
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

March 2016

Accelerated Iterative Algorithms with Asynchronous Accumulative Accelerated Iterative Algorithms with Asynchronous Accumulative

Updates on a Heterogeneous Cluster Updates on a Heterogeneous Cluster

Sandesh Gubbi Virupaksha
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Recommended Citation Recommended Citation
Gubbi Virupaksha, Sandesh, "Accelerated Iterative Algorithms with Asynchronous Accumulative Updates
on a Heterogeneous Cluster" (2016). Masters Theses. 323.
https://scholarworks.umass.edu/masters_theses_2/323

This Campus-Only Access for Five (5) Years is brought to you for free and open access by the Dissertations and
Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/323?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ACCELERATED ITERATIVE ALGORITHMS
WITH ASYNCHRONOUS ACCUMULATIVE UPDATES

ON A HETEROGENEOUS CLUSTER

A Thesis Presented

by

SANDESH GUBBI VIRUPAKSHA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2016

Electrical and Computer Engineering

c© Copyright by Sandesh Gubbi Virupaksha 2016

All Rights Reserved

ACCELERATED ITERATIVE ALGORITHMS
WITH ASYNCHRONOUS ACCUMULATIVE UPDATES

ON A HETEROGENEOUS CLUSTER

A Thesis Presented

by

SANDESH GUBBI VIRUPAKSHA

Approved as to style and content by:

Russell Tessier, Chair

Lixin Gao, Member

David Irwin, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

First and foremost, I would like to thank my parents who have stood by me at

my best and worst times and always had faith in my efforts.

I would like to thank my advisor Professor Russell Tessier, who provided me

constant encouragement and guided me at all times during the thesis. His availability

almost all the time in person and his prompt responses to e-mails is truly remarkable.

I would like to thank Deepak Unnikrishnan, who helped me understand the basics of

this project and answered all my queries even with his busy work schedule. I sincerely

thank Prof. Lixin Gao and Prof. David Irwin for being on my thesis committee.

I would like to thank all the past and present lab mates of Reconfigurable Com-

puting Group, who made my stay comfortable and cherishing. I would like to thank

all my friends, who I met in these 3 years and made my stay in Amherst a memorable

one.

iv

ABSTRACT

ACCELERATED ITERATIVE ALGORITHMS
WITH ASYNCHRONOUS ACCUMULATIVE UPDATES

ON A HETEROGENEOUS CLUSTER

FEBRUARY 2016

SANDESH GUBBI VIRUPAKSHA

B.E., VISVESVARAYA TECHNOLOGICAL UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

In recent years with the exponential growth in web-based applications the amount

of data generated has increased tremendously. Quick and accurate analysis of this ’big

data’ is indispensable to make better business decisions and reduce operational cost.

The challenges faced by modern day data centers to process big data are multi fold: to

keep up the pace of processing with increased data volume and increased data velocity,

deal with system scalability and reduce energy costs. Today’s data centers employ

a variety of distributed computing frameworks running on a cluster of commodity

hardware which include general purpose processors to process big data. Though

better performance in terms of big data processing speed has been achieved with

existing distributed computing frameworks, there is still an opportunity to increase

processing speed further. FPGAs, which are designed for computationally intensive

tasks, are promising processing elements that can increase processing speed. In this

v

thesis, we discuss how FPGAs can be integrated into a cluster of general purpose

processors running iterative algorithms and obtain high performance.

In this thesis, we designed a heterogeneous cluster comprised of FPGAs and CPUs

and ran various benchmarks such as PageRank, Katz and Connected Components to

measure the performance of the cluster. Performance improvement in terms of execu-

tion time was evaluated against a homogeneous cluster of general purpose processors

and a homogeneous cluster of FPGAs. We built multiple four-node heterogeneous

clusters with different configurations by varying the number of CPUs and FPGAs.

We studied the effects of load balancing between CPUs and FPGAs. We obtained

a speedup of 20X, 11.5X and 2X for PageRank, Katz and Connected Components

benchmarks on a cluster cluster configuration of 2 CPU + 2 FPGA for an unbalancing

ratio against a 4-node homogeneous CPU cluster. We studied the effect of input graph

partitioning, and showed that when the input is a Multilevel-KL partitioned graph

we obtain an improvement of 11%, 26% and 9% over randomly partitioned graph for

Katz, PageRank and Connected Components benchmarks on a 2 CPU + 2 FPGA

cluster.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation for Heterogeneous Computing . 1
1.2 Thesis Outline . 4

2. BACKGROUND . 5

2.1 Introduction to Iterative Algorithms . 5
2.2 Synchronous programming models . 7

2.2.1 MapReduce . 7
2.2.2 Spark, Picollo and iMapReduce . 8
2.2.3 Previous works on Implementation of Synchronous and

Asynchronous Frameworks on Hardware Platforms 9

2.3 Asynchronous Accumulative Updates . 10

2.3.1 Computation of PageRank using Asynchronous Accumulative
Updates . 11

2.4 A Message-Passing Distributed Framework for Accumulative Iterative
Computation on a CPU cluster . 12

2.5 Accelerating Iterative Algorithms with Asynchronous Accumulative
Updates on FPGAs . 15

vii

3. HETERO: A HETEROGENEOUS COMPUTING CLUSTER 19

3.1 Design of a heterogeneous cluster . 19

3.1.1 Design of Master node . 19
3.1.2 Design of Worker nodes . 20

3.2 Hardware Components of Heterogeneous Cluster . 22
3.3 Heterogeneous Cluster Operation . 23
3.4 Heterogeneous Cluster Configurations . 25

3.4.1 Heterogeneous cluster with 2 CPUs and 2 FPGAs 25
3.4.2 Heterogeneous cluster with 3 CPUs and 1 FPGA 26
3.4.3 Heterogeneous cluster with 1 CPU and 3 FPGAs 27

3.5 Generation of a Synthetic Graph . 27
3.6 Iterative algorithms . 28

4. LOAD BALANCING AND GRAPH PARTITIONING 30

4.1 Asymmetric Load Balancing . 30
4.2 Graph Partitioning . 31

4.2.1 Chaco: Graph partitioning software . 32
4.2.2 Generation of input partitioned graphs for various cluster

configurations . 33

5. EXPERIMENTAL RESULTS . 36

5.1 Performance Variation across Different Cluster Configurations 36
5.2 Performance Variation Using Different Graph Partitioning

Methods . 39
5.3 Modeling partitioning ratio . 42
5.4 Cost Analysis . 44

6. CONCLUSIONS AND FUTURE WORK . 46

BIBLIOGRAPHY . 48

viii

LIST OF TABLES

Table Page

3.1 Iterative algorithms . 28

4.1 Example of load balancing on a heterogeneous cluster 31

4.2 Total number of edge cuts for different partitioning methods 32

4.3 KL IMBALANCE values for generating input graphs for 2 CPU + 2
FPGA heterogeneous cluster . 33

4.4 KL IMBALANCE values for generating input graphs for 1 CPU + 3
FPGA heterogeneous cluster . 34

5.1 Speedup of different cluster configurations for Katz benchmark versus
a four-processor configuration . 37

5.2 Speedup of different cluster configurations for PageRank benchmark
versus a four-node processor cluster . 38

5.3 Speedup of different cluster configurations for Connected
Components benchmark . 39

5.4 Improvement in speedup for multilevel K-L partitioned graph over
randomly partitioned graph for the Katz benchmark versus a
four-processor cluster . 40

5.5 Total number of edges cuts for Random and Multilevel K-L
partitioning methods . 41

5.6 Improvement in speedup for a multilevel K-L partitioned graph over
a randomly partitioned graph for the PageRank benchmark 42

