
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

March 2016 

Applications in Low-Power Phased Array Weather Radars Applications in Low-Power Phased Array Weather Radars 

Robert A. Palumbo Jr 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Signal Processing Commons 

Recommended Citation Recommended Citation 
Palumbo, Robert A. Jr, "Applications in Low-Power Phased Array Weather Radars" (2016). Doctoral 
Dissertations. 594. 
https://scholarworks.umass.edu/dissertations_2/594 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/594?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


APPLICATIONS IN LOW-POWER PHASED ARRAY
WEATHER RADARS

A Dissertation Presented

by

ROBERT A. PALUMBO

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2016

Electrical and Computer Engineering



© Copyright by Robert A. Palumbo 2016

All Rights Reserved



APPLICATIONS IN LOW-POWER PHASED ARRAY
WEATHER RADARS

A Dissertation Presented

by

ROBERT A. PALUMBO

Approved as to style and content by:

Stephen J. Frasier, Chair

Paul Siqueira, Member

Michael Zink, Member

Gopal Narayanan, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering



DEDICATION

This is dedicated to my family, who has stuck by me for so long. And to Mikey, who

is one of the few friends who hasn’t given up on me.



Two roads diverged in a wood, and I took the one less traveled by,
and that has made all the difference

—Robert Frost



ACKNOWLEDGMENTS

First and foremost, I’d like to thank Raytheon for giving me the opportunity to

work with a radar system for so long as I have. It’s a luxury that’s not often afforded in

large companies, and I’m grateful to have been given the chance to prove myself. I’m

very thankful to both Paul Ferraro and Christopher McCarroll from Raytheon, who

got me started on my graduate career in Amherst and have done everything possible

to keep me going. I’d also like to thank Ilene Hill and everyone in SRSI/SVTAD at

Raytheon for being patient with me through my endeavors.

The radar system wouldn’t nearly be this capable if it weren’t for the efforts of

Ken Wood from Raytheon and Eric Knapp from the University of Massachusetts at

Amherst. Thanks for the long days we spent trying to build and calibrate the first

system and the months trying to commercialize and sell it internationally. I’d also

like to thank the rest of the staff and students at the Microwave Remote Sensing

Laboratory (MIRSL), who have provided a great learning environment with all the

lab equipment and tools needed to get the job done. And special thanks to my

advisor, Steve Frasier, for taking me on as a student and keeping me through the

sometimes long months without contact.

I appreciate all the support and effort from the engineers at FIRST RF Corpora-

tion (Boulder, CO), specifically Luke Sankey, who have built an extremely capable,

affordable, and commercialized phased array system.

Thanks to Professor Douglas Gray and Waddah Al-Ashwal from the University of

Adelaide (South Australia, AU), for the whirlwind of field experiments and trips we

made in such a short time in Australia. That was one of the culminating experiences

of my graduate career, and I’m grateful for all the help.

vi



Last, but not least, thanks to Richard Moro, Terry Kirn, and David Payne from

AT and SED in Raytheon, who have done a great job in educating me in the finer

points of radar program capture and marketing. It’s an often overlooked and under-

appreciated task, but I’m grateful to be a part of it (and look forward to more future

wins).

vii



ABSTRACT

APPLICATIONS IN LOW-POWER PHASED ARRAY
WEATHER RADARS

FEBRUARY 2016

ROBERT A. PALUMBO

B.Sc., RENSSELAER POLYTECHNIC INSTITUTE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Stephen J. Frasier

Low-cost X-band radars are an emerging technology that offer significant ad-

vantages over traditional systems for weather remote sensing applications. X-band

radars provide enhanced angular resolution at a fraction of the aperture size com-

pared to larger, lower frequency systems. Because of their low cost and small form

factor, these radars can now be integrated into more research and commercial ap-

plications. This work presents research and development activities using a low-cost,

X-band (9410 MHz) Phase-Tilt Radar. The phase-tilt design is a novel phased ar-

ray architecture that allows for rapid electronic scanning in azimuth and mechanical

tilting in elevation, as a compromise between cost and performance.

This work focuses on field studies and experiments in three meteorological appli-

cations. The first stage of research focuses on the real-world application of phased

array radars in forest fire monitoring and observation. From April to May 2013, a

viii



phase-tilt radar was deployed to South Australia and underwent a field campaign to

make polarimetric observations of prescribed burns within and around the Adelaide

Hills region. Measurements show the real-time evolution of the smoke plume dynam-

ics at a spatial and temporal resolution that has never before been observed with an

X-band radar. This dissertation will perform data analysis on results from this field

campaign. Results are compared against existing work, theories, and approaches.

In the second stage of research, field experiments are performed to assess the data

quality of X-band phased array radars. Specifically, this research focuses on the mea-

surement of and techniques to improve the variance of weather product estimators

for dual-polarized systems. Variability in the radar products is a complicated rela-

tionship between the radar system specifications, scanning strategy, and the physics

governing precipitation. Here, the variance of the radar product estimators is mea-

sured using standard radar scanning strategies employed in traditional mechanical

antenna systems. Results are compared against adaptive scan strategies such as

beam multiplexing and frequency diversity. This work investigates the improvement

that complex scanning strategies offer in dual-polarized, X-band phased array radar

systems.

In the third stage of research, simulations and field experiments are conducted

to investigate the performance benefits of adaptive scanning to optimize the data

quality of radar returns. This research focuses on the development and implemen-

tation of a waveform agile and adaptive scanning strategy to improve the quality

of weather product estimators. Active phased array radars allow radar systems to

quickly vary both scan pointing angles and waveform parameters in response to real-

time observations of the atmosphere. As an evolution of the previous research effort,

this work develops techniques to adaptively change the scan pointing angles, trans-

mit and matched filter waveform parameters to achieve a desired level of data quality.

Strategies and techniques are developed to minimize the error between observed and

ix



desired data quality measures. Simulation and field experiments are performed to

assess the quality of the developed strategies.
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PREFACE

After all I’ve experienced, through all the meetings and gate reviews. All the

late nights and plane flights to conferences and trade shows. Spending hours pouring

over software code looking for that one bug, or analyzing and re-analyzing data to

unravel some artifact. Writing white papers and bids and proposals, and giving

demonstrations or walkthroughs. Volunteering for museum visits and side projects

in what little free time there was. After pushing through late nights, long road

trips to short field tests, and early morning international conference calls. After

traveling thousands of miles Down Under observing birds, bushfires, planes, waves,

rain, and ships. Through dozens of talks to crowds of tens to hundreds. Through

success and failure, good times and bad, little victories and huge failures. From array

analysis to receiver development to system integration and test to (so much) software

development, and the always-exciting T s and C s and licensing issues. Through all

this and more, I’ve learned one immutable, resolute fact: this is what I was destined

to do with my life.

This dissertation is the culmination of the experiences I’ve undertaken over the

past few years, in trying to build an idea into reality. I’ve always been more of a

engineer than a research scientist, so the context of much of this work is towards the

practical application of phased array radar system design and analysis. In short, this

work summarizes the collaborative efforts of Raytheon Company and the University

of Massachusetts Amherst to build a commercialized phased array weather radar. The

focus of this work is almost entirely on radar backend design and signal processing

algorithm development, specifically from the Digital Receiver/Exciter (DREX) to

the radar software package. Wherever possible and permissible, I’ve tried to either
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derive the equations explicitly or describe the algorithm in detail for most of the

algorithms here. This is as much for my benefit as yours; that re-stating a complicated

algorithm in another (equivalent) way might somehow get the concept across better

for some readers than others. As always though, I recommend falling back on the

cited references for all standard algorithms, or contacting me directly for questions

on the novel ones proposed here.
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CHAPTER 1

INTRODUCTION

Operational civil infrastructure radars deployed around the world today are physi-

cally large, high-power, mechanically-rotating systems. Designed for long-range (hun-

dreds of kilometers) coverage through heavy precipitation, these radars must operate

at radar wavelengths not subject to substantial attenuation. This necessitates the

use of large antennae to achieve the narrow beam width needed for kilometer-scale

spatial resolution throughout the coverage region. The radars use high-power trans-

mitters to meet minimum sensitivity requirements and large mechanically scanned

antennae that require dedicated land, towers, and other support infrastructure. The

large physical size of these systems combined with potential environmental impacts

limits the availability of potential sites. The strategy for deploying national radar

networks such as this is to judiciously attempt to site radars where low-altitude cov-

erage is most needed, while simultaneously minimizing the number of radars in the

network as a means of controlling the life cycle costs of the overall system. The

resulting infrastructure provides good coverage aloft and some coverage close to the

ground in specific regions, while leaving large expanses below 2 km to 3 km altitude

without radar coverage.

While this concept of operations is sufficient for contiguous coverage over a large

area, the lack of low-altitude surveillance results in a number of practical issues.

Certain weather phenomena, such as hurricanes, supercells, mesocyclones, tornadoes,

microbursts, and snow, often build and evolve at low altitudes below 1 km [80]. As

the current infrastructure cannot directly observe these phenomena, this results in de-
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graded performance in tornado early warning systems and deficiencies in severe storm

emergency preparedness [73]. In addition, the recent growth in affordable Unmanned

Aerial Vehicles (UAVs) (also known as drones) for both personal and commercial use

has led to a re-evaluation of the scope and extent of the national airspace. While

current regulations limit UAVs to altitudes below 500 ft and prevent Beyond Line-Of-

Sight (BLOS) operation [67], many companies are pushing for widespread deployment

for a variety of applications from package delivery to emergency and hydrologic mon-

itoring [34, 36]. Recently, several companies have proposed the use of dividing the

lower atmosphere into dedicated traffic zones for Unmanned Aircraft Systems (UASs)

and Small Unmanned Aircraft Systems (sUASs), combined with cooperative target

surveillance systems [3, 50]. While such systems may be a possible far-term solution,

they do not address the issue of non-cooperative target recognition. They also do not

address the need for localized weather forecasting in UAS traffic lanes.

The past decade has seen a great influx in new technology designed to combat

this low-altitude coverage gap. Since its inception in 2002, the goal of the National

Science Foundation (NSF) Engineering Research Center for the Collaborative Adap-

tive Sensing of the Atmosphere (CASA) is to investigate and develop technologies for

improving low-altitude weather forecasting. CASA has been the forerunner for the

development of a network of small-scale radars to combat this coverage gap issue. In

particular, the focus in the past few years has been towards the integration of pha-

sed array technology into the small-scale radar network design methodology. Small

phased array antennae are a desirable technology for such an application because

they permit flexible beam positioning, have lower recurring costs than mechanical

antennae, and can be installed on the sides of existing towers and rooftops.

This research is an evolution of this work and focuses on the applications of phased

array radars for meteorological and hazard detection and observation. While these

applications have been studied and investigated with traditional mechanical radar
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systems, little research has been performed using phased array technology. The ob-

jectives of this research are to investigate the data quality of X-band phased array

radars and assess their performance in several real-world applications.

1.1 Existing US Operational Weather Radars

Before investigating and researching a new weather radar technology, it is im-

portant to review the current system to provide an adequate baseline. Primary

weather surveillance in the US is served by a network of over 160 Weather Surveillance

Radars (WSR-88Ds), commonly known as the Next-Generation Radar (NEXRAD).

Each WSR-88D [37] is an S-band (2700 MHz to 3000 MHz) center-fed, parabolic dish,

mechanically-steered radar. At a diameter of 8.5 m, the radar outputs a peak transmit

power of 475 kW. Each radar in the network operates independently and is manu-

ally placed in different radar modes of operation to observe different precipitation

types, from clear air to precipitation and severe weather. The refresh rate, or time

to complete each volume scan, varies by radar mode from 5 min (precipitation) to

10 min (clear air and snowfall). The system uses either a short (1.57 µs) or long pulse

(4.57 µs), and a Pulse Repetition Frequency (PRF) from 320 Hz to 1300 Hz. See [37,

p. 47] for a more detailed description of the radar system technical and performance

specifications.

In addition to the NEXRAD network, the Terminal Doppler Weather Radar

(TDWR) [7] was established in the early 1990s to provide higher quality weather

and airport surveillance near major airports in the United States. Operating at C-

band (5600 MHz to 5650 MHz), each TDWR system operates at twice the range res-

olution of NEXRAD at an update rate of 1 min.
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1.2 Motivation

The weather surveillance mission in the United States has seen great improve-

ments since the deployment of the NEXRAD network. With the recent upgrade to

dual-polarization [120], the system has lead to advancements in both Quantitative

Precipitation Estimation (QPE) and Quantitative Precipitation Forecasting (QPF).

With these advancements, however, must come goals for future capability systems.

The National Research Council (NRC) has previously reported [80] that there is a

need for atmospheric monitoring beyond our current capabilities, specifically noting

the need for Distributed Collaborative Adaptive Sensing (DCAS) for the integration

and cooperation of multiple-sensor networks. In a 2002 report on the next genera-

tion weather technology [30], it was recommended that augmented infrastructure or

specialized surveillance is required in areas such as complex terrain, urban, or coastal

regions. The same report emphasized the development of phased arrays to provide

rapid scanning and to allow for adaptive waveform and scan pattern selection. More

recently, the US Committee on Commerce, Science, and Transportation proposed a

bill to Congress, known as the Weather Research and Forecasting Innovation Act

[95]. If signed into law, the bill would invest in technologies to advance observing

and forecasting capabilities and provide commercial opportunities for weather data

processing and systems.

The current weather and airport surveillance missions within the United States are

currently split among several distinct radar systems across multiple frequency bands;

the Airport Surveillance Radar (ASR, S-band) for aircraft surveillance and monitor-

ing [111], the Terminal Doppler Weather Radar (TDWR, C-band) for detecting wind

shear and gust fronts near airports [7], the Next-Generation Radar (NEXRAD, S-

band) for primary weather observations and hazard monitoring [59], and the Air

Route Surveillance Radar (ARSR, L-band) [115]. In 2012, the Federal Aviation

Administration (FAA) and the National Oceanic and Atmospheric Administration
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(NOAA) began solicitations for research into replacing these aging and antiquated

systems with a single, multi-function phased array radar. Known as the NextGen

Surveillance and Weather Radar Capability (NSWRC), research began on the initial

requirements that a phased array radar would need to meet to enhance or replace the

current systems. A phased array radar would have to support the aircraft surveillance

and airport surveillance missions, while simultaneously interrogating the atmosphere

for severe weather, including wind shear, gust fronts, severe thunderstorms, and QPE

[110, 38]. Table 1.1 lists the set of notional requirements put forth by the NSWRC

that a future capability system would need.

These requirements highlight several key technical challenges for future systems.

Small data bias places stringent requirements on initial system calibration and built-

in test and recalibration in the field. Migrating to phased array radars is even more

difficult, since calibration constants are required at every beam position, and re-

calibration must be performed at multiple beam positions. Meeting these data quality

requirements must be considered in early system integration and test planning, since

calibration and characterization efforts often represent a significant portion of the

cost of a phased array system.

1.3 Dissertation Structure

This dissertation is organized as follows. Chapter 1 presents an overview of the

background, problem statement, and motivation for this research, as well as a brief

description of the current operational solutions. Chapter 2 describes the system

and components of the X-band phased array radar developed and deployed for this

1Here, ∆max and σmax denote the requirements on bias and standard deviation, respectively, for
each of the listed weather products. Maximum bias and standard deviation depend on the measured
Signal to Noise Ratio (SNR), copolar correlation coefficient (ρhv), and spectral width (σv). Blank
cells denote requirements which do not depend on the measured parameter.
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Table 1.1: Multifunction Phased Array Radar (MPAR) notional requirements for weather observa-
tion1. Note that differential reflectivity (Zdr), copolar correlation coefficient (ρhv), and differential
phase (ΦDP ) are only specified at true elevation angles (φ) lower than 20°. These requirements are
in the context of the S-band radars currently operated by the National Weather Service (NWS).

Product
σmax ∆max

SNR (dB) σv (m s−1) ρhv SNR (dB) σv (m s−1) ρhv

Reflectivity (Zh) 1.8 dBZ 10 4 1.0 dBZ

Radial Velocity (v) 1 m s−1 8 4 0 m s−1

Spectral Width (σv) 1 m s−1 10 4 0.2 m s−1 10 12

Differential Reflectivity (Zdr)
0.3 dB,

φ < 20°
20 2 0.99

0.1 dB

(Zdr < 1 dB),

else 0.1Zdr

Copolar Corr. Coefficient (ρhv)
6e−3,

φ < 20°
20 2 0.99 1e−3 20 2 0.99

Differential Phase (ΦDP )
2.5°,

φ < 20°
20 2 0.99 0°

Signal to Noise Ratio (SNR) 2.0 dB 0 4 1.0 dB

research. In Chapter 3, the radar signal processing algorithms used to generate the

weather products are derived and presented.

The results of proposed research into novel applications and field work are pre-

sented in Chapters 4 to 6. Chapter 4 presents research and analysis on the use of

X-band phased array radars for Bushfire Detection and Monitoring (BDM). This

chapter analyzes the results of a field campaign performed in South Australia from

April to May 2013. During this campaign, an X-band phased array radar made

polarimetric observations on the backscattered radar echoes from several controlled

and uncontrolled forest fires. Based on the data, an algorithm is proposed which

uses fuzzy logic and storm cell tracking techniques to identify smoke plume echoes

and characterize the likelihood that areas in the plume are located above active fire

sources.

Chapter 5 presents a comparative analysis of traditional versus complex phased

array scanning strategies. The complex scanning strategies are designed to make use

of the electronic and rapid scanning capabilities of phased array radars to improve

data quality. Building on these results, Chapter 6 describes a novel scanning algorithm
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designed specifically for phased array radars that uses waveform agility to optimize

the scan time to achieve a desired level of data quality. Chapter 7 summarizes the

research to be performed and presents concluding remarks.
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CHAPTER 2

SYSTEM DESCRIPTION

2.1 Historical Overview

Since its inception, the National Science Foundation (NSF) Engineering Research

Center for the Collaborative Adaptive Sensing of the Atmosphere (CASA) has ad-

vocated for the deployment of distributed networks of low-cost, small-scale X-band

radars to improve the weather forecasting in the lower atmosphere, where current op-

erational radars cannot observe due to the curvature of the Earth and terrain blockage

[74]. By using small-scale (1 m2, 10 W to 100 W peak power), coherent-on-receive, X-

band (9300 MHz to 9500 MHz) radars, the systems can be more easily deployed in

urban areas and inhospitable terrain. In addition, smart scanning techniques can be

used to adaptively control where the radar network scans to improve the refresh rate

and situational awareness of the network over the current operational infrastructure.

As a proof-of-concept, in 2006 CASA implemented and deployed a 4-radar net-

work of X-band, magnetron-transmitter mechanical radars in Southwestern Okla-

homa. Known as the Integrated Project-1 (IP1) network, the goal of the testbed

was to evaluate the concept of Distributed Collaborative Adaptive Sensing (DCAS)

using small-scale X-band radars [19, 20]. Comparison of data between the CASA

IP1 testbed and the nearby Weather Surveillance Radars (WSR-88Ds) in Frederick

(KFDR) and Twin Lakes (KTLX) show that the testbed provided increased resolution

on supercell mesocyclones and provided higher quality data to forecasters, consistent

with current operational storm prediction models [17]. Furthermore, an analysis of re-
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sults from the system demonstrated that the network could provide high quality radar

returns and improved resolution and tracking of mesoscale weather events [22, 21].

As an evolution of the IP1 network and continuation of the NSF research cen-

ter, CASA and the North Central Texas Council of Governments (NCTCG) began

a 5-year project in 2012 to deploy an 8-radar node in the Dallas Fort-Worth (DFW)

area [92]. The goals of the project are to provide high-resolution mapping of atmo-

spheric conditions, support neighborhood-scale warnings for flash floods and other

high-impact weather events, and demonstrate the value of distributed, collaborative-

adaptive X-band radar networks to the National Weather Service (NWS). The project

aims to demonstrate the capability of such networks to support urban flash flood mon-

itoring by providing high-resolution rainfall mapping through algorithms for X-band

Quantitative Precipitation Estimation (QPE) [25, 26].

In parallel to the IP1 network development, in 2007 CASA began development

of an electronically-scanned phased array radar envisioned to become the next-gen-

eration radar technology for use in X-band radar networks. Known as the phase-tilt

architecture, the radar antenna electronically scans in the azimuthal direction and

mechanically tilts in elevation [101, 56]. The lab prototype antenna developed out

of the University of Massachusetts Amherst (Amherst, MA) was a dual-polarized,

linear phased array using solid-state Transmit/Receive (T/R) modules and four Line

Replaceable Units (LRUs). Each LRU contained 18 center-fed columns of 32 dual-

polarized patch-array elements, which allowed the system to scan electronically in the

azimuthal direction from −45° to 45° off boresight. From 2009 to 2013, another itera-

tion of this prototype, weatherized for field testing, was calibrated and participated in

field testing in and around Western Massachusetts at the University of Massachusetts

Amherst [82, 83]. In 2014, this system was deployed to the DFW area to participate

in a field study in conjunction with the CASA-NCTCG radar network [81].
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Figure 2.1: Low-power Phased Array Radar (LPAR) system block diagram.

As development of the phase-tilt prototype system progressed, Raytheon Com-

pany began development in 2011 of a commercialized phase-tilt radar system, suit-

able for long-term field study and evaluation. The array front-end, from the frequency

converter to the array elements, was designed and built by FIRST RF Corporation

(Boulder, Colorado) [102], and the backend was developed at the University of Mas-

sachusetts Amherst [85]. The first version of this system (denoted REV1 ) underwent

field testing and calibration at the University of Massachusetts in 2012 [84]. From
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January to June 2013, the system deployed to South Australia in cooperation with

the University of Adelaide (South Australia, AU) to perform field measurements of

forest fires and other natural phenomena [86, 87]. Following a 12-month deployment

from December 2013 at a Raytheon facility (Portsmouth, RI) overlooking the Narra-

gansett Bay, this system is currently being setup at the University of Massachusetts

Lowell (Lowell, MA). In 2012, a second version of this system (REV2 ) was developed

and deployed at the University of Massachusetts Amherst.

While the phase-tilt architecture is a simplified, low-cost system suitable for

university-driven development and research, any multi-mission capable system for

both volumetric weather observation, hazard monitoring, and target surveillance re-

quires a full 2D phased array to meet top-level requirements for simultaneous weather,

airport, and aircraft surveillance [38]. To that end, since 2012 Raytheon Company

has been developing a 2D phased array radar for weather and target surveillance.

The system has successfully performed in demonstrations for wind turbine mitiga-

tion, weather radar/urban meteorology, and precision approach applications [57].

Additional revisions of the systems are currently being tested in and around New

England.

2.2 System Overview

As mentioned previously, there are two versions of the phase-tilt radar system

currently operational, REV1 and REV2. The system overview presented in this

section applies to both systems, since the performance and system architecture is

similar. Formerly known as the Phase-Tilt Weather Radar (PTWR), the LPAR is a

commercialized phased array combined with an integrated Digital Receiver/Exciter

(DREX) and software suite. The system is comprised of three main components: the

array, the DREX, and the software suite. System parameters for the LPAR are shown

in Table 2.1. A block diagram of the system is shown in Figure 2.1.
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Table 2.1: LPAR system parameters.

Parameter Units Value

Center Frequency MHz 9410

Transmit Power (Peak) W 70

Pulsewidth µs 0.5 to 55

Pulse Compression Gain dB Up to 21

Duty Cycle (max) 30 %

Unambiguous range @ Max PRF km 31

Unambiguous Velocity @ Single PRF m s−1 Up to 38

Unambiguous Velocity @ Dual PRF m s−1 57 (@ 2:3)
Sensitivity @ 35 km dBZ 16

Elevation Beamwidth deg 2.8

Azimuth Beamwidth deg 1.8 to 2.4

Polarization Mode Alt. Transmit, Alt.
Receive (ATAR)

Integrated Cross Pol. Ratio (Max) dB −20

The following sections describe the main components of the LPAR system in

detail. Section 2.2.1 describes the array front-end performance and specifications.

The integrated DREX, detailed in Section 2.2.2, provides coherent transmission and

reception of radar signals to the array front-end. The DREX design incorporates a

customized control mechanism, which allows for flexible waveform and pulse sequence

design. The system supports arbitrary transmit and matched filter waveforms, real-

time pulse compression, and complete waveform, PRF, and frequency diversity within

the radar instantaneous bandwidth. Section 2.2.3 summarizes the main capabilities

and architecture of the radar software which acts as the main point of control to the

system and the radar operator.
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Table 2.2: LPAR array parameters.

Parameter Units Value

Frequency Range MHz 9300 to 9500

Antenna Type 1-D Phased Array

Polarization Linear Dual-polarized

Integrated Cross Pol. Ratio dB
27 dB (peak),

25 dB (all scan angles)

Scan Type Azimuth over Elevation (AZ/EL)

Scan Range (Azimuth) deg −45 to 45

Scan Range (Elevation) deg −10 to 90

Azimuth Scan Type Programmable, discrete positioning

Azimuth Scan Speed 1 µs position switching

Elevation Scan Type Mechanical

Elevation Scan Speed deg/s 8

Peak Sidelobe Level dB -22 (Taylor Weighting)

Scan Loss cos (azimuth)
1.5

Size (Array Only) (w x h x d) 1.20 m x 0.75 m x 0.50 m

Weight (Array Only) kg 125

2.2.1 Array Component

2.2.1.1 Overview

Operating at X-band from 9300 MHz to 9500 MHz, the array subsystem supports

switched, dual-linear polarization diversity using the Alternate Transmit/Alternate

Receive (ATAR) polarization pulsing scheme. Comprised of 64 center-fed columns of

32 dipole radiating elements each, for a total aperture size of 1.5 m2, the elevation

and azimuth beamwidths at boresight are 2.8° and 1.8°, respectively. Each group

of 8 columns are fed by a single 8-channel T/R assembly circuit card, providing

over 1 W peak power to each column for a total peak transmit power over 70 W,

at a maximum 30 % duty cycle. The system supports a maximum instantaneous

bandwidth of 12 MHz. Array parameters for the REV2 system are shown in Table 2.2.

13



2.2.1.2 Calibration Data

Calibrated reflectivity and differential reflectivity measurements require accurate

estimation of both the gain and beamwidth of the array component. Since the array

subsystem is a Commercial Off-The-Shelf (COTS) component, a test manual is pro-

vided by the manufacturer that contains a subset of calibration measurements made

on the array. Near field measurements of the phase and amplitude (known as the

golden calibration data) for each T/R module are made in the factory1, but cali-

brated weather products require accurate far-field measurements. While it is possible

to estimate the far-field pattern from near-field measurements [64], far-field measure-

ments are useful for verifying expected array performance.

To this end, far-field measurements at a subset of frequencies and azimuth beam

pointing angles were performed by the manufacturer. On the REV1 system, one-way

gain and beamwidth (along the principal H- and V-planes) were measured for each

polarization in 5° increments at 3 frequencies from 9300 MHz to 9500 MHz, while for

the REV2 system only gain was measured in 15° increments at 7 frequencies. The

reason for the sparsity in azimuth measurements in the REV2 system is two-fold.

First, far-field measurements take significant time and effort to setup and perform.

For 91 beam pointing angles in both polarizations across 7 frequencies, this equates to

(91)(7)(2) = 1274 different measurements that need to be taken. If each measurement

takes just 5 min, the far-field measurement procedure would take over 106 h. Taking

measurements at a single frequency would still take over two days. So, far-field

measurements for a commercial phased array must be carefully chosen to keep the

overall component cost low. The second reason for the sparse measurements is due

to measurement repeatability. With no significant design changes between the two

1These are accessible via the Universal Serial Bus (USB) alternate array controller interface
(see Figure 2.1) through a hyperterminal window (115 200/8/N), but use of this interface is not
recommended without guidance from the manufacturer or qualified radar operator.

14



−40 −30 −20 −10 0 10 20 30 40
20

22

24

26

28

30

32

34

36

38

40

Azimuth Pointing Angle (deg)
IC

P
R

 (
dB

)

 

 
H−pol
V−pol

Figure 2.2: LPAR Integrated Cross Polarization Ratio (ICPR).

array systems, the only differences are in the manufacturing tolerances. With strict

factory controls and processes, it’s assumed that these errors are negligible.

In addition to one-way gain and beamwidth, Integrated Cross Polarization Ratio

(ICPR) measurements were also performed during far-field calibration of the REV1

and REV2 systems. ICPR is a figure-of-merit of dual-polarized antennae that char-

acterizes the amount of cross-coupling in the received radar echoes from the prin-

cipal H-polarization (V-polarization) plane to the cross-coupled V-polarization (H-

polarization) plane [71]. ICPR is the amount of measured cross-polarization inte-

grated over the width of the main beam [18]. For polarimetric radars employing the

ATAR polarization pulsing scheme, Wang and Chandrasekar [117] showed that ICPR

contributes bias errors in reflectivity, differential reflectivity, co-polar correlation co-

efficient, and specific differential phase estimates. To keep the bias in differential

reflectivity below 0.2 dB (0.3 dB), ICPR should be better than 20 dB (18 dB). By

comparison, for radars implementing the Simultaneous Transmit/Simultaneous Re-

ceive (STSR) dual-polarization scheme, ICPR should be better than 44 dB (42 dB).

Figure 2.2 shows the measured cross-polarization ratio for the REV2 system. The

ICPR is better than 20 dB for pointing angles from −45° to 45°, and is less than 25 dB
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Figure 2.3: Plots of the (a) scan loss and (b) beamwidth for the LPAR system.

for angles less than 25°. Cross-polarization degrades at angles above 45° (not shown),

but the ICPR is still less than 18 dB out to ±55°.

