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ABSTRACT 
 

OCEANIC ANOXIA EVENT 2 (~94 MA) IN THE U.S. WESTERN INTERIOR SEA: HIGH 
RESOLUTION FORAMINIFERAL RECORD OF THE DEVELOPMENT OF ANOXIA IN A 

SHALLOW EPICONTINENTAL SEA 
 

FEBRUARY 2016 

AMANDA L. PARKER, B.S., UNIVERSITY OF MARY WASHINGTON 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor R. Mark Leckie 

 

The Upper Cretaceous Tropic Shale of southern Utah is a thick deposit of dark mudrock 

and shale that captures oceanographic changes that occurred during Oceanic Anoxic Event 2 

(OAE 2) in the Western Interior Seaway (WIS), and records environmental perturbations during 

the transgression of the Greenhorn Sea during the time of the Cenomanian-Turonian boundary 

interval (CTB; 93.9 Ma). I investigated the response of planktic and benthic foraminifera in a 

shallow (<100 m) marine environment stressed by the onset of OAE 2. This study is based on 

high-resolution quantitative foraminiferal population counts and isotope paleoecology (δ18O and 

δ13C) from a 40-m composite core and outcrop section of the Tropic Shale near Big Water, Utah. 

The OAE 2 interval is identified by a distinctive δ13Corg signature and by correlation of bentonites 

and carbonate-rich units across the seaway. 

Results of assemblage analyses indicate discrete intervals of environmental 

perturbations across the CTB interval. The basal 6.0 m of the Tropic Shale are sandy and contain 

sparse assemblages of agglutinated benthics and very rare specimens of planktic foraminifera. 

The onset of OAE 2 was rapid, and surface waters were dominated by planktic Guembelitra 

cenomana with minor species of Heterohelix. Benthic abundances increase at the same time as 

the planktics and were initially dominated by low oxygen tolerant infaunal Neobulimina 

albertensis. Epifaunal Gavelinella dakotaensis briefly proliferated as the WIS record of OAE 2 

intensified, coinciding with the widespread “Heterohelix shift” and increasing accumulation of 

organic matter. The peak of OAE 2 at ~17.0 m is marked by a rapid shift back to Neobulimina 
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dominance. We suspect incursion of oxygen-poor Tethyan intermediate waters with approach of 

peak transgression during the early Turonian, coupled with high productivity in surface waters 

resulted in the rapid depletion of benthic oxygen. These correlations suggest an intricate 

relationship among rising sea level, changing water masses, flux of organic matter, and reduced 

benthic oxygenation. The foraminiferal record reveals strong cyclicity in planktic/benthic ratio 

resembling parasequences. Based on correlations with more distal sections, this cyclicity is 

mostly likely driven by changing climatic conditions in the WIS, rather than changes in sea level. 
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CHAPTER 1 
THE LATE CRETACEOUS CLIMATE AND BIOTIC EVENTS 

 
 
1.1 Introduction 

Thick deposits of calcareous mudstone representing prodeltaic and neritic environments 

of the Western Interior Seaway dominate the Upper Cretaceous of southern Utah. These 

sediment facies capture critical oceanographic changes that occurred at the onset of Oceanic 

Anoxic Event 2 (OAE 2) ~94.44 Ma (Laurin et al., 2015), and document environmental 

perturbations that occurred during the transgression of the third-order Greenhorn Cycle across 

the basin. The Tropic Shale contains the Cenomanian-Turonian boundary interval (CTB; 93.9 Ma; 

Meyers et al., 2012a), which provides insight into the complexities of the Late Cretaceous 

greenhouse, which experienced elevated tectonic activity, submarine volcanism, high global sea 

level, oxygen deficiency, and the burial of vast amounts of organic matter along continental 

margins and in epicontinental seas (e.g., Schlanger and Jenkyns, 1976; Kauffman, 1984; Arthur 

et al., 1987; Schlanger et al., 1987; Bralower et al., 1997; Sageman et al., 1997; Leckie et al., 

1998, 2002; Huber et al., 2002; Arthur and Sageman, 2005; Meyers et al., 2005, 2012a, 2012b; 

Turgeon and Creaser, 2008; Pearce et al., 2009; Jenkyns, 2010; Jarvis et al., 2011). 

Despite equable climate conditions, the CTB is marked by extinction and biotic turnover 

in the marine realm with environmental perturbations associated with ocean anoxia (e.g., Elder, 

1989; Leckie et al., 2002). OAE 2 refers to the global widespread deposition of organic carbon-

rich sediment (black shale) in marine environments (Arthur et al., 1987; Schlanger et al., 1987). 

The OAE 2 interval is identified by a distinctive δ13Corg signature caused by the enhanced burial of 

isotopically light organic carbon most likely linked to the expansion of deep anoxic zones (Arthur 

et al., 1987; Schlanger et al., 1987; Sageman et al., 2006). Given its proximal nature along the 

western margin of the seaway, the Tropic Shale records signals of global OAE 2 complicated by 

regional influences of water mass stratification and mixing, enhanced productivity due to elevated 

fluvial input, changes in relative sea level and ocean circulation, benthic ventilation, and 
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consequent biotic turnover (e.g., Eicher and Worstell, 1970; Eicher and Diner, 1985; Leckie, 

1985; Leckie et al., 1991, 1998; West et al., 1998; Tibert et al., 2003; Elderbak et al., 2014; 

Lowery et al., 2014).  

Current research suggests that OAE 2 was caused by increased productivity driven by 

the rapid influx of micronutrients linked to hydrothermally sourced large igneous provinces, 

increased rates of oceanic crust production and/or volcanism that degassed large amounts of 

CO2 (e.g., Kerr et al., 1997; Kerr, 1998; Bralower et al., 1997; Leckie et al., 2002; Snow et al., 

2005; Turgeon and Creaser, 2008; Barclay et al., 2010; Meyers et al., 2012b). An alternate 

hypothesis is that increased global warming strengthened the hydrologic cycle resulting in 

increased continental weathering and runoff of nutrients into the oceans that stimulated 

productivity in the surface waters and created anoxia in bottom waters with the flux of organic 

matter to the seafloor (e.g., Arthur et al., 1987; Schlanger et al., 1987; Leckie et al., 2002; 

Sageman et al., 2006; Jenkyns, 2010; Meyers, 2012; Van Helmond et al. 2014). 

The CTB in the Western Interior Sea (WIS) is marked by dynamic changes in the 

population structure of planktic and benthic foraminifera (Leckie, 1985; Leckie et al., 1998; Tibert 

et al., 2003; Elderbak et al., 2014; Lowery et al., 2014). The development or expansion of oxygen-

deficient waters in the seaway could impinge on the niche of different foraminifera species and 

thereby control their “presence” or “absence” in the water column or at the seafloor. This study 

addresses the response of planktic and benthic foraminiferal assemblages to ecological 

perturbations that occurred at the onset and duration of OAE 2 with rising sea level along the 

western margin of the seaway, and it establishes a high-resolution biostratigraphic correlation 

with the Global Stratotype Section and Point (GSSP) at the Rock Canyon section near Pueblo, 

Colorado (Leckie et al., 1998; Caron et al., 2006; Elderbak et al., 2014). In addition, data from this 

study utilizes foraminiferal assemblages for interpreting and understanding relationships between 

relative sea level change, productivity, and benthic ventilation that occurred during the most 

prominent oceanic anoxic event of the Late Cretaceous. 
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1.2 Research Objectives 

Our primary objective was to create a new high-resolution foraminifera record at Big 

Water, Utah and to determine the response of foraminifera in a coastal marine environment 

stressed by the development of OAE 2 during transgression of the Greenhorn Sea. Questions 

that we sought to answer were: (1) how do the consequences of OAE 2 affect planktic and 

benthic foraminiferal assemblages across the CTB along the western prodeltaic shoreline of 

present-day south-central Utah? (2) What are some potential oceanographic mechanisms (i.e., 

terrigenous input and surface runoff, productivity, expanding oxygen minimum zone (OMZ), water 

mass stratification, and alkalinity changes) that may have controlled these shifts and turnovers 

observed in the foraminifera record? (3) Does the planktic trochospiral morphospecies 

(Hedbergella) display long-term sea surface temperature (SST) trends indicated by high 

frequency coiling reversals? (4) Furthermore, can changes in foraminiferal assemblage offer the 

potential for improved resolution of the timing of sea level fluctuations and water mass changes, 

or be used to recognize and constrain cycles of relative sea level change across the basin?   
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CHAPTER 2 

STUDY AREA: BIG WATER, UTAH 
 
 
2.1 Geologic Settings 

The Cretaceous Western Interior Seaway extended some 6000 km through the middle of 

North America and it provided a wide, relatively shallow connection between the polar Boreal and 

the subtropical Tethys Oceans (Hay et al., 1993). The sea attained its greatest width and depth 

during the early Turonian Stage of the Greenhorn Cycle. The study site is located at Big Water, 

positioned along the southern edge of the Kaiparowits Plateau in south-central Utah, represents a 

coastal, prodeltaic to neritic depositional environment (Figure 1). During the early and middle 

Cenomanian, fluvial and deltaic sedimentation characterized the Colorado Plateau region, with a 

primary terrigenous source from the Sevier Highlands (Weimer, 1970). As the Greenhorn 

transgression pushed the shoreline further west, coarse-grained fluvial and marginal marine 

sandstone deposits of the Dakota Formation were replaced by fine-grained mudstones of the 

Tropic Shale. By the late Cenomanian Sciponoceras gracile Biozone, diagentically enhanced 

carbonate-rich layers, or concretion horizons, equivalent to the limestone beds LS1 to LS4 further 

east, were deposited across the seaway (Elder, 1991).  