5.7 Improvement in speedup for a multilevel K-L partitioned graph over
a randomly partitioned graph for the Connected Components
benchmark . 43

ix

5.8 Speedup of various configurations for appropriate load balancing
ratio . 44

5.9 Estimated cost vs. speedup of different cluster configurations 44

x

LIST OF FIGURES

Figure Page

1.1 Growth of data from 2008 to 2020 (Source : Oracle 2012) 2

1.2 Inside view of a Google data center (Source : Google). 3

2.1 Computation of PageRank . 6

2.2 Graphical overview of MapReduce . 7

2.3 Computation of PageRank (PR) using AAU . 12

2.4 Architecture of Maiter . 13

2.5 Architecture of Maestro . 15

2.6 Implementation of AAU on an FPGA . 17

3.1 Architecture of a Heterogeneous cluster . 20

3.2 Architecture of Hetero CPU node . 21

3.3 NetFPGA frame format. 22

3.4 Altera DE4 FPGA. 22

3.5 NetFPGA. 23

3.6 Laboratory prototype of a 4 node Hetero . 24

3.7 Laboratory prototype of a 2 CPU, 2 FPGA Hetero 25

3.8 Laboratory prototype of a 3 CPU, 1 FPGA Hetero 26

3.9 Laboratory prototype of a 1 CPU, 3 FPGA Hetero 27

5.1 Performance of various cluster configurations for different partitioning
ratio versus a four processor node configuration 37

xi

5.2 Performance of various cluster configurations for different partitioning
ratios versus a four-processor cluster . 38

5.3 Performance of various cluster configurations for different partitioning
ratio . 39

5.4 Comparison of performance of heterogeneous clusters for input
graphs partitioned using different partitioning methods for the
Katz benchmark versus a four-processor cluster 40

5.5 Comparison of performance of heterogeneous clusters for input
graphs partitioned using different partitioning methods for the
PageRank benchmark . 41

5.6 Comparison of performance of heterogeneous clusters for input
graphs partitioned using different partitioning methods for the
Connected Components benchmark . 42

5.7 Execution time of a single node FPGA vs. a single node CPU for
different benchmarks . 43

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation for Heterogeneous Computing

The rapid advancement in networking, storage and sensing technologies has re-

sulted in a large volume of data being generated in a very short duration of time.

With the advent of social networking platforms, e.g. Facebook and Twitter, a vast

amount of data is being collected every second. The analysis of big data remains one

of the biggest challenges in the computer area [22]. The volume of business data is

expected to double every 1.2 years [3] and poor data management can cost up to 30%

of the operating revenue of a business [4].

Data analytics are very critical to the operation of a business [22]. Better data

analytics can lead to effective marketing strategies, better customer service and new

revenue sources. Most data mining and data analytic algorithms [26][10][31] are

based on iterative calculations. With large amounts of data requiring large numbers

of iterations, timely analysis of big data has become challenging.

There have been a number of frameworks [40][28][11][37] proposed to accelerate

the iterative computation of big data on a cluster of commodity processing nodes.

MapReduce [15] is a popular parallel processing framework which is scalable, fault

tolerant and can be easily implemented on a cluster of commodity computers. Even

though MapReduce provides good processing speed, the synchronization barrier be-

tween iterations remains a bottleneck to higher speedup [38].

iMapReduce [40] tries to improve the speedup compared to MapReduce by re-

ducing the overhead of creating the new tasks in every iteration and allowing asyn-

1

Figure 1.1: Growth of data from 2008 to 2020 (Source : Oracle 2012)

chronous execution of iterations. Piccolo [28] launches application kernel functions

on multiple computing nodes. The computing nodes share a global state table which

can be implemented both in memory and on disk. The computation is performed

with a global barrier between kernel invocations. Spark [37] introduces the concept

of resilient distributed datasets (RDD). An RDD is a read only collection of partitions

across multiple machines. Spark supports caching of RDD in memory across multiple

computing machines and reuse it in MapReduce like operations.

The concept of asynchronous accumulative updates (AAU), introduced in [42],

overcomes limitations of synchronous frameworks. In AAU, intermediate results are

accumulated asynchronously from both the current and previous iterations. AAU

is known to accelerate the convergence of iterative computations and provide better

speedup [42].

FPGAs (Field Programmable Gate Arrays) have long been used to perform com-

putationally intensive tasks [12]. The flexibility of reprogramming the devices after

their deployment provides an opportunity to change system functionality to suit in-

stantaneous needs. The parallelism of FPGAs helps accelerate iterative computation.

For example, Maestro [34] implements AAU on a cluster of four FPGAs leading to a

40× speedup with respect to performance on a four-node CPU cluster.

2

Figure 1.2: Inside view of a Google data center (Source : Google).

In data centers, it is not feasible to replace all processors with FPGAs for accel-

eration. Providing an option to integrate hardware accelerators with existing CPU

infrastructure in data centers is an alternative. In this thesis, we propose a prototype

of a heterogeneous data center, where FPGAs are included with general purpose pro-

cessors and work in tandem to provide improved application performance. Our work

aims to provide system level heterogeneity. The existing hardware infrastructure need

not be replaced. The FPGA boards are used as plug and play devices which can be

easily added and removed from a cluster.

In this thesis, we use a heterogeneous cluster with general purpose CPUs and

FPGAs to solve iterative computation. The cluster is evaluated for performance using

a number of iterative algorithms such as PageRank, Katz and Connected Components.

We present a prototype of the heterogeneous cluster, integrating special purpose

hardware (FPGAs) into a largely homogeneous CPU computing environment. We

show that the heterogeneous cluster yields better performance in terms of execution

time than its homogeneous counterpart.

3

1.2 Thesis Outline

In the background chapter, we review the concept of iterative algorithms and

AAU. The execution of iterative algorithms with AAU on a CPU and FPGA cluster

will be discussed in brief in Chapter 2. Chapter 3 focuses on the detailed architec-

ture of the heterogeneous cluster which runs iterative algorithms with AAU. Various

heterogeneous cluster configurations are discussed in chapter 3. Chapter 4 discusses

the concept of load balancing and graph partitioning. Chapter 5 evaluates the effect

of load balancing and input graph partitioning on various configurations of heteroge-

neous clusters. Chapter 6 concludes the thesis with a discussion of future work.

4

CHAPTER 2

BACKGROUND

In this chapter we discuss the concept of Asynchronous Accumulative Updates

(AAU) in detail. Previous work [42] [34] has implemented AAU on homogeneous

CPU and FPGA clusters, respectively. These implementations are briefly reviewed

in this chapter.

2.1 Introduction to Iterative Algorithms

In iterative algorithms, the final result is obtained by executing the same set of

operations over the input data set for a number of iterations. Iterations continue until

the termination criterion is met. The results of the previous iteration are used in the

current iteration. Mathematically, an iterative algorithm can be represented as

vk = G(vk−1) (2.1)

where the update function G() is applied on the (k−1)th iteration of a n-dimensional

vector vk = {vk1 , vk2vkn}. Since each element of vk can be computed separately, it-

erative algorithms are highly data parallel in nature. Programming models such as

MapReduce exploit the parallelism of iterative models to accelerate the data conver-

gence using a distributed cluster.

PageRank algorithm is used in Google’s search engine to obtain the importance of

web pages [10]. In computing the PageRank value, the web is viewed as a graph and

individual web pages are treated as nodes in the graph. Consider a web graph with

N web pages, an edge exists between two nodes in the graph if there is a hyper-link

5

Figure 2.1: Computation of PageRank

between two corresponding web pages. The PageRank of a node at (i+ 1)th iteration

is calculated using Eq. 2.2.

PR(i+1) =
1− d
N

+
∑
u∈Bu

d×R(i)(u)

L(u)
(2.2)

During the start of an iteration, each node in the graph is assigned an initial

PageRank value 1−d
N

, where d is the damping factor, N is the number of nodes in

the graph, L(u) is the number of outgoing edges of a node k and u is the number of

incoming links of a node k.

Consider the graph shown in Figure 2.1. The graph has three nodes assigned

an initial PageRank value of 1. During the start of the first iteration, the nodes

transmit PageRank values to the nodes which are attached to their outgoing links.

After receiving the values from all incoming links, a node calculates its new PageRank

value according to Eq. 2.2. In Figure 2.1, after the first iteration, PageRank values of

nodes A, B and C are 1.5, 1 and 0.5. This process continues until the PageRank values

6

Figure 2.2: Graphical overview of MapReduce

of all nodes remains constant between successive iterations or for a predetermined

number of iterations.

2.2 Synchronous programming models

2.2.1 MapReduce

The flow of iterative computation using MapReduce is described in Figure 2.2.

MapReduce primarily executes a series of map and reduce tasks. Often there are

supplemental phases such as sorting, partitioning and combining which occur between

map and reduce tasks. The input and output of map and reduce functions are a set of

Key-Value (KV) pairs. KV pairs contain information specific to the application. Map

functions provide processed input values to the reduce function. The reduce function

acts on the intermediate KV pairs obtained from the map function and generates

7

the final output. All mappers and reducers run in parallel and perform operations

independently.