Figure 2.3 shows the array scan loss2 and principal H-plane (azimuthal) beamwidth

in each polarization for the REV1 array. Analysis of the peak gain at each pointing

angle (not shown) confirm a beam pointing accuracy over all scan angles and polar-

izations of ±0.15° and a peak scan loss of −2.5 dB at ±45°. To generate the radar

calibration data for weather product estimation from the results of Figure 2.3 at non-

characterized pointing angles, the data is interpolated to the desired angle using a

cubic spline interpolation technique [93, pp. 113–116].

2.2.1.3 Validation Tests

To validate the far-field measurements and array performance of the system, the

REV1 system underwent a second far-field measurement at the University of Mas-

sachusetts in the Spring of 2011. Two separate tests were performed to measure both

the transmit and receive characteristics of the array. During the receive test, an X-

2Scan loss here is taken as the one-way gain versus scan angle relative to the gain at boresight.
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band horn was mounted in the far-field towards the array, and a Continuous Wave

(CW) tone was injected through the array receive chain. The purpose of this test was

to validate receiver linearity and dynamic range, measure array and downconverter

gain, and characterize the receive gain and Minimum Detectable Signal (MDS). The

receive test confirmed the receive scan loss measurements performed by the manufac-

turer in Figure 2.3a, and the Spurious-Free Dynamic Range (SFDR) was measured

to be better than 86 dB.

In the second test, an X-band corner reflector was setup at a down range of

350 m from the array. The purpose of this test was to measure the Effective Isotropic

Radiated Power (EIRP) for the system and compare against the factory estimates

of 56 dBW. The EIRP was successfully measured in the H-polarization at 52.5 dBW

and V-polarization at 55.5 dBW3.

2.2.2 Digital Receiver/Exciter Component

The DREX is a Field Programmable Gate Array (FPGA) Intellectual Property

(IP) core developed to generate pulsed transmission and reception of arbitrary wave-

forms on an existing hardware platform containing necessary Analog/Digital Con-

verter (ADC) and Digital/Analog Converter (DAC) components. The IP core is

currently used as the underlying Digital Signal Processing (DSP) functionality on an

existing COTS hardware platform, the Ettus ResearchTM Universal Software Radio

Peripheral (USRP)4 model# N210 [39]. The DREX also serves as the communica-

3The H-polarization receive gain for the REV1 system is 3 dB lower than in V-polarization, due
to a design flaw in the element configuration. This has subsequently been fixed in the REV2 and all
later revisions of the system, which have equalized gain in each polarization. Calibrated reflectivity
estimates for the REV1 system reflect these gain measurements.

4An additional version of the DREX has also been developed to integrate with the USRP model#
X310, which provides a larger and updated FPGA, a faster clock speed, and improved filter perfor-
mance.
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tions and signal link between the host computer and the array. Functionally, the

DREX provides the following capabilities.

• Coherent transmission and reception of baseband (60 MHz) signals to and from

the array

• Communications relay between the host computer and the array

• Logic controls for transmit/receive actions within a pulse period

• Logic controls for selection of polarization to the array for a pulse period

In its default configuration, shown in Figure 2.1, the host controller communicates

with the DREX via standard Gigabit Ethernet (GigE)5. The DREX is then connected

to the array via dual Ethernet lines for logic and data communication signals. The

DREX transmits and receives signals from the array at baseband (60 MHz), coherently

locked to a 100 MHz reference clock provided by the array.

The USRP N210 is a COTS platform that is marketed as a Software-Defined Ra-

dio (SDR). The base COTS hardware supports live-only streaming of 16-bit samples

to and from a connected host computer. Existing DSP functionality within the device

contains only Digital Up-Converter (DUC) and Digital Down-Converter (DDC) func-

tionality for Intermediate Frequency (IF) waveforms (0 MHz to 250 MHz) within the

FPGA. The COTS FPGA code contains a working softcore processor, network inter-

face, and all other FPGA cores required for communicating with peripheral devices

mounted on the hardware. Waveforms are transmitted and received from the device

through Subminiature Version-A (SMA) connections on a daughterboard circuit card,

which is mounted on top of the motherboard of the device. A custom daughtercard

5Under nominal conditions, the wire bandwidth over the Ethernet line varies from 50 MHz to
200 MHz, depending on waveform parameters selected.
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Table 2.3: DREX digital transmit subsystem parameters.

Parameter Units Value

No. of IF Outputs Channels Up to 2

IF Range MHz 0 to 250

Digital Attenuation dB 0 to 31

Output Phase Nose dBc/Hz

@ 10 Hz offset -93

@ 100 Hz offset -103

@ 1 kHz offset -118

@ 10 kHz offset -133

@ 100 kHz offset -145

@ 1 MHz offset -141

Clock Jitter ps RMS 0.62

was developed to interface the DREX to the array subsystem. The purpose of us-

ing a COTS platform for the DREX is to reduce the development cost of the radar

system; whereas an internally-developed DREX would take months for hardware and

software development to even get basic functionality, the USRP N210 only requires

slight modifications before DSP development can begin.

The following sections detail the main functionality and capabilities of the DREX.

Section 2.2.2.1 describes the transmit control processing module responsible for build-

ing complicated pulse sequences and managing synchronous returns. Section 2.2.2.2

describes the receive chain used to process incoming samples. Tables 2.3 to 2.5 list

the DREX specifications for the digital transmit subsystem, waveform generator, and

digital receive subsystem, respectively.

2.2.2.1 Control Interface

The DREX builds up a pulse sequence for a radar scan by constructing one or more

dwells containing one or more Coherent Processing Intervals (CPIs). A CPI is defined

as a contiguous series of pulses where the waveform parameters are static for each
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Table 2.4: DREX digital waveform generator parameters.

Parameter Units Value

PRF (per channel) Hz

PC disabled 400 to CW

PC, 512-pt 400 to 24 800

PC, 1024-pt 400 to 12 400

PC, 2048-pt 400 to 6200

Transmit pulsewidth µs 0 to 81.92

No. transmit waveforms Up to 16

Total pulsewidth µs 120

No. matched filter waveforms Up to 16

No. samples per matched filter
waveform

IQ Samples 2048

Total matched filter samples IQ Samples 6144

No. phase codes 64

No. center frequencies 64

No. range masks 16

No. of GPIO lines Up to 32

pulse in the CPI. Here, waveform parameters encompass the following parameters for

each pulse

• Transmit waveform

• Matched filter waveform

• Waveform center frequency

• PRF

• Range mask (receive window, sampling frequency)

• Starting phase code

The transmit waveform defines the actual 100 MHz waveform samples which are fed

to the DAC and output to the array, and the matched filter waveform is the actual
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Table 2.5: DREX receiver parameters.

Parameter Units Value

No of IF Inputs Channels Up to 2

Input sensitivity dBm < −70

Input P-1 dB dBm 8

Input SFDR dB 87

Max sampling rate MHz 50
Max pulse compression sample

size
points 2048

Data output format IEEE-754 half or single
precision

Data output format options

Pulse compressed IQ data

Raw IQ data

FFT of received data

FFT of matched filter waveform

filter used in the pulse compression block on receive samples from the ADC, if pulse

compression is enabled for this CPI. The transmit and matched filter waveforms are

loaded at baseband, which allows the center frequency to be arbitrarily set for each

CPI.

A phase code can also be applied to each pulse in the CPI. Phase coding is a

weather signal processing technique to mitigate second-trip echoes by shifting the

phase of transmitted waveforms [37]. The phase code for each pulse is judiciously

chosen such that the returns from second-trip echoes are orthogonal to first-trip echoes

in a pulse. Typically, phase codes are randomized from pulse-to-pulse, as is the case

with a magnetron or klystron radar transmitter, or set to specific code sequences

having known performance [43]. Phase coding works by shifting the starting phase

of transmitted waveforms (before samples are sent to the DAC) and unwrapping the

starting phase on receive (after digital downconversion to baseband).
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Figure 2.4: DREX transmit processing block diagram.

For each radar scan, the radar software builds up the pulse sequences for the radial

by feeding the DREX CPI commands in succession. Within the DREX, a First-

In, First-Out (FIFO) queue iteratively processes and executes each CPI command

received. Since the radar software communicates to the DREX via User Datagram

Protocol (UDP) packets, there is an inherent delay between when the radar software

commands a CPI and when it is actually executed. This delay is caused by kernel

latencies in the socket protocol, delays in the UDP stack in the DREX, and setup

delays in the control processing module. This delay is nominally between 10 ms to

100 ms and varies depending on the frame size chosen (typ. 8192 B). Control logic

within the DREX injects the CPI commands as inputs to a synchronous, Mealy Finite

State Machine (FSM). The state machine is used to drive logic signals for setup of

waveform parameters on each pulse. Figure 2.4 shows a diagram of the transmit

control interface logic, including a simplified flow diagram for the FSM used in CPI

processing. By constructing radial pulse sequences from multiple CPI commands, the

DREX is able to support switching of any combination of waveform parameters on a
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pulse-to-pulse basis. Thus, the DREX can support simultaneous waveform, frequency,

and PRF diversity.

2.2.2.2 Receive Signal Processing Overview

This section summarizes the fundamentals of the digital pulse compression tech-

nique, specifically pertaining to implementation details on an FPGA. For a more

complete derivation and description of pulse compression and correlation details, re-

fer to [108, 97, 62].

The pulse compression implementation processes received In-phase and Quadra-

ture (IQ) samples within each receive window of the pulse interval through a digital

filter. For received voltage samples sr(t) and filter coefficients h(t), the output of the

filter in the time domain is given by

sf (t) =

∫ ∞
−∞

s(τ)h(t− τ)dτ (2.2.1)

From inspection of (2.2.1), it is evident that the filtering of received radar waveform

samples is equivalent to convolution of the received signal with time-reversed filter

samples. We can rewrite the time-domain expression in (2.2.1) in the Fourier domain

by recognizing that convolution in the time domain is equivalent multiplication in the

Fourier domain, which transforms (2.2.1) to

sf (t) =

∫ ∞
−∞

S(f)H(f) exp [i2πft] df (2.2.2)

The purpose of matched filtering is to choose h(t) such that the output Signal to Noise

Ratio (SNR) is optimized in the presence of white noise. From Schwarz’s Inequality,

it can be shown [62, pp. 59–63] that the maximum SNR is achieved when the filter’s

transform function equals the complex conjugate of the received signal itself, S∗(f).

This is known as the matched filter for s(t). If the filtered signal is the received echoes
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Figure 2.5: DREX receive DDC and pulse compression block diagram.

from a pulsed waveform, then the matched filter will produce maximum SNR aligned

with the presence of received waveform echoes.

The DREX implements the pulse compression technique in the Fourier domain

using Fast Fourier Transform (FFT) correlation. This technique performs the filtering

technique given by (2.2.2), which is simply the Inverse FFT of the product of the

FFT of the received, baseband IQ samples (s(t)) at the output of the DDC and the

conjugate of the matched filter waveform (h(t)) for a given pulse,

s0(t) = IFFT {FFT [s(t)]FFT [h(t)]∗} (2.2.3)

The block diagram of the DREX DDC and pulse compression chain is shown in

Figure 2.5. The DDC implements a three stage cascade of Finite Impulse Response

(FIR) filter blocks [31]. The input stage stage is a Cascaded Integrator-Comb (CIC)

filter, which is an efficient filter design for decimating high-rate samples. CIC filters

trade performance for efficiency by cascading a comb filter, a downsampling block,

and an integrator. Using only addition and subtraction operations, the CIC filter is

able to decimate by an integer amount with minimal resources at the expense of a poor

passband respond. The final two stages in the DDC utilize a traditional FIR block

structure, as either half-band or decimation filters. Down-mixing is implemented by

means of a COordinate Rotation DIgital Computer (CORDIC) algorithm.
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2.2.3 Radar Software Overview

The radar software package, known as the Radar Operating System (rOS ), encom-

passes the command and control, signal processing, data archiving, and data display

functionality for the LPAR system. The software is designed to be fully integrated

with the DREX as the main focal point for communication to and from the array sub-

system. All software components, with the exception of the user interface, are written

in the C++ programming language. The software was developed for the Red Hat En-

terprise Linux (RHEL) or Community Enterprise Operating System (CentOS)6 using

the GNU Compiler Collection (GCC) compiler with C++0x functionality enabled

(RHEL v2.6, GCC v4.4.7). Due to the use of Streaming Single-instruction, multiple

data Extension (SSE) intrinsics to optimize high-throughput calculations, the system

requires an Intel processor with at least 8 GB of Random Access Memory (RAM).

The software package has successfully been deployed on a Dell desktop with an In-

tel i7-3960XM processor (4 cores, 8 threads) with 8 GB RAM and 1 TB Hard Disk

Drive (HDD) storage. The web-based user interface uses a combination of HTML,

javascript, PHP, and SQL (HTML v5, PHP v5.5, SQL v5.6). Figure 2.6 shows a

block diagram of the major software components.

In addition, a Matlab software simulation of the radar software was developed7

that allows recorded timeseries data to be post-processed. This Matlab suite performs

equivalent processing to the pulse-pair signal processing algorithm implemented in

software and is a useful verification and development tool.

The functionality of the software can be broken down into four different parts:

command and control, signal processing, data archiving, data display, and user inter-

6The CentOS operating system is derived from the source code RHEL, and contains much of the
same capabilities and functionality. As the Linux operating is open-source software under the GNU
General Purpose License (GPL) license, the major difference from RHEL to CentOS is the help and
support offerings.

7The Matlab software package is available upon request.
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Figure 2.6: LPAR Radar Operating System (rOS ) radar software architecture block diagram.

face. The following sections describe each component in detail. The documentation

for all software components is available online at the University of Massachusetts

Amherst LPAR system website (http://casa-ptwr-node.ecs.umass.edu/

html/doc/rOS/doxygen/html/index.html).

2.2.3.1 Command and Control

The radar is controlled and setup up for operation via external Extensible Markup

Language (XML) configuration files. These configuration files must be setup prior

to start of radar operations. Configuration files control the radar scanning actions,

waveform configuration to the DREX, signal processing options, data display options,

radar and array calibration tables, and timeseries recording capability.

Within the software, a Mission Application Processor (MAP) daemon thread is

responsible for the main control loop of the radar. The MAP makes use of a two-

tiered, priority-based radar scheduler that sets up radar scanning actions based upon

user input in the configuration file. An external network manager daemon allows
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radar scanning actions to be requested on-the-fly via a UDP communication protocol

external to the radar software. The MAP communicates with the Network Manager

and downstream signal processing daemons via UDP connections for data throughput,

status and fault reporting, and acknowledge messages.

Radar scanning actions, known as Radar Action Requests (RARs), are defined

in an external configuration file and setup within the MAP during live operation.

A RARs defines the timing, scanning geometry, waveform parameters, and signal

processing parameters for each radar mode to be executed. The software is multi-

mission capable, so multiple radar modes can be scheduled concurrently. Internally,

a set of rules within the radar scheduler decides the order in which radar modes are

executed.

To facilitate recurring calibration actions, such as noise estimation measurements,

the MAP autonomously schedules and executes a pre-defined set of nominal radar

modes. At this time, nominal radar modes are defined for (1) noise estimation every

5 min and (2) zero range delay calibration every 24 h. Noise estimation is periodically

performed to update internal Look-Up Tables (LUTs) of noise estimates at each beam

position, used by the signal processing algorithms for accurate SNR estimation. Zero-

range delay measurements feed a pilot pulse through the array subsystem to measure

the inherent system delay and calibrate zero range for the radar at the plane of the

array face.

2.2.3.2 Signal Processing

The processing flow of received IQ data in the software is as follows. A background

receiver daemon autonomously receives samples from the DREX using a zero-copy
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MAP socket interface into a set of circular buffers8. Each circular buffer is tied to a

specific signal processing daemon thread, which then processes the data.

Currently, three signal processing daemons are instantiated. A pulse-pair weather

signal processing algorithm (see Chapter 3) processes received IQ samples and com-

putes the polarimetric weather products. A calibration algorithm processes noise and

zero-range calibration data from nominal radar modes. A test algorithm is also used

to process data from array subsystem tests.

All signal processing threads are constructed from a common factory object9 tem-

plate. Each signal processing daemon processes receives IQ data at distinct processing

points in time:

1. When a single block of pulses arrives (typ. 32)

2. When data from an entire radial is received

3. At the completion of all radials for a radar mode

4. At the completion of all radials across all radar modes executed at the current

elevation tilt

These four processing points describe the actions of a signal processing algorithm.

2.2.3.3 Data Archiving

Processed data from the signal processing daemons are fed to a data archiver

daemon, which archives the data in Network Common Data Format (NetCDF) files

8A zero-copy socket implementation exposes an external buffer that the kernel uses to copy
received data packets into. This buffer is then accessed from user-space directly. As traditional
sockets copy the data first into a kernel buffer and then into a user-space buffer, zero-copy sockets
increase data throughput by eliminating the redundant copy into the second buffer in user-space.

9The factory object software paradigm uses a base software class to encapsulate common func-
tionality, but allows specific instantiations of the base class to modify or add new capabilities and
processing. The factory object paradigm allows additional software processing daemons to be quickly
instantiated for research purposes.
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[96]. Each signal processing daemon feeds data to a different data archiver daemon,

and a new NetCDF file is created for each radar action request executed. Data

archiving can be enabled or disabled in the radar action request.

Raw timeseries data recording can be enabled via a flag in an external configura-

tion file. Raw timeseries data is recorded in binary format to disk, and an external

executable is provided to post-process the binary data into NetCDF files for useabil-

ity. Currently, the system supports up to 4 h of continuous timeseries recording to

the local host computer, assuming sufficient disk space is available.

2.2.3.4 Data Display

After the completion of each radar mode, processed weather products are fed to

a common Planned Position Indicator (PPI) Generator daemon. The PPI generator

generates a Portable Network Graphics (PNG) file for each weather product. A

nearest-neighbor interpolation algorithm is implemented that generates PNG files for

each azimuth scan. Using a binary search algorithm, the PPI generator can generate

the PNGs for all weather products and ancillary variables (currently 27 images) in

less than 1.5 s.

2.2.3.5 User Interface

While the software is primarily accessed via command-line executables, a web-

based user interface (see http://casa-ptwr-node.ecs.umass.edu/ was de-

veloped to interface to the radar remotely. The website uses a mobile-first, responsive

design10 to increase useability across multiple platforms from desktops to smartphones

10The term mobile-first is a website design paradigm that focuses on optimal viewing primarily
from mobile devices having small screen sizes. The term responsive describes a website designed to
be loaded, viewed, and accessed with negligible delay and a minimal amount of scrolling, resizing,
or panning. Together, these terms represent a paradigm shift for web development in recent years
to a more user-friendly internet experience.
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and tablets. Figure 2.7 shows a preview of the main website and PPI map overlay

(inset) of the user interface.

The user interface uses an online login account system to support multiple, in-

dependent radar operators for different research purposes. To begin, each new user

must first register a user account from the registration page on the radar website.

Once registered, the site administrator or radar project manager must then activate

the account before the user can operate the radar. Associated with each new user is

a distinct set of configuration files for the radar software, stored in a protected direc-

tory on the radar host computer. Since the radar software can be setup at run-time

to point to a specific directory for configuration files, this allows each registered user

to maintain their own independent radar configuration. Thus, different users can be

registered for the system to perform research on separate, disjoint research endeavors.

For example, a user performing research on weather phenomena will have a different

configuration than one interested in target surveillance.

Each user must login to the website to view and modify their configuration files,

start and stop radar live operation, and view radar health and status messages. Live

PPI images generated from the radar are overlaid on a Google Maps display in real-

time. Different weather products can be selected for display from the most-recent

radar scan, or an animation loop of the previous 50 scans.

This user account system represents a new paradigm for phased array research

and education. Traditional phased array radars are closed systems that are compli-

cated to operate safely and require significant training. Starting or stopping radar

execution can be convoluted, and is normally left to an experienced radar opera-

tor. By exposing the radar interface through a user-friendly web interface, multiple,

geographically-separated research groups or academic institutions can experience the

advantages of rapid, phased array scanning. Research centers unable to afford the cost

of purchasing or maintaining a phased array can perform independent experiments
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Figure 2.7: Preview of the rOS user interface main page and PPI display (inset).

remotely. Upper-level undergraduate and graduate students can perform hands-on

projects or assignments. Testing has shown that the account system should scale well

to 15 to 20 simultaneous users, which allows support for professor to use the radar in

the curriculum for a course.

2.3 Scanning Geometry

The scanning geometry for the phase-tilt array architecture is a specific case of

the generalized coordinate system for a mechanically-tilted 2D phased array radar

scanning along its principal azimuthal axis. This formulation makes use of both

Radar-local, Mount, and Earth coordinate systems.

31



2.3.1 Radar Coordinates

The radar -local coordinate defines a Cartesian (x, y, z) coordinate system with

the array centered at the origin. The plane of the array lies along the y − z plane.

The central row of elements in the array (assuming a centered rectangular lattice) is

alone the y-axis, and the central column of elements is along the z-axis. The scanned

beam is at a direction (θ, φ), where θ is the azimuth angle as measured from the

x-axis and φ is the elevation angle measured from the xy-plane. A beam scanned at

direction [0°,0°] is aligned with the x-axis and referred to as boresight.

For a target at an absolute range r from the radar center and the array scanned

to angle (θ, φ), the Cartesian coordinates of the target in the radar-local reference

frame can be derived from the spherical coordinates (r, θ, φ) as

−→
arx = cos θ sinφ (2.3.1a)
−→
ary = sin θ sinφ (2.3.1b)
−→
arz = cosφ. (2.3.1c)

The spherical and Cartesian coordinates in the radar-local reference frame are often

referred to as Radar Azimuth/Elevation (RAE) and Radar-Centered, Radar-Fixed

(RCRF) coordinates, respectively. In a similar fashion, spherical (r, θ, φ) coordinates

can be derived from Cartesian (arx, ary, arz) coordinates via

−→ar = −→ax cos θ sinφ+−→ay sin θ sinφ+−→az cosφ (2.3.2a)

−→aθ = −−→ax sin θ +−→ay cos θ (2.3.2b)

−→aφ = −→ax cos θ cosφ+−→ay sin θ cosφ−−→az sinφ. (2.3.2c)
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2.3.2 Mount Coordinates

For the phase-tilt architecture, the mechanical tilt transforms the normal radar-

local reference frame, and the radar scans in an arc across a single elevation tilt.

To account for this mechanical tilt, the problem is generalized to that of the array

mounted on a pedestal. In the mount coordinate system, the pedestal is centered

at the origin, the array center is displaced from the mount axis of rotation by a

coordinate translation
−→
d = (dx, dy, dz), and the pedestal is pointing at an angle (Am,

Em). Here, Am is measured from the x-axis and Em is measured from the yz-plane.

It should be noted that Am and Em correspond to pitch and yaw in the pitch-roll-yaw

convention.

2.3.3 Earth Coordinates

There are two reference frames used to specify the location of the radar with

respect to the Earth; geographic and local. Geographic reference frames, including

Latitude-Longitude-Height (LLA) and Earth-Centered, Earth-Fixed (ECEF), allow

every location on Earth to be specified in a single coordinate system. LLA defines

latitude as the angle between the equatorial plane and the straight line that passes

through a location on the Earth and through the center of the Earth. Longitude is

the angle East or West of a reference meridian, which is a half-arc connecting between

the North and South poles of the Earth. The international prime meridian is located

at the British Royal Observatory (Greenwich, England). Altitude is the height above

sea-level. Unless otherwise specified, positive longitude lie to the west of the prime

meridian.

The ECEF reference frame is a Cartesian coordinate system with the origin located

at the center of the Earth. The x-axis passes through the (latitude, longitude) point

(0°, 0°), the y-axis passes through the point point (0°, 90°E), and the z-axis passes

through the north pole.

33



In contrast, the East-North-Up (ENU) is a local reference frame relative to the

location of a point on the surface of the Earth. Here, the x-axis points East, y-axis

points North, and the z-axis points upwards perpendicular to the surface of the Earth.

The radar heading is defined as the angle between the projection of array boresight

onto the surface of the Earth and true North (y-axis). Heading angles run clockwise

when looking down on the xy-plane.

2.3.4 Radar to Mount Coordinate Transformation

For a resolution cell at range −→r sufficiently larger than the array displacement
−→
d (|−→r | �

∣∣∣−→d ∣∣∣) and array boresight aligned perpendicular to the pedestal axis of

rotation, the mount displacement can be ignored and the pointing angle in the Mount

coordinate system can be expressed as a coordinate rotation

−→am = A



cos θ sinφ

sin θ sinφ

cosφ


(2.3.3)

Where A is a coordinate rotation matrix in the ZYX (pitch-roll-yaw) convention

A =



cosAm cosEm sinAm cosEm − sinEm

− sinAm cosAm 0

cosAm sinEm sinAm sinEm cosEm


(2.3.4)

Cartesian coordinates in the mount reference frame from those in the radar frame are

found by expanding (2.3.3)
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−→
amx = cosAm cosEm cos θ sinφ− cosφ sinEm + cosEm sinAm sinφ sin θ (2.3.5a)
−→
amy = − sin (Am − θ) sinφ (2.3.5b)
−→
amz = cosEm cosφ+ cosAm sinEm cos θ sinφ+ sinAm sinEm sinφ sin θ. (2.3.5c)

Mount spherical coordinates can be found by geometric manipulation of (2.3.5). As

before, spherical and Cartesian coordinates in the mount reference frame are often

referred to as Mount Azimuth/Elevation (MAE) and Mount-Centered, Mount-Fixed

(MCMF). For the simple case of Am = 0 (no pedestal azimuth positioning), (2.3.5)

can be transformed to

−→aθ = − arctan

[
sinφ sin θ

cosφ sinEm − cosEm cos θ sinφ

]
(2.3.6a)

−→aφ = arctan

 cosEm cosφ+ sinEm cos θ sinφ√
(cosφ sinEm − cosEm cos θ sinφ)2 + sin2 φ sin2 θ

 . (2.3.6b)

For a phase-tilt architecture and no pedestal azimuth positioning, substituting φ =

π/2 into 2.3.6 gives the equations for the true azimuth and elevation of the LPAR

system (after simplification)

−→aθ = arctan [tan θ secEm] (2.3.7a)

−→aφ = arccos [cos θ ∈ Em] (2.3.7b)

The formulas in (2.3.7) for the true azimuth and elevation of a 1D phase-tilt array

agree with the formulation given by Orzel [81].
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Figure 2.8: Spherical coordinate system for a tilted 2D phased array radar scanning at beam pointing
angle (θ, φ) with mechanical tilt Em. The tilted coordinate system and beam pointing angle (θ′, φ′)
is shown in blue.

For this work, the mount reference frame will henceforth be used when discussing

azimuth and elevation angles with respect to the radar location. Figure 2.8 shows a

diagram of the spherical coordinate systems in the mount reference frame. The black

x− y − z axis depicts the mount reference frame, and the blue x− y − z axis shows

the rotated radar-local frame with a pedestal tilt of Em (Am = 0). The blue and

red vectors show the difference in pointing angles from the radar-local to the mount

reference frame, respectively.

2.4 Azimuth Sequencing

The LPAR system supports three methods of sequencing azimuth radials within

a scan: (1) sequential, (2) random, and (3) multiplexed. A traditional, sequential

azimuth sequence will mimic the behavior of a mechanically-rotated radar by incre-

menting the azimuth position in fixed, discrete amounts. For a desired azimuth sector

from [θstart:θstep:θstop], the total number of radial positions is
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Nr = 1 +

⌊
|θstop − θstart|

θstep

⌋
. (2.4.1)

Each of the r radial positions in the sequence (θseq[r]) are then computed as

θseq[r] = θstart +
Nr∑
r=0

|θstop − θstart|
Nr − 1

. (2.4.2)

In this manner, the azimuth sector covers from θstart to θstop in θstep increments,

inclusive. This algorithm assumes that the azimuth limits are in strict ascending

order and relative to array boresight.

Once the sequential azimuth sequence is generated, the random and multiplexed

types are derived from these radial positions. The random sequence type randomly

shuffles the radial positions in θseq[r], with replacement

θrand[r] = random [θseq[r]] . (2.4.3)

The randomized azimuth sequence method places no restrictions on the placement

of radials. That is, it does not guarantee that two sequential radial positions, θsec[1]

and θsec[2], won’t still be executed sequentially. To overcome this restriction, the

multiplexed sequencer should be used.

The multiplex sequencer works by spacing radials from θseq[r] maximally far away

from one another. The psuedocode for this technique is shown in Algorithm 1. The

multiplex sequence orders radials such that two sequential radials, θseq[1] and θseq[2],

are maximally far away (≥
⌊√

Nr

⌋
) from one another. Thus, for an azimuth sequence

from [−45°:1°:45°], the multiplex sequence will be

θmx[−45 : 1 : 45] = [−45,−36,−27, . . . ]

The use of multiplexed radial sequences guarantees that radials from closely-separated

azimuth positions will be not be executed sequentially. Thus, any round-trip echoes
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Algorithm 1 Pseudocode for the generation of multiplexed radial positions (θmx)
from sequential radial positions (θseq). For Nr total radials in a sequence, a mul-
tiplexed sequence (θmx) is one in which two sequential radials, θseq[1] and θseq[2],
are ordered such that θseq[2] is maximally far away (≥

⌊√
Nr

⌋
) from θseq[1]. This

condition holds for any two beam positions from θmx.
1: procedure generateMultiplexSequence(θseq[r], Nr)
2: ∆θ ←

⌊√
Nr

⌋
. Compute the radial spacing

3:
4: i← 0
5: s← 0
6: for r in 0 to Nr do . Set the ith beam position
7: θmx[r]← θseq[i]
8: i← i+ ∆az

9: if i > Nr then
10: i← s
11: s← s+ 1
12: end if
13: end for
14:
15: return θmx[r] . Multiplexed beam positions
16: end procedure

from the last pulse in the first radial will not appear in the first pulse on the next

radial.

