudes. We also see
some evidence of symmetry breaking in the tail oscillators,

FIG. 20. Multifrequency breather solutions for N = 41. (a) Cen-
tral site amplitude (solid line) and edge site amplitude (dashed line)
versus ω for on-site, out-of-phase, breather solution; (b) maximum
absolute value of the Floquet multipliers associated with solutions in
(a) showing small windows of stability near ω = 2.7.

FIG. 21. (Color online) Dynamics of multifrequency breathers
for different chain lengths. (a) Weakly unstable case for ω = 2.7
and N = 101 showing disappearance of breather (black: −1, white:
2.5); (b) very long lived multifrequency breather for ω = 2.7 and
N = 41 (black: −1, white: 1).

which is perhaps the origin of the small loss in smoothness of
the breather family amplitude near cutoff. The full analysis
of the properties of this breather state are beyond the
scope of this work, but would be an interesting direction for
future study.

To confirm the stability results we turn to simulations of
the dynamics. In Fig. 21(a) we see the effect of the weak
instability on the on-site out-of-phase breather for N = 101.
After an extended period with little change the breather sud-
denly evaporates, with the system converging to the in-phase
period-1 solution for all pendulums. In contrast, at ω = 2.7
for the breather in a chain with N = 41 we see persistence
over long simulation times [see Fig. 21(b)] suggesting the
state is stable, in agreement with the stability results shown
in Fig. 20.

F. Breather generation

An important issue concerning breathers is how to generate
them in practice. We consider one possible scheme involving
modulation of the driving frequency. We propose starting
with all pendulums at rest and driving at a frequency at
which modulational instability emerges with a well-defined
instability wave number. In this way a regular pattern emerges
spontaneously in the system. We then suggest lowering the
frequency until it sits within the stable region of the target
breather type. In Fig. 22 we show generation of a stable
on-site breather, through variation of ω from ω = 1.04 down to
ω = 0.84 [as depicted in Fig. 22(b)]. If we lower the frequency
further we sit in the band of stable off-site breathers, and we see
in Fig. 23 that similarly we can generate members of this family
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FIG. 22. (Color online) On-site breather generation from an ini-
tially quiescent pendulum configuration [θ (0) = θ̇ (0) = 0], through
modulation of the driving frequency. (a) Generation of a single
onsite breather following a period of instability dynamics; (b) time
dependence of driving frequency ω.

of breathers. In this latter case, we lower the frequency more
rapidly from ω = 1.04 to ω = 0.75. As expected, when relying
on instability dynamics, we find the final location of breathers
depends on the initial period at the unstable frequency and
the speed of the switch. However, we find that the generation

FIG. 23. (Color online) Off-site breather generation from an ini-
tially quiescent pendulum configuration [θ (0) = θ̇ (0) = 0], through
modulation of the driving frequency. (a) Generation of single off-
site breather following a period of unstable dynamics; (b) time
dependence of driving frequency ω.

of breathers through this process is robust and occurs without
any special choice of these parameters. We should note that
we have been unsuccessful in using this method to generate
mixed-frequency breathers. This appears to be due to the
relatively small windows of stability (and presumably also
corresponding basins of attraction) of the breathers for our
choice of parameters. To achieve generation we have instead
used initial conditions near the breather state. The general
problem of the nature of the dynamics for different initial
conditions is largely still an open one.

V. CONCLUSIONS

We have examined in detail the response of both a single
pendulum and a pendulum chain to horizontal driving of
the pendulum pivot point, in an experimentally accessible
region of the system parameter space, focusing on small
driving amplitude. We have characterized the single-pendulum
solutions, finding a region of bistability near the linear
resonance of the pendulum natural frequency and driving
frequency (ω = 1), with one stable solution of large amplitude
and roughly in phase with the driving force and the second
stable solution of small amplitude and out of phase. We
find also the existence of solutions three times the period of
the driving force, near the subharmonic resonance at ω = 3.
These are large-amplitude solutions, with no connection to
the period-1 solutions. Turning to the pendulum chain we
show that the period-1 higher-amplitude solution exhibits a
modulational instability below a certain critical frequency and
beyond a certain chain length. We characterize this modula-
tional instability by studying the instability of a sinusoidal
solution ansatz, for a low-order expansion of the sinusoidal
nonlinearity and find good agreement with our numerical
results. We examine the on-site and off-site localized breather
solutions in the pendulum chain, since the breather waveforms
appear to spontaneously form as a result of this instability.
More specifically, we show their close connection to the
single-pendulum periodic solutions. In particular, the breathers
exist only for parameters for which there is single-pendulum
bistability. Following this we examine the possibility of
multifrequency breathers, corresponding to the bistable region
near the first subharmonic resonance. We find that for
moderate chain lengths stable breathers exist in which the
central sites are moving at one third of the frequency of
the edge sites. For longer chain lengths, however, we find
these breathers are weakly unstable. Finally we turn to the
possibility of breather generation through dynamically tuning
the driving frequency. We discuss a robust scheme which may
be used to generate both on-site and off-site breathers. Natural
directions for future work include further characterization
of the subharmonic response, possibly in connection with
shorter chain settings and the potential connection of this
setting with experiments such as the mechanical ones of
Ref. [10], as well as the electrical ones of Ref. [16]. On the
other hand, understanding more systematically breather, as
well as multibreather states and a potential tuning of their
existence, as well as stability regimes would be of particular
interest in inducing (and optimizing) energy localization in
this system.
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