Leithold (1994) recognized six fourth-order depositional sequences in the Tropic Shale of 

southern Utah superposed on the third-order transgressive-regressive Greenhorn Cycle. The 

area experienced episodic subsidence rates that accompanied high accumulation of fine-grained 

sediments representative of the nearshore facies of the Western Interior Basin. Superposed on 

these fourth-order cycles are progradational shoreline deposits that have been attributed to 

Milankovitch climatic forcing of sediment supply (Elder et al., 1994). Posamentier et al. (1988) 

and Van Wagoner et al. (1990) termed these progradational shoreline deposits as 

parasequences and each progradational deposit is bounded by a distinct flooding surface. These 

parasequences have been correlated with cyclic sedimentation across the basin; the proximal 

transgressive lags and concretion horizons in Utah correlate with distal limestones in Colorado 

and Kansas, while progradational sands and silts correlate with the offshore mudrocks and shales 
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(Elder et al., 1994). Alternatively, Gale et al. (2008) used high-resolution carbon isotope 

stratigraphy to correlate rhythmically bedded limestones-shales of central Colorado with cyclical 

deposits in England. These authors concluded that these uppermost Cenomanian-basal Turonian 

cycles record eustatic changes in sea level. We have the opportunity to test these hypotheses in 

southern Utah.    

To establish a chronostratigraphic framework for this study, macrofossil assemblages 

and four basinwide bentonite beds (altered ashfall deposits), designated A to D, provide reliable 

correlation through the late trangressive phase of the Greenhorn Cycle, particularly in the upper 

Cenomanian Sciponoceras gracile to the lowest Turonian Watinoceras devonense Ammonite 

Biozones (Figure 2). The well-established stratigraphic framework at the Cenomanian-Turonian 

boundary GSSP (Kennedy et al., 2005) and global reference for OAE 2 at Rock Canyon, 

Colorado can easily be correlated to the nearshore sites of southern Utah (Elder, 1991; Elder et 

al., 1994; Tibert et al., 2003). Four carbonate-rich layers (LS1 to LS4; Elder, 1985, 1989, 1991) 

form continuous or concretionary limestone beds within the shale of the Sciponoceras gracile 

biozones. These carbonate units are represented by correlative 0.15- to 0.50-m thick limestone 

beds found throughout most of the central part of the Western Interior Basin (e.g. Hattin, 1971, 

1975; Elder, 1991). The deposition of limestone beds and equivalent concretion horizons mark a 

subsequent improvement in the paleoecology of the upper water column, which reflects 

increasing carbonate content and increasing influence of a normal marine subtropical water mass 

into the area. A sharp increase in foraminiferal abundance documents the diachronous 

transgression and incursion of warmer Tethyan waters across the seaway (Leckie et al., 1998). 

Previous research on the WIS have used foraminiferal records to reconstruct the OAE 2 across 

northeastern Arizona, south-central Utah, southern Colorado, eastern Kansas, western Iowa, and 

west Texas (e.g., Eicher and Worstell, 1970; Eicher and Diner, 1985; Leckie, 1985; Leckie et al., 

1991, 1998; West et al., 1998; Tibert et al., 2003; Elderbak et al., 2014; Lowery et al., 2014). 
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CHAPTER 3 
MATERIAL AND METHODS 

 
 
3.1 Study Site 

The Tropic Shale is a 200-m thick succession of generally fine-grained rocks exposed 

along the Kaiparowits Plateau of southern Utah (Figure 3). The Tropic Shale is dark gray, 

laminated shale to sandy mudstone. It consists primarily of calcareous mudstone and shale 

representing prodeltaic environments of the western margin of the Greenhorn Sea, and overlies 

the highly bioturbated marginal marine facies of the Dakota Formation (Leithold, 1993, 1994; 

Elder et al., 1994; Leithold and Dean, 1998; Schmeisser McKean and Gillette, 2015). The Tropic 

Shale forms broad undulating flats with gentle slopes across the field area increasing gradient up-

section. Its upper contact is gradational with the overlying shallow marine and deltaic sandstone 

deposits of the Straight Cliffs Formation (Peterson, 1969). Tropic Shale sediments contain fauna 

dominated by marine invertebrates, including ammonites (Sciponoceras gracile, Mammites 

nodosoides), bivalves (Pycnodonte newberryi, Inoceramus spp. Mytiloides spp.), and gastropods 

(Turritella spp., Perissoptera prolabiata) (Elder, 1987); additionally a variety of vertebrates such 

as plesiosaurs, mosasaurs, bony fish, sharks, and turtles were discovered in lower portions of the 

Tropic Shale (Titus et al., 2005; Albright et al., 2007; Schmeisser McKean and Gillette, 2015). The 

Greenhorn strata changes thickness over short distances, and have been interpreted as resulting 

from differential uplift and subsidence of basement blocks (Hattin, 1985, 1986; Weimer, 1983; 

Barlow and Kauffman, 1985). This differential movement produced thickness changes ranging 

several meters; differences in “local relief” may affect the basin topography between the outcrop 

and the drill site (e.g. Hay et al., 1993). 

 

3.2 Field Methods 

Fieldwork was completed in July 2014. One drill core (USGS SH#1) was collected and 

two outcrop sections (KPS1 and KPS2) were sampled through the lowermost Tropic Shale along 
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several partial sections of the southern Kaiparowits Plateau. A 30-m thick section of Tropic Shale 

was excavated by hand and by backhoe along the Kaiparowits Plateau east of Big Water (UT), in 

order to create a composite record for foraminiferal assemblage analysis. The KPS1 and KPS2 

outcrops were trenched and excavated to expose a fresh section to be described, measured, and 

collected for macro- and microfossil samples. KPSI outcrop (0.0-6.0 meters) was sampled 

between 0.2 to 5.0 m at a resolution of 20 cm, and sampled between 5.0 to 6.0 m at a resolution 

of 5 cm. KPS2 outcrop (6.0-30.0 meters) was sampled between 6.0 to 9.0 m at a resolution of 5 

cm, sampled between 9.0 to 14.8 m at a resolution of 10 cm, and sampled between 14.8 to 30.0 

m at a resolution of 20 cm. A total of 238 samples were collected from the two outcrop sections 

for micropaleontological analyzes. A 100-foot-long (~30.0 m) USGS SH#1 Core was also 

collected from the Kaiparowits Plateau near Big Water (UT). A total of 53 samples were collected 

for continued resolution across the CTB from the USGS SH#1 Core. Samples were collected from 

the top 10.0 m of the USGS SH#1 Core at 20 cm for additional micropaleontological analyzes. 

 
3.3 Foraminifera Methods 

In the laboratory, bulk rock samples were crushed to centimeter size fractions and 

soaked in a 3% solution of Quaternary-O for a week. The disaggregated sediment was washed 

over a 63-μm sieve. The residue was dried in an oven at 50-60˚C. The residue was then split 

using a microsplitter, to a volume of sediment small enough to yield a fairly sparse distribution of 

particles on a picking tray. Foraminifera were picked from random quarter squares around the 

tray until at least 300 specimens were collected and mounted onto a microslide. Other biogenic 

and lithic components were noted. The “first pick” provides the planktic to benthic ratio, expressed 

as percent planktics. A “second pick” was made on samples containing too few planktic or benthic 

specimens for population analysis.  

Foraminiferal assemblage data collected for each sample included: (1) planktic to benthic 

ratio (% planktics), (2) planktic morphotype analysis (% biserial, triserial, and trochospiral 

morphotypes), (3) abundance of major benthic species (Neobulimina albertensis and Gavelinella 
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dakotensis) or groups of agglutinated taxa, and (4) trochospirally coiled plankic foraminiferal 

specimens were counted for coiling preference from the spiral side with 4 to 5 globular chambers 

visible in the last whorl of the specimen. Right coiling (dextral) refers to those specimens that are 

coiled in a clockwise direction and left coiling (sinistral) to those that shows a counter-clockwise 

coiling direction.  

Paleoecologic and paleoceanographic interpretations are based on foraminiferal proxies, 

including planktic/benthic (P/B) ratio related to depth and distance from shore (e.g., Jorissen, 

1999; Leckie and Olsson, 2003). The foraminiferal assemblages provide information about 

environment noting the planktic and benthic characteristics based on habitat, water depth position 

and oxygenation (see summaries in Leckie et al., 1998 and Tibert et al., 2003). The relative 

abundance of left- or a right-coiling direction of planktic trochospiral morphospecies are related to 

SSTs; the left-coiled morphotypes being dominant in cold, high northern latitudes, whereas their 

right-coiled counterparts are found in more temperate warm environments (Ericson, 1959; Bond 

et al., 1993; Bauch et al., 2003; Darling et al., 2006; Desmares, in review). 

 

3.4 Isotope Analyses  

Six samples were analyzed for the major species of planktic (Heterohelix globulosa, 

Guembelitria cenomana, Hedbergella delrioensis) and benthic foraminifera (Gavelinella 

dakotensis, Neobulimina albertensis) in order to characterize their paleoecology. Between 15 and 

80 specimens were measured for each analysis, depending on the shell thickness and size, to 

obtain a minimum sample mass of 70 μg. The advantage of analyzing large numbers of 

specimens is that isotopic differences between species are more clearly expressed rather than 

variability between individuals (Pearson et al., 1993). Analyses were carried out using a Kiel III 

automated carbonate preparation device inline with a ThermoElectron Delta-Plus mass 

spectrometer at the University of Massachusetts, Amherst. The analytical precision (1σ) based on 

analyses of the NBS-19 standard was 0.03‰ for δ13C and 0.07‰ for δ18O relative to the Vienna 

Pee Dee Belemnite (VPDB) standard. 
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3.5 Sedimentation Rates and Age Model  

High-resolution sampling was taken across the 500-kyr interval of the critical CTB interval 

represented by the upper Cenomanian Metoicoceras mosbyense, Sciponoceras gracile and 

Neocardioceras juddii and the lowest Turonian Watinoceras devonense Ammonite Biozones 

(Tibert et al., 2003). Sedimentation rates were calculated based on radioisotopically dated 

bentonites (A-D) from the USGS #1 Portland Core at Rock Canyon, CO (Meyers et al., 2012a). 