Some of the limitations of MapReduce (synchronous computing frameworks) are:

• MapReduce imposes a strict synchronization barrier between two iterations.

The map task in the present iteration cannot start unless all the reduce tasks

in the previous iterations have completed. There typically is no pipelining

mechanism between map and reduce tasks [38].

• MapReduce handles the issue of slow computing nodes (stragglers) by specula-

tively executing the task of a slow node on another node to accelerate the com-

putation. When MapReduce is implemented on a heterogeneous cluster, where

some nodes are slow compared to others, it can result in performance degrada-

tion. Stragglers and speculative tasks often compete for system resources, such

as network resources, with other active tasks.

2.2.2 Spark, Picollo and iMapReduce

Spark [37] is a framework for running large scale data intensive applications on

commodity clusters. Spark is specially designed for machine learning applications.

Spark uses an abstraction called resilient distributed datasets (RDD). An RDD is a

read only collection of objects partitioned across commodity cluster of machines that

can be rebuilt if the partition is lost. Spark has a built in fault tolerance feature,

where the lost partition can be derived from the existing partitions. Spark preserves

the static data in memory between iterations.

Picollo [28] uses a data centric programming model, where computations running

on different machines can share distributed mutable state via a key-value table inter-

face. The iterative algorithm implemented on Picollo updates the distributed tables

iteratively. The input data is loaded into a shared memory from the distributed

8

file system and iterations are executed synchronously to arrive at the termination

condition. Picollo achieves fault tolerance by checkpoint and restore mechanisms.

iMapReduce [40] is a distributed computing framework, where the users can per-

form iterative processing by specifying Map and Reduce functions. Some of the

benefits of iMapReduce over traditional MapReduce framework are: no overhead of

creating jobs at every iteration and asynchronous execution of iterations. In iMapRe-

duce, data loading from the distributed file system (DFS) happens only once during

initialization and data is written back to the DFS after termination. During itera-

tions, the data from reduce functions are directly sent to the map function of the next

iteration.

In the above techniques, synchronization is essential either between iterations or

in an iteration. There are few asynchronous frameworks proposed such as GraphLab

[27]. This platform achieves a high degree of parallel performance with asynchronous

iterative computation with sparse computational dependencies. AAU proposes a

unique concept for asynchronous updates and is applicable for a large collection of

iterative computations.

2.2.3 Previous works on Implementation of Synchronous and Asynchronous

Frameworks on Hardware Platforms

There have been numerous studies performed to implement synchronous itera-

tive methods on hardware accelerators such as GPUs and FPGAs. HeteroSpark [6]

integrates a graphics processing unit (GPU) in a Spark framework to achieve bet-

ter speedup. HeteroSpark is primarily designed for machine learning algorithms. It

provides ”plug and play” capability for GPUs which can be enabled/disabled in the

cluster.

Shan et al. [30] implements MapReduce on an FPGA with mappers and reducers

implemented using an on-chip memory. During an iteration, data is fetched from the

9

DDR global memory and stored in an on-chip local memory. The intermediate values

in the local memory have to be written back to the global memory after completion of

every iteration. Yeung et al. [36] describes the implementation of MapReduce libraries

supporting FPGAs and GPUs. The source code specified in ANSI C is compiled along

with MapReduce libraries into a binary configuration file for processing units. Tsoi

et al. [33] demonstrates the implementation of a MapReduce framework on a cluster

of CPUs, FPGAs and GPUs. Choi et al. [13] demonstrates the implementation of an

FPGA-based cluster to run a k-means algorithm based on MapReduce. Bingsheng et

al. [19] discusses the implementation of MapReduce on GPUs.

2.3 Asynchronous Accumulative Updates

In a synchronous update model such as MapReduce, the update in the kth itera-

tion is performed after obtaining all the results from the (k − 1)th iteration. In the

synchronous model, the partial results from the iteration cannot be utilized by the

next iteration. Due to the strict synchronization mechanism required between the

two iterations, the synchronous update model slows down convergence.

The AAU model loosens this restriction. It accumulates results using informa-

tion from both the previous and present iterations. Results are accumulated asyn-

chronously in AAU, eliminating the need for synchronization barriers. In [17] the

concept of asynchrony has been illustrated to accelerate the convergence of iterative

computation. In the AAU model described in [42], a node disseminates the change

in the node value instead of the entire value of the node. Changes received from all

nodes are accumulated and the update then is asynchronously propagated to other

nodes.

Consider a graph node, S with a value v. When the new increment is received

from a neighboring node, the value will not be added to v immediately but will be

10

accumulated in ∆v and asynchronously updated to v later. The concept of AAU is

described in Figure 2.3.

The process of AAU can be expressed in two steps : Accumulate and Update.

• In accumulation phase, a compute node receives a message, m from its neigh-

boring nodes. The message received is accumulated in ∆v associated with the

compute node. This operation is described in Eq. 2.3, where ⊕ is an abstract

operator.

∆v ← ∆v ⊕m (2.3)

• The update operation is divided into three steps. In the first step the accumu-

lated values from all nodes, ∆v are added to v. In the second step, an update

function g() is applied to ∆v, the change in the current value of the node. In

the third step, the node will propagate, g(∆v) to all its neighboring nodes and

∆v is reset to 0. Eq. 2.4 describes the update operation.

v ← v ⊕∆v

send g(∆v) if g(∆v) 6= 0

∆v ← 0

(2.4)

2.3.1 Computation of PageRank using Asynchronous Accumulative Up-

dates

Consider a graph with nodes A and B having incoming edges to node C as shown

in Figure 2.3. Node D has an incoming edge from node C. Let ∆vA = d(∆PR(A)
L(A)

) and

∆vB = d(∆PR(B)
L(B)

) be the change in PageRank values of Node A and Node B respec-

tively. Node C accumulates the received delta values from other nodes in ∆PR(C).

The PageRank of node C is calculated by adding ∆PR(C) and v. After accumulating

the values, node C applies the update function on the change in its delta value and

propagates the result to node D.

11

Figure 2.3: Computation of PageRank (PR) using AAU

When AAU is implemented on a cluster of commodity CPUs, processors perform

update and accumulate operations in a completely asynchronous fashion and proces-

sors will not wait for other processors in the cluster to complete their operations.

Thus, we can conclude that the concept of AAU is well suited to a heterogeneous

cluster containing slow and fast processors. Chapter 3 discusses how AAU can be

realized on a heterogeneous cluster of CPUs and FPGAs.

2.4 A Message-Passing Distributed Framework for Accumu-

lative Iterative Computation on a CPU cluster

AAU is demonstrated on a cluster of homogeneous CPUs in [42]. The architecture

of Maiter is shown in Figure 2.4. Maiter consists of a single master and multiple

workers. The function of a master node is to coordinate and monitor the status of

workers. A master node also takes part in the computation apart from monitoring

computation of workers. Workers communicate with each other via MPI [9] and

execute the iterative task in parallel. During the start of computation, a master

node assigns an even amount of data (KV pairs) to workers and monitors workers for

iteration termination.

The iterative computation on the Maiter cluster is divided into three phases:

12

Figure 2.4: Architecture of Maiter

1. Loading the data: Workers are assigned a subset of data by the master

node. Before the start of iterative computation, the data on the DFS will

be partitioned into multiple shards and assigned to workers. Workers parse the

data in parallel and populate their respective local state tables. A local state

table on a worker contains KV pairs assigned to it. Every data element (KV

pair) is associated with a unique global key. The data element corresponding

to a unique key k is assigned to a worker based on the result of using a hash

function, h(k). MOD is used as the hash function in Maiter.

2. Iterative computation: The iterative computation involves update and ac-

cumulate operations. These operations are performed on each worker by two

mutually exclusive receive and accumulate threads. The receive thread, obtains

messages from all the workers in the cluster via MPI and accumulates messages

to the ∆v field of a data element. The update thread updates the value field

with the ∆v field and sends the change in the value to the other workers. Since

the update thread performs both read and write operations on the ∆v field, it

is implemented in a critical section.