2.5 Waveform Generation

As described in Section 2.2.2, the DREX acts as an arbitrary waveform generator.

As such, the LPAR software includes built-in support for advanced waveform gener-

ation algorithms. The system supports three types of waveforms: Linear Frequency

Modulated (LFM), Non-Linear Frequency Modulated (LFM), and Piecewise-Linear

Frequency Modulated (PLFM). The LFM waveform is the generic swept-frequency

waveform whose complex envelope is expressed as

sLFM(t) = w(t) exp [jπBt] , 0 ≤ t ≤ τ (2.5.1)
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Where B is the total swept bandwidth of the waveform (Hz), t is the time within

the pulse, τ is the uncompressed pulsewidth (s), and w(t) is an amplitude weighting

function. Currently supported weighting functions include the Hamming, Hann, and

Blackman [97]. The instantaneous frequency of (2.5.1) is

fLFM(t) = −B
2

+

(
1

2π

)
dψ

dt
= −B

2
+Bt. (2.5.2)

Here, ψ(t) is the time-varying phase of the waveform. From (2.5.2), it is evident

that the frequency sweeps linearly throughout the duration of the pulse11. Practi-

cally, the software generates the LFM waveform as 16-bit IQ samples and loads them

to the DREX. The LFM waveform generates waveform samples from a non-linear

instantaneous frequency, given by [4]

fNLFM(t) = B

{
tan (2βt/τ)

2α

}
(2.5.3)

Where β = tan−1(α). The PLFM waveform is a custom waveform definition that

sweeps the frequency over the width of the pulse in discrete, linear segments. The

piecewise segments define the points [xi, yi] that the instantaneous frequency should

pass through, normalized to the total pulsewidth and bandwidth of the waveform. In

this manner, the slope within each segment is normalized such that after all points are

passed through, the waveform will sweep over the specified pulsewidth and bandwidth.

The list of points must include the endpoints of the waveform at [−1, −1] and [1, 1]; if

they are not specified, the software will append them automatically. As an example,

specifying the point [0, 0] will generate a LFM waveform.

It should be noted that the PLFM can be used to generate either the LFM or

LFM waveforms directly. Care should be taken when designing either the LFM or

11Some implementations of the LFM waveform sweep linearly from 0 to B over the pulse. Both
forms of the LFM are equivalent representations. The form mentioned here straddles the swept
bandwidth over the width of the pulse, so that the transmit frequency at X-band is located at τ/2.
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PLFM waveforms, as achieving low range-sidelobes with pulse compression is not a

trivial task. External, Matlab-based generation routines are available to support the

offline designing of waveforms.

2.6 Overview of Available Data Sets

2.6.1 Forest Fire Data Sets

From April to May 2013, the LPAR REV1 system was deployed to South Australia

in cooperation with the University of Massachusetts Amherst (Amherst, MA) and

the University of Adelaide (South Australia, AU). During this time, the system made

polarimetric observations at over one dozen prescribed burns and one uncontrolled

bushfire. From the fires observed, seven data sets were collected and determined

to contain valid smoke plume returns. Valid data sets are those that measured a

prolonged period (>15 min) of positive SNR (>10 dB) that corresponded with visual

observations of the smoke plume during the burn. Table 2.6 lists the valid data sets

collected during the field campaign. One of the bushfires attended was an uncontrolled

bushfire in Cherryville, while the rest were prescribed burns conducted by South

Australian County Fire Services (CFS), Australian Department of Environmental,

Water and Natural Resource (DEWNR), and South Australian Forestry Corporation

(ForestrySA) personnel.

2.6.2 Precipitation Data Sets

All precipitation data sets were collected in the Winter to Summer 2015 at the

University of Massachusetts Amherst. Amherst is situated in Western Massachusetts

in Hampshire County, which is located in the southern half of the Connecticut River

Valley, colloquially known as the Pioneer Valley. The topography of Amherst and the

surrounding areas predominantly includes the Berkshire Mountains to the west and

the nearby steeply rolling hills of the Mount Tom and Holyoke Ranges. The climate in
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Table 2.6: Prescribed burns and uncontrolled bushfire dates and locations.

Burn Site Date Area Burned
(ha) (acres)

Ignition

Belair CP 4-April-2013 9.0 (22.2) strip head

5-April-2013 16.9 (41.8) strip head

South Para Reservoir 10-April-2013 26.0 (64.2) strip head

Barossa Reservoir 17-April-2013 47.6 (117.6) aerial

Cleland CP 28-April-2013 10.0 (24.7) strip head

Cox Scrub CP 1-May-2013 40.0 (98.8) strip head

Kyeema CP 2-May-2013 39.6 (97.8) strip head

Cherryville 9-May-2013 650 (1600) uncontrolled

10-May-2013 650 (1600) uncontrolled

western Massachusetts is primarily affected by two types of air masses: cold, dry air

from North America moving to the south and warm, moist air flowing from the Gulf

of Mexico to the south and the waters of the Gulf Stream from the east. Amherst

averages 133 days of precipitation with annual precipitation totals between 40 and 50

inches.

For testing, the radar in Amherst was installed on a roof platform at the University

of Massachusetts Amherst ([42.394 070,−72.529 244]) on a mechanical pedestal that

allowed for manual azimuthal positioning of the 90° radar field-of-view. The tilt motor

actuator on the array was not functional, so data sets were constrained to a fixed

elevation tilt. The elevation tilt was set from 3° to 4° for all tests, to minimize clutter

contamination and beam blockage from the nearby Mount Tom Range. The radar

heading was set at either a southwestern (≈245°) or northwestern (≈325°) direction.

Beam blockage from academic buildings prevented scanning to the direct south or

east.
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Figure 2.9: Terrain map showing locations of LPAR system in Amherst, MA (red marker), Next-
Generation Radar (NEXRAD) stations in Albany, NY and Taunton, MA (purple markers), and the
Terminal Doppler Weather Radar (TDWR) station in Boston, MA (green marker).

Figure 2.9 shows a terrain map of the LPAR and nearby NEXRAD and TDWR

locations in New England. The red marker signifies the location of the LPAR radar,

the purple markers signify the nearby NEXRAD stations, KENX (Albany, NY) and

Taunton, MA (KBOX), and the green marker signifies the TDWR station in Boston,

MA (BOS).

Table 2.7 shows a listing of the LPAR and nearby NEXRAD and TDWR radar

locations. The table also shows the distance from each NEXRAD and TDWR station

to Amherst, and the elevation (Above Sea Level, ASL) of the lowest elevation tilt at

Amherst12. As Amherst is located almost directly between two NEXRAD stations,

the lower atmosphere below 1 km altitude is unobserved, which limits the ability of

weather forecasters to detect and predict surface weather conditions in the area. This

data does not take into account the blockage of the NEXRAD stations due to the

12The lowest elevation tilt is taken to be 0.5° for NEXRAD [37] and 0.6° for TDWR [60]
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Table 2.7: Locations of LPAR used for weather precipitation collections and nearby NEXRAD and
TDWR stations.

Radar Location Elevation
(ASL, m)

Distance
to LPAR
(km)

Elevation
of Lowest
Tilt at

Amherst,
MA (km)

LPAR Amherst, MA
(42.394070,−72.529244)

79.8 - -

NEXRAD
(KENX)

Albany, NY
(42.5800018,−74.0699997)

576.4 130 1.14

NEXRAD
(KBOX)

Taunton, MA
(41.9500008,−71.12999737)

65.8 122 1.16

TDWR
(BOS)

Boston, MA
(42.15806,−70.93389)

75.6 133 1.43

Berkshire mountains and hills surrounding Amherst, which further limit NEXRAD

visibility in the Pioneer Valley.
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Table 2.8: Available precipitation data sets.

Date Time (UTC) Precipitation Type Precipitation Event

25-March-2015 2100− 2330 moderate rain,
freezing rain, snow

26-March-2015 1620− 2350 light to moderate
rain

27-March-2015 0152− 0360 moderate rain, snow

3-April-2015 0004− 1806 light rain

7-April-2015 1813− 2043 moderate rain

17-April-2015 0615− 1319 heavy rain

20-April-2015 1107− 1846 heavy rain

22-April-2015 1557− 2229 heavy rain, squall
line

19-May-2015 1013− 1129 heavy rain Severe Thunderstorm
Warning

27-May-2015 1931− 2359 heavy rain, squall
line

Severe Thunderstorm
Warning

28-May-2015 0000− 0116 heavy rain Severe Thunderstorm
Warning

28-May-2015 1200− 1239 heavy rain, isolated
thunderstorms

Severe Thunderstorm
Warning

31-May-2015 1716− 2252 moderate rain

1-June-2015 0145− 1227 moderate rain
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CHAPTER 3

SIGNAL PROCESSING ALGORITHM DESCRIPTION

This chapter details the signal processing algorithms used in the Low-power Pha-

sed Array Radar (LPAR) system. The chapter begins with a brief review of the

fundamentals of random processes for radar In-phase and Quadrature (IQ) data and

autocovariance processing techniques. These concepts will then be extended to de-

scribe the pulse-pair processing algorithm used to estimate the weather signal mo-

ments and polarimetric products. For the remainder of this document, the term

moments refers to the principal moments of received voltage samples, namely power

(as reflectivity), velocity, and spectral width. Polarimetric products are the set of esti-

mates, including the moments, which are derived from dual-polarized received voltage

samples. This chapter also describes the different methods of statistical estimation

and analysis used frequently in the radar software, as well as a novel method for

noise estimation for phased array weather radars having adaptive waveform or scan

patterns. Most of these algorithms are adapted from textbook algorithms [37, 15] or

from publicly-available system descriptions [40, 28] and adapted for use in a phased

array radar.

3.1 Covariance and Correlation of Random Processes

3.1.1 Theoretical Formulation

A random process (also known as a stochastic process) is defined [69] as a col-

lection of random variables that are indexed by time or space. For a time-varying
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random process, xi(t), the following equations define the mean, autocovariance, and

autocorrelation. The mean is given by

mi(t) = E [xi(t)] (3.1.1)

Where E [xi(t)] is the Expected Value of xi(t). The covariance describes the joint

moment between two time samples, xi(t) and xj(t+ v), as [89]

Cov [xi(t), xj(t+ v)] = Cij(v) = E [(xi(t)−mi(t)) (xj(t+ v)−mj(t+ v))∗] (3.1.2)

Where ∗ denotes the complex conjugate. The covariance function measures the extent

to which two random variables, in this case samples of xi(t) and xj(t) at two time

instances t and (t + v), co-vary in time. Two other terms can be derived from the

mean and covariance, the variance and correlation. The variance of xi(t) is equal to

the covariance when t1 = t2,

Var [xi(t)] = σ2(x) = E
[
(xi(t)−mi(t))

2] = Cii(0). (3.1.3)

The correlation is simply the covariance normalized by the standard deviation of the

time series,

Rij(v) = E [xi(t)xj(t+ v)∗] =
Cij(v)√

Cii(0)Cjj(0)
. (3.1.4)

Together, the mean, covariance, variance, and correlation coefficient terms are used

to characterize the random process x(t). In the case where the timeseries xi(t) and

xj(t) are identical (i = j), the terms in (3.1.2) and (3.1.4) are referred to as the

auto-covariance and auto-correlation, respectively. Otherwise, they are known as the

cross-covariance and cross-correlation. Two timeseries, xi(t) and xj(t) are said to be

uncorrelated if their covariance, Cij(v), equals zero for all v.
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3.1.2 Sample Covariance and Correlation Functions

Extending the previous discussion to a practical application, this section presents

the necessary equations for calculating the covariance and correlation of a set of

discrete time samples. For a timeseries xi made up of M scalar observations, the

sample mean is computed as

µ̂i =
M−1∑
m=0

xi [m] (3.1.5)

Where the hat accent denotes that µ̂i is an estimate of the sample mean. Similarly,

the sample variance of xi is defined as

σ̂ij(v) =
1

M − 1

M−1∑
m=0

|xi [m]− µi|2 (3.1.6)

The sample correlation between two timeseries xi and xj is given as

R̂ij(v) =
1

M

M−1∑
m=0

xi [m]∗ xj [m+ v] (3.1.7)

The sample covariance can be calculated by first subtracting the means from xi and

xj in (3.1.7). Note that the choice of normalization factors in 3.1.6 and (3.1.7) must

be carefully considered. Normalization by (M − 1) for a lag-0 estimate (or (M −|m|)

for a lag-m estimate) is known as an unbiased estimator, while normalization by

M results in a biased estimator. Traditionally, the variance is defined using the

unbiased estimator, unless otherwise stated. When computing the sample covariance,

the variance of the biased estimator can be shown to be positive definite and have

a smaller mean square error than the unbiased estimator [89]. However, the biased

estimator is, on average, too small by a factor M/(M − v) [103], which becomes

significant only at large lags (v ≈ M). In this work, the variance is calculated using

the unbiased estimator, and the sample covariance or correlation is computed from

the biased estimators.
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3.2 Statistical Properties of Received Voltage Samples

At the output of the Digital Down-Converter (DDC), the voltage samples from

weather signals in a single resolution cell are a composite of radar echoes from each

scatterer in the volume, expressed as

V (nTs) =
1√
2

∑
i

AiWie
γi (3.2.1)

Where Ts is the radar Pulse Repetition Time (PRT), Ai is the scattering amplitude

from the ith scatter, and Wi is a weighting factor resulting from array pattern or

receiver filtering. Here, γi is the received phase from the ith scatterer

γi =
4πri
λ

+
4πvinTs

λ
− (ψs + βi) (3.2.2)

Where ri and vi are the scatterer true range and radial velocity, respectively, ψs is

the phase shift upon scattering, and βi is any phase shift resulting from the weighting

factor, Wi. The collective phase shift, ψs + βi, from all scatterers in a resolution

volume, gives rise to a differential phase shift in backscattered echoes received at the

radar. The received phase of signals will undergo a phase shift from both the two-way

propagation and phase shift upon scattering at each radar resolution cell, which is

expressed as

ΦDP = 2

∫ r0

0

[kh(r)− kv(r)]dr + ΦDS. (3.2.3)

Here, kh(r) and kv(r) are the free-space propagation constants in both H- and V-

polarization, respectively. It’s evident from 3.2.3 that estimation of differential phase

from radar measurements will inherently estimate both the propagation and backscat-

ter phase shift terms.
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The output voltage samples are traditionally expressed as the real and imaginary

components of (3.2.1)

V (nTs) = |V (nTs)| cos(θ(nTs)) + j |V (nTs)| sin(θ(nTs)) (3.2.4a)

V (nTs) = I(nTs) + jQ(nTs). (3.2.4b)

These are known as the radar In-phase and Quadrature (IQ) samples. The com-

posite amplitude and phase of (3.2.1) have been expressed in |V (nTs)| and θ(nTs),

respectively. These voltage samples can be simplified by applying the Central Limit

Theorem to the collection of precipitation scatterers in the resolution volume. The

Central Limit Theorem states [69, 37] that the arithmetic sum of a large number of

independent random variables, each with well-known expected value and variance,

will approach a normal distribution. Since the resolution volume is large compared

to each raindrop, and the range to the center of the resolution volume is large com-

pared to the relative distance between drops, the received composite phase will have

a uniform distribution in the interval [−π, π]. Power estimates (Ŝ), proportional to

I2 +Q2, will have an exponential probability density function of the form

p(Ŝ) =
1

2σ2
exp

(
− Ŝ

2σ2

)
(3.2.5)

Where the mean power (S) is equal to 2σ2, and σ is the standard deviation. In

addition, we also assume that the voltage samples have a Gaussian-shaped Doppler

spectrum, modeled as [37, p. 96]

S(v) =
S

σv
√

2π
exp

[
−(v − v)2

2σ2
v

]
(3.2.6)

where S(v) is the Doppler velocity spectrum at velocity v, v is the mean velocity, and

σv is the spectral width. Since the power spectrum is the Discrete Fourier Transform
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(DFT) of the autocorrelation, the autocorrelation function for (3.2.6) is given directly

as [15, p. 253]

R(τ) = S exp

[
−8π2σ2

vτ
2

λ2

]
exp

[
−j 4πvτ

λ

]
(3.2.7)

where R(τ) is the value of the correlation at lag τ . For radar data having a uniform

PRT of Ts seconds, R(τ) represents the signal correlation at discrete time intervals,

R[mTs], where m is the received pulse index. The co-polor correlation terms (R̂n
h)

from (3.4.2) can therefore be approximated by

Rn
h[mTs] = Sh exp

[
−8π2σ2

v (mTs)
2

λ2

]
exp

[
−j 4πvmTs

λ

]
(3.2.8)

Using (3.2.8), the correlation coefficient can be expressed as

ρ[mTs] = exp

[
−8π2σ2

v (mTs)
2

λ2

]
exp

[
−j 4πvmTs

λ

]
. (3.2.9)

To model Additive White Gaussian Noise (AWGN) in the channels, Bringi and Chan-

drasekar [15] suggest multiplying (3.2.9) by an additional factor to estimate the noise-

contaminated correlation coefficient

ρS+N [mTs] = ρ[mTs]
[
(1 + SNR−1h )(1 + Zdr)

]−1/2
. (3.2.10)

Where SNRh and Zdr are the (linear) H-polarization Signal to Noise Ratio and differ-

ential reflectivity, respectively. Equation (3.2.10) is valid for both single- and dual-

polarization modes of operation, provided that the PRT properly represents the time

lag between co-polar estimates.
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3.3 Radar Range Equation for Volume Targets

As received weather signals can be approximated by volumetric targets, the radar

range equation for weather signals is given by [37]

SNR =
PtGtGrcτπ

3θφ |Kw|2 Ze
1024 ln 2λ2Npr2

(3.3.1)

Where Pt is the transmitted peak power, Gt and Gr are the transmit and receive

antenna gains, c is the speed of light, τ is the (uncompressed) pulsewidth, θ and φ

are the half-power beamwidths in azimuth and elevation, Kw is the dielectric factor

of water (|Kw|2 ≈ 0.9), Ze is the equivalent reflectivity factor, λ is the wavelength,

Np is the noise power out of the receiver, r is the range to the center of the resolution

volume, and the Signal to Noise Ratio (SNR) is referenced to the receiver output.

The output noise power is equal to the system gain multiplied by the noise at the

input to the system, kTBlf , where kT is the noise spectral density at the receiver

input (≈4e−21 W Hz−1 at 290 K), B is the receiver bandwidth, and lf is the system

noise figure.

To account for pulse compression, (3.3.1) can be modified by introducing a pulse-

compression gain term (Gc) and replacing the uncompressed pulsewidth with the

compressed pulsewidth (τc). Because Gc = τ/τc and τc = 1/B, this form of the

equation is identical to (3.3.1) for an ideal matched filter. However, in practice, the

matched filter used in pulse compression is modified to reduce the range-sidelobes of

the compressed waveform at the cost of decreased pulse compression gain. To account

for loss in pulse compression gain due to non-ideal matched filters, an additional loss

term, lc, can be added. Replacing Np with its derivation, the radar range equation

referenced to the output of the pulse compression filter is given by

SNR =
PtGtGrcτπ

3θφ |Kw|2 Ze
1024 ln 2λ2R2kTBlf lc

. (3.3.2)
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Since (3.3.2) takes pulse compression into account, the SNR is taken at the output of

the pulse compression filter.

Equation (3.3.2) assumes that the transmit/receive gains and beamwidths are

all constant over the entire scan volume. Since phased array radars experience a

beam broadening affect and resulting scan loss at angles away from boresight, scan

dependence must be added to the gain (Gr and Gr) and beamwidth (θ and φ) terms in

(3.3.2). For phased arrays employing different amplitude tapers during both transmit

and receive, the two-way beamwidth can be approximated as the geometric mean

of the beamwidths in both transmit and receive. In the azimuthal dimension, the

two-way azimuth beamwidth can be approximated by

fθ(θ, φ) ≈
√
θt(θ, φ)θr(θ, φ) (3.3.3)

Where θt and θr are the transmit and receive beamwidths at the array pointing angle

(θ, φ). A similar expression for the elevation beamwidth, fφ(θ, φ) can also be derived

(not shown). The radar range equation for phased array radars, taken at the output

of the pulse compression filter, is now given by

SNR =
PtGt(θ, φ)Gr(θ, φ)cτπ3fθ(θ, φ)fφ(θ, φ) |Kw|2 Ze

1024 ln 2λ2R2kTBlf lc
. (3.3.4)

To get estimate the received weather reflectivity, (3.3.4) can be solved for Ze to

get an estimate for the radar reflectivity,

Ze =
SNR1024 ln 2λ2R2kTBlf lc

PtGt(θ, φ)Gr(θ, φ)cτπ3fθ(θ, φ)fφ(θ, φ) |Kw|2
. (3.3.5)

.

The weather radar sensitivity is taken as the reflectivity range profile for 0 dB SNR,

which can be found by setting SNR = 1 in (3.3.5).
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3.4 Pulse Pair Processing Technique

Dual-polarization is a radar system architecture and scanning strategy that ob-

serves radar returns in two orthogonal polarizations. In the Alternate Transmit/Al-

ternate Receive (ATAR) polarization pulsing scheme, the transmit and receive polar-

ization state is changed from H-polarization to V-polarization after a single transmit

or receive action [100]. For a series of M consecutive pulses in a radial, the received

voltage can be written as

V [m] = {Vhh[0], Vvv[1], Vhh[2], ..., Vhh[M − 2], Vvv[M − 1]} (3.4.1)

Where the subscript hh denotes transmission in H-polarization and reception in H-

polarization. Weather moments and polarimetric products are calculated using al-

gorithms for alternating polarized pulses as described by Bringi and Chandrasekar

[15] or Doviak and Zrnić [37]. Assuming a uniform PRT between voltage samples

in (3.4.1), the co-polar correlation terms for the signal powers (or autocorrelation at

lag-0) and higher order time lags are estimated from the complex voltage timeseries

via

Ŝh = R̂0
hh =

1

M

M−1∑
m=0

|Vhh[2m]|2 − N̂h
p (3.4.2a)

Ŝv = R̂0
vv =

1

M

M−1∑
m=0

|Vvv[2m+ 1]|2 − N̂ v
p (3.4.2b)

R̂n
hh =

M−1∑
m=0

Vhh[2m]∗Vhh[2m+ 2n]

M−1∑
m=0

w[2m]∗w[2m+ 2n]

(3.4.2c)

R̂n
vv =

M−1∑
m=0

Vvv[2m+ 1]∗Vvv[2m+ 1 + 2n]

M−1∑
m=0

w[2m+ 1]∗w[2m+ 1 + 2n]

. (3.4.2d)
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Where N̂h,v
p are the noise estimates in the H- and V-channels, respectively, R̂n

h,v repre-

sents the lag-n co-polar correlation, and the asterisk denotes the complex conjugate.

These equations are generalized for the use of an arbitrary window, w, applied to the

data [28]. Data windowing is useful for reducing spectral leakage in the covariance

estimators and in computing the DFT, especially for small time intervals. For the

purposes here, a uniform rectangular window is used and the denominators in (3.4.2c)

and (3.4.2c) reduce to M . In a similar fashion, the cross-polar covariance terms can

be computed from

R̂n
hv =

M−1∑
m=0

Vhh[2m]∗Vvv[2m+ n]

M−1∑
m=0

w[2m]∗w[2m+ n]

(3.4.3a)

R̂n
vh =

M−1∑
m=0

Vvv[2m+ 1]∗Vhh[2m+ 1 + n]

M−1∑
m=0

w[2m+ 1]∗w[2m+ 1 + n]

. (3.4.3b)

To visualize the covariance terms from a pulse sequence, Figures 3.1a and 3.1b show

diagrams of the ATAR polarization scheme for both a uniform and staggered Pulse

Repetition Frequency (PRF), respectively. Additionally, Figure 3.1c demonstrates

the single-polarization, staggered PRF case. Since the effective PRF per polarization

is half that in polarimetric ATAR as compared to a single-polarization sequence,

the unambiguous velocity is therefore reduced as well. To overcome this deficiency,

operational radars typically vary the PRT on successive pulses, which allows the

unambiguous velocity to be extended. Where applicable, the pulse-pair processing

equations below detail both the uniform and staggered PRF forms.

Reflectivity in the ATAR mode is similarly defined as in single-polarization or

polarimetric Simultaneous Transmit/Simultaneous Receive (STSR) [77] radars as the
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Figure 3.1: Pulsing schemes for the LPAR system, showing correlation terms gathered for dual-
polarized (a) uniform PRF and (b) dual-polarized staggered PRF modes of operation. Also shown
is the single-polarization scheme for (c) staggered PRF.

equivalent reflectivity in H-polarization. Simplifying from (3.3.5), reflectivity is cal-

culated as

Ẑh = Ẑe = Ch(θ, φ) + SNRh (3.4.4)

Where Ch(θ, φ) is the system calibration constant, which includes the array calibration

and range dependence terms in (3.3.5), and SNRh is the Signal to Noise Ratio in the

H-channel.

SNRh = 10 log10

[
Ŝh

N̂h

]
. (3.4.5)

The Signal to Noise Ratio in the V-channel (SNRv) is defined in a similar fashion.

Radial velocity (v̂) is computed from the H-channel data at a uniform PRF as

v̂ = v̂h = − λ

4πTs
arg
[
R̂1
h

]
. (3.4.6)

Velocity (v) can also be estimated from staggered PRF samples (see Figures 3.1b

and 3.1c) in either single- or dual-polarization as
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v̂ = v̂h = − λ

4π |T 2
s − T 1

s |
arg

[
R̂1
h

R̂2
h

]
. (3.4.7)

In the staggered PRF case, care must be taken when choosing the ratio between PRTs.

Typically, a ratio of 2:3 is recommended [37]. For example, with a uniform PRF of

3 kHz, the unambiguous velocity is just 12.0 m s−1. With a staggered PRF at 2.4 kHz

and 3.2 kHz, the Nyquist velocity is improved to 18 m s−1. In addition, whereas radial

velocity is traditionally taken in H-polarization, it can also be computed from the

average across both the H- and V-channel velocities

v̂ =
1

2
(v̂h + v̂v) . (3.4.8)

Spectral width (σv) is calculated from the co-polar correlation terms for uniform PRF

via

σ̂v =
λ

2πTs
√

2

∣∣∣∣∣∣ln
 Ŝh∣∣∣R̂1

h

∣∣∣
∣∣∣∣∣∣

1/2

sgn

ln

 Ŝh∣∣∣R̂1
h

∣∣∣
 (3.4.9)

Here, spectral width is estimated from H-channel data. Similar to (3.4.7), spectral

width can also be estimated for a staggered PRF sequence as

σ̂v =
λ

2π
√

2
∣∣(T 2

s )2 − (T 1
s )2
∣∣
ln

∣∣∣R̂1
h

∣∣∣∣∣∣R̂2
h

∣∣∣
1/2

(3.4.10)

The spectral width can also be approximated from the lag-1 and lag-2 correlation

terms at a uniform PRF via

σ̂v =
λ

2πTs
√

6

∣∣∣∣∣∣ln
 R̂1

h∣∣∣R̂2
h

∣∣∣
∣∣∣∣∣∣

1/2

sgn

ln

 R̂1
h∣∣∣R̂2
h

∣∣∣
 . (3.4.11)

Equation (3.4.11) assumes a Gaussian Doppler spectrum shape and contiguous pair

samples. Practically, 3.4.11 is useful in certain applications because it does not depend

on the received power, Ŝh, which may be contaminated by external interference or

second trip echoes.
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Differential reflectivity (Zdr) is calculated from the ratio of power measurements

between the H- and V-channels. However, a polarimetric phased array employing sep-

arate channels for H-polarized and V-polarized signals will inherently have different

calibration constants for each polarization and scan pointing angle. So, differential

reflectivity is calculated from the ratio of calibrated power measurements for each

channel. In this implementation, differential reflectivity is calculated from the differ-

ence between measured reflectivities in each polarization, minus a bias term

Ẑdr = Ẑh − Ẑv −∆Zdr(θ, φ). (3.4.12)

To further reduce bias errors in Ẑdr, measurements of precipitation types having low

space-time variability of differential reflectivity is used to estimate the bias correction

term (∆Zdr(θ, φ)). Radar data at high SNR (>20 dB) from dry, aggregated snow

or light rain below the bright band are used to estimate the bias [47] at each scan

pointing angle.