Given the known age of the datums and the average depth at which the datums appear in the 

core, simple linear sedimentation rates were calculated and used to extrapolate sediment ages:  

((Ben. Depth 2) – (Ben. Depth 1)) / ((Ben. Age 2) – (Ben. Age 1)) 

Assuming constant sedimentation between each well-dated bentonite, an age model was 

developed: 

(1/Sed. Rate) x (Sample – Ben. Depth) + Ben. Age 

Sedimentation rates for the CTB boundary interval vary between sites located within the 

foredeep (Escalante and Big Water, UT) and sites located along the forebuldge (Lohali Point, AZ 

and Mesa Verde, CO). 
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CHAPTER 4 

RESULTS 
 
4.1 Planktic Foraminifera 

Major biotic trends in the planktic foraminiferal assemblages analyzed are expressed as 

relative percentage data (Figure 4; see Appendices A for raw data tables; see Plate 1 for planktic 

foraminifera descriptions). The lower 6.0 m of the Tropic Shale is almost completely barren of 

planktic foraminifera. Washed samples at the very bottom of the formation are almost entirely 

comprised of sand in the upper Cenomanian Metoicoceras mosbyense zone. Above 6.0 m, the 

samples contain foraminifera, but frequently did not yield 300 foraminifera specimen per sample. 

Triserial genus Guembelitria first appears near Bentonite A (6.25 m) in high abundance and 

dominates the foraminiferal assemblage through the upper Cenomanian Sciponoceras gracile 

zone, while biserial Heterohelix and trochospiral Hedbergella and Whitenella are much less 

common (Figure 4).   

At the base of the uppermost Cenomanian Neocardioceras juddii zone the planktic 

assemblage abruptly shifts from triserial Guembelitria-dominance to biserial Heterohelix-

dominance at ~12.0 m (Figure 4). This is referred to as the “Heterohelix shift”, which has been 

observed across the Western Interior Seaway (Leckie, 1985; Leckie et al., 1991, 1998; Elderbak 

et al., 2014; Lowery et al., 2014; Elderbak and Leckie, in press). Guembelitria and Heterohelix 

alternately dominate 12.0 to 17.0 m.  

 At 17.0 m, the planktic assemblage records a transition with increasing percentages of 

the trochospiral genera Hedbergella and Whiteinella throughout the uppermost Cenomanian 

Neocardioceras juddii zone, with declining percentage of triserial Guembelitria and generally 

lower values of biserial Heterohelix. At 22.0 m, the relative abundance of triserial species abruptly 

decreases, while trochospiral taxa abruptly become more abundant and biserial taxa steadily 

increase in abundance through the lower Turonian Watinoceras devonense zone. At 32.0 m, the 

biserial Heterohelix species again dominate (>50%) the planktic assemblage, while trochospiral 

and triserial taxa are generally <25% and <20% of the planktic assemblage, respectively (Figure 
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4). Keeled planktic foraminifera (e.g., species of Rotalipora, Praeglobotruncana, and Dicarinella) 

are completely absent from all outcrop samples.  

 

4.2 Benthic Foraminifera  

Major biotic trends in the benthic foraminiferal assemblages analyzed are expressed as 

relative percentage data (Figure 5; see Appendices A for raw data tables; see Plate 2 for benthic 

foraminifera descriptions). Benthic foraminifera are nearly absent from the lower 6.0 m of the Big 

Water outcrop section with the exception of an interval of agglutinated taxa from 1.0 to 3.0 m in 

the Metoicoceras mosbyense zone. Agglutinated species consist of Ammobaculites and 

Trochamminoides. The interval from 6.0 to 17.0 m frequently did not yield 300 foraminiferal 

specimens per sample. Infaunal genus Neobulimina first appears near Bentonite A (6.15 m) in 

high relative abundance. Neobulimina dominated the benthic assemblage of the Sciponoceras 

gracile zone with fewer Gavelinella and sporadic agglutinated occurrences.  

In the uppermost Sciponoceras gracile zone, the benthic assemblage abruptly shifts from 

infaunal Neobulimina-dominance to epifaunal Gavelinella-dominance at 11.5 m. Gavelinella 

dominates in two main pulses of ~80-90% straddling Bentonite B (14.0 m) in the lower 

Neocardioceras juddii zone, before declining to 5% at 17.0 m (Figure 5). This interval has been 

referred to as the “Gavelinella acme” because of its widespread occurrence across the Western 

Interior Seaway (Leckie, 1985; Leckie et al., 1991, 1998; Elderbak et al., 2014; Elderbak and 

Leckie, in press). Neobulimina displays high relative abundances below Bentonite B and between 

the two Gavelinella pulses. Agglutinated taxa appear in two pulses in this interval with 

Haplophragmium and Trochammioides dominating the agglutinated taxa.  

The benthic assemblage is again dominated by the infaunal genus Neobulimina (~90%) 

following a rapid assemblage change at 17.0 m. This ecological shift from epifaunal Gavelinella 

acme to infaunal Neobulimina-dominance is somewhat diachronous across the seaway but is a 

characteristic feature of the uppermost Cenomanian Neocardioceras juddii zone (Leckie et al., 

1998; Elderbak and Leckie, in press). In addition to the sharp ecologic change, the sediments 
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above 17.0 m yield more abundant foraminifera, with larger specimens of Neobulimina. Both 

epifaunal Gavelinella and agglutinated taxa remain extremely low in abundance throughout this 

interval and into the Watinoceras devonense zone.  

 

4.3 Coiling Direction Reversals through the CTB 

The relative percentage of trochospiral species clearly displays long-term trends 

punctuated by high frequency coiling reversals (Figure 6). The trochospiral morphotypes are 

absent until 6.15 m. There is an abrupt increase in sinistral (left-coiled) species beginning at 6.25 

m where the proportion attains more than 70% relative abundance. The first sinistral event 

persists through the lower part of the Sciponoceras gracile zone before a sharp decline. Another 

abrupt increase in sinistral morphotypes is associated with the position of concretion horizon LS3 

(9.0 m) above Bentonite A. Prior to the concretion horizon LS4 (10.6 m) there is a drop in the 

abundance in sinistral morphotypes. A second major pulse in sinistral morphotypes at concretion 

horizon LS4 (10.6 m) forms a peak in the upper Sciponceras gracile zone. There is a sharp 

decrease in sinistral morphotypes at the base of Neocardioceras juddii zone at ~12.0 m 

associated with abrupt changes also observed planktic and benthic foraminiferal assemblages, 

namely the “Heterohelix shift” and “Gavelinella acme”, respectively. Sinistral morphotypes show a 

minor increases in the upper Neocardioceras juddii and basal Watinoceras devonense zones, 

and again in the Mammities nodosoides zone near the top of the studied section.  

 

4.4 Stable Isotope Record 

A comparative stable isotope (δ18O and δ13C) study of relatively well-preserved 

specimens of planktic (Heterohelix globulosa, Guembelitria cenomana, Hedbergella delrioensis) 

and benthic foraminifera (Gavelinella dakotensis, Neobulimina albertensis) enabled us to 

determine the preferred depth habitat and mode of life for each species (Figure 7). Oxygen 

isotope values of Heterohelix globulosa range from -13.48‰ to -12.12‰, and overlap with those 

of Guembelitria cenomana (-13.29‰ to -10.55‰) indicating that their habitat is definitely planktic 
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and probably within the surface mixed layer. Carbon isotope values range from 0.30‰ to 2.43‰ 

and are distinctly lower than values for Guembelitria cenomana -3.55‰ to 1.26‰. Biserial 

planktic foraminifera, such as Heterohelix have previously been interpreted as low-oxygen 

tolerant meso- to eutrophic thermocline dwellers thriving in variable surface water conditions 

(Leckie, 1987), and indicative of the presence of an OMZ (Boersma and Premoli Silvia, 1989). 

Oxygen isotope values of Hedbergella delrioensis range from -13.0‰1 to -11.42‰ indicating that 

their habitat is planktic and probably within the upper reaches of the thermocline. Carbon isotope 

values range from 1.51‰ to 2.95‰. Oxygen isotope values of Gavelinella dakotensis range from 

-12.56‰ to -9.77‰ and slightly overlap with those of Neobulimina albertensis -12.52‰ to -

11.12‰. Both taxa consistently have more enriched values compared with the three planktic taxa 

indicating that their habitat was benthic. Carbon isotope values of Gavelinella dakotensis range 

from 0.30‰ to 2.17‰ and are distinctly lower than values for Neobulimina albertensis -4.07‰ to 

2.04‰. Both planktic and benthic foraminifera capture the well-known δ13C positive excursion for 

OAE 2. 

 

4.5 Sedimentation Rates 

Sedimentation rates were calculated at the four Western Interior Seaway sites (Figure 8). 

At Escalante (UT), the sedimentation rates varied between 3.0 and 5.0 cm/kyr, with the largest 

rate recorded between bentonites C-D. At Big Water (UT), the sedimentation rates varied 

between 3.7 and 5.4 cm/kyr, with the largest rate recorded between bentonites B-C. At Lohali 

Point (AZ), the sedimentation rates varied between 3.0 and 6.6 cm/kyr, with the largest rate 

recorded between bentonites C-D. At Mesa Verde (CO), the sedimentation rates varied between 

1.2 and 0.4 cm/kyr, with the largest rate recorded between bentonites A-B.   

  



! 14!

CHAPTER 5 
DISCUSSION 

 
 
5.1 Paleoenvironments 

The ratio of planktic to benthic foraminifera (P/B ratio, or %planktic to total foraminifera) is 

commonly used as a qualitative proxy for sea level and proximity to shore (e.g., Leckie and 

Olson, 2003). Proportions of major morphogroups of planktic foraminifera are also useful as 

proxies for water column stratification (Leckie, 1987; Huber et al., 1995; Hart, 1999), including 

triserial and biserial (genera Guembelitria and Heterohelix, opportunistic surface-dwelling genera 

that dominated stressful environments), trochospiral (large, inflated upper thermocline to surface 

dwelling genera that include species of genera Hedbergella and Whiteinella), and keeled taxa 

(species of Rotaliporia, Praeglobotruncana, and Dicarinella generally lived at thermocline depths 

and/or normal marine conditions; e.g., Corfield et al., 1990; Norris and Wilson, 1998; Petrizzo et 

al., 2008). 

The relative portion of infaunal to epifaunal benthic foraminifera are useful as proxies for 

bottom water oxygenation, as well as the availability and quality of organic matter at the sediment 

water interface (e.g., Bernhard, 1986; Sen Gupta and Machain-Castillo, 1993; Kaiho, 1994; 

Jorissen et al., 1995; Jorissen, 1999; Ashckenazi-Polivoda et al., 2010). In this study, the 

dominant calcareous benthic taxa include infaunal Neobulimina albertensis, a presumed low-

oxygen tolerant serial taxon, and epifaunal Gavelinella dakotensis, a flat, trochospirally-coiled 

taxon that may have responded quickly to the input of terrestrial or marine organic matter (Leckie 

et al., 1991, 1998; Gooday, 1993; Thomas and Gooday, 1996; West et al., 1998).  