13

KV pairs are scheduled for an update operation with a priority scheduling pol-

icy. Priority scheduling accelerates the convergence of computation resulting

in improved performance [41]. The update thread extracts a KV pair from

the priority queue. The priority of a KV pair is calculated initially considering

value(v) and ∆v. The priority value is changed during an iterative computation

when there is a change in the ∆v field.

The communication between workers during an iterative computation occurs

via message passing [9]. A message contains a key (destination element) and

its corresponding value. The worker possessing the destination key receives

the message to perform an accumulate operation. Output messages are first

buffered and then flushed after a brief time out from each worker to reduce the

communication cost.

3. Iteration Termination: The master node relays the termination check signal

to all worker nodes periodically. After receiving the termination check signal,

worker nodes calculate their local termination value and transmit it back to the

master node. After receiving the iteration progress from all worker nodes, the

master node makes a decision based on the global iteration progress, obtained

from information received from workers. If the master node decides to terminate

the iteration, it sends a termination signal to all workers. After receiving the

termination signal from the master, workers stop update operations and dump

the results from their local state tables onto the DFS.

Maiter is implemented [42] on an Amazon EC2 cloud [2]. Maiter has achieved a

speedup of 60X over Hadoop MapReduce [5], a synchronous iterative algorithm.

14

Figure 2.5: Architecture of Maestro

2.5 Accelerating Iterative Algorithms with Asynchronous Ac-

cumulative Updates on FPGAs

Maestro [34] demonstrates the implementation of AAU on a scalable homogeneous

cluster of FPGAs. The scalability of the cluster can be exhibited by an increase in

individual FPGA capacity and in the number of FPGAs.

The AAU model implemented in Maestro [34] on a cluster of FPGAs is shown

in Figure 2.5. In Maestro, CPU[0] acts as a master which coordinates and monitors

the computation on FPGA worker nodes. All FPGAs are connected to helper CPUs

which serve as an interface between FPGA workers and the master. FPGA workers

are implemented on Altera DE4 developmental boards [1]. During the computation,

FPGAs operate in parallel on the subset of data assigned to them and communicate

with each other via a NetFPGA router.

The execution of iterative algorithms on Maestro largely follows Maiter operations.

The primary steps involved are:

15

1. Loading the KV pairs on FPGAs: The input data is stored on a DFS,

an assemblage of hard disk drives accessible by CPUs. A MOD hash function

is applied on all global keys The helper CPU transmits the initial data via

Ethernet to the associated FPGA nodes to store in 1GB DDR2 DRAM next to

each FPGAs.

A state table is constructed to store KV pairs in the DRAM of each FPGA.

The state table contains five fields: the key, corresponding value of the key, the

delta value, the priority value of the key and the linkage information. After

completion of loading the data into DRAM on all FPGAs, the master CPU

broadcasts a start iteration message to all helper CPUs via MPI. Helper CPUs

send the start iteration signal to their respective FPGAs, which in-turn start

iterative processing.

2. Iterative computation on FPGAs: The AAU architecture implemented on

FPGAs is shown in Figure 2.6. The packet parser module receives the incoming

Ethernet packet and initiates suitable operations (eg. start iterative computa-

tion, check termination, etc.). The packet composer module constructs packets

to be sent out of an FPGA worker to other workers. The computation unit

on an FPGA is comprised of multiple processors (8 processors in the Maestro

design). Each processor can be configured either as a transmit processor or

as a receive processor. The processor in Rx mode performs only accumulate

operations. The processor in Tx mode performs both accumulate and update

operations.

A priority scheduler is implemented on an FPGA worker to accelerate iteration

convergence. A random sample of KV pairs are selected and sorted using a

chain of shift registers. The threshold is selected as the priority value of the

kth highest KV pair in the sorted sample. The Tx mode processor choses a KV

16

Figure 2.6: Implementation of AAU on an FPGA

pair for update only if the priority value is more than the threshold. Possible

memory inconsistencies due to shared memory among multiple processors on an

FPGA are averted by implementing a snoopy coherence protocol. The protocol

implementation enforces strict memory consistency and serializes data accesses.

During the remote update operation, an FPGA node sends KV pairs to other

FPGA nodes. In order to minimize the communication cost, a sufficient number

of key value pairs (150 KV pairs) are accumulated to fill the maximum size of

the Ethernet frame before transmission.

3. Iteration termination: On an FPGA worker, each processor calculates the

local iteration progress. Progress is computed by summing the values of all

keys in the state table. Information from Tcheck modules is aggregated and

transmitted to the helper CPUs. Helper CPUs communicate the progress of

their respective FPGA nodes to the master node. The master node accumulates

17

local termination progress from all FPGA workers and decides if the iteration

needs to be terminated.

The speedups of Maestro versus Maiter and Hadoop MapReduce were determined

by varying the number of Tx and Rx processors on FPGA workers. A balanced Tx/Rx

processor ratio of 4:4 provided the highest speedup. The speedup was evaluated for a

fixed number of Tx/Rx processors on 1, 2 and 4 node clusters by using a Rx/Tx ratio

of 4:4. Maestro reported a speedup of 40X, 18.7X and 7.5X speedups for PageRank,

Katz and Connected Components benchmarks compared to similar node counts for

Maiter and Hadoop MapReduce.

In the above implementations AAU has been implemented either on a homoge-

neous cluster of CPUs or homogeneous cluster of FPGAs. In our work we study the

performance of a cluster consisting of both CPUs and FPGAs.

18

CHAPTER 3

HETERO: A HETEROGENEOUS COMPUTING
CLUSTER

The asynchronous accumulative update model (AAU) is well suited to heteroge-

neous clusters. In Maiter, AAU is implemented on a cluster of homogeneous general

purpose processors. Maestro implements AAU on a homogeneous cluster of FPGAs.

In both implementations, the true potential of AAU was not realized. In this thesis

we develop a heterogeneous architecture - Hetero, integrating general purpose CPUs

and FPGAs to accelerate iterative computation with AAU.

3.1 Design of a heterogeneous cluster

The architecture of a 4-node heterogeneous cluster (Hetero) is shown in Figure 3.1.

The 4-node Hetero consists of two CPUs and two FPGAs. CPU[0] acts as a master

CPU node and also performs worker functions. FPGA workers are attached to FPGA

helper CPUs. Worker CPUs and FPGA helper CPUs are connected via Ethernet. The

master/worker CPU communicates with other workers via a 1G NetFPGA reference

router.

3.1.1 Design of Master node

The master runs APIs implemented in C++. The APIs are borrowed from [7].

The master performs the functions listed below.

1. The master (CPU node) initiates the loading of data (KV pairs) into state

tables of workers. The KV pairs are stored in the CPU worker in memory state

tables and in DDR2 DRAM adjacent to the FPGA.

19

Figure 3.1: Architecture of a Heterogeneous cluster

2. The master initiates iterative computation by sending a message to CPU and

FPGA workers.

3. The master periodically sends termination check messages to workers. Workers

compute the progress and report to the master. In the case of FPGA nodes,

FPGA helpers send the progress received from FPGAs to the master. The

master computes the global progress value and if the global progress value is

constant between two successive iterations, it sends a termination signal to stop

the computation.

3.1.2 Design of Worker nodes

Hetero consists of two types of workers : a CPU worker and an FPGA worker.

FPGA helper CPUs attached to the FPGAs transmit initial data to the FPGAs and

serve as an interface between the master and the FPGAs.

The C++ APIs of the iterative kernel were obtained from the Maiter open source

code base [7]. The kernel consists of receive and update threads. The receive thread

20

Figure 3.2: Architecture of Hetero CPU node

performs accumulate operations on a local key element by accumulating messages

obtained from all key elements. The update thread updates values and ∆v fields and

sends messages to other key elements. A priority scheduling policy is implemented as

in Maiter to accelerate iteration termination.

The workers exchange KV pairs via Ethernet during iterative computation. When

an iterative kernel on a CPU worker performs a remote update, it needs to send a

KV pair to other workers. An Ethernet composer module composes the Ethernet

frame to be sent out to other workers. The raw Ethernet frame format is shown in

Figure 3.3. We accumulate 150 KV pairs before sending the Ethernet packet. When

a receiver receives an Ethernet frame, the Ethernet parser module extracts the KV

21

Figure 3.3: NetFPGA frame format.