Differential phase (ΦDP ), which includes the effect of differential propagation

phase shift through the rain medium (ψs) and backscatter differential phase from

the scatterers in the resolution volume (βi), is computed from the cross-polar corre-

lation terms as

Φ̂DP =
90

π
arg
[
R̂1
hv(R̂

1
vh)
∗
]
−∆Φs(θ, φ). (3.4.13)

Here, ∆Φs(θ, φ) is the system phase offset estimated and manually updated from

differential phase measurements in light rain at high SNR (>20 dB), where differential

propagation and backscatter phase are negligible. To account for phase wrapping, the

procedure described by Wang and Chandrasekar [116] is used to unfold and correct

Φ̂DP estimates. At each radial, the unfolding algorithm searches for the first area

of valid ΦDP , defined as an upper limit on the standard deviation of differential

phase (SD(ΦDP )) and lower limit on the mean ρhv within a moving range bin kernel.
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Variations in the estimation of this valid area can cause minute changes in the starting

differential phase between radials. Copolar correlation coefficient is calculated using

a lag-0 estimator as

ρ̂hv =
1

2

∣∣∣R̂1
hv

∣∣∣+
∣∣∣R̂1

vh

∣∣∣√
ŜhŜv

[∣∣∣R̂1
h

∣∣∣ /Ŝh]0.25 . (3.4.14)

Due to the use of ATAR, the effective co-polar PRF is half of that compared

to a similar STSR system. This results in a lower unambiguous velocity interval

(va) which can cause severe aliasing in the presence of fast-moving weather. For

an X-band radar (9410 MHz) pulsing at a PRF of 3 kHz, the co-polar unambiguous

velocity is just 12 m s−1. Techniques to increase the unambiguous velocity include the

use of staggered PRT pulse sequences [113, 49] (as described previously), batches of

pulse sequences at different PRFs [9], or velocity retrieval from cross-polar estimates

[37]. Staggered PRT techniques can impose difficulties in ground clutter filtering and

reduce the number of pulse-pair estimates for cross-correlation terms in the ATAR

mode. For this implementation, a uniform PRF pulsing scheme is used, and Φ̂DP -

based velocity is computed via

v̂p =
λ

4πTs
arg
[
R̂1
hv exp(−jΦ̂DP )

]
. (3.4.15)

Equation (3.4.15) can also be calculated from the summation of the cross-polar co-

variance terms

v̂p =
λ

4πTs
arg
[
R̂1
hvR̂

1
vh)
]
. (3.4.16)

In either form of the cross-polar velocity, the covariance terms must be unfolded and

unwrapped beforehand. The disadvantage with this technique, however, is that it

requires accurate calibration of the system phase offset. As the phase offset is tradi-

tionally determined at run-time from radial estimates [116], the cross-polar velocity
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estimate is prone to errors if low SNR or poor co-polar correlation coefficient is present

at the leading edge of storms.

3.4.1 Ancillary Variables

Beyond the standard set of weather moments and polarimetric products, the radar

system also computes several variables which are useful in specialized classification

and estimation algorithms. Spatial texture fields have recently been used in Hydrom-

eteor Classification Algorithms (HCAs) as an effective means to distinguish between

meteorological, biological, and clutter echoes [23]. The Weather Surveillance Radar

(WSR-88D) HCA [88] use the spatial textures of reflectivity and differential phase in

the fuzzy logic classification scheme. Here, the spatial texture of reflectivity (SD(Ẑh))

is computed from the difference between raw and smoothed estimates within a rolling

range window,

SD(Ẑh) =

√√√√∑
1 km

(
Z̄h − Ẑh

)
nz

(3.4.17)

Where Z̄h is the mean value of Ẑh in a 1 km moving range window and nz is the

number of estimates within the range window kernel. Texture of differential phase

(SD(Φ̂DP )) is similarly computed using a 2 km moving range window. Gourley et al.

[52] uses an alternate definition for the spatial texture of reflectivity as the Root

Mean Square (RMS) difference between a Cell-Under-Test (CUT) and a window of

neighboring cells

TDBZm,n (r, g) =

√√√√√ (m−1)/2∑
i=−(m−1)/2

(n−1)/2∑
j=−(n−1)/2

(x[r, g]− x[r + i, g + j])2

mn
(3.4.18)

Where x[r, g] is the CUT at radial r and range gate g centered in a two-dimensional

window of [m,n] neighboring resolution cells.
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The spatial texture in (3.4.18) is a sub-class of image processing texture analysis

methods known as rank filters [5]. Rank filters are a broad class of nonlinear image

filters which select the value of a cell based on the rank, or ordering, of a neighborhood

of cells. Range filters are a rank filtering technique which compute the rank of the

difference between the CUT and neighborhood cells. For the ith neighborhood cell

(fi) about the CUT (f0) the range filter computes the difference

range(i) = f0 − fi. (3.4.19)

The value taken at the CUT is taken as a specific rank value of the computed neigh-

borhood range, typically the median. Ranks above or below the median have the

effect of shifting the edges of features in the scene [55]. With the range filter in mind,

a new feature field can be defined, known as the Median-Range texture field (MR)

MRl,k
m,n (r, g) = median {x[r, g]− x[r + i, g + j]} (3.4.20)

Where m and n define the neighborhood of cells, and l and k are the guard cells

about the CUT in the radial and gate dimensions, respectively,

i = −(m− 1)

2
. . .

(m− 1)

2
, |i| > (l − 1)

2

j = −(n− 1)

2
. . .

(n− 1)

2
, |j| > (k − 1)

2
.

Hubbert et al. [58] uses (3.4.18) as a feature field for clutter identification, along

with the Clutter Phase Alignment (CPA). CPA is a measure of the temporal phase

variability of radar echoes, and is computed from the ratio of coherent to non-coherent

received signal power
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CPA =

∣∣∣∣M−1∑
m=0

Vhh[m]

∣∣∣∣
M−1∑
m=0

|Vhh[m]|
(3.4.22)

CPA and TDBZ are useful in the classification of clutter from meteorological echoes.

In the presence of clutter, values of CPA and TDBZ generally exceed 0.6 and 20 dBZ,

respectively. For weather, these values tend to be much lower [58]. Another useful

feature field for clutter identification is the SPIN value, which is a measure of how

often the reflectivity gradient changes sign along a radial. The SPIN at each range cell

is first computed by assigning a positive unary value if the following two conditions

are met for three consecutive range cells in a radial at positions (g−1), g, and (g+1),

respectively,

sign (Zh [g]− Zh [g − 1]} = −sign {Zh [g + 1]− Zh [g]) (3.4.23a)

|Zh [g]− Zh [g − 1]|+ |Zh [g + 1]− Zh [g]|
2

> spinthres. (3.4.23b)

Where spinthres is a reflectivity threshold. The SPIN value is then taken as the

average SPIN number within a window of m radials and n gates, normalized by the

total kernel size (mn).

Another variable computed is the Signal Quality Index (dB) (SQI), also known as

the Normalized Coherent Power (dB) (NCP). SQI has been used in quality control

algorithms to help threshold regions of poor quality data and identify presence of

clear air speckle or other artifacts [27, 118]. SQI is defined as the magnitude of the

H-polarization lag-1 correlation coefficient

SQIh =

∣∣∣R̂1
hh

∣∣∣
Ŝh

(3.4.24)

When running in dual-polarization modes, SQI is taken as the average of the H- and

V-polarization SQI values.
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Table 3.1: Overview of pulse pair processing estimators and computed variables in the LPAR signal processor.

Product Symbol Uniform PRT Staggered PRT

Reflectivity (H-pol.) Zh Ẑh = Ch(θ, φ) + SNRh

Co-polar Radial Velocity v − λ
4πTs

arg
[
R̂1
h

]
− λ

4π|T 2
s−T 1

s |
arg
[
R̂1

h

R̂2
h

]
Cross-polar Radial Velocity vp

λ
4πTs

arg
[
R̂1
hv exp(−jΦ̂DP )

]
Spectral Width σv

λ
2πTs

√
6

∣∣∣∣ln( R̂1
h

|R̂2
h|

)∣∣∣∣1/2 sgn [ln( R̂1
h

|R̂2
h|

)]
λ

2π
√

2|(T 2
s )2−(T 1

s )2|

[
ln
|R̂1

h|
|R̂2

h|

]1/2

Signal Quality Index SQI
1
2

(
|R̂1

hh|
Ŝh

+
|R̂1

vv|
Ŝv

)
Differential Reflectivity Zdr Ẑh − Ẑv −∆Zdr(θ, φ)

Copolar Correlation Coefficient ρhv
1
2

|R̂1
hv|+|R̂1

vh|√
ŜhŜv[|R̂1

h|/Ŝh]
0.25

Differential Phase ΦDP
90
π arg

[
R̂1
hv(R̂

1
vh)∗

]
−∆Φs

Spatial Texture of Reflectivity TDBZm,n

√
(m−1)/2∑

i=−(m−1)/2

(n−1)/2∑
j=−(n−1)/2

(x[r,g]−x[r+i,g+j])2

mn

SPIN SPINm,n
∑
m

∑
n

{sign (Zh [g]− Zh [g − 1]) = −sign (Zh [g + 1]− Zh [g])}&{
|Zh[g]−Zh[g−1]|+|Zh[g+1]−Zh[g]|

2 > spinthres

}
/mn

Clutter Phase Alignment CPA
1
2


∣∣∣∣∣M−1∑
m=0

Vhh[m]

∣∣∣∣∣
M−1∑
m=0
|Vhh[m]|

+

∣∣∣∣∣M−1∑
m=0

Vvv[m]

∣∣∣∣∣
M−1∑
m=0
|Vvv[m]|


Texture of Reflectivity SD(Zh)

√ ∑
1 km

(Z̄h−Ẑh)

nz

Texture of Differential Phase SD(ΦDP )

√ ∑
2 km

(Φ̄DP−Φ̂DP )

nΦ
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3.5 On the Use of Threshold Detection

The LPAR uses a simple SNR threshold detection for both weather surveillance

and display operation. In this section, useful formulae are presented which derive the

probability of detection (Pd) and probability of false alarm (Pfa) for a set threshold

level. Note that the LPAR also allows for a threshold detection from the copolar

correlation coefficient (ρhv) as a lower limit, but this case is not handled here. For

the incoherent integration of power estimates, each having an exponential probability

density function as in (3.2.5), weather signals can be modeled as the Swirling II target

model. The Swirling models classify a target type in terms of its fluctuation time

(scan-to-scan or pulse-to-pulse) and Radar Cross Section (RCS) model (exponential

density function as a collection of similar scatterers or chi-squared with one dominant

scatterer). As the ensemble average of drops within the resolution volume approach an

exponential density function and the decorrelation time on successive pulses is short

relative to a Coherent Processing Interval (CPI), weather echoes can be approximated

with a Swirling II target model. For a given SNR threshold (THR), the probability

of detection is given by [99]

Pd = 1− I
[
1 +

10THR/10

(1 + 10SNR/10)
√
M
,M

]
(3.5.1)

Where I(u, p) is Pearson’s form of the incomplete Gamma function

I(u, p) =
1

Γ(p+ 1)

∫ u
√
p+1

0

tp exp[−t]dt. (3.5.2)

Here, Γ(a) is the complete gamma function, the threshold (THR) and SNR are relative

to the estimated noise power (Np), and the SNR is the single-pulse Signal to Noise

Ratio. Curtis [33] derived an alternate form for this (3.5.1),

Pd = Γinc

[
M

(1 + 10SNR/10)

(
1 + 10THR/10) ,M] (3.5.3)
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Equation (3.5.3) assumes the use of the noise-removed SNR, as in (3.4.5), whereas

(3.5.1) does not. The threshold parameter can be set according to a desired proba-

bility of false alarm. For the incoherent integration of power estimates, Ivic et al. [61]

derived the following relationship between THR and Pfa

Pfa = Γinc
[
M(1 + 10THR/10),M

]
(3.5.4)

Where Γinc[u, p] is the incomplete Gamma function. Together, (3.5.1) and (3.5.4)

express the radar probability of detection for a given threshold parameter for a mea-

sured single-pulse SNR. For example, a typical 0 dB threshold for 32 incoherently

integrated pulses (M = 32) will yield a Pfa of 3.6e−6. Achieving a minimum Pd

above 0.95 requires a minimum 4.7 dB SNR.

The previous analysis holds for the probability of detection and false alarm for a

single range bin. If active weather is only declared for a feature if the SNR exceeds

the threshold forM gates out of a possible N , the cumulative probability of detection

(PM/N
d ) for the feature can be found from the formula for the binomial distribution

[69]

P
M/N
d =

N∑
k=M

N !

k! (N − k)!
P k
d (1− Pd)(N−k) (3.5.5)

As an example, consider the following. The WSR-88D Storm Cell Identification

and Tracking (SCIT) algorithm declares active weather in a radial weather if the

reflectivity exceeds a given threshold (typ. 30 dBZ) within a range extent with no more

than nd dropouts [63]. If the minimum range extent is 1.7 km with a range resolution

of 50 m (≈34 range bins) with no more than 2 dropouts, the probability of detection

for the feature is just 48.7 % if the single-bin Pd is 95 %. If the range resolution

is degraded to 250 m (≈7 range bins), this probability increases to 95.5 %. As the

LPAR operates with a typical 50 m range resolution compared to the nominal 250 m
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resolution on the WSR-88D, this demonstrates the importance of proper systems

engineering when translating algorithms developed for one radar to another.

3.6 On the Generation of Radar Data with Gaussian Doppler

Spectra

The goal of radar data simulation is to generate radar signals as IQ data samples

that have a pre-determined Doppler spectrum shape, which can be approximated as

a Gaussian model described by (3.2.6). To generate polarimetric IQ data having this

Doppler power spectrum, a Finite Impulse Response (FIR) filter is used to scale and

shape white noise. The procedure begins by generating complex AWGN for each

polarization as

wh = N (0, 1) (3.6.1a)

wv = N (0, 1) . (3.6.1b)

Where Np is the desired noise power level (W). To synthetically generate a pair of

timeseries having a desired copolar correlation coefficient (ρhv), the V-polarization

noise timeseries is synthetically correlated to the H-polarization timeseries via [29]

xh = wh (3.6.2a)

xv = ρhvwh −
√

(1− ρ2hv)wv. (3.6.2b)

Next, the correlated noise sequences (xh and xv) are passed through a filter that has

an Gaussian amplitude response with desired amplitude, velocity, and spectral width.
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For a series of M consecutive pulses and a PRT of Ts seconds, the filter time-domain

response is given by

h[mTs] = exp

[
−8π2σ2

v (mTs)
2

λ2

]
exp

[
−j 4πvmTs

λ

]
(3.6.3)

Where m is the pulse index. Weather IQ data are then generated by passing the

correlated noise samples through the filter

yh = F−1 [F (xh)F (h)∗] (3.6.4a)

yv = F−1 [F (xy)F (h)∗] (3.6.4b)

Where F and F−1 represent the DFT operations, respectively (commonly imple-

mented using the Fast Fourier Transform (FFT)). To generate timeseries data with

a desired SNR in each channel and differential power between channels, the output

from (3.6.4) must be scaled appropriately by the desired SNR and noise power (Np)

yh =

√
SNRh +Np

2
yh +

√
Np

2
N (0, 1) (3.6.5a)

yv =

√
SNRh +Np − Zdr

2
yv +

√
Np

2
N (0, 1) (3.6.5b)

Where the desired SNRh, noise power (Np), and differential reflectivity (Zdr) are

linear. To generate timeseries with a specific reflectivity, the terms in (3.6.5) should be

multiplied by the radar constant term from (3.3.5) for a particular set of waveform and

radar parameters. A desired differential phase (ΦDP ) can be synthetically generated

by shifting the phase of the H-polarization filter output

yh = yh exp (jΦDP ) . (3.6.6)
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The timeseries yh and yv now contain the correlated IQ samples for weather spec-

tra having mean SNR, velocity, spectral width, copolar correlation coefficient, and

differential phase.
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CHAPTER 4

BUSHFIRE DETECTION AND MONITORING

Forest fires are an unavoidable necessity in many ecosystems. They allow for the

regeneration of the local flora and support the biodiversity of the planet. However,

these fires also pose significant risk to both local communities and the firefighters

that protect them. From April to May 2013, an X-Band phased array radar deployed

to South Australia to make polarimetric observations of prescribed burns and un-

controlled fires within and around the Adelaide Hills region. Analysis of the data

collected indicate that areas of the smoke plume directly above the fire present dif-

ferent polarimetric signatures than those downwind. Based on these observations,

an algorithm is proposed which distinguishes smoke plume observations from mete-

orological and clutter echoes and identifies areas with increased likelihood of being

above or near active fire sources. The algorithm introduces a new spatial texture

field, derived from the use of range filters, to identify areas in the smoke plume with

increased ash and debris concentration, and storm cell tracking principles are used to

track the motion of the smoke plume and estimate local wind direction. Results of

the algorithm applied to untrained radar data collected from several bushfires are pre-

sented. Comparison against timelapse photography and local weather station data

shows that the algorithm effectively identifies active fire sources and estimates the

current wind direction.
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4.1 Introduction

Dry summer months and high ground winds create a high risk of uncontrolled

forest fires. Known as bushfires in Australia, these fires can spread quickly in certain

terrains and meteorological conditions. The interaction between the fire, the terrain,

and the local wind conditions can result in sudden changes in the fire direction and

the creation of vortices [42]. Radar measurements can aid in understanding the fire

morphology, and relaying that information to firefighters on the front line could reduce

the loss of life and property. Forest fires are not just a problem in Australia, however.

In the United States, increased periods of drought and hot, dry seasons are leading

to a rapid escalation in forest fires. Since 1985, the cost to suppress wildland fires has

more than quintupled to over $1.5 B [105, 104]. While many of these costs are due to

an increased number of homes built near fire-prone areas, six of the most severe fires

in the United States have occurred in the past decade since 2002 [51].

As the rate and extent of these fires grows, so does the risk to firefighters and

emergency personnel. The Yarnell Hill Fire in June 2013 took the lives of nineteen

firefighters when a rapid wind shift caused the fire to change direction suddenly

[35]. Emergency personnel used the nearby Weather Surveillance Radar (WSR-88D)

radar in Flagstaff, AZ during the fire both to predict wind shifts from observation

of outflow boundaries and estimate smoke plume height. Fire behavior during forest

fires, however, is still commonly estimated from visual observations and social media,

remote aerial or satellite imagery [79], and fire behavior modeling [54].

As microwave radar systems have the capability to make observations over a large

area, they are a useful source of information on fire morphology and have detected

fire plumes since the 1950s. Birch [12] first reported cases in which weather radars

in Australia have detected smoke plumes, and he cited two other detections in the

United Kingdom and the US dating back to 1955 and 1961, respectively. Banta

et al. [6] used an X-band Doppler radar to measure reflectivities from a forest fire
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near Boulder, Colorado having reflectivities as high as 10 dBZ to 20 dBZ within the

smoke plume. Jones and Christopher [65] analyzed data from an S-band radar and

satellite imagery from a smoke and debris plume extending 100 km in range, having

reflectivities near 20 dBZ at 5 km in height. Melnikov et al. [75] also studied the

polarization characteristics from these fires. Although at S-band, they noted large,

positive differential reflectivity, low copolar correlation coefficient, and high variances

of differential phase and reflectivity measurements. Work has also been published to

characterize the radar cross section of forest fire particulate and debris matter [46, 8].

This chapter is organized as follows. Sections 4.2 describes the test methodology

used during the field campaign. Polarimetric observations and statistical analysis

from the field campaign are presented in Section 4.3. Unlike most other reported

measurements, raw data has been analyzed from a number of different burns and at

close proximity to the fires. Additionally, during most other experiments and field

studies the radars were located far away from the fire and hence only observed the

plume at high altitudes above the heat source. This data was taken with the radar

at close ranges to the bushfires and allowed for observations directly above the fire

source. Based on the data analysis performed, an algorithm is proposed in Section 4.4

which uses fuzzy logic and storm cell tracking algorithms to detect areas above active

fire sources. Section 4.5 presents results of the algorithm applied to an untrained data

set from a prescribed burn. In situ wind measurements and timelapse photography

are used to verify that the algorithm is effective at identifying potentially active fire

areas and estimating the ambient wind direction.

4.2 Test Methodology

During April to May 2013, the X-band (9410 MHz) phased array radar system

phased array radar system [84] made observations at seven separate bushfires over
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Table 4.1: Prescribed burns and uncontrolled bushfire dates and locations.

Burn Site Date Area Burned
(ha) (acres)

Ignition

Belair CP 4-April-2013 9.0 (22.2) strip head

5-April-2013 16.9 (41.8) strip head

South Para Reservoir 10-April-2013 26.0 (64.2) strip head

Barossa Reservoir 17-April-2013 47.6 (117.6) aerial

Cleland CP 28-April-2013 10.0 (24.7) strip head

Cox Scrub CP 1-May-2013 40.0 (98.8) strip head

Kyeema CP 2-May-2013 39.6 (97.8) strip head

Cherryville 9-May-2013 650 (1600) uncontrolled

10-May-2013 650 (1600) uncontrolled

nine dates in and around the Adelaide Hills region in South Australia. Table 4.1 lists

the attended bushfires, dates, and ignition type for each burn.

Prescribed bushfires are ignited in two ways: strip head or aerial. In strip head

ignitions, firefighter personnel spark the fire using strip ignition patches. Aerial

burns use a helicopter equipped with an ignited petroleum jelly dispenser to set

the burn. One of the bushfires attended was an uncontrolled bushfire in Cherryville,

while the rest were prescribed burns conducted by South Australian County Fire Ser-

vices (CFS), Australian Department of Environmental, Water and Natural Resource

(DEWNR), and South Australian Forestry Corporation (ForestrySA) personnel.

The phased array radar made Alternate Transmit/Alternate Receive (ATAR) dual

polarized measurements at each burn [100]. During ATAR, the polarization of the

transmitted pulse is alternated between horizontal and vertical, and a single receiver

is used to receive the co-polarized signal. The measurements were made at a fixed

Pulse Repetition Frequency (PRF) of 3 kHz, giving an effective PRF of 1.5 kHz per

polarization. Three waveforms were used intermittently during each burn, having
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range resolutions of 50 m, 15 m, and 7 m. The radar electronically-scanned at fixed

elevations across a 90° sector, with intermittent Range-Height Indicator (RHI) and

volumetric scans executed when the smoke plume intensity peaked. Clutter maps

were also taken before and after each burn to be used as ground truth for comparative

purposes.

Mobile weather stations provided local in situ measurements of the ambient envi-

ronmental conditions near the burn for the uncontrolled bushfires and several of the

larger prescribed burns. These provide up-to-date temperature, pressure, humidity,

and wind velocity measurements. In addition, a camera mounted on the top of the

radar system collected snapshots of the radar field-of-view, time synchronized with

every azimuth scan collected.

The phased array radar system used for this research performs the pulse pair

processing technique on received voltage samples. This technique is adapted from

algorithms developed by Doviak and Zrnić [37] and Bringi and Chandrasekar [15].

See Chapter 3 for a description of the signal processing algorithms implemented.

4.3 Observations

4.3.1 Scattering Mechanism

Measurements of fallen ash and debris made at a prescribed burn at the Belair

Conservation Park (CP) (5-April-2013) show that large debris particles consisted of

either plate-like, leaf ash or complex debris from burnt grass and scrub. Plate-like

particle matter samples, identified as Eucalyptus or Bracken Fern leaves, measured

between 5 cm to 1 cm along its horizontal plane and less than 1 cm thick. Grass and

other scrub debris samples were a complex spheroidal shape filled with rough, jagged

edges and clusters measuring axial radii between 5 cm to 10 cm. These measurements

agree with past work performed [6, 75].
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4.3.2 Results

Figure 4.1 presents a snapshot of data at 06:14 Coordinated Universal Time (UTC)

during the Cherryville uncontrolled bushfire (10-May-2013). Figure 4.1a shows the

rising column of white smoke at 100 m to 400 m cross range, which correlates with the

area of increased reflectivity in Figure 4.1b. Towards the right side of the photo, the

smoke seems to disperse and become darker gray in color. The arrows in Figure 4.1b

indicate the radar heading and current wind direction, showing that the smoke plume

motion and direction is dominated by ambient ground winds.

The average radial velocity in Figure 4.1c confirms visual observations of the smoke

drifting parallel or slightly away from the radar. Nearby weather stations monitored

by the fire crews reported a North-Northeasterly wind (10°) at the time the data was

taken. From Figure 4.1b and a radar heading of 150°, the smoke column appears to be

drifting at a direction between 5° and 15°, which correlates well to the reported wind

direction. We do notice some areas within the center of the smoke plume with zero

radial velocity (≈60° wind direction), which may indicate the presence of fire-induced

winds rather than ambient ground winds.

Comparison between Figure 4.1b and Figure 4.1d indicates correlation between

higher reflectivity, lower differential reflectivity, and lower spectral width (not shown).

Mean Ẑh and Ẑdr near [0.2, 2.0]km [cross range, down range] are 22 dBZ and 2 dB,

respectively, while the mean values at [0.9, 2.2]km are 17 dBZ and 2.9 dB. Another

patch of reduced differential reflectivity can also be seen at [1.1, 2.2]km. In addition,

spectral width shows wide variation in the smoke plume returns, from 2.1 m s−1 near

[0.2, 2.0]km to 1.3 m s−1 near [0.9, 2.2]km. In contrast, the copolar correlation co-

efficient in Figure 4.1e does not show any recognizable pattern or relationship with

reflectivity, other than being randomly distributed with a low mean value of 0.4 within

the smoke plume.
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(a)

(b) (c)

(d) (e)
Figure 4.1: Timelapse photography and data from the Cherryville uncontrolled bushfire at 06:14
UTC. From top are (a) synchronized photography, (b) reflectivity (dBZ), (c) radial velocity (m s−1),
(d) differential reflectivity (dB), and (e) copolar correlation coefficient. The red shaded area in (a)
shows the radar field-of-view, using the radar 3 dB elevation beamwidth (2.8°). The arrows in (b)
indicate due North (N), the radar heading (R), and measured wind directions (W).

Figure 4.2 shows data taken from a RHI scan during the Barossa Reservoir con-

trolled burn (17-April-2013). Comparing the photo in Figure 4.2a to the reflectivity

in Figure 4.2b, there is an area of increased reflectivity at a down range of 1.2 km
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(a)

(b) (c)

(d) (e)
Figure 4.2: Timelapse photography and data from a RHI scan (22° elevation swath) from the Barossa
Reservoir controlled burn at 06:03 UTC. From top are (a) synchronized photography, (b) reflectivity
(dBZ), (c) storm-relative mean velocity (m s−1), (d) differential reflectivity (dB), and (e) differential
phase (°).

to 1.5 km, which correlates to areas of darker, brown smoke in the photo at height

of 0.1 km. The storm-relative mean velocity1 in Figure 4.2c shows patches of inward

and outward radial velocity within the smoke plume. Previous work [6] has attributed

this observation to the presence of horizontal vortices in the smoke plume.

1Storm-relative mean velocity is taken as the difference between smoothed and raw estimates of
velocity in a 1 km sliding window
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Differential reflectivity shows similar patterns within the smoke plume as noted

previously. Above the fire, at [1.4, 0.25]km, the mean Ẑh and Ẑdr are 22.4 dBZ and

0.1 dB, respectively. Away from the fire within the smoke plume at [1.1, 0.35]km), the

mean Ẑh and Ẑdr are 17.9 dBZ and 1.1 dB. Positive Ẑdr is consistent with previous

work [75] and agrees with debris sample measurements as predominantly flat, plate-

like particles from leaf matter. Copolar correlation coefficient (not shown) for the

Barossa Reservoir data has a mean value within the plume of 0.61 and shows no

pattern with reflectivity or location of the fire source. Differential phase, shown in

Figure 4.2e, shows spikiness and variability within the plume. We observe large spikes

as high as 45° within a 50 m range swath. This high variability between adjacent

resolution volumes indicates predominantly backscatter differential phase.

Copolar correlation coefficient was low throughout the burns, averaging between

0.4 and 0.7. The mean correlation coefficient observed from the prescribed burns,

Barossa Valley and Cox Scrub, is much higher than that reported in the uncontrolled

bushfire at Cherryville. The uncontrolled bushfire was more intense than any of the

prescribed burns, with measured reflectivities as high as 40 dBZ versus 25 dBZ for the

controlled burns. This increased intensity may be causing higher turbulence within

the smoke plume, which could explain the reduced correlation coefficient.

4.3.3 Analysis

We propose the following model to describe the scattering mechanism within the

smoke plume at X-band. There are two dominant regions within the plume: above

the fire source and downwind away from the fire source. We hypothesize that the

localized variations in Zdr are due to differences in the motion of ash and debris

particles around these two regions. Above the fire source, where the heat flux and

vertical updraft within the convection column are highest, the particles tumble more

quickly about their axis as they are propelled upwards. These tumbling particles
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appear to have a lower Zdr because they scatter more in each polarization. As the

debris particles rise and interact with ground winds, they are pushed away from the

fire. These particles float or drift with their major axis parallel to the ground, causing

higher measured Zdr values.

Analysis of the data shows no recognizable pattern in ρhv, either at the fire source

or areas downwind. Studies and field work [94] have observed that intense fires can

create a downdraft of mist or water droplets, formed by water condensation onto

smoke particulates as warm, moist air from the convective column cools and falls.

This suggests that ρhv during these types of fires may be higher and more resembling

precipitation (> 0.9). It is unclear as to whether the fires observed were not intense

enough to create this effect, or the mixture of condensed water droplets and larger

ash particles would still reduce the copolar correlation coefficient within the plume.