Few species of benthic foraminifera can survive in dysoxic to anoxic environments; such 

environments consist of low abundances and low diversity assemblages (e.g., Koutsoukos et al., 

1990; Kaiho, 1994; Erbacher et al., 1999; Holbourn and Kuhnt, 1998; Kaiho, 1999; Leckie and 

Olsson, 2003; Gebhardt, 2004; Kuhnt et al., 2005; Friedrich et al., 2009; Friedrich, 2010).  
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Planktic foraminifera with trochospirally arranged tests exhibit a left (sinistral) or a right 

(dextral) coiling direction. These planktic morphotypes have been classically used to constrain 

glacial and interglacial climates based on this temperature-dependent coiling-direction proxy (e.g., 

Ericson, 1959; Bond et al., 1993; Norris and Nishi, 2001). In a recent study by Desmares et al. (in 

review), the relative coiling preference of Muricohedbergella delrioensis was related to sea 

surface temperature (SST) variations across the CTB. 

 

5.1.1 Upper Cenomanian Metoicoceras mosbyense Zone 

The Metoicoceras mosbyense zone (0.0-6.0 m) is completely devoid of planktic 

foraminifera until 6.20 m indicating stressful or uninhabitable conditions in the upper water 

column, perhaps due to low salinity from fluvial/deltaic influx from the Sevier Highlands. Low 

oxygen levels at/or below the sediment water interface have been suggested as an explanation 

for the barren benthic assemblages; however, the lower 6.0 m of the Tropic Shale consists of 

muddy sandstone to sandy or silty mudstones. The siliclastics are likely derived from the Sevier 

Highlands and reworked during the rapid transgression. High TOC values up to 3 wt.% in the 

lower 3.0 m of the USGS SH#1 Core also indicate hypoxic bottom water conditions resulting in 

better preservation of organic matter. Equivalent sections in Escalante (UT), Lohali Point (AZ), 

Mesa Verde (CO), and Rock Canyon (CO) are characterized by very low values (1 wt.%) of TOC, 

but still lack benthic foraminifera (Eischer and Worstell, 1970; Leckie et al., 1998; West et al., 

1998; Caron et al., 2006; Elderbak et al., 2014). 

Surface runoff from the Sevier Highlands provided the basin with higher terrestrial organic 

matter flux and enhanced water column stratification by means of the creation of a low-density 

estuarine-like freshwater cap (Elderbak et al., 2014). In shallow marine environments, the 

development of hypoxic conditions in bottom waters resulted from the discharge of excess 

nutrients and freshwater into the basin leading to enhanced primary productivity and 

eutrophication in the upper water column. Kauffman (1975) suggested low salinity surface waters 

might have inhibited the migration of species into the seaway. Arthur et al. (1985) interpret 26°C 
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surface water temperatures that suggests δ18O indicates a decrease in salinity of surface water of 

22%. Average ocean salinity today is 35‰; with a 22% reduction the salinity becomes 28‰, 

which suggests the presence of a brackish water (estuarine) lid in the seaway. The occurrence of 

agglutinated foraminifera Ammobaculites and Trochamminoides (1.0 to 3.0 m) supports the idea 

of estuarine conditions in southern Utah during the Metoicoceras mosbyense zone (Tibert et al., 

2003, 2013). 

 

5.1.2 Upper Cenomanian Sciponoceras gracile Zone  

During deposition of the Sciponoceras gracile zone (6.0-12.0 m), rising sea level and 

continued transgression (Arthur and Sageman, 2005) brought warm, oxygenated, normal marine 

waters into the basin creating favorable conditions for the development of a calcareous 

foraminiferal assemblage (Figure 5; Eicher and Worstell, 1979; Kauffman, 1984; Eicher and 

Diner, 1985; Leckie et al., 1998; Elderbak and Leckie, in press). A low diversity planktic 

foraminiferal assemblage dominates with Guembelitria with minor proportions of Heterohelix; both 

genera are generalist surface-dwelling taxa characteristic of epicontinental seas across the WIS 

(Figures 4, 9a; Eicher, 1969; Leckie, 1985, 1987; Leckie et al., 1998; Tibert and Leckie, 2013; 

Elderbak et al., 2014). The rapid increase in the proportion of benthic foraminifera (e.g. 

“Benthonic Zone;” Eicher and Worstell, 1970) marks the abrupt ventilation and improvement in 

bottom water conditions at the site, as well as reduced sediment flux. The onset of this 

transgression coincides with the initial positive δ13C excursion marking the onset of OAE 2.  

This benthic oxygenation event is recorded at Lohali Point (AZ), Mesa Verde (CO), Rock 

Canyon (CO), and Cuba (KA) (Leckie et al., 1998; West et al., 1998; Elderbak et al., 2014) and 

represents a synchronous event across the basin (Figure 9b). At Big Water, the “Benthonic Zone” 

is represented by two species of benthic foraminifera that are calcareous with southern affinities: 

Gavelinella dakotensis and Neobulimina albertensis. The two distinct benthic foraminifera are 

characterized as epifaunal (Gavelinella) and infaunal (Neobulimina) based on morphology and 

presumed microhabitat preference.  
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5.1.3 Uppermost Cenomanian Neocardioceras juddii Zone 

The Neocardioceras juddii zone is represented by a sharp increase in epifaunal 

Gavelinella dakotensis and decline in infaunal Neobulimina albertensis (Figure 5). Gavelinella is 

inferred as an opportunistic species capable of taking advantage the new niches opened by the 

transgressing seaway and sporadic/seasonal input of terrestrial and/or marine detrital organic 

matter (Leckie et al., 1998). The “Gavelinella acme” is recorded across the basin and has been 

interpreted as a productivity event (Figure 9b; Leckie et al., 1998; West et al., 1998; Elderbak et 

al., 2014). Leckie et al. (1998) suggested that upwelling of cool nutrient rich waters along the WIS 

forebulge stimulated productivity resulting in an increased delivery of organic matter to the 

seafloor. Supporting this productivity hypothesis are the increased pulses of agglutinated benthics 

Haplophragmium and Trochammioides whose occurrence is often associated with Gavelinella in 

distal shelf environments (Tibert and Leckie, 2013). TOC values increased significantly (to ~3 

wt.%) at Big Water corresponding to increasing Gavelinella abundance suggesting favorable 

conditions for organic matter preservation (Figure 10).  

With continued transgression, warm subtropical Tethyan water masses invaded the 

seaway and widely distribute distinct foraminifera assemblages, which can be diachronously 

traced across the seaway first at Mesa Verde (CO), then Lohali Point (AZ), and ending with Big 

Water and Escalante (UT) (see Figure 9b). Despite the diachronous species changes in the 

benthic assemblages, planktic assemblages also abruptly changed from triserial dominance to 

biserial dominance (Figures 4, 9a). This is an isochronous event recognized across the seaway 

as the “Heterohelix shift”. Initially, the “Heterohelix shift” was hypothesized to be the result of 

increased runoff into the basin or incursion of an oxygen minimum zone (Leckie, 1985; Leckie et 

al., 1991, 1998). Elderbak and Leckie (in press) now suggest that the “Heterohelix shift” records a 

major change in the surface water mass across the southern WIS that reflects greater runoff and 

higher productivity, and less influence from Tethys. In addition, there is a general increase in 

planktic trochospiral morphotypes (Hedbergella and Whiteinella) representative of the deeper, 
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more open marine conditions with greater stratification between the mixed layer and upper 

thermocline. Lack of deep-water dwelling keeled species like Rotalipora suggests shallow depth 

and/or poor normal marine conditions. Cyclical changes in planktic foraminiferal assemblages 

that alternate between Heterohelix dominance and Guembelitria dominance suggests dynamic 

changes in surface water mass conditions along the western margin of the WIS, including 

productivity, during the latest Cenomanian.  

Fluctuating TOC values in the Neocardioceras juddii Zone (<1 to 3 wt.%) may also 

indicate less sporadic/seasonal influx of organic matter and/or poor preservation at the seafloor; 

likewise, an increased influx of biogenic carbonate to the seafloor associated with the incursion of 

warm southern water mass may have created a significant change in the nature of the substrate 

allowing for diverse benthic foraminiferal assemblages (Elderbak et al., 2014). The 

Neocardioceras juddii Zone coincides with the plateau of elevated δ13Corg values marking the 

core of OAE 2 (Figure 6; Sageman et al., 2006). The diachronous “Gavelinella acme” may 

represent the initial WIS record of higher productivity and greater preservation of TOC associated 

with OAE 2 across the seaway. An abrupt change to dominance by Neobulimina albertensis in 

the middle of this zone (17 m in the Big Water outcrop section) likely signals an isochronous 

intensification of dysoxic to anoxic conditions across the seaway recording the peak of OAE 2 in 

the WIS (Leckie et al., 1998; Elderbak et al., 2014; Elderbak and Leckie, in press).    

!
5.1.4 Lowermost Turonian Watinoceras devonense Zone and Lower Turonian Mammites 

nodosoides Zone 

The dramatic ecologic shift that occurred at ~17.0 m in the upper Neocardioceras juddii 

continued into the lower Turonian Watinoceras devonense and Mammites nodosoides zones and 

created a stressed habitat for both planktic and benthic communities. The abrupt increase in the 

infaunal benthic species Neobulimina suggests the incursion of an oxygen minimum zone of 

Tethyan affinity approaching peak transgression of the Greenhorn Sea (Leckie et al., 1998; 

Elderbak and Leckie, in press), or the development of oxygen-poor conditions such as a coastal 
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dead zone (e.g., Elderbak et al., 2014). Approaching peak transgression, bottom water conditions 

were significantly stressed as indicated by the continued dominance of Neobulimina above the 

OAE 2 interval. Surface water conditions may have also become increasingly stressed as 

suggested by the decrease in triserial Guembelitria abundances through the lowermost Turonian 

and decline in trochospiral taxa, especially in the Mammites nodosoides Zone where biserial 

Heterohelix  (Figures 4 and 9a).  