Figure 3.4: Altera DE4 FPGA.

pairs, which is used by the iteration kernel to perform an accumulation operation.

Workers communicate with the master via MPI.

3.2 Hardware Components of Heterogeneous Cluster

The heterogeneous cluster is built using various hardware components:

1. An Altera DE4 FPGA board (Figure 3.4) acts as an accelerator in the

cluster. The DE4 board includes a Stratix IV GX (EP4SGX530C2) device. The

DE4 board has a built-in USB blaster circuit for programming. Four Gigabit

22

Figure 3.5: NetFPGA.

Ethernet ports (GigE) with RJ-45 connectors provide Ethernet interfaces to the

board. High performance external DDR2 DRAM offers off-chip storage.

2. A NetFPGA reference router [8] (Figure 3.5) is used for cluster network

routing. The NetFPGA is a reconfigurable hardware platform used for high

speed routing operations. In the NetFPGA, a complete data path is imple-

mented in hardware. The design supports back-to-back packet transport at full

Gigabit line rates. The NetFPGA board contains four 1 Gigabit/second Ether-

net (GigE) interfaces and an FPGA. We download a 1G reference router design

to the NetFPGA board and configure the NetFPGA routing table to forward

Ethernet packets to appropriate destinations.

3. A quad core processor is also used. CPU nodes in the cluster run on an

Intel Core2 quad processor with a clock frequency is 2.33GHz. The machines

have 4GB of DRAM. The machines have two 1Gigabit/second network interface

cards which connect to a LAN setup.

3.3 Heterogeneous Cluster Operation

The user specifies three parameters to execute an iterative algorithm on Hetero:

a partitioning algorithm, an iterative kernel and a termination condition. The par-

23

Figure 3.6: Laboratory prototype of a 4 node Hetero

titioner uses a hash function to assign data values to worker nodes. In this design

we use the MOD function to assign KV pairs to compute nodes. The partitioner is

implemented as a C++ API and resides on the master (CPU node).

The iterative kernel interface specifies update and accumulate functions. In our

design, the kernel resides on both CPUs and FPGAs. For CPU nodes, the kernel is

specified as a C++ API and on FPGA nodes it is implemented as hardware synthe-

sized from a Verilog module. The termination checker interface specifies the condition

to be met to terminate iterations. The termination checker is implemented as a C++

API and is located on the master.

The user provides two configuration files as input. The first configuration file

contains the host-names/IP-address of the CPUs and the FPGA helpers. The second

configuration file consists of the information about the type of each node (CPU/FPGA

helper). A bitstream is downloaded onto the FPGA using a USB JTAG interface.

At the start of computation, the partitioner in the master node assigns KV pairs

to workers based on the specified hash function. Each FPGA is assigned the same

amount of KV pairs. The keys which are assigned to the FPGA nodes are loaded

24

Figure 3.7: Laboratory prototype of a 2 CPU, 2 FPGA Hetero

from the local file system of the FPGA helpers into FPGA DRAM. When the loading

of data is complete, the master initiates iterative computation. The iterative kernels

on CPUs and FPGAs are executed in parallel by exchanging KV pairs via the 1G

NetFPGA reference router. The termination condition is checked periodically (every

4 seconds) by the master node after collection of the progress of CPU and FPGA

workers.

3.4 Heterogeneous Cluster Configurations

Different configurations of heterogeneous cluster are built by varying the number

of CPUs and FPGAs. In this section, we discuss the architecture of three different

configurations of a heterogeneous cluster and in Chapter 5, we evaluate the perfor-

mance of each configuration for various benchmarks.

3.4.1 Heterogeneous cluster with 2 CPUs and 2 FPGAs

A heterogeneous cluster configuration with 2 CPUs and 2 FPGAs is shown in

Figure 3.7. Ethernet 1 ports of CPU worker-1 and CPU worker-2 are connected

25

Figure 3.8: Laboratory prototype of a 3 CPU, 1 FPGA Hetero

to the MAC1 and MAC2 ports of the NetFPGA router. MAC3 and MAC4 ports

of the NetFPGA router are connected to the eth1 ports of FPGA worker-1 and

FPGA worker-2 respectively. CPU workers and the FPGA helper CPUs are connected

via MPI to enable all the workers to send the termination condition to the master

periodically.

CPU worker-1 acts as a master and coordinates parallel computations on all work-

ers. Both CPU and FPGA workers in this configuration work in tandem by exchang-

ing KV pairs to complete the task.

3.4.2 Heterogeneous cluster with 3 CPUs and 1 FPGA

In this configuration the majority of the workers are CPU workers (Figure 3.8).

The eth1 port of the CPU worker 1, 2 and 3 are connected to MAC1, MAC2 and

MAC3 ports of the NetFPGA respectively. MAC4 port of the NetFPGA is connected

to the eth1 port of the FPGA worker. CPU workers and the FPGA helper CPU are

connected to the master via MPI.

26

Figure 3.9: Laboratory prototype of a 1 CPU, 3 FPGA Hetero

3.4.3 Heterogeneous cluster with 1 CPU and 3 FPGAs

A heterogeneous configuration with 3 FPGAs and 1 CPU is shown in Figure 3.9.

The eth1 port of the CPU worker is connected to MAC1 port of the NetFPGA. The

eth1 ports of FPGA worker 1, 2 and 3 are connected to MAC2, MAC3 and MAC4

ports of the NetFPGA. The CPU worker in the cluster performs both master and

worker functionality. The FPGA workers perform update and accumulate operations

in parallel with the CPU to arrive at the termination condition.

3.5 Generation of a Synthetic Graph

Synthetic graphs are generated to evaluate the performance of the cluster. Graphs

for Connected Components are weighted and graphs for Katz metric [24] and PageR-

ank [10] are unweighted. The node IDs are whole numbers ranging from 0 to the

size of the graph. The graphs are generated such that the in-degrees (number of

edges with a graph node as terminal vertex) follow a log-normal distribution with

parameters σ = 0.5 and µ = 2.3.

27

Table 3.1: Iterative algorithms

Algorithm Initj gj(x) ⊕
PageRank 1− d x.∆j .aji +

Katz Metric 1(j = s) or 0(j 6= s) β.x.∆j .aji +

Connected Components j d. x
L(j) .∆j .aji max

3.6 Iterative algorithms

To evaluate the performance of the heterogeneous cluster three iterative algorithms

are considered. Table 3.1 specifies the initial values for the jth key, update functions

for the jth key (gj(x)) and accumulate operators (⊕).

1. Connected components: The Connected Components algorithm is used to

determine if all nodes in a graph are connected. In the initial phase, the value

associated with each graph node is initialized to its node ID. All nodes propagate

their values to their neighbors. When a node receives values from its neighboring

nodes, it replaces its value with the largest received value from other nodes. The

algorithm terminates when all the nodes which are connected have the same

value.

2. Katz metric: Katz metric [24] provides a proximity measure between two

nodes in a graph. The Katz metric is calculated by sum over all paths between

two nodes exponentially dampened by the path length. The source node is

initialized to 1 and all other nodes are initialized to 0. During an iteration,

every node multiplies its current value with a constant dampening factor, β and

propagates the value to all its neighbors. When a value message is received, the

node accumulates the received value to its current value.

3. PageRank: The PageRank algorithm is used to rank websites for a search

engine [10]. The detailed description of PageRank is found in Section 2.3.1.

28

This chapter explained the design of heterogeneous clusters with CPUs and FP-

GAs and their operation. We discussed the various iterative benchmarks which we

use to evaluate the performance. In the succeeding chapters, we introduce the various

configurations of heterogeneous cluster and evaluate their performance.

29

CHAPTER 4

LOAD BALANCING AND GRAPH PARTITIONING

In a cluster containing homogeneous processing elements, workload should be

distributed evenly. In a heterogeneous cluster, with one or more processing units

that are more powerful than the others, work partitioning is more complicated. For

Hetero, we consider this issue by noting the relative performance of FPGAs and CPUs

and performing unbalanced partitioning.

Graph partitioning aims to reduce the number of edge crossings between the par-

titioned graphs, thus reducing the communication costs between two graphs. In this

chapter, we discuss how the technique of load balancing and graph partitioning are

helpful in achieving better performance.