An analysis of the data was also performed to quantify how bushfire smoke plume

returns would be classified in a traditional Hydrometeor Classification Algorithm

(HCA). Figure 4.3 shows a statistical analysis of observations over a 3 h period from

the Cherryville uncontrolled bushfire (10-May-2013). To generate this data, clutter

cells were first identified and removed using the clutter identification procedure de-

scribed by Hubbert et al. [58]. Next, a Signal to Noise Ratio (SNR) threshold of

10 dB was applied to the data, and each scan was visually inspected to ensure clutter

or unidentified echoes were not contaminating the results. Products for differential

reflectivity, copolar correlation coefficient, and textures of reflectivity and differen-

tial phase were gathered against reflectivity in 5 dBZ bins from 5 dBZ to 30 dBZ,

corresponding to the the range of reflectivities observed over the burn. For each re-

flectivity bin, the mean, median, and 10th/25th/75th/90th percentiles of the data

were computed.

Analysis of the data in Figure 4.3 shows a strong correlation with the Biological

Scatterer (BS) category in the HCA. Low copolar correlation coefficient (0.4 to 0.6)
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(a) (b)

(c) (d)

Figure 4.3: Statistical analysis from the Cherryville uncontrolled bushfire for measured (a) differ-
ential reflectivity, (b) copolar correlation coefficient, (c) texture of reflectivity, and (d) texture of
differential phase. The bottom and top lines of the blue boxes represent the 25th and 75th per-
centiles, respectively, of the data for the corresponding reflectivity bin, and the top and bottom
edges of the dashed lines represent the 10th and 90th percentiles. The red + symbol and line
represent the mean and median of the data, respectively.

and high textures of reflectivity (5 dBZ to 8 dBZ) and differential phase (60° to 80°)

are major discriminators from precipitation echoes. In agreement with our proposed

model, differential reflectivity shows a decreasing trend with increasing reflectivity.

The Pearson correlation coefficient [48] between reflectivity and differential reflectivity

is −0.4 (α < 0.05), which indicates a weak inverse correlation. These results are in
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(a) (b)

Figure 4.4: As in Figure 4.3, but showing a statistical analysis from the Cherryville uncontrolled
bushfire on 10-May-2013 compared against the Median-Range (MR) texture field (MR6,6

12,12). Data
shows (a) spectral width and (b) differential reflectivity.

accordance with our initial hypothesis. Spatial texture fields have long been used in

HCAs to differentiate precipitating from non-precipitating echoes [88, 2].

The previous data shows a weak correlation between increased reflectivity and

locations of the active fire sources. To take advantage of this across forest fires of

different size and intensity, we use texture analysis to detect areas within the smoke

plume that have relatively higher reflectivity than the surrounding area. The spatial

texture of reflectivity, taken as the mean Root Mean Square (RMS) difference between

a Cell-Under-Test (CUT) and a kernel window (as in (3.4.18)), has shown to be a

good discriminator between clutter and precipitating echoes [52, 58]. An alternate

texture field is the Median-Range texture (see (3.4.20)), which is derived from the

use of range filters for edge detection.

As in Figure 4.3, Figure 4.4 shows differential reflectivity and spectral width com-

pared against the Median-Range texture field (MR6,6
12,12). As in the previous analysis,

data shows that differential reflectivity and spectral width are weakly correlated to

reflectivity, with correlation coefficients of 0.35 and −0.3 (α < 0.05), respectively.

79



4.4 Forest Fire Detection and Monitoring

Based on the previous analysis, observations of forest fires at low elevations by

small-scale systems present different signal characteristics than observations made at

higher elevations by larger systems. Returns made directly above the fire source show

increased reflectivity, lower differential reflectivity, and higher spectral width. These

results agree well with the physical processes occurring in the fire. As ash particles

and debris are lofted upwards in the convection column, their concentration is highest

directly above the fire. Since there are more particles in the radar resolution volume,

each tumbling at different rates, this results in increased reflectivity and spectral

width. For polarimetric radars, the net effect of tumbling in both polarizations leads

to a reduced apparent differential reflectivity. As these particles rise, interaction

with ambient ground winds and natural dispersion in the atmosphere reduces their

concentration. Larger, ashy leaf matter either breaks up into fine particulates that

are undetectable by the radar or is carried downwind. Reduced concentration of

particles having a mean motion vector closer to that of the ambient wind reduces

their reflectivity and spectral width presented to the radar. Since the particles are

no longer tumbling, they float with their major axis parallel to the ground, and the

measured differential reflectivity increases.

Based on these results, we propose the following technique for the detection and

monitoring of active forest fires by small-scale radar systems, known as the Bushfire

Detection and Monitoring (BDM) algorithm. The purpose of this algorithm is to pro-

vide localized detection and monitoring of active fires in a small area. A system that

could implement the algorithm would be able to provide the following capabilities:

• Detection and tracking of active fire fronts and smoke plume dispersion

• High spatial resolution (10 m to 250 m resolution)

• Near real-time imaging (5 s to 10 s) of a 10 km2 to 20 km2 area
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• Lower atmospheric coverage (0 m to 500 m above vegetation tops)

Such a system would greatly enhance the current situational awareness during a fire

by providing more localized and actionable data to firefighters over a large area.

The system could be implemented on either a mobile platform or as a network of

radars for border protection surrounding an urban area. Since spatial resolution is

heavily dependent on angular resolution (typically 1° to 3° for X-band radars), mobile

platforms could be deployed near the fire front (2 km to 4 km away) to provide higher

spatial resolution and active tracking, while a fixed radar network could provide

detection and surveillance capabilities for new threats.

The algorithm can be broken into three distinct stages: classification, identifica-

tion, and tracking. The purpose of the classification stage is to classify all resolution

cells in the scan volume as either potentially belonging to a smoke plume and to

identify and discard returns from clutter and precipitation. The identification algo-

rithm uses fuzzy logic and storm cell tracking techniques to estimate the likelihood

that resolution cells within the smoke plume are located directly above active fire

sources. The tracking algorithm monitors potentially active fire areas and provides

an estimate of the surface wind field around the fire. These stages, as well as initial

assumptions and hypothesis, are presented in the subsequent sections.

4.4.1 Assumptions

This algorithm makes the following assumptions about the dispersion of smoke

particulates and ash particles from active fires. From the point of view of the radar

system, it is assumed that the dominant scattering mechanism is only from significant

concentrations of millimeter-size or larger size particles. Reflections from ash partic-

ulates (having diameters less than 10 µm to 1000 µm), ducting from high gradients

in refractivity from high temperatures above the fire, or returns from potential water

vapor or condensation near the fire [94] are assumed to be negligible.
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The smoke plume itself, specifically the gas and aerosols in the plume less than

20 µm in diameter, is assumed to follow a Gaussian dispersion of the form [114]

χ(x, y,Q,H) =
Q

2πσyσzu
exp

[
−1

2

y

σy

2
]

{
exp

[
−1

2

z −H
σz

2]
+ exp

[
−1

2

z +H

σz

2]}
(4.4.1)

Where χ is the concentration of particles (g m−3), Q is the source emission rate

(g s−1), σy and σz are the standard deviations of the concentration distributions in

the crosswind and vertical directions (m), H is the the effective plume height (m), and

x, y, and z are the downwind distance, crosswind distance, and vertical height from

the fire source, respectively (m). This model assumes homogeneous meteorological

weather and wind conditions around the region of interest, no downwind dispersion,

and a constant emission rate. This dispersion model is the basis for several different

commercial smoke plume model algorithms in use today ([106, 68]).

While (4.4.1) models the dispersion of small smoke particulates and aerosols, which

are not assumed to be a dominant scattering mechanism for small-scale radars, this

algorithm assumes that the larger particles and debris follow a similar dispersion

model when viewed very near the fire source. That is, the concentration of larger

particles within the smoke plume also follows a Gaussian distribution. For wind-

driven fires, the flow and direction of the smoke plume (and therefore the ash and

debris within the smoke plume) are dominated by the ambient surface winds in the

lower 2 km to 3 km of the atmosphere. When these winds are light, the buoyancy

of the hot gases in the convection column dominates and the particles within the

smoke plume are projected into the upper atmosphere. Under the model assumption

in (4.4.1), the direction of the smoke plume will always align with the ambient ground
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Figure 4.5: Forest fire detection and monitoring classification stage block diagram.

winds, if they are strong enough, but the spatial distribution of particles through a

cross section of the plume is assumed to be Gaussian.

4.4.2 Classification

The purpose of the classification stage is to discriminate potential smoke plume

returns from clutter, biological scatterers (such as birds and insects), and precipitation

returns in the scan volume. It is important to filter out unwanted signals as much as

possible in this stage, because any returns misclassified as smoke will result in false

detections. The discrimination of smoke plume returns against other scatterers is done

through the use of sequential algorithms for clutter identification and hydrometeor

classification. Figure 4.5 shows a block diagram of the classification stage algorithm.

Classification begins with a SNR threshold to remove weak echoes (typically 6 dB),

followed by a clutter identification algorithm. Clutter identification implements the

technique developed by Hubbert et al. [58], using the same membership functions,

weights, and thresholds described therein. This algorithm uses a fuzzy logic scheme

with spatial texture and gradient feature fields to discriminate clutter. At the output

of the algorithm, cells with a high likelihood of containing clutter are identified and re-

processed through a clutter filter. A Gaussian Model Adaptive Processing (GMAP)

technique is used to suppress clutter returns while preserving echoes from returns

which present a Gaussian Doppler spectrum [107].

Following the clutter identification and filtering stage, unwanted precipitation

returns are identified with the HCA developed by Park et al. [88]. This algorithm uses
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the same trapezoidal membership functions, weights, and empirical limits described

therein. Since the features of smoke plume returns overlap heavily with the Biological

Scatterers (BS) type (see Section 4.3), a new classification type solely for smoke plume

returns would not be effective. Since the purpose of this stage is to reject unwanted

returns, any resolution cells identified from snow, ice, or rain precipitation types are

identified and discarded2.

The output of the classification stage is a set of filtered polarimetric products

(as described in Chapter 3) and a binary matrix identifying which resolutions cells

contain potential smoke plume returns.

4.4.3 Identification

The purpose of the identification stage is to identify the resolution cells within

a potential smoke plume which have an increased likelihood of being located above

or near a fire source. Specifically, the algorithm searches for areas which have (1)

increased reflectivity relative to the rest of the smoke plume, (2) high spectral width,

and (3) low differential reflectivity.

2It should be noted that precipitation, insect swarms, or flocks of birds were never observed during
the attended bushfires in the field campaign. So, the data gathered is predominantly from smoke
plume backscatter returns, clutter, and occasional air traffic around some of the burns. Operationally
this will not be the case, however. This precipitation rejection stage is included to mimic real-world
operation and verify that smoke plumes are not misidentified as precipitation.

Table 4.2: Parameters for membership functions for active forest fire classification.

P (MR) P (σv) P (Zdr)

SNR Threshold (dB) 6 6 10

x1 15 2 −∞

x2 20 3 −∞

x3 ∞ ∞ 2

x4 ∞ ∞ 2.5
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Figure 4.6: Forest fire detection and monitoring identification stage block diagram.

From a top-level perspective, the identification stage is a fuzzy logic algorithm

using membership functions for spatial texture (MRm,n), spectral width (σv), and

differential reflectivity (Zdr). In contrast to traditional fuzzy logic techniques, how-

ever, the algorithm computes the aggregate summation of weights within a pre-defined

area instead of each resolution cell. Since the convection column above the fire, where

the algorithm is searching for specific polarimetric signatures, is confined to a specific

area, it is natural then to only look for areas in which these signatures are present.

Table 4.2 summarizes the membership function parameters for each variable,

which are derived from the data in Figure 4.3. Parameters x1 through x4 define

the shape of a trapezoidal membership function [88], where x1 and x4 specify the

lower base of the trapezoid, and x2 and x3 define the upper corners. Membership

functions having parameters defined at ±∞ define one-sided trapezoidal membership

functions. Lower limits are used for spatial texture and spectral width, and an upper

limit is defined for differential reflectivity. The fuzzy logic algorithm can be described

as an aggregate summation of membership functions, subject to a restriction on the

connected component size of the feature fields

Pfire =

∑
i

wiP [xi]∑
i

wi
(4.4.2)
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Where Pfire is the likelihood that active fire is present at a resolution cell. P and wi are

the membership function and weight applied to the ith feature field, xi, respectively.

The membership functions are only valid where Pi is positive within a connected

region

P [xi] =


trapmfxi area [xi] > s

0 otherwise
(4.4.3)

This condition states that the membership function for xi is only positive where an

entire area of size s is positive. In other words, the fuzzy logic algorithm is performed

with a coarse resolution cell size of s m2. The term connected region is used here to

describe an area of minimum size s in which all resolution cells are neighbors of each

other, with a positive membership function weight.

The identification stage algorithm requires user inputs on the lower and upper

limits (smin,max) of the size of the active fire region to detect, specified as an area

(m2). The purpose here is to let the user threshold the size of active fires to detect

and to minimize false detections for potential fires outside these limits. These size

constraints correspond to the area threshold s given in (4.4.3). The algorithm uses

these thresholds to iteratively search for areas which contain high spatial texture of

reflectivity, high spectral width, and low differential reflectivity, subject to the mem-

bership functions and SNR thresholds in Table 4.2. On each iteration, corresponding

to a specific search area s from smin to smax, the feature fields are first computed for

the given area. The kernel window for the Median-Range texture (MRm,n) is resized

such that the [l, k] guard window matches the current search area, and the fields

for spectral width and differential reflectivity are passed through a 2D low-pass filter

with a passband equal to the search area. These feature fields are then fed to parallel

Storm Cell Identification and Tracking (SCIT) algorithms [63].
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The SCIT algorithm is a well-known and documented technique to detect and

track regions of reflectivity which exceed pre-designated thresholds. In the origi-

nal implementation on the WSR-88D system, storm cells are identified as regions of

reflectivity which exceed (typ.) 30 dBZ and meet minimum size and detection require-

ments. As opposed to traditional target detection algorithms, the SCIT algorithm is

a proven technique for the detection of volumetric targets.

Parallel SCIT algorithms are used here to identify areas of the feature fields having

a size equal to or greater than the current search area. On each iteration, the SCIT

algorithms generate a list of cells for each feature field. Each cell represents an area

within the feature field greater than or equal to the current search area where the

feature field membership function is positive. Once all search areas are processed,

cells from the same feature fields are merged together. Two cells are merged if the

centroid of one cell falls within the area contained by another. A similar approach is

used by Johnson et al. [63] to merge storm cells from different reflectivity thresholds.

The output of the iterative search is a list of identified cells for each feature

field on the current scan, where each cell defines an area where the feature field

membership function is positive. The algorithm then computes the aggregate sum

of the membership functions at each resolution volume across all identified cells for

spatial texture, spectral width, and differential reflectivity. This quantity is known

as the single-scan probability of fire

psfire =

∑
i

wiP [xi]∑
i

wi
(4.4.4)

Where P and wi are the membership function and weight applied to the ith feature

field, xi, respectively. Each of the feature fields are weighted equally, which reduces

(4.4.4) to an arithmetic mean. Since the feature fields used in the membership func-

tions of (4.4.4) are cells, the single-scan probability of detection will contain localized

areas where the feature field cells overlap each other. Areas within psfire which ex-
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ceed a pre-determined threshold are identified as active fire areas. This threshold is

nominally set at 0.95 to strictly enforce the membership functions in Table 4.2.

Once the single-scan probability of detection is computed, the algorithm is re-

peated for consecutive scans within a 60 s time window. The likelihood that a region

of active fire is present within this time window, known as the probability of fire

(Pfire), is computed at each resolution cell in the scene as the arithmetic mean of the

series single-scan probabilities of detection

Pfire =

∑
s

psfire

Ns

(4.4.5)

Where Ns is the total number of scans observed in the time window. Equation (4.4.5)

represents the probability that an active fire is present below each range cell. The

output of the identification stage is the probability of fire fields (Pfire and psfire)

within the current time window and the feature cells obtained from the parallel SCIT

algorithms.

4.4.4 Tracking

The purpose of the tracking stage is to monitor the potential active fire areas

and to estimate the current ambient wind field. As mentioned previously, the input

to the tracking stage is the feature cells and single-scan probability of fire from the

current scan and the probability of fire field from the current time window. The

algorithm also requires a user threshold on the maximum ground speed of the fire

front. The rate of advance of a fire front depends both on local weather conditions

and the topology over which the fire advances, and can be as high as 4 m s−1 to

6 m s−1 [66]. To account for the unknown terrain of the scene, the algorithm expects

a user guidance on the maximum fire speed. Figure 4.7 shows a block diagram of the

tracking stage algorithm.
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Figure 4.7: Forest fire detection and monitoring tracking stage block diagrams for (a) active fire
detection and (b) wind direction estimation.

At the conclusion of each scan, active fire areas are declared as regions where

the probability of fire (Pfire) exceeds a set threshold (nominally 0.5). This can be

interpreted as a binaryM ofN detection algorithm [1, 97], where active fire is declared

if Pfire > 0 in at least M radar scans out of the previous N . Here, M and N are

set according to the number of available scans in the previous 60 s sliding window.

Under nominal scan parameters for a 40 ms dwell time per radial and a 3.5 s azimuth

scan, M and N correspond to 8 and 15, respectively. Areas in the scene which meet

this M of N condition logic are identified as active fire cells.

Ambient wind direction is estimated using two different methods: from the flow

field and the shape of the smoke plume. The flow of the smoke plume is estimated

by measuring the motion of the particles within a specified time interval. Since
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the spatial texture already identifies the regions within the plume with high particle

concentration, it is natural then to track the motion of these texture cells as the

flow of ash particles. Using the texture cells output from the identification stage, the

motion of the cells is approximated using a Nearly Constant Velocity (NCV) model.

Under this model, the cells are assumed to move with constant velocity between

scans. That is, the algorithm assumes that the flow of the smoke plume, as estimated

from the motion of these cells, is nearly constant between discrete time intervals. A

Nearly-Constant Velocity (NCV) Kalman Filter algorithm with nearest neighbor data

association and track initiation logic is implemented to filter the motion of the cells.

The measurements of the Kalman Filter are the feature cell centroid positions, and

the state provides an estimate of the cell position and velocity (see Appendix 4.7 for

a description of the tracking algorithm). The flow field of the smoke plume is then

computed from the median velocity vector from all tracked feature cells.

Ambient wind direction is also estimated from the shape of the smoke plume as

follows. From the perspective of a radar scanning in one elevation cut through a

smoke plume, a wind-dominated fire will present an ellipsoid-shaped echo with the

fire source at one focus and the orientation of the ellipse aligned with the ambient

wind direction along the major axis. To estimate the orientation of the major axis,

and thus the ambient wind direction, we use an elliptical approximation technique

[78] (see Appendix 4.8). Using this technique, the collection of resolution cells in

the smoke plume are treated as a cluster of spatially-distributed data points. The

approximation fits an ellipse around the 95 % confidence limits on this cluster. The

wind direction is then estimated from the angle of the major axis in the direction of

mean radial velocity within the smoke plume.

The ambient wind direction on each radar scan is computed from filtered estimates

of the flow field and orientation of the smoke plume. Raw wind estimates are first

computed from the median of velocity vectors from the flow field and orientation. The
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final, filtered estimate is taken from a 60 s moving average of raw estimates. Because

of the moving average operation, wind estimates are provided at a 30 s delay.

The output of the forest fire detection algorithm is a list of the (1) active fire areas

where the probability of fire exceeds a pre-determined threshold and (2) an estimate

of the wind direction from the flow and shape of the smoke plume.

4.5 Verification

From the 8 burns and bushfires attended during the field campaign listed in Ta-

ble 4.1, different data sets were selected for training or verification. Training sets

were used to develop, test, and fine tune the performance of the algorithm on real-

world data. Once development was complete, the data from the verification sets were

processed through the algorithm. Verification sets are used as untrained data to test

the algorithm without bias. Specifically, two burns were chosen for training: South

Para Reservoir (10-April-2013) and Barossa Reservoir (17-April-2013). The rest were

used solely for verification and performance measurement. This section presents the

verification methodology and results.

4.5.1 Verification Methodology

Under ideal conditions, the BDM algorithm should be tested against in-situ Infra-

Red (IR) and LIDAR instrumentation, which would provide accurate truth data on

the location of the heat sources and highest concentration of smoke particulates.

However, only timelapse photography and local weather station data was available

for the field campaign. Timelapse photography was obtained with a high-definition

camera mounted on top of the array face aligned with the array boresight. At the start

of each radar scan, the camera was digitally commanded to take a snapshot via control

from the radar software. Weather data was available either from mobile weather

stations setup by the fire management crews at each burn or permanent stations
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maintained by the Australian Bureau of Meteorology. Weather data includes mean

and standard deviation of local wind speed and direction, wind gusts, temperature,

pressure, and humidity in 1 min intervals.

For each bushfire tested, the algorithm was applied to the raw timeseries data

collected on each scan in the data set, typically over 2000 scans lasting 1 h to 3 h. As

described in Section 4.4, the output of the algorithm after each scan is a feature field

for the probability of fire field, which indicates the likelihood that an active fire is

present in the resolution cell in a 60 s window ending on the current scan. Nominally,

resolution cells with a probability of fire greater than 50 % (Pfire > 0.5) are declared

as active fire detections. Also output is an estimate of the wind velocity vector at

each scan, taken from estimates of the flow and shape of the smoke plume in the

previous 60 s time window.

To measure the performance of the algorithm, the following metrics were used.

Fire management crews maintain records of the burn map for each prescribed and

uncontrolled bushfire in local fire management plans. The area for prescribed burns

are planned years in advance to control the regrowth of vegetation in a large area.

Similar records are kept for uncontrolled bushfires. The total burn area was estimated

from the algorithm by computing the maximum probability of fire at each resolution

cell over all scans processed. The total burn area estimate was then compared to the

burn area map as recorded in the fire management plan.

Another method used is the timeline of fire activity. From timelapse photography

and historical records, the speed and direction of the fire front can be estimated.

In this manner, the location of the fire front can be tracked throughout the burn.

The timeline of fire activity is computed from the algorithm by plotting the time and

location of the centroid of each active fire area at 1 min intervals throughout the burn.

The direction of spread of the fire is then estimated by tracking these centroids as a

function of time.
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Wind direction data was also compared against ground truth. To mimic the

format of the weather station data, wind estimates from the algorithm were averaged

in 1 min intervals throughout the data set. The wind estimation error was computed

as the RMS error between the ground truth and algorithm estimate.

The algorithm was tested against two different bushfires: a prescribed burn at

the Cox Scrub Conservation Park (1-May-2013) and the uncontrolled bushfire at

Cherryville (10-May-2013). The verification results from these burns are presented in

the following sections.

4.5.2 Cox Scrub Prescribed Burn (1-May 2013) Results

A prescribed burn was conducted by South Australian CFS and DEWNR person-

nel at the Cox Scrub CP (10-May-2013), which lasted over 3 h from first ignition at

04:30 UTC until 07:30 UTC and burned over 40 ha. Recorded timeseries data from

the burn was processed by the fire detection and monitoring algorithm. The algo-

rithm was completely untrained to the data and setup to search for active fires from

500 m2 to 1000 m2 in size with a maximum fire spread rate of 6 m s−1.

A sample output from the BDM algorithm during the burn at 05:28 UTC is shown

in Figure 4.8b along with timelapse photography at the same instant in Figure 4.8a.

The picture shows a small patch of forest burning at a cross range extent from−0.22 m

to −0.12 m, with the smoke plume extending from the fire source at an angle towards

the radar. By comparison, the algorithm estimates the active fire in the scene to

extend from −0.22 m to −0.36 m at a down range centered at 2 km. The discrepancy

in the estimate of the fire location from the algorithm is due to strong ground winds.

The heat flux from the fire is not strong enough to project the smoke plume into

the upper atmosphere, so the ambient ground winds dominate and the smoke plume

height is reduced. The radar is unable to accurately measure the smoke plume at its

base because of clutter contamination near the tree line.
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(a)

(b)

Figure 4.8: Snapshot of data processed by the BDM algorithm from the Cox Scrub CP prescribed
burn at 05:28 UTC, showing the (a) timelapse photography and (b) algorithm output. The black
box in (a) indicates the location of the active fire in the scene, which corresponds closely to the
region of increased probability in (b). Black and red arrows in (b) indicate the wind estimates from
the flow field and smoke plume shape, respectively. The arrows enclosed in the circle in (b) indicate
due North (N), the radar heading (R), and measured wind direction (W).

From Figure 4.8, we see that the smoke plume is drifting in the wind, slightly

towards the radar at a true angle of 15°. A local weather station data recorded the

wind direction at that time to be 20° ± 10°, which closely matches the estimate from

the algorithm. Wind estimates over a 1 h period during the burn, shown in Figure 4.9,

show intermittent periods of weak and strong correlation ground truth. Over the
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Figure 4.9: Wind estimates from the BDM algorithm applied to the Cox Scrub CP prescribed burn
over a 1 h duration throughout the burn. The red line shows the mean and standard deviation
of wind direction measurements from a nearby weather station, and the black line are the wind
direction estimates from the algorithm. The gaps in the wind estimates correspond to times when
the algorithm did not detect any active fires.

entire 1 h interval, the RMS error between wind estimates and weather station data

during is 17.3°. While some of this error could be contributed to the separation

between the weather station and the burn (16 km), gaps in the wind estimates are

caused by periods when no active fire was detected by the algorithm. Inspection of

the timelapse photography shows that these gaps occur when the intensity of the burn

reduced. Since this was a controlled burn, these periods could correspond to breaks

in the burning from fire crews.

Figure 4.10 show plots of the (a) total burn area and (b) fire timeline. The

black dotted line in Figure 4.10 indicates the total area burned from CFS historical

records. Inspection of Figure 4.10a shows a strong correlation between active fire areas

declared by the algorithm and historical records. Over 80 % of the recorded burn

area corresponds to predictions from the algorithm. In addition, the fire timeline

in Figure 4.10b shows that the fire crews started burning on the East side of the

fire at [−0.31, 2.13]km [cross range, down range] and finished on the West side at
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(a) (b)

Figure 4.10: Results from the BDM algorithm applied to the Cox Scrup CP prescribed burn, showing
the (a) total area burned and (b) fire timeline. The total area burned shows the maximum probability
of fire estimated from the algorithm at each resolution cell over the burn, while the fire timeline
plots the centroids of each active fire area as a function of time since the start of the fire. The black
dotted line is the actual area burned, from the recorded fire management maps from CFS personnel.

[0.12,1.83]km. This agrees well with timelapse photography and visual observations

during the burn, with fire crews first igniting the burn at 04:30 UTC at a cross range

of −0.29 km and proceeding westward.

4.5.3 Cherryville Uncontrolled Bushfire (10-May 2013) Results

For over three days from 9-May-2013, an uncontrolled bushfire near the town of

Cherryville, South Australia burned over 650 ha. The radar made observations of the

fire at a down range of 2 km to 3 km for a 6 h period on 10-May-2013, beginning at

04:45 UTC. The algorithm was completely untrained to the data and setup to search

for active fires from 500 m2 to 1000 m2 in size with a maximum fire spread rate of

6 m s−1.

Figure 4.11 shows the algorithm output at the same timestamp as shown in Fig-

ure 4.1. Comparison between the two figures show that the active fire present in the

timelapse photography at a cross range of 0.10 km to 0.35 km agrees well with the

area of increased probability of fire in Figure 4.11. The estimated wind direction,
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Figure 4.11: Results of the BDM algorithm at 06:14 UTC during the Cherryville uncontrolled
bushfire at 06:14 UTC. Gray areas indicate potential smoke echoes, and the probability of fire
feature field is indicated by the blue to red colormap. The red arrow indicates the estimate of the
wind direction, while the arrows enclosed in the circle indicate due North (N), the radar heading
(R), and measured wind direction from a nearby weather station (W). Note how the wind estimate
aligns very well with the measured wind direction.

indicated by the red arrow, also aligns very well with the measured wind direction at

the same instance (the blue arrow enclosed in the circle).

Wind estimates during the burn show good agreement with measured data from

local weather stations. Figure 4.12 shows estimated versus measured wind estimates

over a 140 min interval during the bushfire. The RMS deviation between the estimate

and the measured data over the entire interval is 24.1°, while the error during a

40 min interval from 100 min to 140 min during peak intensity is just 11.2°. Since

the algorithm relies on estimates of the smoke plume shape from the data, periods

where the smoke plume echoes are weak or non-existent cause errors in the wind

estimates. The period from 100 min to 140 min corresponds to when the bushfire

intensity peaked.

Due to the large extent of the fire, burn maps from historical records cannot

be used to precisely determine the area burned during the radar observation time.

Nonetheless, the burn map and fire timeline during the bushfire is shown in Fig-

ure 4.13. Observations made during the fire indicate that intense burning began on
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Figure 4.12: Wind estimates from the BDM algorithm during a 140 min period during the Cher-
ryville uncontrolled bushfire on 10-May-2013. The red line shows the mean and standard deviation
of wind direction measurements from a nearby weather station, and the black line is the wind direc-
tion estimates from the algorithm. The gaps in the wind estimates correspond to times when the
algorithm did not detect any active fires. The RMS deviation between the estimate and the mea-
sured data over the entire interval is 24.1°, while the error during the 40 min interval from 100 min
to 140 min during peak intensity is just 11.2°.

(a) (b)

Figure 4.13: Results from the BDM algorithm applied to the Cherryville uncontrolled bushfire on
10-May-2013, showing the (a) total area burned and (b) fire timeline. The total area burned shows
the maximum probability of fire estimated from the algorithm at each resolution cell over the burn,
while the fire timeline plots the centroids of each active fire area as a function of time since the start
of the fire.