This biofacies may have been associated with the expansion of intermediate dysoxic 

southern waters into the area with continued sea level rise. TOC values gradually decline (<1 

wt.%) as the plateau of positive δ13Corg values began to decline, marking the end of OAE 2. The 

low-oxygen tolerant, infaunal Neobulimina continued to dominate the benthic foraminiferal 

assemblage with sporadic occurrence of epifaunal Gavelinella suggesting dysoxic organic-rich 

conditions at the seafloor (Figure 5). High productivity in surface waters coupled with increased 

sedimentation rates, resulted in rapid depletion of benthic oxygen, to which benthic foraminifera 

were unable to proliferate under anoxic conditions even though food was abundant (West et al., 

1998). Under dysoxic conditions, a critical level of oxygen was more important than food; low-

oxygen tolerant infaunal Neobulimina could proliferate and exclude epifaunal Gavelinella that 

require higher oxygen levels. A comparable trend has been recorded in the central and eastern 

parts of the seaway and denotes impingement of an oxygen minimum zone from the south 

(Leckie et al., 1998; Elderbak et al., 2014).  

 

5.2 Coiling-Direction Reversals and SST Variations  

Coiling-direction reversals among sinistral morphotypes are likely to be due to SST 

variations and are similar to the interpretations by Desmares et al. (in review). In the Western 

Interior Seaway, the first cooling event (Figure 6; S1b) is recorded equivalent LS2 (above 

Limestone Bed 63 in the Hartland Shale GSSP; Caron et al., 2006) the δ18Ocarb values are 

lowered perhaps due to subsaline conditions (as a freshwater estuarine cap or increased surface 

runoff from the Highlands). Following this initial increase in sinistal forms at the beginning of the 
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Sciponoceras gracile zone, a sharp and short drop in the percentage of sinistral forms occurs, 

which is coincident with the first peak “A” of the δ13Corg curve (Figure 6; Pratt and Threlkeld, 1984; 

Pratt, 1985). This decrease in sinistral form could be linked to a major CO2 pulse attributed to 

intense volcanic activity accompanying the initial emplacement of the Caribbean large igneous 

plateau (Snow et al., 2005; Turgeon and Creaser, 2008; Barclay et al., 2010). Notably numerous 

bentonites occur within this episode of intense volcanic activity across the seaway. After this brief 

episode of SST warming, the percentage of sinistral forms increases.  

The high abundance of sinistral morphotypes coincident with high δ18Ocarb values could 

be a response to this decline in global SSTs. This cooling event is well documented across 

northwest Europe and in the North Atlantic, where the positive δ18Ocarb excursion coincides with 

the Plenus Cool Event, a period or extensive bottom-water reoxidation and temporary invasion of 

Boreal fauna throughout the North Atlantic (Jefferies, 1962, 1963; Gale and Christensen, 1996; 

Jarvis et al., 2002, 2011), South America (Demerara Rise; Friedrich et al., 2006), North Africa 

(Morocco; Keller and Pardo, 2004), and in North America (Leckie et al., 1998). This second 

cooling event (S2) is synchronous with the Plenus Cool Event. Additionally, Jarvis et al. (2011) 

attribute ocean cooling to the decrease in pCO2 due to carbon sequestration by marine organic 

productivity and nutrient recycling in continental margins, ultimately leading to the return of anoxia 

(Sinninghe Damste and Koster, 1998; Kuypers et al., 2002; Jenkyns et al., 2007), and black shale 

accumulation (peak OAE 2) during the latest Cenomanian in these settings. 

The rapid decrease of sinistral morphotypes throughout the Neocardioceras juddii zone 

suggests that with continued volcanogenic CO2 increased SSTs once again during the main 

interval of OAE 2. This renewed atmospheric CO2 could have overridden the initial drawdown 

effects stated by Jarvis et al. (2011). The core of the OAE 2 interval is marked by the “Heterohelix 

shift” in the WIS. Following the brief recovery “B” of the main isotopic δ13Corg excursion (Figure 6; 

Pratt and Threlkeld, 1984; Pratt, 1985) the low abundance of sinistral morphotypes (identified as 

dextral warming events a, b, c, d) indicates warm SSTs during the early Turonian across the 

seaway. This progressive continued decrease of sinistral forms throughout the Neocardioceras 



! 21!

juddii zone coincides with the sustained plateau “C” of the δ13Corg curve (Figure 6; Pratt and 

Threlkeld, 1984; Pratt, 1985), which spans the warm interval of OAE 2. 

 

5.3 Sedimentation Regimes Across the WIS 

The Sevier Orogeny was a narrow, continuous fold and thrust belt along the western 

margin of the seaway (Parrish, 1993). Tectonic loading created a large, asymmetric foreland 

basin, where the position of the foredeep and forebuldge contributed greatly to the extent of 

sediment accumulation at each site (Figure 8). Apart from depth of the basin, the shelf slope and 

shoreline position greatly contributed to the extent of sedimentation at each site. Escalante and 

Big Water (UT) were positioned in the foredeep, and experienced higher sedimentation rates than 

Lohali Point (AZ) and Mesa Verde (CO) that were positioned along the topographic high of the 

forebuldge. With the transgressing Greenhorn Sea, the sedimentation rates the sites decreased, 

while the shoreline moved further westward. An exception to this is perhaps the proximity of 

Escalante to the Sevier Highlands and the movement of Lohali Point from the forebuldge into the 

foredeep. The increase in sedimentation after Bentonite C suggests that subsidence in the 

foredeep created uplift at the forbulge and the dramatic increase in sedimentation at Lohali Point 

(Figure 8). 

 

5.4 Relative Sea Level Variability/Sequence Stratigraphy  

Higher frequency relative sea level trends across the Cretaceous Western Interior 

Seaway are well known and have been studied extensively in Utah (Leithold, 1994; Elder et al., 

1994; Laurin and Sageman, 2007). Given its proximity along the western margin, the area 

experienced episodic subsidence that accompanied high rates of sediment accumulation in 

marginal-marine environments providing a highly detailed record of shoreline movements (Laurin 

and Sageman, 2007). Leithold (1994) identified numerous fifth-order parasequences across the 

region. Upward within each parasequence the sediment grain size increases and weight percent 
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of carbonate decreases; across the parasequence boundary, or marine flooding surface, grain 

size decreases and carbonate content increases, indicating an episode of relative deepening.  

Following this initial recognition, Elder et al. (1994) proposed that these parasequence 

boundaries, or rapid transgressive events, could be traced eastward across the basin into 

discrete limestone concretion horizons and limestone beds in the central parts of the WIS. Peaks 

in carbonate represent periods of maximum flooding along the western margin coinciding with 

increased % P. An integrated model of orbitally induced changes in sea level, carbonate 

productivity, and terrigenous sediment input provide a plausible explanation of the of the apparent 

basin wide cyclic sedimentation. Planktic and benthic foraminiferal population trends (see Figure 

11), as well as sedimentary features (macrofossil debris, calcispheres, concretion horizons, etc.) 

record relative sea level changes across the Tropic Shale and serve to augment Elder et al. 

(1994) conclusions that rhythmic deposition is primarily orbital forcing of insolation and climate. 

The development of shoreface parasequences has been attributed to Milankovitch 

climate forcing of sediment supply and eustasy seem a plausible cause for the apparent relative 

changes in sea level associated with cyclic sedimentation at the basin margin and carbonate 

cycles in the basin center (Elder et al., 1994). Obliquity amplified during the duration of OAE 2 

record ~40 kyr cycles of the fifth-order parasequence development. During the dry phase of the 

orbital cycle warm, clear water periods may have favored planktic carbonate productivity and 

enhanced carbonate deposition. Marine flooding events resulted in increased %P, corresponding 

to the deposition of limestone beds across the seaway. During the wet phase of the orbital cycle 

high rainfall and surface runoff generated strandline progradation, and records the dilution of 

foraminifera and accumulation of clay-rich sediments across the seaway. 

With rising sea level, expanded shelf areas provide increased opportunities for neritic and 

benthic foraminifera to gain access to the pelagic realm. There is no microfossil evidence for 

parasequences across the Metoicoceras mosbyense zone. Throughout the 4.0 m interval the 

sediment consists of fine-grained sand, an indication of marginal environments with restricted 

marine affinity into the locale. Agglutinated benthic foraminifera appear briefly during a slightly 
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muddy interval between 1.0 to 3.0 m. The appearance of Ammobaculites and Trochamminoides 

indicate the waters were estuarine (Tibert et al., 2013). As the sea level continued to rise during 

the late Cenomanian Sciponoceras gracile zone, these conditions abated, and gave way to the 

influx of subtropical Tethyan waters and more marine fauna.  

There are four episodes of rapid transgression; following the abrupt and dramatic %P 

increases (identified as Cycle 1 in Figure 11). Following these transgressive pulses, the P/B ratio 

shows a stepwise decrease in %P, which record a period of overall strand-plain progradation of 

the shoreline. The first significant transgressive event is represented by flooding surface 

concurrent with LS2 followed by a parasequence as it correlates with the lithological and faunal 

changes at the base of the Sciponoceras gracile zone. Similarly the position of LS3 and LS4 are 

concurrent with episodes of rapid transgression, in which two more parasequences record an 

overall period of strand-plain progradation interrupted by two intense pulses of rapid 

transgression similar to interpretations by Elder et al. (1994). These relative abundance peaks of 

planktic foraminifera occur with high bulk carbonate percentages, and serve as evidence of 

maximum flooding events (West et al., 1998; Tibert et al., 2003).  