4.1 Asymmetric Load Balancing

Load balancing allocates workloads across multiple computing resources. Load

balancing aims to make effective use of the available computing resources, prevent

the overload of any particular resource and to reduce the idle waiting time of re-

sources [39]. In a heterogeneous cluster with some computing elements having more

processing power than others (e.g. FPGAs), we can improve performance by adopt-

ing an asymmetric load balancing strategy [35]. Asymmetric load balancing involves

allocating more work to these computing resources with higher processing power.

30

Partitioning ratio % of total nodes on CPUs % of total nodes on FPGAs
50 : 50 50% 50%
40 : 60 40% 60%
30 : 70 30% 70%
20 : 80 20% 80%

Table 4.1: Example of load balancing on a heterogeneous cluster

4.2 Graph Partitioning

Graph partitioning often addresses the issue of dividing graph vertices into smaller

sets such that there are few edge crossings between the sets [29]. One major applica-

tion of graph partitioning is parallel computing. In a cluster of distributed processing

elements which exchange data during computation, it is extremely beneficial to bal-

ance the workload among processing elements to reduce interprocess communication

[20].

In most applications where input can be defined in terms of a graph, a vertex

denotes computation and an edge between the two vertices denotes data dependency.

For efficient execution time performance in a balanced computing environment, a

graph must be partitioned into smaller graphs with approximately same number of

vertices but fewer edge crossings [23].

Graph partitioning is known to be a NP complete problem [14] [18], but many

heuristic algorithms have tried to solve it in an acceptable amount of time. One of

the most popular graph partitioning algorithms is the K-L algorithm [25]. The algo-

rithm follows greedy optimization technique and recursively moves vertices between

partitions to reduce edge cuts between them. The K-L algorithm was originally de-

veloped for bisection and was later extended to quadrisection [32]. The quality of the

partitions generated using K-L depends on the initial partition.

31

Partitioning algorithm Total number of edges
Multilevel-KL 9828780

Spectral 10060000
Inertial 10270000

Linear KL 10295500
Random 10296200

Table 4.2: Total number of edge cuts for different partitioning methods

4.2.1 Chaco: Graph partitioning software

Chaco 2.0 [21] is an open source graph partitioning software. Chaco is available

under license from Sandia National Laboratories. We obtained the source code along

with technical documentation and sample input files via the Internet. Chaco is written

entirely in ANSI C. Chaco offers functions such as:

1. Partition the graph using different partitioning methods with distinct proper-

ties.

2. Embed the partitions generated into several different topologies such as mesh

and hypercube.

Chaco is designed to run on UNIX/LINUX systems. The five partitioning algo-

rithms available in Chaco are: 1) Multilevel-KL, 2) Spectral, 3) Inertial, 4) Linear

KL and 5) Random partitioning. Each of these partitioning algorithms partition the

input graph into 2, 4 or 8 partitions. To evaluate the quality of partitions generated

by each method, we chose an input graph of 2.1 million nodes and partitioned the

graph into 4 sub parts using the above mentioned partitioning methods. The total

number of edge crossings for each partitioning methods is listed in Table 4.2.

In random partitioning, vertices are assigned randomly to the sets to preserve

balance. Multilevel-KL partitioning algorithm yields partitions with a smaller number

of edge crossings between partitions. Multilevel K-L algorithm is divided into 3

phases. In phase one, an increasingly coarse approximation to the input graph is

32

Partition ratio KL IMBALANCE
50 : 50 0
40 : 60 0.4
30 : 70 0.85
20 : 80 1

Table 4.3: KL IMBALANCE values for generating input graphs for 2 CPU + 2 FPGA
heterogeneous cluster

constructed. In phase two, the smallest graph in the sequence is partitioned. In phase

three the coarse partition is projected back through a sequence of graphs improving

the quality with a local refinement algorithm (e.g. Kernighan and Lin).

Chaco keeps the number of vertices between partitions nearly as equal as possible.

If we require unbalanced partitions for our applications we can introduce imbalance

in the generated partitions though an user defined paramater KL IMBALANCE [21].

When KL IMBALANCE is set to q, between 0 and 1, the partitioning algorithms

generate partitions having unequal number of vertices in each partition.

4.2.2 Generation of input partitioned graphs for various cluster configu-

rations

To evaluate the effect of uneven load balancing on the cluster configurations dis-

cussed in section 3.4, we generate input graphs using Chaco as discussed below.

1. Heterogeneous cluster with 2 CPUs and 2 FPGAs: To evaluate the per-

formance of this cluster for uneven load balancing, the input graph should be

partitioned for different partitioning ratios as shown in Table 4.1. To obtain un-

balanced partitions for different partitioning ratios, we set the KL IMBALANCE

value in Chaco as shown in Table 4.3.

For each partitioning ratio, Chaco generates 4 partitions (part0, part1, part2

and part3) as output. The pairs, part0 and part1, and part2 and part3 contain

33

Partitioning ratio
KL IMBALANCE

1st Partitioning 2nd Partitioning 3rd Partitioning
50 : 50 0 0.73 0
40 : 60 0.4 0.73 0
30 : 70 0.85 0.73 0
20 : 80 1 0.73 0

Table 4.4: KL IMBALANCE values for generating input graphs for 1 CPU + 3 FPGA
heterogeneous cluster

equal numbers of nodes. One partition pair (part0 and part1) is assigned to two

CPUs and the other partition pair (part1 and part2) is assigned to two FPGAs.

2. Heterogeneous cluster with 1 CPU and 3 FPGAs:

For this configuration, to generate input graphs we perform graph partitioning

multiple times. For example, consider a load balancing ratio of 40:60, CPU-1

should be assigned a graph containing 40% of the input load and each FPGA

should be assigned 20% of the load. To generate the necessary graphs using

Chaco, we first partition the input graph into 2 partitions of 40% (part0) and

60% (temp1) of the nodes with KL IMBALANCE = 0.4. We then partition

the graph, temp1 into two partitions, with KL IMBALANCE = 0.73 to obtain

graphs with 20% (part1) and 40% (temp2) of the total nodes. In the third

partitioning, we bipartition the graph, temp2 with KL IMBALANCE = 0 to

obtain partitions with 20% of total input nodes (part2 and part3).

The above procedure is followed to generate the required graphs for the other

partitioning ratios. Table 4.4 shows the values of KL IMBALANCE to be used

while generating input graphs for all partitioning ratios.

3. Heterogeneous cluster with 3 CPUs and 1 FPGA:

34

In the heterogeneous cluster of 3 CPUs and 1 FPGA, we follow a similar method-

ology to the one followed for a heterogeneous cluster of 1 CPU and 3 FPGAs

to generate the input graphs.

For example, to generate graphs with a partition ratio of 40:60, we partition the

input graph with KL IMBALANCE = 0.4, to obtain the partitions containing

40% (temp1) and 60% (part0) of the nodes. We choose the graph temp1 to do

the partitioning the second time with KL IMBALANCE = 0.73 and obtain the

graphs with 26.66% (temp2) and 13.34% (part1) of nodes. In the third parti-

tioning, we partition the graph temp2 with KL IMBALANCE = 0 to obtain

the partitions with 13.33% (part2 and part3) of input nodes.

To generate the input graphs with other partitioning ratios, we use KL IMBALANCE

values given in Table 4.4. Here, we select the same KL IMBALANCE values as

in 1 CPU + 3 FPGA cluster at each stage of partitioning, but select a differ-

ent graph from the previous partition output as the input graph in the current

partitioning.

In this chapter, we discussed the concept of static load balancing and graph par-

titioning. We illustrated how we can generate the input graphs for different cluster

configurations using Chaco. In Chapter 5 we present the performance of different

cluster configurations for uneven load balancing and graph partitioning techniques.

35

CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we discuss the performance measurements of various cluster con-

figurations described in section 3.4. First, we obtain performance measurements of

all clusters by executing PageRank, Katz and Connected Components benchmarks

for a randomly partitioned input graph. Second, the execution time is compared with

the input graphs created with multi-level K-L partitioning. All the experiments are

conducted for Tx/Rx ratio of 4:4 on FPGAs, as a ratio of 4:4 is shown to provide

maximum speedup compared to other Tx/Rx ratios.

Input graphs of 2.4 million nodes on a heterogeneous cluster of 3 CPUs and 1

FPGA, 4.8 million nodes on a heterogeneous cluster of 1 CPU and 3 FPGAs and 3.6

million nodes on a heterogeneous cluster of 2 CPUs and 2 FPGAs are used.