10-May-2013 on the side of a small ridge located 3 km to 4 km from the radar, and

progressed Northerly towards the radar. These observations align well with the fire
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timeline, which show intense fire activity at the beginning (60 min to 120 min) and

end (260 min to 320 min) of the radar observation time.

4.5.4 Discussion

In addition to the data sets described previously, two additional data sets were

also analyzed. Table 4.3 shows a summary of the results against all burns analyzed,

comparing the actual area burned from historical records against the burn area es-

timate and wind direction RMS error. The burn area estimate from the algorithm

is classified as areas inside or outside the actual burn area. That is, areas outside

the burn area are taken to be false detections from the algorithm, and the difference

between the inside and actual burn areas are missed detections.

While additional testing with co-located thermal imagery would be required to

fully verify the performance, these results show that the algorithm does perform well

during the burns. From timelapse photography, the algorithm estimates active fire

areas coincident with the base of the smoke plume, radiating outwards in the direction

of the ambient wind. In several cases, the rate and direction of fire spread correlates

well to timelapse photography. Over all of the burns tested against, the average RMS

wind direction error was 21.3°, with errors as low as 8.4° to 11.2° at times during

several of the burns. The algorithm performs well at identifying areas above active

fire sources, but it is prone to errors at low SNR from weak fires. We observed that

most false detections occurred during wind-driven fires, when the ambient wind was

strong enough to topple the convection column, causing the algorithm to incorrectly

classify areas outside of the burn area as active fire.

4.6 Summary and Conclusions

Radar systems routinely observe smoke plumes from industrial and wildland fires,

so the scattering mechanism of ash and debris particles is well understood. However,
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Table 4.3: Summary of algorithm performance against different bushfires and controlled burns,
showing the actual area burned from historical records against the algorithm burn area estimates
and wind direction RMS error. Burn area from the algorithm is classified as areas inside or outside
the actual burn area. The dash (–) in cells indicate that data is from an uncontrolled bushfire, where
reliable burn maps are not available.

Date Area
Burned (ha)

Duration
(min)

Est. Area Burned (ha) Wind Dir.
RMS Error

(deg)Inside Outside

1-May-2013 40.0 60 36.5 17.4 17.3

2-May-2013 39.6 30 21.7 15.1 8.4

9-May-2013 - 25 33.8 - 26.9

10-May-
2013

- 140 115.6 - 24.1

many of the previous observations were made at great distances to the fire front, so the

smoke plumes could only be observed at great heights. In contrast, the measurements

performed here were made with the radar system very close to the active fire (less than

5 km), which allowed the radar to make precise polarimetric measurements directly

above the fire.

By comparing measurements from areas above the fire to those downwind, several

patterns were discovered. Areas in the smoke plume directly above the fire show

increased reflectivity, increased spectral width, and decreased differential reflectiv-

ity. These observations agree well with the physical process within the smoke plume.

Higher concentrations of tumbling particles above the fire in contrast to lower con-

centrations of drifting particles downwind present different polarimetric signatures.

Based upon these assumptions, a BDM algorithm was proposed that estimates

the location of active fires and wind direction from smoke plume observations. Using

a newly proposed texture field for the Median Range (MR) field of reflectivity, the

algorithm uses modified storm cell algorithms, combined with fuzzy logic, to estimate

areas in the smoke plume which have increased probability of being above active fire
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sources. The output field, known as the probability of fire, indicates potential active

fire areas.

The algorithm was verified by processing untrained data from the field campaign.

Comparison of the output against timelapse photography shows that the algorithm

correctly identifies areas in the smoke plume above active fire sources. Results do

show, however, that the algorithm is prone to errors for wind-dominated fires or if the

smoke plume echoes are weak. On average, the algorithm estimates wind direction

with an RMS error from 20° to 24°. As with the fire probability, wind estimates

become unreliable when the SNR from the smoke plume decreases. However, during

periods of peak fire intensity the RMS error of wind estimates decreased to just 11.2°.

This indicates that the algorithm performance may improve during more intense,

uncontrolled fires.

Research is currently underway to test the algorithm against additional forest fires

in the Western United States. A low-cost, experimental system is being developed to

refine and test the algorithm against a live forest fire. The future system will include

a mobile command center to provide live, localized, and actionable data directly to

fire management crews.

4.7 Constant-Velocity Kalman Filtering

The purpose this section is to describe the Kalman Filter algorithm used in the

tracking of the feature cells. We begin by presenting the relevant equations used by

the generic Kalman Filter algorithm without derivation. For a complete derivation

of the equations and explanation, please refer to [98, 108].

4.7.1 Kalman Filter Basics

The flow of the Kalman Filter is a two stage process: prediction and correction.

The prediction equations are used to predict an estimate of the state at the current
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time, Xk|k−1, under a linear dynamic model from the state at some previous time,

Xk−1|k−1. Associated with the state is the state error covariance, Pk|k−1, which is also

estimated to the current time using a linear dynamic model. The notation Xi|j refers

to the estimate at the current state at time i using measurements up to and including

time j. The predictor equations are given as

Xk|k−1 = Fk−1Xk−1|k−1 (4.7.1a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Gk−1Qk−1G

T
k−1 (4.7.1b)

Where

Xk|k−1 = predicted state estimate at time k

Xk−1|k−1 = corrected state estimate at time (k − 1)

Fk−1 = linear dynamic model

Pk|k−1 = predicted state error covariance at time k

Pk−1|k−1 = corrected state error covariance at time (k − 1)

Gk−1Qk−1G
T
k−1 = input process noise

Note the subtlety in the above equations. The previous, corrected state at time

(k− 1) is used to predict an estimate of the current state at time k. This is the same

for both the state and the state error covariance. The input process noise matrix is

often an algorithm design parameter that is used to model random dynamics of the

state during state transitions. For the purposes here, it is set to the identity matrix.

The corrector equations are
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Xk|k = Xk|k−1 +Kk

[
Zk −HkXk|k−1

]
= Xk|k−1 +KkZ̃k (4.7.3a)

Pk|k = [I −KkHk]Pk|k−1 (4.7.3b)

Kk = Pk|k−1H
T
k S
−1
k (4.7.3c)

Sk = HkPk|k−1H
T
k +Rk (4.7.3d)

Where

Xk|k = corrected state estimate at time k

Pk|k = corrected state error covariance at time k

Hk = observation matrix

Zk = measurement

Z̃k = measurement residual

Kk = Kalman Filter gain

Sk = covariance of measurement residual

Rk = measurement error

The practical considerations of the Kalman Filter gain should be mentioned. The

gain is a weighting that is applied to the measurement residual, which is then added

to the predicted state, Xk|k−1, to get the corrected state, Xk|k. If the state error co-

variance is much lower than the measurement residual covariance, then the weighting

will favor the state estimate over the measurement in computing the corrected state.

If, on the other hand, the covariance of the measurement residual is lower, then the

weighting will favor the measurement and the corrected state will be closer to the

new measurement than the predicted state.
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Practically speaking, the Kalman Filter optimally chooses the correct gain to

minimize the error in the state prediction. If the previous measurement was fairly close

to the previous state, then the Kalman Filter will trust the next measurement is more

accurate than the next state estimate. However, if the previous measurement was very

far from the previous state, then the Kalman Filter will trust that the previous state

prediction was more accurate. Inherently, the Kalman Filter is optimized for the

applicationŠs particular dynamic progression model.

4.7.1.1 Position and Velocity Estimation

A Kalman Filter for estimation of a target position and velocity in 3D Cartesian

coordinates uses a [6,1] state matrix of the form

Xk =

[
xk ẋk yk ẏk zk żk

]T
. (4.7.5)

Where (xk,yk,zk) and (ẋk,ẏk,żk) are the target’s position and velocity, respectively.

The corrector equations take the state estimate, Xk|k−1, and a new measurement,

Zk, to compute a corrected state at time k, Xk|k. The corrected state is an optimal

weighting between the measurement and the state estimate, known as the Kalman

Filter gain at time k, Kk.

The observation matrix in (4.7.3) maps the state into the measurement space, and

is simply a static matrix of the form

Hk = H =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0



T

. (4.7.6)
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For input measurements as the current target position estimate, the measurement

matrix is a [3,1] matrix of the form

Zk =

[
x̂k ŷk ẑk

]T
. (4.7.7)

Where (x̂k,ŷk,ẑk) are the target position measurements. The measurement noise,

which defines the covariance matrix of the measurement, assumes that the measure-

ments are independent, zero-mean Gaussian random variables. The measurement

noise is assumed to be a zero-mean noise process having a covariance matrix equal to

Rk =



σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


. (4.7.8)

Here, the variance terms define the error in each dimension about the measurement.

The higher the measurement error, the less the Kalman Filter will trust new mea-

surements to update the state.

4.7.1.2 Linear Dynamic Model for Nearly Constant Velocity

The linear dynamic model describes how the state evolves with time. In this appli-

cation, the linear dynamic model describes the kinematic motion of the target. Here,

we assume that between the discrete time intervals in which the algorithm updates,

the target undergoes Nearly Constant Velocity (NCV). This kinematic motion is a

design constraint that depends on both the estimated target model and the rate at

which the filter will be fed new measurements.

Under the NCVmodel and assuming the state matrix in (4.7.5), the linear dynamic

model matrix is given by
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Fk =



1 δk 0 0 0 0

0 1 0 0 0 0

0 0 1 δk 0 0

0 0 0 1 0 0

0 0 0 0 1 δk

0 0 0 0 0 1



(4.7.9)

Where δk is the elapsed time since the last update. Thus, we observe that the state

prediction of the target position and velocity is simply a projection of the past tar-

get position plus the distance traveled, assuming the most recent velocity remained

constant.

Another design choice in the Kalman Filter algorithm is the input process noise

covariance matrix. The input process noise characterizes the motion of the target

state that could occur between time internals. This could be caused by the geometry

of the state coordinate frame or other factors, so care must be taken when choosing

the form. We model the input process noise to account for random, unknown target

maneuvers as a white Gaussian noise process having a spectral density of q g/Hz.

Under this model, the input process noise matrix is given by [16]
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Gk−1Qk−1G
T
k−1 = q



δ3k/3 δ2k/2 0 0 0 0

δ2k/2 δk 0 0 0 0

0 0 δ3k/3 δ2k/2 0 0

0 0 δ2k/2 δk 0 0

0 0 0 0 δ3k/3 δ2k/2

0 0 0 0 δ2k/2 δk



(4.7.10)

In practice, the input process noise could evolve with time, to account for different

target motion or different model behavior. For simplicity, we assume a constant input

process noise for all state models. Studies have shown that typical values for q should

be between 50 100% of the assumed target maximum acceleration [14].

4.7.2 Dual Extended Kalman Filter Applied to Radar Target Tracking

While the previous Kalman Filter derivation works well for estimating positions

from measurements made in the Cartesian coordinate system, it is ill-suited to es-

timating the positional state of a target from measurements made in the spherical

coordinate system, as is the case with most radar systems. As the Kalman Filter is

a linear estimator, it assumes that the process and error covariance terms are linear

functions from one state to the next. However, the conversion from the measure-

ment frame (spherical coordinates) to the estimation frame (Cartesian coordinates)

is non-linear. Thus, tracking

The Kalman Filter implemented here estimates the position of a target in a Carte-

sian coordinate frame using detection measurements provided by the radar system

in polar coordinates. The complication in this scenario is the different coordinate

systems. The Kalman Filter is optimized to minimize the mean square state pre-
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diction error when the random processes, including measurement error, are assumed

Gaussian. Although the radar measurement errors can be assumed to have zero-mean

Gaussian statistics, the coordinate transformation from polar to Cartesian coordinate

systems is non-linear. Thus, any white Gaussian noise in the measurement frame will

change statistics when converted to a Cartesian frame. To solve this issue, this sec-

tion describes a Dual-Extended Kalman Filter [13]. The two important differences

between the Dual Extended Kalman Filter and the generic Kalman Filter are the

observation matrix and the use of dual coordinate systems.

As shown in (4.7.3), the Kalman Filter gain, Kk, depends on the state error co-

variance and the measurement residual covariance. For measurements made in polar

coordinates, we wish to keep the measurements and the covariance of the measure-

ment residual in the polar frame. This is the basic theory behind the Dual Extended

Kalman Filter. The state model and the state error covariance are maintained in

the Cartesian frame, while the measurement and the covariance of the measurement

residual are maintained in the spherical coordinate system. In this manner, the

measurement noise processes do not undergo any non-linear transformation, and the

Kalman Filter retains its optimality. However, with two coordinate systems main-

tained at the same time, there must be some way to fuse the data from one frame to

another. This is the purpose behind the observation matrix. The observation matrix,

Hk, is used to map the state frame into the measurement frame.

It should be noted that this filter is not implemented for the BDM algorithm

described here. Since smoke plume measurements remain in a relatively fixed position

over a long time period, the algorithm described herein translates all measurements

to the Cartesian frame before feeding them to the Kalman Filter. As the range to the

measurements remains static, the resolution cell and measurement uncertainties also

remain fixed and are approximated to be consistent throughout the state estimates.
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4.7.2.1 State and Covariance Models Explained

The state model we will be estimating is the targetŠs position and velocity. Each

of state dimensions are assumed to be statistically independent. In other words, we

assume that the targetŠs position or velocity in the x-dimension is not affected by its

position or velocity in any other dimension. The state matrix is a [6,1] matrix of the

form

Xk =

[
xk ẋk yk ẏk zk żk

]T
. (4.7.11)

The measurements are made in a spherical coordinate system, referenced to the radar

boresight direction perpendicular to the plane of the array front. The four measure-

ments taken are the targetŠs range, bearing, elevation, and range-rate. As with the

state model, each of the measurements is assumed to be statistically independent from

one another, a fact that will become apparent when the measurement error matrix,

Rk, is given. The measurement matrix is a [4,1] matrix of the form

Zk =

[
r θ φ ṙ

]T
. (4.7.12)

The measurement noise is assumed to be a zero-mean noise process having a covari-

ance matrix equal to

Rk =



σ2
r 0 0 0

0 σ2
θ 0 0

0 0 σ2
φ 0

0 0 0 σ2
ṙ


(4.7.13)
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where σ2
r , σ2

θ , σ2
φ, and σ2

ṙ are the measurement accuracies, or the variances of the mea-

surements. So, upon examination of (4.7.13) we see that each of the measurements

is statistically independent from one another.

The observation matrix maps the state space onto the measurement space. In

Cartesian coordinates where the transformation from the state to the measurement

space is linear, this matrix structure is rudimentary, as shown in (4.7.12). In this

application, we need to perform a non-linear coordinate transformation from the

state space into the measurement space. By keeping the measurement space in polar

coordinates, we can refrain from performing a non-linear transformation that would

distort the white-noise process. We perform this transformation by a linear estimate

of the target motion around the most recently predicted state. Here, the observation

matrix is given by

Hk =



x/r 0 y/r 0 z/r 0

y/r2h 0 −x/r2h 0 0 0

−xz
r2rh

0 −xz
r2rh

0 1/r 0

Hdk(1) x/r Hdk(3) y/r Hdk(5) z/r


(4.7.14)

Where

Hdk(1) =
(y2 + z2) ẋ− (yẏ + zż)x

r3
(4.7.15a)

Hdk(3) =
(x2 + z2) ẏ − (xẋ+ zż) y

r3
(4.7.15b)

Hdk(5) =
r2hż − (xẋ+ yẏ) y

r3
(4.7.15c)

r =
√
x2 + y2 + z2 (4.7.15d)

rh =
√
x2 + y2 (4.7.15e)
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Here, the position variables (x, y, z) are the positions in the most recently pre-

dicted state, Xk|k−1. An important point to note is that although the use of dual

coordinate systems alleviates the problem of the non-linear coordinate transforma-

tion, this linearized mapping is not optimal under all measurement noise models. For

instance, [98] states that the performance of the Extended Kalman Filter degrades

when the target measurement noise has the following characteristic

rmax
[
σ2
θ , σ

2
φ

]
σ2
r

≥ 0.4 (4.7.16)

Where σ2
θ , σ2

φ, and σ2
r are the variances of the measurement noise from (4.7.13) at

time k. Upon examination of (4.7.16), we see that the performance of the Extended

Kalman Filter will degrade at far ranges if, for example, the radar system has very

poor angular accuracy. We can think of the observation matrix for this case as an

approximation to the partial derivative of the standard Cartesian-to-spherical coor-

dinate transformations.

4.7.3 Track Initiation Logic

On each scan, radar detections must be processed to form new tracks or associate

to existing tracks. This is known as track initiation and data association. Track

initiation for a declared detection begins by attempting to correlate the detection with

an existing track. Detections which do not correlate are declared as new tracks. Since

the presence of false detections can result in false tracks, new tracks are first declared

tentative until enough detections have been associated to the track on subsequent

scans. This is known as an M of N track initiation policy [108, pp. 7.28–7.37], where

tracks are tentative until at least M detections out of the previous N observations

have associated to the track. Once theM of N criterion is met, the tracks are declared

firm and are maintained by the radar system. Tentative tracks not confirmed within

a designated observation window are subsequently dropped. For the M of N track

111



initiation logic, the probability that a track is initiated can be calculated from the

binomial distribution for M successes in N trials. For a single-look target probability

of detection of Pd, the probability of establishing a firm track is

Pt =

bNc∑
i=0


n

k

P i
d (1− Pd)(M−i) (4.7.17)

Where the bc symbol is the floor operation, equal to the greatest integer that is

less than or equal to N . Note how the track probability in (4.7.17) is taken from

the total number of M detections out of a possible N observations, which does not

require M consecutive detections (in which case the track probability would reduce

to a cumulative product). For a probability of detection of 95 % (Pd = 0.95) with M

and N set to 4 and 5, respectively, the probability of firm track is 98 %. If, however,

the probability of detection is just 75 %, the probability of establishing a firm track

reduces to 63 %.

Detections are correlated to existing tracks via a distance threshold. Rather than

using the Euclidean or geometric distance, this implementation uses the statistical

distance to test whether a detection associated to a track. Detections are correlated

to a track if they are within the correlation gate of the most recent track position state

estimate. For radar measurements in spherical coordinates, the statistical distance is

computed as

dm =

√
r − rm
σ2
r

+
θ − θm
σ2
θ

+
φ− φm
σ2
φ

(4.7.18)

Where the subscripts k and m denote the track and measurement position estimates,

respectively, and (σ2
r , σ2

θ ,σ2
φ) are the state variance estimates in each dimension. For
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Kalman Filter algorithms, this distance measure can be computed directly from the

state matrices in (4.7.3) as

dm =

√
Z̃T
k S
−1
k Z̃k (4.7.19)

This statistical distance, also known as the Mahalanobis distance [72], is a measure of

whether the detection falls within the confidence limits of the track error covariance.

Since the Kalman Filter assumes measurement and process noise as zero-mean

Gaussian distributions, the error covariance of the state estimates will follow a similar

distribution. The statistical distance as the squared summation of these error terms

is then a Chi-Square probability density function where the degrees of freedom is the

dimensionality of the position estimate. The distance threshold can be computed

from the inverse Chi-Square density function. For example, for a correlation gate

corresponding to the 95 % confidence interval about the state estimates, detections

are associated if dm < 7.81 (χ−1(0.95) = 7.81).

4.8 Elliptical Approximation Technique

Suppose you have a collection of normally-distributed data points in two dimen-

sional space, [x,y]. Intuitively, one could approximate a shape to this cluster of points,

such that all data points are contained within the shape. The problem then is which

shape to use and how to approximate such a shape to the data. This sections describes

the elliptical approximation technique to a collection of data points.

We begin by assuming that the cluster of points can be approximated by an ellipse.

The radii of the ellipse can be thought of as being proportional to the density, or

variance, of the cluster in each dimension. The covariance matrix, Cov[x, y] provides

an estimate of the cross- and co-correlation terms as
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Cov [x, y] =


σ2
x σx,y

σy,x σ2
y

 (4.8.1)

If x and y represent a collection of points which can be approximated by an ellipsoidal

shape, the eigenvalues of (4.8.1) are proportional to the major and minor axis length

of the ellipse, and the angle of the eigenvectors are the orientation. For major and

minor axial lengths of a and b, respectively, the edge of the ellipse containing the

points is given by

(x
a

)2
+
(y
b

)2
= s (4.8.2)

Where s is the scale of the ellipse. Since x and y are both normally distributed

random variables with zero mean about the centroid of the ellipse, their squared sum,

s, is a Chi-Square distribution with 2 degrees of freedom (or 3 degrees of freedom is

this case is extended to three dimensions). The edges of the ellipse therefore represent

a chosen confidence limit, p, of the data points, where the probability a data point in

[xn,yn] is contained within s is less than p. From this fact, s can be computed from

the inverse Chi Square distribution for a given confidence limit p. In this manner,

the equation of the ellipse approximated by the smoke plume using 95 % confidence

intervals on the distribution of data points can be calculated. The ambient wind

direction is taken as the orientation of the major axis of the approximated ellipse.
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CHAPTER 5

ADAPTIVE SCANNING TECHNIQUES

X-band radar systems are becoming increasingly popular for meteorological and

remote sensing operations. As X-band radars can achieve the same angular resolu-

tion as lower frequency S- and C-band systems at a fraction of the aperture size,

they are well-suited to localized surveillance in inhospitable terrain or urban areas.

With the next-generation systems focusing on phased array radars for weather sens-

ing, however, more research and development must be performed before networks of

such systems could be used to augment or replace the current and next-generation

infrastructure. Additionally, any future capability system would have to simultane-

ously support a wide variety of missions, from weather and hydrologic forecasting

to aircraft surveillance. Therefore, the amount of time dedicated to weather sensing

must be highly optimized to meet top-level data quality requirements, while allowing

other radar missions to be fulfilled. This research presents a quantitative analysis of

the data quality of an X-band phased array radar, specifically focusing on characteriz-

ing the standard deviation of pulse-pair product estimates. Simulations and analysis

are presented that compare the standard deviation from theoretical, simulation, and

radar data. The results are then extrapolated to estimate the minimum volume scan

time required for X-band phased array radars to meet a set of notional data quality

requirements. Based on these results, this research proposes a new set of reduced

data quality requirements that limit the scan time needed to support the weather

surveillance mission on future capability systems.
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5.1 Introduction

The future of radar surveillance in the United States is moving towards multi-

mission support and operational awareness across a multitude of disciplines, organi-

zations, and entities. Any next-generation system will have to simultaneously sup-

port weather, hydrologic, and climate forecasting for the National Weather Service

(NWS), asset protection and situational awareness for the Department of Defense

(DoD), mesoscale phenomena for the Federal Aviation Administration (FAA), coop-

erative and non-cooperative aircraft surveillance for the Department of Homeland

Security (DHS), and many more applications [41]. Active phased array radars are the

optimal system choice to meet these requirements, due to their flexible scanning and

waveform capabilities, combined with reduced maintenance and recurring costs from

the solid state architecture used.

While phased arrays represent the next logical step in deployed systems, meeting

the requirements for every mission with traditional scanning strategies will be a chal-

lenge. Notional requirements for terminal and global weather surveillance need scan

volume update rates on the order of 1 min to 2 min [110, 38], while maintaining track

update rates from 5 s to 10 s on up to hundreds of targets in view. Initial trade studies

on the scanning strategy in phased array radars indicate that traditional scanning will

be inefficient to meet the update and refresh rates for both weather and target appli-

cations. Yu et al. [119] proposed a beam multiplexing strategy as an implementation

of the Independent Pair Sampling (IPS) technique to reduce the integration time

while maintaining the same data quality. Zrnic et al. [123] proposed a novel strategy

known as within-the-pulse beam multiplexing that rapidly transmits multiple pulses

at different frequencies in different directions and uses Digital Beam Forming (DBF)

on receive to sample the radar echoes simultaneously from each scan angle. Galati

and Pavan [44] studied the scan times for different volume scan strategies, and pro-
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Table 5.1: Multifunction Phased Array Radar (MPAR) notional weather surveillance requirements.
Note that these requirements are in the context of the S-band radars currently operated by the
NWS.

Product
σmax ∆max

SNR (dB) σv (m s−1) ρhv SNR (dB) σv (m s−1) ρhv

Reflectivity (Zh) 1.8 dBZ 10 4 1.0 dBZ

Radial Velocity (v) 1 m s−1 8 4 0 m s−1

Spectral Width (σv) 1 m s−1 10 4 0.2 m s−1 10 12

Differential Reflectivity (Zdr)
0.3 dB,

θel < 20°
20 2 0.99

0.1 dB

(Zdr < 1 dB),

else 0.1ZDR

Copolar Corr. Coefficient (ρhv)
6e−3,

θel < 20°
20 2 0.99 0.001 20 2 0.99

Differential Phase (ΦDP )
2.5°,

θel < 20°
20 2 0.99 0°

Signal to Noise Ratio (SNR) 2.0 dB 0 4 1.0 dB

posed the use of DBF with fan beams on transmit and pencil beams on receive to

meet weather and target surveillance requirements.

These techniques are designed to reduce the volume scan time while maintaining

the same data quality achieved with the current operational Next-Generation Radar

(NEXRAD) system. Table 5.1 lists a set of notional requirements for weather obser-

vation, established for the MPAR system [110]. The requirements list the required

standard deviation and bias for each measured weather product, which are a function

of the measured Signal to Noise Ratio (SNR), spectral width, and copolar correlation

coefficient.

Phased array radars face many challenges in meeting these requirements. As po-

larimetric phased arrays scan off boresight, coupling between the polarizations causes

bias errors in differential reflectivity, copolar correlation coefficient, and differential

phase [122]. Because of these biases, system calibration is more difficult for a pha-

sed array because the array gain, beamwidth, and system phase potentially require

beam-to-beam correction factors. Mismatch in the co- or cross-polar fields and beam

pointing errors can further increase bias in the polarimetric products [45]. Further-
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more, the implementation of the Alternate Transmit/Alternate Receive (ATAR) po-

larization pulsing scheme has been shown to contribute additional variability and bias

when compared to the Simultaneous Transmit/Simultaneous Receive (STSR) scheme

when tested on the NEXRAD Weather Surveillance Radar (WSR-88D) [76].

The purpose of this research is to perform a quantitative analysis of the standard

deviation of the weather product estimates for an X-band phased array radar em-

ploying the ATAR pulsing scheme. Results from the analysis are used to determine

how well X-band phased arrays can meet the data quality requirements in Table 5.1.

Section 5.2 reviews the scanning strategies that will be implemented and tested with

the phased array radar. Section 5.3 describes the test methodology used to perform

the analysis, which includes a description the procedure used to estimate the standard

deviation of simulated and live radar data. In Section 5.4, theoretical approximations

for the standard deviation of the polarimetric products will be compared against

simulation. In Section 5.5, live radar data results are presented and compared to

theoretical approximations. The results and implications to X-band phased array

weather radars are discussed in Section 5.6. Section 5.7 provides a summary and

concluding remarks. To limit the scope and number of data sets presented herein, the

analysis was only performed on estimates of reflectivity (Zh), differential reflectivity

(Zdr), copolar correlation coefficient (ρhv), and differential phase (ΦDP ).

5.2 Background

Two categories of scanning techniques were implemented for this analysis: Con-

tiguous Pair Sampling (CPS) and Independent Pair Sampling (IPS). Contiguous

Pair Sampling (CPS) is the traditional scanning strategy employed by most systems

whereby a contiguous series of M pulses at a Pulse Repetition Time (PRT) of Ts

seconds are transmitted in succession for Nr radials. The total scan time in CPS is

therefore equal to NrMTs. IPS is an alternate technique that transmits L pairs of
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pulses at a PRT of Ts seconds displaced in time by an inter-dwell period of Td seconds

for Nr radials [119]. This results in a total scan time of NrLTd. The purpose of IPS

is to decorrelate pulse-pair estimates from one another in time to reduce the variance

in the final estimate. This can easily be derived from basic statistical analysis tech-

niques. Consider discrete sample measurements of a random variable x. The sample

variance of a linear combination of i estimates chosen from x̂ depend on both the

variance of x̂i and the cross-covariance terms between each sample [69]

Var

[∑
i

x̂i

]
=
∑
i

Var [x̂i] + 2
∑
i

Cov [x̂i, x̂j] . (5.2.1)

From (5.2.1), we see that the variance in the estimate will increase if the sample

measurements are correlated (Cov [x̂i, x̂j] > 0). The purpose of IPS is to decorrelate

the sample estimates in time so that the last term on the right-hand side of (5.2.1) goes

to zero, and the variance of the estimate depends only on the sum of the variances of

each sample. Assuming that the Doppler spectrum of received samples has a Gaussian

shape (as in (3.2.6)), the decorrelation time can be directly estimated from (3.2.9).

Figure 5.1 compares the decorrelation time at X-band (9410 MHz, 3 kHz PRF) and

S-band (2750 MHz, 1 kHz PRF) for signals having a true spectral width of 1 m s−1.

The time for the correlation coefficient to reduce to less than 0.03 (shown as the

dotted line in the figure) is over three times lower at X-band (6.6 ms) than at S-band

(22 ms).

Practically, IPS is implemented by computing the arithmetic average of pairs of

correlations at each radial. Yu et al. [119] extended IPS to a technique known as Beam

Multiplexing (BMX), where the radar is tasked to other azimuth locations during the

inter-dwell period, and demonstrated a 2 to 4 times improvement in the standard

deviation when compared to CPS. However, this improvement came at the cost of

increased bias in spectral width. As correlation terms in IPS are collected from short
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Figure 5.1: Comparison of the decorrelation time of received weather samples at X-band (9410 MHz)
and S-band (2750 MHz), assuming a true spectral width of 1 m s−1 and Pulse Repetition Frequencys
(PRFs) of 3 kHz and 1 kHz, respectively. The time for the correlation coefficient to reduce to less
than 0.03 (shown as the dotted line) is over three times lower at X-band (6.6 ms than at S-band
(22 ms).

pairs or triplets [33] of pulses, spectral leakage in the covariance estimators creates

unwanted bias.