With the rising sea, sedimentation continued to increase giving way to planktic and 

benthic foraminiferal population trends. The dramatic increase in the percentage of planktic 

foraminifera during this interval is presumably caused by the improving bottom water conditions 

created by rising sea level (Leckie et al., 1998; Lowery et al., 2014). This time is conformable and 

is generally agreed to represent a isochronous flooding surface deposited as sea level rose 

rapidly and pelagic carbonate sedimentation began (e.g. Elder et al., 1994; Tibert et al., 2003; 

Meyers and Sageman, 2004; Arthur and Sageman, 2005; Laurin and Sageman, 2007). Following 

episodic rapid transgression events, the shoreline retreated and the benthic foraminifera who are 

more adapt to live and thrive in the muddy, less saline surface waters (greater runoff/estuarine 

cap) show a relative increase in abundance; whereas planktic foraminifera retreat to more distal 

deep marine waters.   
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Several transgressive flooding events are condensed within the Neocardioceras juddii 

zone. This interval marks fifth-order parasequences superposed on fourth-order cyclic trends 

(identified as Cycle 2 in Figure 11) with a decrease in benthic foraminifera toward maximum 

flooding surfaces. There are roughly eight episodes of rapid transgression; following the abrupt 

and dramatic %P increases. The overall decrease in P/B ratio implies that the marine conditions 

were less favorable to the planktic community during the main OAE 2 interval. Increased organic 

matter productivity is highly sensitive to sea level fluctuations, especially in surface waters that 

vary seasonally in productivity and in changing water masses (Leckie et al., 1998). The flux of 

organic matter to the seafloor will greatly stimulate benthic productivity, and although the flux of 

planktic foraminifera will be high, there is a greater increase in the relative abundance of benthic 

foraminifera.  

By the lower Turonian Watinoceras devonense zone there is an increase in the relative 

percentage of planktics, suggesting a return to more normal marine conditions at peak 

transgression of the Greenhorn Sea. There are three episodes of rapid transgression; following 

the abrupt and dramatic %P increases (Figure 11). The late Cenomanian-early Turonian sea level 

rise brought increased communication with the subtropical Tethys Ocean and decreased 

stratification, eventually culminating in a dramatic increase in normal marine taxa and benthic 

foraminifera and temporarily ventilation of the water column (Eicher and Worstell, 1970; Leckie, 

1985; Elderbak et al., 2014; Lowery et al., 2014). The spatial and temporal arrangement of P/B 

ratio of foraminifera compared to the Total Foraminifera, Total Calcispheres, and Carbonate 

Content indicates that during an overall transgressive period in the Greenhorn Cycle there were 

several sets of seaward stepping parasequences. These sets were separated by transgressive 

flooding events of greater magnitude than the transgressive events bounding the parasequences 

within the sets. These flooding surfaces can be physically trace basinward into discrete 

fossiliferous concretion horizons and limestone-shale couplets further east (Elder, 1991; Laurin 

and Sageman, 2007).    
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CHAPTER 6 
CONCLUSIONS 

 
 

Upper Cenomanian-middle Turonian (~94.4-93.6 Ma) Tropic Shale of south-central Utah 

represents a prodeltaic muddy shelf situated in the region of an active foredeep adjacent to the 

Sevier fold and thrust belt. The Tropic Shale records the diachronous transgression of the third-

order Greenhorn Sea during the late Cenomanian, and a shallow water record of Oceanic Anoxic 

Event 2 (OAE 2). The Greenhorn Sea was influenced by cooler Boreal water masses from the 

north and warmer, more normal marine Tethyan water masses from the south. The Tropic Shale 

is associated with a low diversity assemblage that shows major changes in the variable 

abundances of planktic and benthic foraminifera. Changes in coiling direction of trochospirally 

coiled planktic foraminifera (mainly Hedbergella) may signal changes in these two water masses 

across the area. The temporal and spatial distribution of foraminifera result from an intricate 

relationship among changing water masses, flux of terrestrial and marine organic matter, reduced 

benthic oxygenation, sea surface temperature variations, and consequent biotic turnover.  

Agglutinated benthic foraminifera of the Metiococeras mosbyense zone record inner shelf 

conditions early in the Greenhorn transgression. The dominance of triserial planktic Guembelitria 

cenomana in the upper Cenomanian Sciponoceras gracile zone suggests reduced salinities and 

elevated productivity in the shelf waters of the western Greenhorn Sea. The appearance of 

calcareous benthics at the base of the S. gracile zone coincides with rapid and widespread 

improvement of seaway circulation and ventilation with rising sea level. This interval is equivalent 

to the diverse “Benthonic Zone” elsewhere in the seaway, and is correlative with the Plenus Cold 

Event of northwest Europe (Elderbak and Leckie, in press). Elevated percentages of sinistrally 

coiled planktic foraminifera suggest the stronger influence of Boreal surface waters at this time.  

An abrupt increase in the biserial planktic genus Heterohelix at the Sciponoceras 

gracile/Neocardioceras juddii zone boundary marks a rapid change in surface ocean conditions; 

the “Heterohelix shift” is an isochronous event that is recognized across the Western Interior Sea 
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and is likely related to the environmental effects of OAE 2, including elevated productivity and 

development of water column anoxia. Dextrally coiled planktic foraminifera dominate the 

assemblages suggesting the greater influence of Tethyan surface waters at the time of the 

“Heterohelix shift”. An acme of the opportunistic epifaunal benthic Gavelinella dakotaensis 

predates the “Heterohelix shift” at Big Water, whereas in the center of the seaway, the 

“Gavelinella acme” postdates the “Heterohelix shift” suggesting that a zone of higher productivity 

was diachronous from the basin center to the west coast as the WIS record of OAE 2 intensified. 

An abrupt increase in the opportunistic infaunal Neobulimina albertensis in the uppermost 

Cenomanian at Big Water (17.0 m in the section) signals the development or incursion of an 

oxygen minimum zone (OMZ) in the seaway associated with the peak of OAE 2. A similar shift to 

Neobulimina dominance is observed across the seaway, although the timing may be somewhat 

diachronous within the N. juddii Zone (Leckie et al., 1998; Elderbak et al., 2014). The continued 

dominance of Neobulimina beyond the duration of OAE 2 suggests that anoxia or dysoxia 

persisted in the western seaway through the time of peak transgression in the early Turonian. 

High productivity in surface waters, coupled with higher sedimentation rates, resulted in rapid 

depletion of benthic oxygen, to which epifaunal Gavelinella species were unable to proliferate 

under anoxic conditions despite the abundance of food.  

A highly detailed record of shoreline movements was recorded in the prodeltaic muddy 

shelf deposits of the Tropic Shale. Within these sediments, we recognize numerous fifth-order 

parasequences superposed on fourth-order cyclcity as identified by Leithold (1994) and Elder et 

al. (1994). The positions of parasequence boundaries within the fine-grained successions of the 

Tropic Shale are best recorded in the planktic/benthic ratio, or %planktic data. We interpret the 

presence of fifteen fifth-order parasequences as evidence of climate cyclicity affecting continental 

runoff (e.g., Laurin and Sageman, 2007), productivity, or circulation along the western margin of 

the seaway.  
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Table 1: Planktic Foraminifera Raw Data  
 

Sample 
Depth Planktic Morphotypes     

Sample 
Depth Planktic Morphotypes     

(Meters) Triserial Biserial Trochospiral 
Planktic 

Total (Meters) Triserial Biserial Trochospiral 
Planktic 

Total 
0 0 0 0 0 13.1 43 95 28 166 

0.2 0 0 0 0 13.2 61 42 10 113 
0.4 0 0 0 0 13.3 112 82 8 202 

0.6 0 0 0 0 13.4 32 101 2 135 
0.8 0 0 0 0 13.5 4 48 4 56 

1 0 0 0 0 13.6 0 21 0 21 

1.2 0 0 0 0 13.7 0 0 0 0 
1.4 0 0 0 0 13.8 4 1 1 6 

1.6 0 0 0 0 13.9 3 0 0 3 
1.8 0 0 0 0 14 0 9 2 11 

2 0 0 0 0 14.1 0 37 9 46 

2.2 0 0 0 0 14.2 0 0 0 0 
2.4 0 0 0 0 14.3 0 0 0 0 

2.6 0 0 0 0 14.4 89 6 0 95 
2.8 0 0 0 0 14.5 0 0 0 0 

3 0 0 0 0 14.6 0 0 0 0 
3.2 0 0 0 0 14.7 0 0 0 0 

3.4 0 0 0 0 14.8 375 119 25 519 

3.6 0 0 0 0 14.9 0 0 0 0 
3.8 0 0 0 0 15 263 80 25 368 

4 0 0 0 0 15.2 17 28 12 57 
4.2 0 0 0 0 15.4 11 10 2 23 
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4.4 0 0 0 0 15.6 57 5 10 72 
4.6 0 0 0 0 15.8 22 2 4 28 
4.8 0 0 0 0 16 9 8 5 22 

5 0 0 0 0 16.2 0 19 5 24 
5.05 0 0 0 0 16.4 5 27 5 37 

5.1 0 0 0 0 16.6 0 10 1 11 
5.15 0 0 0 0 16.8 14 36 25 75 

5.2 0 0 0 0 17 14 0 4 18 
5.25 0 0 0 0 17.2 46 0 2 48 

5.3 0 0 0 0 17.4 91 8 24 123 
5.35 0 0 0 0 17.6 124 6 28 158 

5.4 0 0 0 0 17.8 176 31 86 293 
5.45 0 0 0 0 18 148 11 33 192 

5.5 0 0 0 0 18.2 12 29 6 47 
5.55 0 0 0 0 18.4 9 12 8 29 

5.6 0 0 0 0 18.6 21 49 58 128 
5.65 0 0 0 0 18.8 6 3 23 32 

5.7 0 0 0 0 19 4 3 2 9 
5.75 0 0 0 0 19.2 91 7 42 140 

5.8 0 0 0 0 19.4 78 6 30 114 
5.85 0 0 0 0 19.6 68 9 38 115 

5.9 0 0 0 0 19.8 67 0 25 92 
5.95 0 0 0 0 20 25 7 24 56 

6 0 0 0 0 20.2 25 7 19 51 
6.05 0 0 0 0 20.4 38 13 44 95 

6.1 0 0 0 0 20.6 39 78 66 183 
6.15 0 0 0 0 20.8 129 59 72 260 
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6.2 1 0 0 1 21 139 86 97 322 
6.25 0 0 3 3 21.2 145 69 71 285 