5.1 Performance Variation across Different Cluster Configu-

rations

The speedup of heterogeneous clusters with respect to a homogeneous cluster of

CPUs for randomly partitioned graphs for the Katz benchmark is shown in Figure

5.1. For all cluster configurations, the execution time decreases as more graph load is

assigned to FPGAs. We observe that for all the heterogeneous cluster configurations,

the execution time is smaller than for a homogeneous CPU cluster. A homogeneous

FPGA cluster offers highest speedup because the accumulate and update operations

are performed entirely on FPGAs. In a heterogeneous cluster, the computational

capability of CPUs is the main impediment to achieve better speedup.

36

0

5

10

15

20

25

1 2 3 4 5

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

Katz metric with randomly partitioned graphs

3 CPU+ 1 FPGA

1 CPU+ 3 FPGA

2 CPU+ 2 FPGA

Maestro

50:50 40:60 30:70 20:80 10:90 50:50 40:60 30:70 20:80 10:90

Figure 5.1: Performance of various cluster configurations for different partitioning
ratio versus a four processor node configuration

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
50 : 50 12 7 2.5
10 : 90 18 15 6

Table 5.1: Speedup of different cluster configurations for Katz benchmark versus a
four-processor configuration

As shown in Figure 5.1, a heterogeneous 1 CPU + 3 FPGA cluster achieves higher

speedup compared to other configurations. More number of FPGAs (accelerators) are

involved in the computation compared to other configurations. The 3 CPU + 1 FPGA

cluster includes a single FPGA and provides less speedup due to fewer FPGAs.

As illustrated in Figure 5.1, as we assign more load on the FPGAs, the speedup

increases irrespective of number of CPUs and FPGAs in the cluster. FPGAs are

computationally faster than CPUs (Figure 5.7), and can process more load than a

CPU in a given amount of time. As more load is assigned to FPGAs, most of the

computation happens on FPGAs and results in less execution time.

In Table 5.1, the speedup values for 50% and 90% load on FPGAs have been

tabulated. We can observe a decrease in speed up as less work is assigned on FPGAs

and increase in speedup as number of FPGAs in a cluster increases.

37

0

5

10

15

20

25

30

35

1 2 3 4 5

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

PageRank with randomly partitioned graphs

1 CPU+ 3 FPGA

2 CPU+ 2 FPGA

3 CPU+ 1 FPGA

Maestro

50:50 40:60 30:70 20:80 10:90

Figure 5.2: Performance of various cluster configurations for different partitioning
ratios versus a four-processor cluster

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
50 : 50 12 6 4
10 : 90 20.5 17 12

Table 5.2: Speedup of different cluster configurations for PageRank benchmark versus
a four-node processor cluster

Figure 5.2 shows the speedup of different cluster configurations for different par-

titioning ratios for the PageRank banchmark. Similar to the Katz benchmark, we

observe an increase in speedup when more load is assigned to FPGAs in a cluster and

the overall speedup of a cluster decreases when CPUs outnumber FPGAs. Similar

explanations as for the Katz benchmark can be applied here. Table 5.2 quantifies the

speedup for loads of 50% and 90% on the FPGAs for the PageRank benchmark.

Speedup measurements of the Connected Components benchmark for different

cluster configurations are shown in Figure 5.3. Analogous to other benchmarks (Katz

and PageRank), performance measurements of the Connected Components exhibit

similar characteristics. The higher speedup of the 1 CPU + 3 FPGA cluster is

attributed to the presence of 3 accelerating elements (FPGAs). In Table 5.3, we

notice the speedup of the Connected Components benchmark is lower than Katz

38

0

1

2

3

4

5

6

1 2 3 4 5

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

CC with randomly partitioned graphs

1 CPU+ 3 FPGA

2 CPU+ 2 FPGA

3 CPU + 1 FPGA

Maestro

50:50 40:60 30:70 20:80 10:90

Figure 5.3: Performance of various cluster configurations for different partitioning
ratio

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
50 : 50 1.1 1.5 2.25
10 : 90 3.25 2.9 2.8

Table 5.3: Speedup of different cluster configurations for Connected Components
benchmark

and PageRank. The Connected Components algorithm does not involve arithmetic

calculations like PageRank and Katz. FPGA parallelism helps accelerate complex

floating point calculations. In connected components, the update function is “Max”,

but in Katz and PageRank the update involves floating point division (Table 3.1). The

performance of CPUs and FPGAs are comparable for the “Max”” update function,

hence we don’t observe significant speedup in heterogeneous clusters with FPGAs.

5.2 Performance Variation Using Different Graph Partition-

ing Methods

Figure 5.4 shows a speedup comparison between a randomly partitioned input

graph and an input graph partitioned using multilevel-KL for the Katz benchmark.

39

0

5

10

15

20

25

1 2 3 4

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

Comparision of Random and Multilevel-KL partitioned graphs for Katz

Multilevel 1 CPU + 3 FPGA

Random 1 CPU + 3 FPGA

Multilevel-KL 2CPU + 2 FPGA

Random 2 CPU + 2 FPGA

Multilevel-KL 3 CPU+ 1 FPGA

Random 3 CPU + 1 FPGA

50:50 40:60 30:70 20:80

Figure 5.4: Comparison of performance of heterogeneous clusters for input graphs
partitioned using different partitioning methods for the Katz benchmark versus a

four-processor cluster

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
10 : 90 15% 11% 20%

Table 5.4: Improvement in speedup for multilevel K-L partitioned graph over ran-
domly partitioned graph for the Katz benchmark versus a four-processor cluster

For all cluster configurations in Figure 5.4, the multilevel K-L input graph shows

improvement in speedup compared to the randomly partitioned graph input.

Table 5.5 compares the total number of edges for different partitioning methods.

We notice that the total number of cut edges for multilevel K-L partitioning is less

than random partitioning for different partition ratios. The reduced number of edge

cuts between graph partitions generated using multilevel K-L partitioning results in

a reduction in the number of messages exchanged between computing nodes.

Figures 5.5 and 5.6 show a speedup comparison for a randomly partitioned in-

put graph versus an input graph partitioned using multilevel-KL for PageRank and

Connected Components benchmarks. Similar to the Katz benchmark, we observe an

40

Partitioning ratio
Total number of Edge Cuts
Random Multilevel K-L

50 : 50 28356180 26176001
40 : 60 27564199 25391169
30 : 70 23081222 21781210
20 : 80 22491320 19001125

Table 5.5: Total number of edges cuts for Random and Multilevel K-L partitioning
methods

0

5

10

15

20

25

1 2 3 4

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

Comparision of Random and Multilevel-KL partitioned graphs for PageRank

Multilevel 1 CPU + 3 FPGA

Random 1 CPU+ 3 FPGA

Multilevel-KL 2 CPU + 2 FPGA

Random 2 CPU + 2 FPGA

Multilevel-KL 3 CPU + 1 FPGA

Random 3 CPU + 1 FPGA

50:50 40:60 30:70 20:80

Figure 5.5: Comparison of performance of heterogeneous clusters for input graphs
partitioned using different partitioning methods for the PageRank benchmark

improvement in speedup for input graphs partitioned using the multilevel K-L par-

titioning method. The increase in speedup is associated with decrease in the edge

cuts between partitions. Table 5.6 and Table 5.7 show the percentage improvement

in speedup for multilevel K-L partitioned graphs for PageRank and Connected Com-

ponent benchmark respectively.

41

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
10 : 90 11% 26% 15%

Table 5.6: Improvement in speedup for a multilevel K-L partitioned graph over a
randomly partitioned graph for the PageRank benchmark

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

S

p

e

e

d

u

p

Ratio of graph nodes on CPU and FPGA

Comparision of Random and Multilevel-KL partitioned graphs for CC

Multilevel 1 CPU + 3 FPGA

Random 1 CPU + 3 FPGA

Multilevel 2 CPU + 2 FPGA

Random 2 CPU + 2 FPGA

Multilevel 3 CPU + 1 FPGA

Random 3 CPU + 1 FPGA

50:50 40:60 30:70 20:80

Figure 5.6: Comparison of performance of heterogeneous clusters for input graphs
partitioned using different partitioning methods for the Connected Components

benchmark

5.3 Modeling partitioning ratio

In Figure 5.7, we can observe that for the PageRank benchmark, 1 FPGA node

gives a 4.5X speedup versus 1 CPU node. For Katz and Connected Components

benchmarks, a 1 node FPGA configuration provides 3.8X and 1.5X speedup, respec-

tively versus a 1 node CPU configuration.