To estimate this bias in the context of polarimetric radar, we first extend the

technique to the displacement of L groups ofML pulses displaced in time. Correlation

terms are then gathered for each group, and pulse-pair estimates are computed from

the arithmetic average of LML correlation terms. This technique can be derived from

from (3.4.2) as

Ŝh =

L−1∑
l=0

{
1
ML

ML−1∑
m=0

|Vhh[m]|2 − N̂h

}
L

(5.2.2a)

Ŝv =

L−1∑
l=0

{
1
ML

ML−1∑
m=0

|Vvv[m]|2 − N̂v

}
L

(5.2.2b)

R̂n
hh =

L−1∑
l=0

{
1
ML

ML−1∑
m=0

Vhh[2m]∗Vhh[2m+ n]

}
L

(5.2.2c)

R̂n
vv =

L−1∑
l=0

{
1
ML

ML−1∑
m=0

Vvv[2m+ 1]∗Vvv[2m+ 1 + 2n]

}
L

(5.2.2d)
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Figure 5.2: Simulated bias in (a) co-polar and (b) cross-polar correlation estimates as a function
of the number of integrated pulses (M). Simulation was setup to generate data having a copolar
correlation coefficient of 0.99, a true spectral width of 2 m s−1, and assumed a 3 kHz PRF. These
results show that correlation estimates from short-pulse CPIs introduce significant bias at higher
order time lags.

Where the summation is taken across each of the L groups of ML pulses each, and

a rectangular window is used. The cross-polar correlation terms (not shown) can be

similarly derived.

The source of errors in IPS can be found by analyzing the effect of windowing and

segment length on the pulse-pair estimates. To this end, the following Monte Carlo

experiment was performed. On each trial, weather signals were generated as 512-pulse

H- and V-polarization timeseries in the ATAR polarization pulsing scheme (using the

technique in Section 3.6). All data was generated with a copolar correlation coefficient

of 0.99, a true spectral width of 2 m s−1, and assumed a 3 kHz PRF. Correlation terms

were then gathered for different Coherent Processing Interval (CPI) lengths from

8 pulses to 512 pulses. For each segment, the magnitude and phase of the correlation

terms were collected. After all trials were complete, the bias was computed with

the truth data taken as the correlation terms from the maximum CPI length. The

simulation was run with a minimum of 100k trials.
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The results of the Monte Carlo simulation are shown in Figure 5.2 for estimates

of the magnitude of the co- and cross-polar correlation terms (Rn
hh, Rn

hv, and Rn
vh).

The bias is negligible in the power estimates (Sh), but increase dramatically at higher

lags. As expected, the bias for all estimates falls off as the number of pulses in the

CPI increases. These results provide insight into the source of bias in spectral width

observed in previous work [119, 33]. Polarimetric products that are a function of power

estimates (Zh and Zdr) are expected to be unbiased in IPS because the number of

integrated pulses introduces negligible bias. However, any pulse-pair estimate which

depends on higher-order co- or cross-polar correlation terms will contain unwanted

bias. Spectral width estimates are biased because it depends on R1
hh (as in (3.4.9)) or

R2
hh (as in (3.4.11)). Furthermore, any product which depends on higher-order cross-

polar correlation terms (R1
hv or R1

vh) will be biased, including copolar correlation

coefficient (ρhv) and differential phase (ΦDP ).

The IPS strategy can be implemented in different ways. Besides displacing returns

in time, the returns can also be displaced in frequency. This technique, known as

frequency diversity or Frequency Multiplexing (FMX), works by shifting the center

frequency of the transmit waveform by an amount equal or greater than the receiver

bandwidth. Thus, returns at one frequency will be independent of terms from another

frequency. Pazmany et al. [90] employed this frequency diversity scheme to speed

up volume scan time for a rapidly rotating mechanical radar by shifting the center

frequency after each group of 12 pulses.

Based on the previous analysis, it is hypothesized that the IPS scanning strategy

will not show significant improvement for X-band phased array radars as was observed

at S-band. The rationale for this hypothesis is as follows. First, the decorrelation

time at X-band is three times shorter than at S-band, so the effective number of inde-

pendent samples in a CPI will inherently be higher. Second, the use of ATAR requires

a minimum of 4 pulses per group to gather higher order correlation terms (R1
hh and
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R1
hv), so the number of averaged groups is reduced. Because the improvement in stan-

dard deviation from IPS is proportional the number of independent groups averaged,

reducing the number of groups will increase the estimated variance. Furthermore, to

restrict the bias in IPS to acceptable levels, more than 4 pulses may be required. This

will further reduce any observed improvement.

5.3 Test Methodology

Due to the space-time variability of weather, measurement of the standard devia-

tion of the produce estimates must be carefully considered, and different techniques

have been employed in the past. Liu et al. [70] averaged radar data along a single

radial in a 6 s interval and computed the standard deviation and 95 % confidence in-

tervals of copolar correlation coefficient. Yu et al. [119] used a similar technique for

data collected from a passive S-band phased array radar. They estimated the mean

velocity vector of the storm and analyzed data over time intervals small enough to

assume weather was a stationary process. The technique used here builds upon these

methods.

To accurately estimate the standard deviation of the polarimetric products, storm

motion must be accounted for. For weather moving purely tangential to the radar at

an advection speed of 24 m s−1, assuming a range resolution and azimuth beamwidth

of 120 m and 1.8°, respectively, it will take 5 s to 10 s for the scatterers in one resolution

volume to be replaced (over a range extent from 8 km to 35 km). For weather moving

radially, it will take just 5 s. Since each scan takes up to 7.8 s to complete, the motion

of the storm between scans must be used to align resolution volumes for accurate

analysis.

For weather features moving with a mean velocity vector of ~v = [vx, vy, vz]m s−1,

the total displacement between scans can be estimated as
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~d = −v̂δt (5.3.1)

Where δt is the time between scans. If we assume that the storm tangential motion

is negligible (~v normal to array boresight), this displacement can be written in terms

of the range and radial velocity

δR = −v̂Tsc (5.3.2)

Where Tsc is the total scan time (s). Equation (5.3.2) can be rewritten in terms of

range resolution (δR0)

δRp = − v̂Tsc
δR0

. (5.3.3)

Here, the amount of radial storm displacement is expressed as a fraction of the radar

range resolution. This is the primary source of error in the estimation procedure.

Theoretical approximations for the standard deviation of products are derived from

empirical analysis, but measuring in practice requires an adequate sample size. That

is, to estimate the standard deviation achieved within a particular resolution cell,

we require repeated measurements taken in that resolution cell over time. However,

when the scatterers displace from one resolution cell to the next, differences in the

backscattered echoes change the measured SNR, spectral width, or correlation coeffi-

cient. Thus, we recognize two sources of variability in our measurements: signal and

statistical. Signal variability is caused from the natural variations in the precipitation

features over an area, whereas statistical variability is from the pulse-pair estimates

themselves. This technique attempts to measure the latter, but the former is a source

of error for these measurements.

While it is impossible to completely account for signal variability, steps can be

taken to minimize its effects on the variance estimation here. When δRp exceeds 0.20,

range bins on the current scan are shifted so as to align to the bins on the previous

scan. In other words, at a range bin spacing of 24 m and range resolution of 120 m,
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when 20 % (or one range bin’s worth) of the scatterers are replaced in a resolution

volume between scans, the range bins are shifted so that the scatterers from the same

resolution volume are aligned. This technique has been used previously in variance

analysis [33].

After motion compensation, the standard deviation is computed along each range

bin in the sliding window for each polarimetric product analyzed. These measure-

ments are grouped by measured SNR and spectral width at that bin. Range bin

standard deviations are averaged along each radial and scan to produce the final esti-

mates for the products. Each radar data set contains at least 50 radar azimuth scans

(over 390 s). The standard deviation is calculated at each range gate within a 60 s

sliding window (≈8 radar scans).

5.4 Simulation

Before live data was collected, a simulation model was developed both to predict

and verify experimental results. This section presents the simulation results which

compare theoretical (empirical) approximations for the standard deviation against

simulated performance. The simulation generates synthetic In-phase and Quadrature

(IQ) data by passing white Gaussian noise through a shaping filter [15]. For a detailed

description of the simulation procedure, see Section 3.6. To test the against data

quality requirements in Table 5.1, a Monte Carlo simulation was run to generate

timeseries data having SNRs of [0, 8, 10, 20]dB and spectral widths of [2, 4]m s−1, for

a total of 8 different cases. One each iteration, at least 100 k iterations were run.

Figure 5.3 shows plots of the standard deviation of reflectivity (SD(Zh)), differen-

tial reflectivity (SD(Zdr)), copolar correlation coefficient (SD(ρhv)), and differential

phase (SD(ΦDP )). Approximations for the standard deviation at arbitrary SNR were

used to estimate theoretical performance [76]. Since no closed form solution exists for

125



(a) (b)

(c) (d)

Figure 5.3: Plots of simulated (∗) and theoretical (—) results versus number of samples for standard
deviation of (a) reflectivity, (b) differential reflectivity, (c) copolar correlation coefficient, and (d)
differential phase. This data was simulated assuming an X-band (9410 MHz radar operating with a
3 kHz PRF. The simulated SNR for each case was taken from the test conditions for the variable as
listed in Table 5.1.

the standard deviation of copolar correlation coefficient, only simulation results are

relied on.

Inspection of Figure 5.3 shows that the simulation agrees well with theoretical

approximations, especially at low spectral width. In agreement with previous work

[76], the standard deviation of correlation coefficient and differential phase increase

dramatically at large spectral widths. Results indicate that when the normalized
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Figure 5.4: Plots of simulated results for all polarimetric products, using the conditions for SNR,
spectral width, and copolar correlation coefficient listed in Table 5.1. The simulation was setup to
generate synthetic IQ data from an X-band (9410 MHz) radar implementing the ATAR polarization
scheme.

spectrum width (σvn = 2σvTs/λ) exceeds 0.25, SD(ΦDP ) and SD(ρhv) increase dra-

matically. We therefore hypothesize that X-band radars implementing the ATAR

scheme operating close to a 3 kHz PRF will produce poor quality returns for spectral

widths above 5 m s−1 to 6 m s−1.

To estimate the performance against all polarimetric products, the simulation

was run iteratively for each SNR, spectral width, and copolar correlation coefficient

condition listed in Table 5.1. The measured standard deviations for each products as

a function of the number of integrated pulses is shown in Figure 5.4. From inspection

of the data, at least 64 total pulses per beam (21.3 ms at 3 kHz PRF) are required to

meet the requirements in Table 5.1 for the single-polarization moments (reflectivity,

velocity, and spectral width). However, at least 224 pulses (74.7 ms) are required to

meet all data quality requirements for the polarimetric products.

IPS returns were also simulated by processing sparse groups of pulses from sim-

ulated IQ data. On each Monte Carlo iteration to simulate a total of L groups of

ML pulses, additional fill pulses were generated between each group. The amount
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Figure 5.5: Plots of improvement factor in standard deviation of simulated IPS over CPS scanning
strategies as a function of the number of integrated pulses (M) for different spectrum widths from
2 m s−1 to 12 m s−1. Plots show the improvement in (a) reflectivity, (b) differential reflectivity, (c)
copolar correlation coefficient, and (d) differential phase. Improvement factor is defined as the ratio
of standard deviation in CPS to IPS. Values greater than one indicate that the standard deviation
in IPS is better than CPS; values less than one indicate that it is worse.

of fill pulses was chosen such that each group was sufficiently decorrelated from one

another. For each simulation trial, groups of 8 pulses (ML = 8) were generated,

with enough fill pulses between each group to allow the correlation coefficient to drop

below 0.03 for the normalized spectral width being tested. For example, using the

correlation coefficient from (3.2.9), a spectral width of 1 m s−1, and a 3 kHz PRF, at

least 20 pulses are required to sufficiently decorrelate groups from one another.
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Figure 5.6: Plots of bias in simulated CPS (—) and IPS (– –) scanning strategies as a function of
the number of integrated pulses (M) for different spectrum widths from 2 m s−1 to 12 m s−1. Plots
show the bias in (a) reflectivity, (b) differential reflectivity, (c) copolar correlation coefficient, and
(d) differential phase. Note that the bias in correlation coefficient and differential phase in (c) and
(d) are above the plot limits for spectral widths greater than 6 m s−1 and 4 m s−1, respectively. IPS
introduces significant bias for spectral widths above 4 m s−1 to 6 m s−1 in ρhv and ΦDP .

Figures 5.5 and 5.6 show plots of the improvement factor in standard deviation

and bias errors, respectively. Here, improvement factor is defined as the ratio of the

standard deviation in CPS to IPS. Values greater than one indicate that the standard

deviation in IPS is better than CPS; values less than one indicate that it is worse.

At narrow spectral widths (σv ≤ 2), IPS shows above a 5 % improvement in

reflectivity and differential reflectivity, with negligible improvement at higher spectral

widths. Bias in reflectivity and differential reflectivity are less than 0.01 dB. This
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is expected, since simulation results in Figure 5.2 predict negligible bias in power

estimates for different CPI lengths.

Simulated improvement factors for ρhv and in Figures 5.6c and 5.6d are mislead-

ing, since IPS introduces significant bias at spectral widths above 2 m s−1 to 4 m s−1.

Furthermore, CPS data are also biased above 6 m s−1, which agree with previous work.

Melnikov and Zrnić [76] studied the bias in ATAR over STSR polarization pulsing

schemes and demonstrated significant bias in ATAR at high spectral width.

5.5 Radar Data

To verify simulation and theoretical approximations, two experiments were per-

formed. In the first experiment, the radar executed the CPS scanning strategy by

transmitting a contiguous series of 256 total pulses (across both polarizations). IPS

data was synthetically generated from the data set by selectively processing groups

of 8-pulses in a radial. On each radial, the measured spectral width was used to de-

termine the number of pulses to skip between groups to force independence between

pulse-pair estimates. With 256 total pulses were per radial and measured spectral

widths as low as 0.5 m s−1, at least 41 fill pulses were required at times. For this

reason, IPS data was only available for up to b256/(8 + 41)c 8 = 40 total pulses. In

addition, the measured SNR, spectral width, and correlation coefficient were used

to approximate the standard deviation from theoretical formulae [76]. Theoretical

approximations at each range bin were averaged over all radials and scan, similar to

the procedure described in Section 5.3.

The second experiment tested actual implementations of BMX and FMX scanning

strategies. In this test, three different radar modes were setup and run concurrently.

Table 5.2 lists each of the radar modes tested. The modes represent actual imple-

mentations of the (1) CPS, (2) FMX, and (3) BMX strategies. All radar modes

operated with a 3 kHz PRF, a 55 µs 2.5 MHz) Linear Frequency Modulated (LFM)
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waveform, with a range extent out to 35 km. Radar mode 1 was setup execute a

contiguous series of pulses at sequential azimuth beam positions throughout the scan.

Radar mode 2 executed a FMX strategy, where the center frequency was shifted by

5 MHz after each block of 16 pulses. With a receiver bandwidth through the Digital

Receiver/Exciter (DREX) Digital Down-Converter (DDC) chain of 3.125 MHz and

waveform bandwidth of 2 MHz, each block should be independent from one another.

Product estimates were collected by averaging correlation terms gathered from each

block (as in (5.2.2) with ML = 16). Radar mode 3 executed the BMX strategy by

transmitting short, 16-pulse CPIs at each radial, for a total scan time of 485.3 ms.

Data from each azimuth beam position on successive scans was averaged to estimate

the products. To mitigate unwanted second-trip echoes between the radials in BMX,

azimuth beam positions were multiplexed in a scan. Section 2.4 describes the azimuth

multiplexing technique.

Different CPI lengths from 16 to 128 were synthetically generated from the time-

series by limiting the number of processed pulses for the CPS mode 1 or limiting the

number of averaged groups for the IPS modes 1 and 2. The procedure described in

Section 5.3 was used to estimate the standard deviation for each CPI length across

all radar modes.

Figure 5.7 shows analysis of data from the first experiment during a 10 min time

interval from the LPAR system in Amherst, MA from 27-May-2015. The red and

dashed lines show measured and theoretical approximation for the standard deviation,

respectively, for both CPS (blue line) and IPS (red line). Over this period, a squall

line was observed moving in a North-Easterly direction towards the radar. Measured

reflectivity within the storm exceeded 30 dBZ, with significant attenuation causing

returns to eclipse within 15 km of the storm front. The storm was moving at a mean

1See Section 2.4 for a description of the multiplexed azimuth positioning technique.
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Table 5.2: List of radar modes executed concurrently to compare CPS and IPS scanning strategies
implemented on the Low-power Phased Array Radar (LPAR) system. For each radar mode, the
period and burst fields control how often each radar mode is executed and how long it runs for.
A zero burst value indicates that the radar mode is executed once every period seconds, and ∞
indicates that the mode should be run continuously. Radar modes 1 and 2 were executed once every
20 s, and mode 3 was run continuously.

ID Strategy Description
Period
(s)

Burst
(s)

No. Pulses
(M)

1 CPS
Fixed frequency,
sequential azimuth
positioning

20 0 128

2 FMX
Frequency diversity,
sequential azimuth
positioning

20 0 128

3 BMX
Fixed frequency,
multiplexed azimuth
positioning1

∞ ∞ 16

radial velocity of 22 m s−1, and the maximum observed spectral width was 5 m s−1.

Figure 5.7 shows the mean and standard deviation of SD(Zh), SD(Zdr), SD(ρhv),

and SD(ΦDP ) during this event. Data was thresholded at 10 dB (Zh) and 20 dB (Zdr,

ρhv, and ΦDP ).

Results show good agreement with theoretical approximations. Average SD(Zh)

shows slight deviation from theoretical, particularly at longer integration times. Since

reflectivity is uncorrected for attenuation, there is likely additional variability as the

signals attenuate through the storm. Differential reflectivity and differential phase

track well to theoretical approximations as well, and although areas of high spectral

width (> 5 m s−1) were observed, these did not appear to detrimentally affect the

measured standard deviation. Results indicate that SD(Zh) in IPS is up to 12 %

lower than in CPS, but there is no noticeable difference in SD(Zdr). While SD(ρhv)

appears to be lower in IPS, this result is misleading since the mean bias in ρhv (not

shown) over the data set was −0.12. So, while the standard deviation was reduced,

the significant bias degrades the IPS data. Standard deviation of differential phase
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Figure 5.7: Measured (—) and theoretical (– –) standard deviations of (a) reflectivity, (c) differential
reflectivity, (c) copolar correlation coefficient, and (d) differential phase for the precipitation event
on 27-May-2015. Data shows standard deviation from different CPI lengths for both CPS (blue) and
IPS (red). IPS data was synthetically-generated from CPS data by selectively processing groups of
displaced pulses.

also appears to be higher than theory, which could be attributed to the unfolding

algorithm used2.

Figure 5.8 shows analysis of data from the second experiment performed during

a 12 min time interval from the LPAR system on 22-April-2015. As in the first

experiment, SD(ρhv) from both the IPS strategies, FMX and BMX, appears on first

2see Section 3.4 for a description of the differential phase unfolding algorithm
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inspection to show significant improvement. However, ρhv from both techniques again

is heavily biased, from −0.1 f to −0.15 for FMX and BMX, respectively. Differential

phase is also biased from 2.5° to 5° for each mode. As expected from simulation,

reflectivity and differential reflectivity show negligible bias between the IPS and CPS

strategies (less than 0.01 dB), but still show some improvement in standard deviation.

Improvement in BMX here is higher than predicted in simulation, from 5 % to 15 %.

This increase in improvement than observed in simulation can be attributed to a

lower measured spectral width (from 0.5 m s−1 to 1.5 m s−1) during the precipitation

event.

5.6 Discussion

Analysis of the simulation results, verified against theoretical approximations and

radar data, show that a 74.7 ms dwell time (224 pulses at a 3 kHz PRF) would be

required to meet the requirements in Table 5.1. While IPS scanning strategies do

show a slight improvement (from 5 15%) in the standard deviation of reflectivity

and differential reflectivity, the bias introduced in copolar correlation coefficient and

differential phase estimates makes either FMX or BMX impractical for operational

purposes. As noted in previous work [119], this bias is inversely proportional to the

number of pulses per CPI in IPS. So, the bias could be reduced for a long enough

CPI. However, this would then decrease the number of averaged groups (and thus the

improvement factor).

To determine how these results apply to a practical system, a hypothetical 2D

X-band phased array, electronically-steered in both azimuth and elevation, is used

herein to extrapolate the minimum dwell times from a single CPI to a realistic volume

scan. The system assumes 2° azimuth and elevation beamwidths (at boresight) and

a volume coverage from a down range of 40 km, a maximum height of 30 000 ft, and

an elevation coverage from 1° to 30°. The radials in the scan are aligned in a grid for
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Figure 5.8: Measured improvement factor in standard deviation of (a) reflectivity, (b) differential
reflectivity, (c) copolar correlation coefficient, and (d) differential phase for the precipitation event
on 22-April-2013. Improvement factor is defined as the ratio of standard deviation from CPI to the
BMX (red) and frequency hopping (blue).

simplicity, with 1° spacing in both azimuth and elevation. Note that this assumes no

DBF and only the use of a pencil beam on transmit and receive. This architecture

and system design is similar to the phased array described by Hopf et al. [57].

Table 5.3 lists the the beam positions, PRTs, and cumulative scan times for each

elevation in the hypothetical volume scan. Note how the PRT is tailored at each

elevation to only cover a range window and height out to 40 km and 30 000 ft, respec-

tively. The dwell times at higher elevations can be reduced by restricting the range
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Table 5.3: List of beam positions, PRTs, and range windows for the hypothetical phased array radar
used in the analysis of X-band volume scan times. Note that the PRTs on each elevation tilt are
optimized to scan out to a maximum horizontal down range of 40 km and height of 30 000 ft.

Elevation (deg) Max Range (km) PRT (µs)

1 to 2 40.0 321

3 to 5 40.1 322

6 to 7 40.2 323

8 to 9 40.4 324

10 to 13 40.9 327

14 to 17 37.8 306

18 to 20 29.6 252

21 to 30 19.5 to 26.4 185 to 231

extent to the minimum between the down range and height requirements. The true

range to the down range (rd) and height (rh) can be calculated via

rd =
r0

cosφ
(5.6.1a)

rh =
h0

sinφ
(5.6.1b)

Where r0 and h0 are the volume scan range and height extents, respectively (40 km

and 30 000 ft in this case), and φ is the true elevation. The minimum PRT at a

particular elevation is found from the minimum value between rd and rh, plus a

padding term

PRTφ = min [rd, rh] +

⌊
2τ

c

⌋
. (5.6.2)

Additional padding is required at the end of the instrumented range in (5.6.2) to ac-

count for pulse compression. To ensure that the pulse compression gain is maintained

throughout the entire receive window, additional samples must be collected and pro-

cessed to mitigate edge effects during pulse compression. The padding term in (5.6.2)
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adds enough samples as would be covered by the blind range of the waveform (or the

length of the matched filter waveform, whichever is greatest).

From these results and assuming a dwell time of 74.7 ms per radial, it will take

190.3 s to complete each volume scan. If the standard deviation requirements for

Zdr, ρhv, ΦDP are relaxed at elevations above 20° and a 64-pulse CPI is used, the

volume scan time is reduced to 129 s. While this scan time is sufficient for a radar

performing weather surveillance only, it would detrimentally affects the radar ability

to perform other missions concurrently, such as airport or air route surveillance. The

implications of this result are discussed in the next section.

5.7 Summary and Conclusions

Several conclusions can be reached from analysis of both the simulation and radar

data. Results show that the standard deviation achieved with X-band phased arrays

agrees with theoretical approximations. This is a simple, but powerful result: X-band

phased arrays do not contribute additional variability to the pulse-pair estimates.

Theoretical approximations, when computed with actual SNR, spectral width, and

correlation coefficient, are in good agreement to the estimates of standard deviation of

the products from the live data. Results do show an increase in variability, or spread,

of standard deviations when compared to theoretical values, which is attributed to

errors in the motion compensation procedure and natural variability of weather.

Additionally, simulations show that X-band radars using ATAR require a dwell

time of at least 21.4 ms (64 total pulses per radial at a 3 kHz PRF) and 74.7 ms (224

total pulses per radial) for single- and dual-polarization modes, respectively, to meet

the MPAR notional requirements in Table 5.1. When extrapolated to a hypothetical

phased array radar covering a down range of 40 km and height of 30 000 ft, the total

volume scan time is 129.7 s.
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Table 5.4: Summary of data quality requirements and minimum dwell times, derived from simulation
results and radar data. Here, data quality refers to the standard deviation of the product estimates.
It should be noted that when considering differential phase in the context of translating the notional
requirements X-band, since the wavelength (λ) at X-band (3.2 cm) is approximately three times
shorter than at S-band (10 cm). Because of this, the requirements for differential phase can be
relaxed, as indicated by the requirements in parentheses.

Product σ0
max σ1

max σ2
max

Reflectivity (Zh) 1.8 dBZ

Radial Velocity (v) 1 m s−1

Spectral Width (σv) 1 m s−1

Differential Reflectivity (Zdr, φ < 20°) 0.3 dB

Copolar Corr. Coefficient (ρhv, φ < 20°) 6.0e−3 8.4e−3 12.9e−3

Differential Phase (ΦDP , φ < 20°) 2.5° (7.5°) 3.0° (9.0°)
4.3°

(12.9°)
Signal to Noise Ratio (SNR) 2 dB

Ml (φ < 20°) 224 128 64

Mu (φ > 20°) 64 64 64

Volume Scan Time (s) 129.7 78.7 44.7

Based on these results, it is therefore not practical for X-band phased array radars

that support multiple missions to meet these requirements. To that end, Table 5.4

proposes a set of reduced requirements for the standard deviation of the polarimetric

products. As bias is heavily dependent on system calibration and characterization,

the proposed requirements focus exclusively on standard deviation. The table shows

three sets of requirements that correspond to the original requirements in Table 5.4

(σ0
max), a 20 % reduction (σ1

max), and a 40 % reduction (σ2
max). The proposed require-

ments in σ1
max (σ2

max) degrade the most stringent requirements by 20 % (40 %) and

reduce the volume scan time to 78.7 s (44.7 s). How well X-band phased array radars

perform Quantitative Precipitation Estimation (QPE) and Quantitative Precipita-

tion Forecasting (QPF) with these degraded requirements is beyond the scope of this
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research, but these results provide valuable insight into the degree of performance

expected under different scan scenarios.

Another important consideration can also be drawn from these results. If the

measured spectral width exceeds 4 m s−1 to 6 m s−1, estimates of copolar correlation

coefficient and differential phase will be biased and exhibit increased variance. Since

differential phase unfolding algorithms [116] typically search for valid areas of differen-

tial phase from limits on ρhv and ΦDP , analysis of the measured spectral width should

be included in these algorithms as well. In the LPAR system, for example, valid ΦDP

is typically declared if the standard deviation of differential phase is less than 10° and

copolar correlation coefficient is greater than 0.8. However, if the spectral width is

greater than 4 m s−1, the limit on ρhv is reduced to 0.5. The same strategy should be

used whenever ρhv is used as a threshold parameter for an algorithm.
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CHAPTER 6

ADAPTIVE RADAR WAVEFORM CONTROL

Most current operational weather radars use a static set of waveform and scan

parameters to observe the environment. Top-level requirements such as data quality,

sensitivity, and volume revisit rates flow down to lower-level component requirements

on the hardware and software. Scan acquisition parameters, transmit waveforms,

and signal processing algorithms are judiciously chosen to meet these top-level re-

quirements. As many of the current operational systems use passive magnetron or

klystron-based transmitters with mechanically-rotating antennae, this flow of oper-

ations is required because of the hardware’s inability to vary beam pointing angle

or waveform on short time scales. With the development of affordable phased array

radars however, modern meteorological radars can now support a more flexible and

adaptive concept of operations. This chapter presents the development of an algo-

rithm for the adaptive control of the radar dwell time to meet data quality require-

ments on the standard deviation of weather products. The algorithm uses a system of

adaptive weights to control how the radar dwell time is varied in response to real-time

measurements of the signal variance of one or more products. Simulation results and

radar data are presented That demonstrate the ability of the algorithm to adaptively

control the integration time to meet a set of notional data quality requirements.

6.1 Introduction

The notion of adaptively changing a radar mission in response to the environment

has already been investigated for use in defense applications. Techniques have been
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developed and tested for adaptive radar resource management [32, 11], adaptive wave-

form selection [109], and adaptive target detection and tracking [24]. More recently,

the field has expanded to include the new concept of cognitive radar. Haykin [53]

first distinguished cognitive from adaptive radars as having three qualities:

• The radar continuously senses the environment and passes this information to

the receiver

• The transmitter intelligently changes its illumination of the environment, mak-

ing adjustments to the transmitted signal in an effective and robust manner

• The radar is a closed loop system between the transmitter, environment, and

receiver

In radar meteorology, initial work has already begun to make weather radars more

cognitive and adaptive to the environment. The next-generation Multifunction Pha-

sed Array Radar (MPAR) being developed at the National Weather Radar Testbed

(NWRT) has proposed an adaptive scanning strategy to optimize the update rates

on weather targets. The strategy, called Adaptive DSP Algorithm for Phased-Array

Radar Timely Scans (ADAPTS) adaptively adjusts target revisit times and minimizes

scanning inactive sectors to optimize radar allocation of resources and data quality

[112]. The strategy uses a time balance radar scheduler, which prioritizes radar modes

according to the time they take to execute. The ADAPTS algorithm also adjusts the

dwell times differently for surveillance of inactive areas (short dwell times) or detec-

tion and tracking of active weather areas (long dwell times). Additionally, Curtis

[33] proposed that adaptive scanning in phased array weather radars also could also

include the tailoring of dwell times at each beam position.