6.3 0 0 8 8 21.4 100 53 48 201 
6.35 24 0 15 39 21.6 133 84 63 280 

6.4 5 0 5 10 21.8 96 43 41 180 
6.45 6 0 0 6 22 52 49 48 149 

6.5 0 0 0 0 22.2 18 47 64 129 
6.55 3 0 0 3 22.4 17 49 64 130 

6.6 0 0 0 0 22.6 10 40 61 111 
6.65 19 3 1 23 22.8 16 28 46 90 

6.7 26 0 0 26 23 6 20 37 63 
6.75 0 0 0 0 23.2 10 16 20 46 

6.8 47 0 0 47 23.4 10 47 18 75 
6.85 0 0 0 0 23.6 39 60 51 150 

6.9 0 0 0 0 23.8 24 37 50 111 
6.95 0 0 0 0 24 30 53 26 109 

7 1 0 0 1 24.2 80 36 24 140 
7.05 15 0 3 18 24.4 13 28 32 73 

7.1 6 0 0 6 24.6 18 51 31 100 
7.15 2 0 1 3 24.8 11 40 44 95 

7.2 0 0 0 0 25 2 51 44 97 
7.25 0 0 0 0 25.2 3 37 30 70 

7.3 0 0 0 0 25.4 11 54 66 131 
7.35 0 0 0 0 25.6 30 35 68 133 

7.4 0 0 0 0 25.8 11 37 60 108 
7.45 0 0 0 0 26 32 55 47 134 

7.5 2 0 0 2 26.2 40 40 52 132 
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7.55 14 0 0 14 26.4 4 52 27 83 
7.6 36 0 0 36 26.6 6 52 34 92 

7.65 5 0 0 5 26.8 4 43 16 63 
7.7 8 0 0 8 27 8 47 11 66 

7.75 1 0 0 1 27.2 9 99 36 144 
7.8 3 0 0 3 27.4 7 71 56 134 

7.85 0 0 0 0 27.6 7 31 40 78 
7.9 105 4 0 109 27.8 30 26 38 94 

7.95 42 0 0 42 28 2 9 10 21 
8 30 0 0 30 28.2 4 75 27 106 

8.05 15 0 0 15 28.4 10 75 23 108 
8.1 12 0 0 12 28.6 0 2 1 3 

8.15 24 0 0 24 28.8 5 37 14 56 
8.2 61 3 0 64 29 1 13 8 22 

8.25 6 0 0 6 29.2 0 3 2 5 
8.3 17 0 0 17 29.4 0 2 4 6 

8.35 13 1 1 15 29.6 0 8 1 9 
8.4 30 0 0 30 29.8 0 0 0 0 

8.45 52 4 2 58 30 0 0 0 0 
8.5 49 1 0 50 30.2 12 35 35 82 

8.55 147 2 0 149 30.4 9 39 50 98 
8.6 97 3 0 100 30.6 5 54 32 91 

8.65 85 0 0 85 30.8 3 35 35 73 
8.7 103 4 0 107 31 3 56 50 109 

8.75 40 10 15 65 31.2 4 30 50 84 
8.8 88 13 37 138 31.4 15 50 49 114 

8.85 31 4 9 44 31.6 19 41 50 110 
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8.9 0 0 0 0 31.8 4 34 17 55 
8.95 0 0 0 0 32 0 0 0 0 

9 150 26 27 203 32.2 0 0 0 0 
9.1 130 10 10 150 32.4 1 38 11 50 
9.2 152 0 3 155 32.6 0 62 16 78 
9.3 111 14 1 126 32.8 1 84 16 101 
9.4 58 18 0 76 33 0 17 8 25 
9.5 105 17 0 122 33.2 0 17 20 37 
9.6 44 5 0 49 33.4 8 31 12 51 
9.7 5 0 0 5 33.6 0 33 8 41 
9.8 0 0 0 0 33.8 6 103 3 112 
9.9 6 0 0 6 34 10 43 9 62 
10 10 0 0 10 34.2 0 51 7 58 

10.1 17 7 0 24 34.4 3 43 13 59 
10.2 117 15 0 132 34.6 2 47 9 58 
10.3 300 45 0 345 34.8 2 34 11 47 
10.4 135 41 6 182 35 5 18 9 32 
10.5 86 24 9 119 35.2 2 28 5 35 
10.6 137 28 47 212 35.4 0 0 0 0 
10.7 108 5 12 125 35.6 47 81 39 167 
10.8 115 3 8 126 35.8 24 113 16 153 
10.9 211 11 9 231 36 25 109 28 162 

11 119 5 3 127 36.2 18 65 15 98 
11.1 31 7 1 39 36.4 5 51 22 78 
11.2 45 20 3 68 36.6 4 47 14 65 
11.3 27 8 3 38 36.8 7 34 14 55 
11.4 27 12 2 41 37 2 11 4 17 
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11.5 10 0 0 10 37.2 5 43 5 53 
11.6 80 0 0 80 37.4 23 73 17 113 
11.7 183 6 3 192 37.6 27 77 27 131 
11.8 308 25 2 335 37.8 6 63 16 85 
11.9 82 40 0 122 38 22 95 27 144 

12 100 180 3 283 38.2 11 59 18 88 
12.1 70 248 3 321 38.4 9 19 14 42 
12.2 59 163 7 229 38.6 1 14 1 16 
12.3 60 165 7 232 38.8 13 48 17 78 
12.4 47 49 2 98 39 13 23 11 47 
12.5 192 63 7 262 39.2 19 36 18 73 
12.6 72 64 1 137 39.4 8 24 13 45 
12.7 32 21 0 53 39.6 1 9 3 13 
12.8 15 32 0 47 39.8 4 17 8 29 
12.9 23 21 3 47 40 2 7 1 10 

13 22 75 2 99 40.2 3 38 22 63 
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Table 2: Benthic Foraminifera Raw Data 
 

Sample 
Depth Benthic Morphotypes  !! !!

Sample 
Depth Benthic Morphotypes  !! !!

(Meters) Neobulimina Gavelinella Agglutinates 
Benthic 

Total (Meters) Neobulimina Gavelinella Agglutinates 
Benthic 

Total 
0 0 0 0 0 13.1 44 86 0 130 

0.2 0 0 0 0 13.2 82 18 0 100 
0.4 0 0 0 0 13.3 148 20 0 168 

0.6 0 0 0 0 13.4 135 74 0 209 
0.8 0 0 0 0 13.5 91 63 2 156 

1 0 0 0 0 13.6 28 15 0 43 

1.2 0 0 0 0 13.7 0 6 12 18 
1.4 0 0 15 15 13.8 22 2 8 32 

1.6 0 0 21 21 13.9 64 18 28 110 
1.8 0 0 11 11 14 17 7 11 35 

2 0 0 4 4 14.1 12 40 12 64 

2.2 0 0 45 45 14.2 0 11 0 11 
2.4 0 0 31 31 14.3 5 5 10 20 

2.6 0 0 16 16 14.4 5 18 10 33 
2.8 0 0 19 19 14.5 0 0 0 0 

3 0 0 13 13 14.6 0 0 0 0 
3.2 0 0 0 0 14.7 0 0 0 0 

3.4 0 0 0 0 14.8 19 54 0 73 

3.6 0 0 0 0 14.9 0 0 0 0 
3.8 0 0 0 0 15 75 60 0 135 

4 0 0 0 0 15.2 24 48 0 72 
4.2 0 0 0 0 15.4 13 28 0 41 
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4.4 0 0 0 0 15.6 11 46 0 57 
4.6 0 0 0 0 15.8 8 21 0 29 
4.8 0 0 0 0 16 13 38 0 51 

5 0 0 0 0 16.2 6 34 0 40 
5.05 0 0 0 0 16.4 24 17 8 49 

5.1 0 0 0 0 16.6 17 36 0 53 
5.15 0 0 0 0 16.8 249 55 0 304 

5.2 0 0 0 0 17 317 13 0 330 
5.25 0 0 0 0 17.2 280 7 2 289 

5.3 0 0 0 0 17.4 247 8 2 257 
5.35 0 0 0 0 17.6 149 11 0 160 

5.4 0 0 0 0 17.8 163 34 0 197 
5.45 0 0 0 0 18 159 8 2 169 

5.5 0 0 0 0 18.2 340 60 18 418 
5.55 0 0 0 0 18.4 320 37 11 368 

5.6 0 0 0 0 18.6 367 22 5 394 
5.65 0 0 0 0 18.8 330 43 11 384 

5.7 0 0 0 0 19 323 18 6 347 
5.75 0 0 0 0 19.2 325 37 1 363 

5.8 0 0 0 0 19.4 207 22 4 233 
5.85 0 0 0 0 19.6 300 32 4 336 

5.9 0 0 0 0 19.8 264 25 9 298 
5.95 0 0 0 0 20 323 29 6 358 

6 0 0 0 0 20.2 329 19 2 350 
6.05 0 0 0 0 20.4 376 11 1 388 

6.1 0 0 0 0 20.6 221 16 0 237 
6.15 0 1 0 1 20.8 167 18 0 185 
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6.2 89 2 0 91 21 209 31 0 240 
6.25 332 0 0 332 21.2 262 34 2 298 

6.3 292 0 0 292 21.4 232 16 3 251 
6.35 256 0 0 256 21.6 215 38 2 255 

6.4 57 0 0 57 21.8 176 15 0 191 
6.45 12 0 0 12 22 162 26 0 188 

6.5 0 0 0 0 22.2 165 18 1 184 
6.55 3 0 0 3 22.4 193 19 0 212 

6.6 0 0 0 0 22.6 236 20 0 256 
6.65 5 0 0 5 22.8 262 46 1 309 

6.7 4 0 0 4 23 215 38 0 253 
6.75 0 0 0 0 23.2 237 35 1 273 

6.8 13 0 0 13 23.4 225 70 1 296 
6.85 2 0 0 2 23.6 139 77 0 216 

6.9 0 0 0 0 23.8 213 58 1 272 
6.95 0 0 0 0 24 246 36 1 283 

7 0 0 0 0 24.2 213 43 0 256 
7.05 0 2 2 4 24.4 201 26 0 227 

7.1 0 1 0 1 24.6 158 42 0 200 
7.15 0 0 0 0 24.8 257 43 2 302 

7.2 0 0 0 0 25 217 64 0 281 
7.25 0 0 0 0 25.2 213 11 0 224 

7.3 0 0 0 0 25.4 231 26 1 258 
7.35 0 0 0 0 25.6 187 66 3 256 

7.4 0 0 0 0 25.8 118 83 0 201 
7.45 0 0 0 0 26 136 30 0 166 

7.5 0 0 0 0 26.2 139 32 4 175 
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7.55 0 0 0 0 26.4 176 44 1 221 
7.6 0 0 0 0 26.6 191 24 3 218 

7.65 2 1 1 4 26.8 241 22 7 270 
7.7 1 0 0 1 27 234 2 0 236 

7.75 0 0 0 0 27.2 133 63 0 196 
7.8 0 0 0 0 27.4 120 46 2 168 

7.85 0 0 0 0 27.6 202 20 3 225 
7.9 15 1 0 16 27.8 180 26 1 207 

7.95 0 0 0 0 28 71 15 0 86 
8 12 0 0 12 28.2 147 61 3 211 

8.05 5 0 0 5 28.4 158 40 0 198 
8.1 12 1 0 13 28.6 88 14 5 107 

8.15 21 0 0 21 28.8 209 34 1 244 
8.2 29 0 0 29 29 207 37 5 249 

8.25 12 1 0 13 29.2 35 7 4 46 
8.3 9 0 0 9 29.4 70 13 5 88 

8.35 10 0 0 10 29.6 32 19 2 53 
8.4 39 2 1 42 29.8 0 0 0 0 

8.45 43 4 0 47 30 0 0 0 0 
8.5 36 30 18 84 30.2 144 16 0 160 

8.55 153 0 0 153 30.4 212 23 1 236 
8.6 158 1 0 159 30.6 236 63 0 299 

8.65 218 2 0 220 30.8 228 14 0 242 
8.7 163 1 0 164 31 177 45 0 222 

8.75 33 2 0 35 31.2 217 75 0 292 
8.8 94 17 0 111 31.4 148 72 0 220 

8.85 52 10 0 62 31.6 215 54 0 269 



! 38!

8.9 0 0 0 0 31.8 226 19 0 245 
8.95 0 0 0 0 32 0 0 0 0 

9 68 35 0 103 32.2 0 0 0 0 
9.1 60 17 0 77 32.4 291 27 0 318 
9.2 74 16 0 90 32.6 310 14 0 324 
9.3 73 8 1 82 32.8 248 24 0 272 
9.4 102 19 0 121 33 211 64 0 275 
9.5 134 10 0 144 33.2 229 44 0 273 
9.6 234 7 0 241 33.4 252 38 0 290 
9.7 5 0 0 5 33.6 173 86 0 259 
9.8 0 0 0 0 33.8 167 23 0 190 
9.9 4 0 0 4 34 282 28 0 310 
10 160 36 18 214 34.2 223 25 0 248 

10.1 110 56 46 212 34.4 209 50 0 259 
10.2 119 88 67 274 34.6 220 23 0 243 
10.3 165 105 20 290 34.8 201 53 0 254 
10.4 336 85 14 435 35 231 39 0 270 
10.5 318 106 7 431 35.2 302 50 0 352 
10.6 209 83 1 293 35.4 0 0 0 0 
10.7 62 101 0 163 35.6 162 31 0 193 
10.8 137 83 0 220 35.8 136 18 0 154 
10.9 266 104 4 374 36 219 21 0 240 

11 158 45 0 203 36.2 242 36 0 278 
11.1 171 42 0 213 36.4 169 59 0 228 
11.2 241 63 0 304 36.6 208 37 0 245 
11.3 260 53 0 313 36.8 158 43 0 201 
11.4 175 32 0 207 37 96 20 0 116 



! 39!

11.5 0 3 0 3 37.2 154 9 0 163 
11.6 0 30 0 30 37.4 185 14 0 199 
11.7 20 78 0 98 37.6 151 21 0 172 
11.8 11 61 0 72 37.8 204 16 0 220 
11.9 20 72 0 92 38 170 18 0 188 

12 77 105 0 182 38.2 199 16 0 215 
12.1 81 145 0 226 38.4 111 14 0 125 
12.2 75 81 0 156 38.6 114 12 0 126 
12.3 56 64 0 120 38.8 198 24 0 222 
12.4 56 101 0 157 39 143 18 0 161 
12.5 118 64 0 182 39.2 223 40 0 263 
12.6 112 39 0 151 39.4 108 33 0 141 
12.7 67 46 0 113 39.6 144 14 0 158 
12.8 69 60 0 129 39.8 121 22 0 143 
12.9 70 61 0 131 40 215 13 0 228 

13 60 112 0 172 40.2 66 19 0 85 
!
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APPENDIX B 
 

FIGURES  
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Figure 1: Paleogeographic reconstruction of the Colorado Plateau from the Late 
Cretaceous. Paleogeographic map indicates that the southwestern mid-continent U.S. lay 
at approximately 40-30˚N and 114-108˚W (Ziegler et al., 1987; McCabe and Parrish, 1992). 
To the west of the middle–Turonian shoreline, the Sevier and Mogollan Highlands 
provided significant paleotopographic highs (Parrish, 1993). To the east, a relatively 
shallow seaway extended from Alaska to Mexico connecting the Boreal Sea and Tethys 
Ocean (Kauffman, 1977, 1984). The map depicts site locations and their relative position to 
the GSSP section at Rock Canyon, CO.!
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Figure 2: Chronostratigraphic correlations depicted between southern Utah and the Cenomanian–Turonian GSSP near Pueblo, 
Colorado. Third-order and fourth-order relative sea level cycles are recognized across the Colorado Plateau based on Leithold (1994). 
Correlation and stage boundary based on our own data, as well as figures and descriptions from published datasets (see figure for 
references). Bentonites A, B, C, and D are noted from Elder (1988, 1991). Ages based on Meyers et al. (2012a).!
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Figure 3: Stratigraphic section near Big Water, Utah. Tropic Shale consists primarily of 
calcareous shale and mudstone representing muddy prodeltaic depositional 
environments of the western margin of the seaway. (1.) Tropic Shale forms broad 
undulating flats with gentle slopes across the field area increasing gradient up-section. 
(2.) Limestone beds 3 and 4 depicted. (3.) Note aragonite composition (shiny ‘mother of 
pearl’) of ammonite recovered from outcrop.!
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Figure 4: Planktic foraminiferal assemblage data from the Big Water, Utah. Includes stratigraphic outcrop description, %Planktics 
(planktic/benthic ratio), %Triserial (Guembelitria cenomana), %Biserial (Heterohelix spp.), and %Trochospiral (Hedbergella spp. and 
Whiteinella spp.). Note the position of the four main bentonite A-D (red lines).
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Figure 5: Benthic foraminiferal assemblage data from the Big Water, Utah. Includes stratigraphic outcrop description, %benthics 
(benthic/total foraminifera), %Neobulimina albertensis, %Gavelinella dakotensis, and %Agglutinates. Note the position of the four major  
bentonite A-D (red lines). 
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Figure 6: Summary figure showing high frequency coiling reversals of %Sinistral Trochospiral spp. and δ  13Corg and δ18Ocarb from the 
core. Note the general structure of the δ  13Corg excursion including the initial enrichment (“A”), a brief recovery (“B”), and a sustained 
plateau (“C”), first described by Pratt and Threlkeld, (1984). Carbon isotope “ramp up” prior to the event is coincident with the 
Benthonic Zone. Note the general structure of the δ18Ocarb in relation to cooling episodes of sinistral forms.  
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Figure 7: A comparative stable isotope (δ18O and δ13C) study of well-preserved specimens of planktic and benthic foraminifera. Planktic 
foraminifera include (biserial; Heterohelix globulosa, triserial; Guembelitria cenomana, trochospiral; Hedbergella delrioensis) and 
benthic foraminifera include (Gavelinella dakotensis, Neobulimina albertensis) enabled us to determine the preferred depth habitat and 
mode of life for each specimen. Depth-stratified foraminiferal assemblages from marine sites exhibit a trend of increasing δ18O and 
decreasing δ13C with depth (Fairbanks et al., 1982).!
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Figure 8: Sedimentation rates through the Cenomanian–Turonian boundary interval. Sites 
include Escalante (UT), Big Water (UT), Lohali Point (AZ), and Mesa Verde (CO). 
Sedimentation rates are determined based on bentonite ages from Meyers et al. (2012). 
The more proximal Escalante and Big Water generally have higher rates. Mesa Verde was 
situated on the forebulge during the time of the Cenomanian-Turonian boundary and 
experienced greatly reduced rates of sediment accumulation. Note the abrupt increase in 
sedimentation rate C-D at Lohali Point.  
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Figure 9a: Proportion of planktic morphotypes to total planktic foraminifera through the 
Cenomanian–Turonian boundary interval. Sites include Escalante (UT), Big Water (UT), 
Lohali Point (AZ), and Mesa Verde (CO). Published datasets from Leckie et al. (1998). 
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Figure 9b: Proportion of benthic species to total benthic foraminifera through the 
Cenomanian–Turonian boundary interval. Sites include Escalante (UT), Big Water (UT), 
Lohali Point (AZ), and Mesa Verde (CO). Published datasets from Leckie et al. (1998).!
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Figure 10: Comparison of %TOC and benthic foraminifer abundances during OAE 2. Initial increase in TOC values corresponds to 
increasing abundance of %Gavelinella dakotensis until 17.0 m, where Gavelinella abruptly drops off and infaunal Neobulimina 
albertensis dominates the assemblages. 
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Figure 11: Comparison of bulk carbonate (blue line) and foraminifera (planktic and benthic total abundances) during the OAE 2 event 
from Big Water, Utah. Bulk carbonate reflects the transgression of the sea with the deepening upwards section recording the influx of 
normal marine taxa into the basin. Note the annotations for transgression-regression Cycles 1-2.!
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Plate 1: Planktic foraminifera from the Tropic Shale. a-c. Guembelitria cenomana 14.48 m; 
d-e. Heterohelix globulosa 13.4 m; f. H. globulosa 14.8 m; g. Hedbergella delrioensis 23.4 
m; h-i. H. delrioensis 25.6 
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Plate 2: Benthic foraminifera from the Tropic Shale. a. Gavelinella dakotensis 10.4 m; b-d. 
G. dakotensis 14.8 m; e. G. dakotensis 23.4 m; f. G. dakotensis 25.6 m; g. Neobulimina 
albertensis 6.35 m; h. N. albertensis 18.6 m; i. N. albertensis 23.4 m; j. N. albertensis 25.6 
m; k. N. albertensis 28.2 m. 
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