In addition, Zink et al. [121] developed an adaptive scanning strategy for net-

worked radars, known as Distributed Collaborative Adaptive Sensing (DCAS). Based

on the principles of Multi-Attribute Utility Theory (MAUT), the system senses the
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active areas and adaptively schedules where each radar is tasked. Radar resources are

optimized for scan quality (update rate) and end-user priority. While not adaptive,

Bharadwaj and Chandrasekar [10] proposed a frequency-diverse waveform selection

scheme to mitigate the discontinuities in sensitivity at blind range boundaries be-

tween waveforms. Waveforms with increasing pulsewidths at different frequencies are

used, and radar returns from each waveform are mapped to different range extents.

The aforementioned techniques are a critical first step at making meteorological

radars more intelligent and adaptive to the environment. However, there are many

more opportunities for improvement. Little research has been done to make these

systems more waveform-agile beyond the selection of distinct radar modes for clear air

and convective weather or for surveillance and tracking. Performance monitoring has

been used to govern beam placement and update rates, as described previously, but

the technique has not been extended to measure and control the quality of detected

weather signals using waveform agility.

To illustrate the benefit of improved waveform agility, consider the following ex-

ample. Suppose a radar is required to support a standard deviation of Reflectivity no

greater than 1.8 dBZ at an Signal to Noise Ratio (SNR) of 10 dB and spectral width of

4 m s−1. Using the theoretical analysis from the previous section, at least 32 samples

are required for an X-band phased array radar operating at a 3 kHz Pulse Repetition

Frequency (PRF). Without adaptive control, any weather tracking mode of operation

would operate with at least 32 pulses to meet the top-level requirement. However,

what if the actual measured spectral width is only 2 m s−1? The integration time

could be theoretically reduced while maintaining the same signal variance. Further-

more, if the standard deviation and spectral width were continuously monitored, the

integration time could be adaptively adjusted on-the-fly. In this manner, the dwell

time on the weather target would be minimized, while still meeting the data quality

requirement.
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This chapter is organized as follows. Section 6.2 presents background information

and a motivation for the use of adaptive control in weather radar processing. In

Section 6.3, an Adaptive Waveform Control (AWC) algorithm is proposed to monitor

a volume and adaptively manipulate the Coherent Processing Interval (CPI) within

designated areas to meet top-level data quality requirements. The AWC algorithm

is broken into distinct steps for (1) situation assessment and (2) performance evalua-

tion. Section 6.4 presents simulation results of the algorithm applied to two different

scenarios. In each scenario, the algorithm was setup to meet a different set of data

quality requirements. Radar data is presented in Section 6.5 from a precipitation

event in April 2015, where the algorithm was tasked with meeting a desired standard

deviation of reflectivity (SD(Zh)). Section 6.6 provides a summary and concluding

remarks.

6.2 Background

The theoretical formulas for estimating the variances of the polarimetric weather

products are well understood, and the sources of variability can be broken down into

both statistical errors from the measurement and additive errors introduced by the

system. Under ideal system performance, the variances of the products are depen-

dent on the radar wavelength (λ), received SNR, spectral width (σv), and copolar

correlation coefficient (ρhv) [37]. Approximations for these variances under high SNR

and other conditions are presented by Doviak and Zrnić [37], while exact solutions

for arbitrary SNR are available for either the Simultaneous Transmit/Simultaneous

Receive (STSR) [76] or Alternate Transmit/Alternate Receive (ATAR) polarization

pulsing schemes [77]. In general, for convective weather, measurement errors can

be reduced by increasing the integration time, or CPI, on a region of interest. For

pedestal-mounted dish antennae, this corresponds to decreasing the rotation rate.

Phased array radars, on the other hand, utilize electronic-steering in azimuth and
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elevation, so the integration time can be set directly for each radial by specifying the

PRF and number of incoherently integrated pulses.

With this in mind, logic would suggest then that the phased array integration

time could simply be statically set according to the measured products. That is,

the integration time for each radial on the next scan could be calculated directly

from the measured SNR, spectral width, and correlation coefficient so as to achieve

a desired variance on the next scan. In practice, however, the problem is not so

straightforward. Non-ideal system performance and atmospheric artifacts can cause

the measured variance to deviate from theory. Melnikov and Zrnić [76] presented

experimental results that show the ATAR polarization mode will cause additional

variability at large spectral widths, which were not accurately modeled by empirical

approximations. Since the polarization is switched after every pulse in ATAR, the ef-

fective PRF per polarization is halved. As the spectral width approaches the Nyquist

velocity, the Doppler spectrum flattens and the pulse-pair estimates become inaccu-

rate. With phased arrays, mismatch in gain and phase between the polarizations

also contributes to both the bias and variance of product estimates [45]. Similarly,

mismatch between the beam patterns or pointing angles in each polarization can also

contribute errors. While these error sources may not be significant, they warrant a

more sophisticated algorithm for adaptive control of the integration time.

One of the major challenges that next-generation phased arrays face are stringent

requirements for support of simultaneous missions for air traffic control and atmo-

spheric surveillance [41, 110]. Recent studies have indicated, however, that traditional

scanning strategies will not be able to support both missions and that more advanced

phased array geometries or scanning techniques are required. Zrnic et al. [123] pro-

posed using time and beam multiplexing to task the radar to look in different direc-

tions simultaneously. Galati and Pavan [44] performed a trade study with different
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overlapping beams and proposed using Digital Beam Forming (DBF) with fan/pencil

beams on transmit/receive to meet air traffic control and weather requirements.

As opposed to novel phased array architectures or advanced beamforming, this

AWC algorithm focuses on optimizing scan time by an efficient concept of operations.

In traditional radar system design, top-level requirements on data quality are used to

set the integration time, beam positioning, and revisit rates on the radar. In contrast,

this algorithm sets adaptively sets the integration time to achieve a desired level of

data quality. The details of the algorithm are presented herein.

6.3 Algorithm Description

The AWC algorithm takes advantage of the flexible scanning offered by phased

arrays and adaptively controls the dwell time on an area of interest in response to

measured performance. The purpose of the algorithm is to find the minimum dwell

time required to meet a set of user data quality specifications. Note that this technique

will find theminimum, not optimal, dwell time required. The concept of operations for

the algorithm, and how it relates to minimality versus optimality, best be illustrated

with an example.

Suppose one desires to estimate the polarimetric products with the standard de-

viations given in Table 5.1. From the analysis in Section 5.7, at least 224 pulses are

required in each CPI1. So, if the spectral width and SNR of the weather echoes are

approximately 2 m s−1 and 20 dB, respectively (per the conditions in Table 5.1), the

algorithm will adaptively change the CPI on the area and settle at 224 pulses. If the

measured spectral width reduces to 1 m s−1, less pulses would be required to meet the

standard deviation requirements (as evidenced from the trends in Figure 5.3). The

1This CPI length assumes a 74.7 ms dwell time at X-band with a 3 kHz, in accordance with the
simulation parameters in Section 5.7.

145



algorithm then would respond to the changes in spectral width and reduce the CPI

accordingly.

This introduces a problem, however. Suppose that a system is specified to meet

requirements for standard deviation of multiple products, such as reflectivity and

differential phase. From Figure 5.4, it is apparent that the requirement for differ-

ential phase would require a longer CPI. What then is the optimum dwell time in

this scenario? This algorithm finds the minimum dwell time that would meet both

requirements, and it would thus set the dwell time to meet the differential phase

requirement. By extension, the reflectivity requirement would also be met.

The AWC algorithm is designed to be completely autonomous so that the only

interaction the radar operator has with the system are initial specifications on the

standard deviation in the weather products. Internally, the algorithm accounts for

non-ideal variability in the data by relying on a system of adaptive weights to control

the integration time on future scans. The details of the algorithm are described below.

6.3.1 Situation Assessment

The concept of operations for the AWC algorithm begins with situation assess-

ment. At the onset of operations, the radar is setup to execute a volume scan with a

short, 16− to 32−pulse CPI. For an X-band phased array looking out to an unam-

biguous range of 40 km, the volume scan takes between 10 s to 20 s to execute. This

volume scan is similar to that used on the X-band phased array as described by Hopf

et al. [57]. This is used as the weather surveillance scan to probe for new, active areas

containing weather.

Data from the surveillance scan at each azimuth location is then passed to the

tracker. The role of the tracker is to analyze the measured data from each azimuth

radial and identify areas of active weather. This is done through the use of a weather

map, which groups the azimuth radials in over-lapping, 3° azimuth bins throughout
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the scan sector. Within each azimuth bin, a performance evaluation technique is used

to adaptively control the CPI within that area. Torres and Curtis [112] proposed

a similar technique of weather mapping a desired volume, known as the ADAPTS

strategy, which maintains a list of the active weather areas in the volume and decreases

the integration time on inactive areas. This algorithm uses a similar technique, except

that the CPI in the active areas is adaptively managed. The details of how the CPI

is adaptively controlled are described in the next section.

6.3.2 Performance Evaluation

This algorithm uses three different performance metrics, or figures of merit, to

control how the CPI should be modified in real-time on a region of interest. The

technique described herein is concurrently applied to each azimuth bin. Nominally,

each bin encompasses (typ.) three radials of data within a single 3° sector.

The AWC algorithm uses an adaptive weighting scheme to determine how the

integration time will evolve. After each surveillance scan, the number of incoherently

integrated pulses (M) on the next scan action within the current azimuth bin is

updated from the product of a weighting factor and the default pulse block size (δM).

The pulse block size (typ. 32) limits the amount by which the CPI can vary from one

scan to the next. In addition, the absolute minimum and maximum total number of

integrated pulses are bounded to (typ.) 16 and 256 pulses, respectively. The number

of pulses per radial on the (n+1)th scan (M [n+1]) is updated from from the number

of pulses on the nth scan (M [n]) multiplied by a weighting factor

M [n+ 1] = M [n] + w[n]δM . (6.3.1)

The weighting factor (w) is computed from the aggregate summation of weights de-

rived from the measured SNR (wSNR) and performance metric for the pth weather

product (wp). Nominally, this performance metric is derived from the standard devi-
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ation of the product, but this technique is generalized to any metric of interest. The

weighting factor used in (6.3.1) is computed as

w =

NP∑
p=0

apw
p
s

NP∑
p=0

ap

(6.3.2)

Where NP is the total number of products analyzed and ap is a user weighting factor

which ranks the importance of the pth product (ap > 0). Typically, ap is set to

unity for each product, which reduces the summation in (6.3.2) to an arithmetic

mean. The weighting factor for each weather product (wps) is computed from the

performance metric averaged over all range bins in the azimuth bin, multiplied by a

SNR-dependent weight

wps =

∑
g

wSNR [g]wc [g]wps [g]∑
g

wSNR [g]
. (6.3.3)

This weighting (wps) is a factor that quantifies how close the measured performance

metric at each gate is to the desired metric for that product within the storm cell,

and wc is a control weighting factor. The SNR-dependent weighting (wSNR) is used

as a quality control to prevent the algorithm from over-compensating for poor quality

at low SNR. The purpose of the quality control threshold is to apply less weight

(wSNR → 0) if the measured SNR is below a desired threshold and more weight

(wSNR → 1) if the SNR is higher. This is accomplished through the use of the

continuous-log sigmoid function. The equation of the sigmoid function for an input

value x is given by

f(x, a, c) =
1

1 + exp [−a (x− c)]
. (6.3.4)
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The sigmoid function ranges from ±1 at ±∞ and 0.5 when x = c. The factor

a determines the slope of the function about c. The weight at each range bin is

computed from the measured SNR ( ˆSNR) and a threshold parameter (SNR0) as

wSNR = f (SNR, 1,THR) . (6.3.5)

Here, THR defines the minimum desired Signal to Noise Ratio for valid samples in

the azimuth sector. To estimate the performance metric weighting factor at each gate

(wps [g]), the algorithm computes the moving statistics of the metric across each gate

in the azimuth bin within a 60 s sliding time window. In the case of the metric as

the standard deviation of the products, a moving standard deviation is performed.

Otherwise, it is a moving average. The challenge in this measurement technique is

correctly compensating for the motion of the storm within each sliding time window.

This motion compensation step performs the technique described in in Section 5.3 to

correct for radial motion. This algorithm currently does not account for tangential

motion of the storm.

After motion compensation, the average performance metric is computed along

each gate in the sliding window. The metric weighting factor at each (wps [g]) is

computed from the sigmoid function in (6.3.4)

wps [g] = 2f (x̂p [g]− xp0, α, 0)− 1 (6.3.6)

Where x̂p is the measured performance metric, xp0 is the desired metric, and α is a

factor that controls the steepness of the sigmoid function (typ. α = 4). The weighting

in (6.3.6) is such that range bins with a performance metric below (above) the desired

level are given positive (negative) weight, and bins with values close to the desired

level (xp0) are given zero weight. In a similar fashion, wc from (6.3.3) is a control factor
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that thresholds wps if the metric requirement has been met. The control weighting is

also calculated from a sigmoid function

wc [g] = f

(
x̂p [g]− xp0

xp0
, β, 0

)
. (6.3.7)

Here, β controls the steepness of the control weighting about x̂p = xp0 (typ. β = 4).

The rationale for this weighting scheme is straightforward. Assume that the per-

formance metric being measured is the standard deviation, and that one requires

a standard deviation of reflectivity of 1.8 dBZ. If the actual measured deviation is

4 dBZ, then the weighting from (6.3.6) will be positive and the number of pulses re-

quested on the next scan from (6.3.1) will be increased. This in turn will decrease the

standard deviation in subsequent time windows. On the other hand, if the measured

standard deviation is 0.5 dBZ, then the weighting will be negative and the algorithm

will reduce the integration time. Thus, the dwell time (and total scan time) is reduced

while maintaining a desired standard deviation. If, however, the measured SNR is

too low for a standard deviation of 4 dBZ, the quality control weighting in (6.3.5) will

de-value the weight applied to (6.3.1), and the integration time will not be affected

by those gates. Thus, the algorithm only reacts to the measured data quality if the

SNR is above a pre-determined threshold.

There are several error sources and deficiencies recognized in this algorithm that

will degrade performance. First, tangential motion of the storm is not accounted for.

Practically, accurately estimating the two-dimensional velocity vector from a single

radar within a finite time window is a difficult task. While techniques such as Storm

Cell Identification and Tracking (SCIT) have been been implemented on operational

radars for tracking the storm motion between long volume scans (5 min to 6 min), they

have not been effectively demonstrated at short intervals. Additionally, the algorithm

is subject to over-constraint. That is, under certain conditions it may be impossi-
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Figure 6.1: Block diagram of the performance evaluation stage of the AWC algorithm, assuming
the performance metric as the standard deviation of the products. Computation of the standard
deviation weighting (wσ) and control weighting (wc) is performed within theMetric Weighting block.
This stage accepts as input the estimates of the standard deviation on the products, and outputs
the change in CPI length for the next scan action on the track.

ble to simultaneously meet multiple requirements. Requirements and conditions on

minimum SNR should be considered beforehand, so that the it’s

6.4 Simulation

The following Monte Carlo simulation was performed to test the adaptive CPI

technique described previously. On each trial, radar In-phase and Quadrature (IQ)

data was generated for a hypothetical storm cell encompassing a sector of 5 radials

and 100 range bins. To simulate the storm progression in each trial, 100 observations

spaced 6 s apart were simulated and fed to the adaptive CPI algorithm. The range bin

locations of the IQ data on the simulated storm cell were shifted to account for a radial

velocity of 3 m s−1. The algorithm was setup to find the minimum CPI to meet a set
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Figure 6.2: Simulated results of the AWC algorithm, showing the evolution of the (a) estimated
product standard deviations and (b) commanded CPIs for each track measurement. The algorithm
was setup to meet the standard deviation requirements from Table 5.4 (σ0

max), of which the most
stringent requirements are those on ρhv (6e−3) and ΦDP (2.5°). The simulation assumed operation
at a 3 kHz PRF and the polarimetric ATAR scheme. Results confirm a resting 212-pulse CPI after
42 track observations.

of requirements on the standard deviation of the product estimates. On each trial, the

algorithm was initialized with a 32-pulse CPI. IQ data was generated in each range bin

using the Gaussian shaping filter approach described in Section 3.6, with a minimum

20 dB SNR, a copolar correlation coefficient above 0.99, and a 2 m s−1 spectral width.

Two different simulations were executed, with a minimum of 100 trials each. Following

each Monte Carlo simulation, the following results were analyzed. The settling time

and resting CPI for each trial run was measured as the time taken for the CPI to

settle on to 10 % of its final value. In addition, the final resting standard deviations

of each product estimate were computed.

The algorithm was setup to find the minimum CPI in order to meet the σ0
max and

σ1
max requirements listed in Table 5.4. The difference between these requirements sets

are a relaxing of the standard deviation for ρhv and ΦDP . From the previous research,

it is expected that the final CPI from each simulation should be close to 224 and 128

pulses, respectively
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Figure 6.3: Simulated results of the adaptive CPI control algorithm, showing the evolution of the (a)
estimated product standard deviations and (b) commanded CPIs for each track measurement. The
algorithm was setup to meet the standard deviation requirements from Table 5.4 (σ1

max), of which
the most stringent requirements are those on ρhv (6e−3) and ΦDP (2.5°). The simulation assumed
operation at a 3 kHz PRF and the polarimetric ATAR scheme. Results confirm a resting 112-pulse
CPI after 42 track observations.

Figure 6.2 shows the results of the first scenario to meet the σ0
max requirements.

From analysis of the data, the CPI was commanded from 32 pulses initially to an

average final dwell length of 212 pulses in under 39 observations. This data aligns

well with the previous analysis in Table 5.4, which indicated that 224 pulses would be

required. Figure 6.3 shows similar results from the second scenario to meet the σ1
max

requirements. Results also agree well with the previous analysis, with the algorithm

arriving at a 112-pulse CPI after 40 observations.

Inspection of Figures 6.2a and 6.3a indicates that the algorithm does exhibit

some overshoot before settling to final estimation of the standard deviations from

each product. This overshoot is due to the sliding window during which the standard

deviation is actually measured. For a 6 s track interval between measurements, it takes

10 observations for the algorithm to estimate the standard deviation accurately. So,

we can expect an overshoot on the order of twice the sliding window length, since it

takes another 10 observations for the algorithm to respond to the change.
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Table 6.1: Summary of simulation results from the AWC algorithm applied to different notional data
quality requirements from Table 5.4. Results indicate that the algorithm is effective at measuring
the standard deviation and adaptive controlling the CPI to meet the requirements. For requirement
sets σ0

max and σ1
max Table 5.4, the algorithm adaptively controlled the CPI to 212 pulses and 114

pulses, respectively, which closely match expected results. Fields marked with a dash (—) indicate
that data is not applicable or the simulation results do not apply.

Product σ0
max σ1

max

Req. Meas. Req. Meas.

Zh (dBZ) 1.8 0.94 1.8 0.90

v (m s−1) 1 0.36 1 0.32

σv (m s−1) 1 0.23 1 0.18

Zdr (dB) 0.3 0.16 0.3 0.18

ρhv 6e−3 5.6e−3 8.4e−3 6.9e−3

ΦDP (deg) 2.5 2.3 3.0 2.8°

No. Integrated Pulses (M) 224 212 128 114

No. Observations — 40 — 40

Table 6.1 shows a summary of the simulation results for each scenario tested

against. Results show that the algorithm was successful at adaptively controlling

the CPI to meet the set of desired product standard deviations. As evidenced in

the results, the minimum CPI is dominated by the most stringent requirements,

copolar correlation coefficient and differential phase. As such, while the algorithm

is successful at meeting each requirement for each product, it over-estimates the

standard deviations of the less stringent requirements.

6.5 Radar Data

To test the algorithm against live radar data, the following experiment was per-

formed. Timeseries data was collected during a precipitation event within a 10 min

time interval on 7-April-2015. During this period, a storm cell having a mean reflec-

tivity above 25 dBZ was observed moving across the radar field-of-view. The storm

154



cell encompassed close to a 30° azimuth sector in front of the array, initially centered

on boresight of the array. During this period, the radar was setup to execute a single

90° sector scan, with a 256-pulse CPI at a 3 kHz PRF. The radar operated with a

55 µs, 2 MHz Linear Frequency Modulated (LFM) chirp waveform with a Blackman

window applied.

To analyze how the algorithm performed against the 256-pulse CPI, a measure

of detectability was used to estimate the degradation in detection performance in

using the algorithm. Ivic et al. [61] used ratios of detections between different scan

algorithms to measure the performance benefit of different data thresholding algo-

rithms. Similar to their method, an estimate of the probability of detection between

the measured SNR fields from two scans (SNRA and SNRB) is computed as

P̂d =
num [(SNRA > THR) . ∗ (SNRB > THR)]

num [(SNRB > THR)]
(6.5.1)

Where THR is the SNR threshold level (in dB). Here, SNRA and SNRB correspond

to data from the AWC algorithm output and the 256-pulse CPI, respectively. In this

fashion, the terms in brackets represent binary matrices, where a value of 1 indicates

that a detection is present, and a value of 0 indicates no target. The num operator

calculates the total number of ones present in the input matrix, and the .* operator is

an element-wise multiplication operation. Equation (6.5.1) is the ratio of the number

of detections that are produced when data is processed by the AWC algorithm that

were not present in the traditional Contiguous Pair Sampling (CPS) data. This gives

a measure of the decrease in the probability of detection from the algorithm.

Recorded timeseries data during the event was then fed to the algorithm for post-

processing. As described previously, the algorithm was setup to adaptively monitor

the performance in 5° azimuth bins throughout the 90° sector. Within each azimuth

bin, the technique described in Section 6.3.2 was used to monitor the standard devia-

tion of reflectivity and adaptively control the CPI within that sector. The CPI output
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at each azimuth was then used to limit the pulse-pair processing on subsequent scans.

During this experiment, the algorithm was setup to achieve a standard deviation of

reflectivity of 1.2 dBZ (SD(Zh) ≤ 1.2). To simplify the analysis, no other products

were monitored by the algorithm.

Figure 6.4 shows plots of the evolution of the (a) CPI and (b) measured standard

deviation of reflectivity at each azimuth radial. Moving upwards along the y-axis

shows the change over each observation in the time interval (≈ 75 radar scans). White

areas in the plots show the lower limits in each figure. By comparison, Figure 6.5

plots the measured reflectivity (Zh) on the (a) first scan and the (b) 50th scan. Note

how the peak reflectivity moves across the array from boresight initially towards an

azimuth angle of 30°, as shown in the accompanying plots in Figure 6.5.

Several observations are evident from these plots. Beyond the initial scans as

estimates are fed through the 60 s moving average windows, the algorithm settles

to a mean SD(Zh) of 1.1 dBZ across all azimuth radials past the 35th scan, which

confirms that the algorithm was able to meet the specified requirement. Additionally,

past the 45th scan, as the region of peak reflectivity moves towards the right side

of the plot, the algorithm decreases the CPI within azimuth angles near −30° to 0°.

During this period, the measured SNR was below the threshold set for the algorithm

(8 dB), which caused the algorithm to reduce the CPI. Similarly, we observe that the

algorithm never increased the CPI at azimuths −30° to −20°. Again, the SNR never

exceeded threshold at this sector, so the algorithm did not increase the dwell time.

The probability field in Figure 6.4c shows that the algorithm maintained a min-

imum 85 % probability of detection against the 256-pulse CPI data. That is, use

of the algorithm only degraded our sensitivity by 15 % at most. Inspection of the

data shows that the probability of detection near the region of peak reflectivity was

maintained above 95 % during the time interval observed.
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(a) (b)

(c)

Figure 6.4: Results of the AWC algorithm applied to a 10 min period during a precipitation event on
7-April-2015. From top left show the evolution of the (a) CPI, (b) measured standard deviation of
reflectivity, and (c) estimated probability of detection. The x-axis shows the azimuth radial, and the
y-axis shows the scan observation count. Here, the algorithm was set to meet a standard deviation
of reflectivity of 1.2 dBZ (SD(Zh) ≤ 1.2), which the algorithm was effective at maintaining over all
azimuth radials beyond the 35th scan. The probability of detection in (c) is computed from (6.5.1)
by counting the number of detections common to both the AWC algorithm and a traditional CPS
scan strategy with 256 pulses.

The total amount of dwell time commanded by the algorithm over the time inter-

val, over all radials in the sector, was just 133.8 s, compared to 390 s for the 256-pulse

CPI. This represents a 290 % reduction in the scan time.
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(a) (b)

Figure 6.5: Plots of the measured reflectivity field (Ẑh) from two observations at timestamps (a)
20:20 UTC and (b) 20:27 UTC. In accordance with the AWC algorithm results shown in Figure 6.4,
a region of peak reflectivity in the storm cell migrated from boresight to an azimuth angle of 30° ([5,
12]km [cross range, down range]).

6.6 Summary and Conclusion

This research proposed a technique for the adaptive control of the radar integration

time within a volume scan in response to specified performance requirements. Build-

ing upon a previous technique [112], the algorithm maintains a map in the volume of

the areas containing active weather. Within active weather areas, the algorithm uses

a systems of weights derived from sigmoid activation functions to find the minimum

CPI required such that each requirement is met. In the context of the radar mission,

the algorithm can be used to meet a desired data quality requirement, such as bias

or standard deviation of the product estimates.

Radar data was presented that tested the algorithms performance in meeting a

desired standard deviation of reflectivity. Results indicate that the algorithm takes

from 30 to 35 observations of an area to settle, but thereafter the standard deviation

requirement was met in the volume. In addition to meeting the specified requirement,
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the algorithm only degraded the sensitivity (taken as the decrease in detectability)

by 15 %.

While this algorithm has been demonstrated to be effective at controlling the

standard deviation of a product, it may be more advantageous to monitor the detec-

tion performance or some other metric. However, the details of the algorithm were

proposed as generic, such that alternate applications to monitoring other metrics is

supported.
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CHAPTER 7

CONCLUSION

X-band phased array radars are rooted in military and defense applications. To-

date, they have exclusively been used primarily for target surveillance and tracking,

with weather as an ancillary mode performed intermittently at best. As the cost

of this technology decreases, however, more commercial and civil entities will find

uses for phased array systems. But, in the context of a radar supporting multiple,

simultaneous missions, it is important both to discover novel applications for phased

arrays while verifying their performance for traditional purposes. To that end, this

research has both investigated the data quality of phased array radars for weather

surveillance and two novel algorithms.

For over four months in 2013, the Low-power Phased Array Radar (LPAR) sys-

tem followed fire personnel and made polarimetric observations in South Australia.

Analysis confirms general observations made from previous studies, but the data also

shows that smoke plumes present different signatures in areas above the fire. From

this analysis, an algorithm is proposed that actively searches for these specific sig-

natures as indication of fire within a smoke plume. Using texture analysis, storm

cell tracking, and a fuzzy logic algorithm, results of the algorithm applied to several

untrained data sets demonstrate that areas above active fire sources can be reason-

ably well estimated. Additionally, using approximations of the shape and flow of

the smoke plume, the ambient wind direction is estimated with a Root Mean Square

(RMS) error from 10° to 25°. While these error bounds may seem large, they are ac-
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curate enough to provide emergency personnel with localized estimates of wind shifts

in near real-time.

To verify the data quality achievable with X-band phased array radars, research

was performed to measure the standard deviation of the polarimetric products against

theoretical approximations. Simulation results and radar data confirmed that X-band

phased arrays do not contribute additional variability to data. As an extension to this

work, research also investigated the performance benefits of more complex scanning

strategies, Beam Multiplexing (BMX) and Frequency Multiplexing (FMX). While

both methods show an improvement in standard deviation of reflectivity (Zh) and

differential reflectivity (Zdr), bias errors introduced in copolar correlation coefficient

(ρhv) and differential phase (ΦDP ) estimates make either BMX or FMX impractical

for live operation.

As an extension to the previous research effort, an Adaptive Waveform Control

(AWC) algorithm was proposed that monitors the radar volume and adaptively con-

trols the Coherent Processing Interval (CPI) in regions containing active weather to

meet top-level data quality requirements. Simulation and radar data were presented

that demonstrate the algorithm is effective at both decreasing the integration time on

areas where the measured Signal to Noise Ratio (SNR) is below a desired threshold

(i.e. inactive weather areas) and increasing the integration time when data quality

falls below threshold. While the algorithm is far from operational, it demonstrates

the capabilities that phased arrays offer in next-generation systems.

This research represents an important first step towards the widespread use of

networks of small-scale, X-band phased array radars for either weather or target

surveillance applications. While the phase-tilt architecture is a useable, low-cost de-

sign and is still applicable in low-altitude surveillance missions, the industry is heading

towards an azimuth/elevation electronically-steered phased array radar. Currently,
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research efforts are being focused on integrating and testing the Raytheon 2D Low-

power Radar (LPR) system [57, 91].
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