For the PageRank benchmark, since a single FPGA performs computation 4.5X

faster than a single CPU, hypothetically we can assign 4.5X more load to an FPGA

than a CPU to complete the computation in an equal amount of time. In a hetero-

geneous cluster of CPUs and FPGAs, we need to balance the load such that neither

the CPUs nor the FPGAs are starved or overloaded.

42

Load Ratio 1 CPU + 3 FPGA 2 CPU + 2 FPGA 3 CPU + 1 FPGA
10 : 90 8% 9% 8%

Table 5.7: Improvement in speedup for a multilevel K-L partitioned graph over a
randomly partitioned graph for the Connected Components benchmark

Figure 5.7: Execution time of a single node FPGA vs. a single node CPU for
different benchmarks

Consider a cluster of ‘m’ CPUs and ‘n’ FPGAs. Assume, we have a load of size

‘K’. Let ‘s’ be the speedup of 1 FPGA node over 1 CPU node for a benchmark ‘B’.

By assigning ‘s’ times more load to individual FPGA than CPU, we have.

m · x+ s · n · x = K (5.1)

x =
K

m+ (s · n)
(5.2)

Hence, the load assigned to m CPUs = mK
m+sn and the load assigned to n FPGAs

= snK
m+sn

. Therefore, the appropriate load balancing ratio = m : s · n Table 5.8

shows the partitioning ratio for different heterogeneous cluster configurations and

43

Config.
Benchmark

PageRank Katz CC
Ratio Speedup Ratio Speedup Ratio Speedup

(CPU : (CPU : (CPU :
FPGA) FPGA) FPGA)

1 CPU +
3 FPGA 7 : 93 22 10 : 90 18.2 20 : 80 2.75
2 CPU +
2 FPGA 15 : 85 20 20 : 80 11.5 40 : 60 2
3 CPU +
1 FPGA 40 : 60 10 45 : 55 2.6 65 : 35 1.75

Table 5.8: Speedup of various configurations for appropriate load balancing ratio

Configuration
Speedup for Appropriate Partitioning Estimated

CostPageRank Katz CC
Maestro 30 22 5 $12,000
1 CPU + 3 FPGA 22 18.2 2.75 $9,500
2 CPU + 2 FPGA 20 11.5 2 $7,000
3 CPU + 1 FPGA 10 2.6 1.75 $4,500

Table 5.9: Estimated cost vs. speedup of different cluster configurations

the corresponding speedup for various clusters. A 1 CPU + 3 FPGA cluster with

appropriate load balancing records higher speedup. In contrast, a 3 CPU + 1 FPGA

records less speedup for an appropriate load balancing ratio which can be attributed

to the presence of more accelerators (FPGAs) in the former configuration than in the

latter configuration.

5.4 Cost Analysis

Table 5.9 shows the estimated cost and speedup trade-off of all heterogeneous

cluster configurations for three different benchmarks and appropriate load balancing

ratio. For these comparisons, we assume that a CPU workstation costs $500 and each

Altera DE4 board costs $3,000. We do not consider the cost of FPGA helper CPUs

as they are used only for experimental prototyping and experimentation and can be

44

replaced by a soft processor on FPGAs. A 1 CPU + 3 FPGA cluster yields higher

speedup for all benchmarks but is more expensive among all other cluster configura-

tions. A 3 CPU + 1 FPGA cluster is least expensive among all configurations, but

provides less speedup. We can conclude that a 2 CPU + 2 FPGA is a better trade-off

between cost and performance among all clusters.

The Connected Components benchmark provides less speedup compared to other

benchmarks for an appropriate load balancing ratio. We can speculate that if we are

running a non-compute intensive task we should choose a heterogeneous cluster which

has more CPU computing nodes and for a compute intensive task a heterogeneous

cluster with more FPGA computing nodes for a better speed versus cost trade-off.

45

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Asynchronous Accumulative Updates (AAU) provide improved performance com-

pared to conventional iterative algorithms. In previous research, AAU was imple-

mented on a homogeneous cluster of CPUs and FPGAs. The absence of synchroniza-

tion barriers between two iterations in AAU is employed to build different configura-

tions of heterogeneous clusters containing CPUs and FPGAs.

In this thesis, we built 3 different configurations of heterogeneous clusters: 3

CPU and 1 FPGA, 2 CPU and 2 FPGA and 1 CPU and 3 FPGA. We executed

three different benchmarks (PageRank, Katz and Connected Components) on each

configuration.

We varied the input load on the CPUs and FPGAs by gradually increasing the

input load on the FPGAs from 50% to 90% of total graph nodes. We showed that

the performance of a heterogeneous cluster can be increased by incorporating more

FPGAs in the cluster. We also observed that increased data load on the FPGAs

reduces execution time.

We obtained a speedup of 10X, 20X and 22X for a 3 CPU + 1 FPGA, 2 CPU +

2 FPGA and 1 CPU + 3 FPGA cluster for the PageRank benchmark, 2.6X, 11.5X

and 18.2X for a 3 CPU + 1 FPGA, 2 CPU + 2 FPGA and 1 CPU + 3 FPGA

cluster for the Katz benchmark and 1.75X, 2X and 2.75X for 3 CPU + 1 FPGA,

2 CPU + 2 FPGA and 1 CPU + 3 FPGA clusters for the Connected Components

benchmark. All experiments were conducted for an appropriate load balancing ratio

46

for each configuration. This ratio was determined by examining the runtime speedup

for an FPGA versus a processor.

Chaco graph partitioning software was used to partition input graphs using mul-

tilevel KL. We ran the partitioned graphs on the cluster configurations to obtain

execution time for different input load ratios for CPUs and FPGAs. We observed

that when input graphs partitioned using multilevel-KL method were used, execution

time was less compared to when input graphs generated with random partitioning

were used.

In future work, we plan to implement a dynamic load balancing mechanism. We

plan to design a dynamic load balancer which runs on the master CPU. The balancer

examines the load on CPUs and FPGAs and balances the load by transferring some

work from a heavily loaded node to a lightly loaded node. The dynamic load balancer

will carefully track the load on all computing nodes in the cluster [16].

We plan to implement the fault tolerance in the heterogeneous cluster by period-

ically saving the state table of CPUs to disk and the state table in DRAM adjacent

to FPGAs to the disk of the FPGA helper CPUs. We plan to scale the 4 node

heterogeneous cluster to include more CPUs and FPGAs.

47

BIBLIOGRAPHY

[1] Altera de4 development and education board. http://www.altera.com/

education/univ/materials/boards/de4/unv-de4-board.html. Altera Cor-
poration.

[2] Amazon ec2. http://aws.amazon.com/ec2/.

[3] Big data facts and statistics that will shock you. http:

//www.fathomdelivers.com/blog/analytics-and-big-data/

big-data-facts-and-statistics-that-will-shock-you/.

[4] Ebay study: How to build trust and improve the shopping
experience. http://research.wpcarey.asu.edu/managing-it/

ebay-study-how-to-build-trust-and-improve-the-shopping-experience/.

[5] Hadoop. http://hadoop.apache.org/.

[6] Heterospark. https://spark-summit.org/2015-east/wp-content/uploads/

2015/03/SSE15-28-Peilong-Li-Yan-Luo.pdf.

[7] Maiter project. http://code.google.com/p/maiter/.

[8] Netfpga wiki. https://github.com/NetFPGA/netfpga/wiki/Guide.

[9] Open mpi. http://www.open-mpi.org/.

[10] Brin, Sergey, and Page, Lawrence. The anatomy of a large-scale hypertextual
web search engine. Comput. Netw. ISDN Syst. 30, 1-7 (Apr. 1998), 107–117.

[11] Bu, Yingyi, Howe, Bill, Balazinska, Magdalena, and Ernst, Michael D. Haloop:
Efficient iterative data processing on large clusters. Proc. VLDB Endow. 3, 1-2
(Sept. 2010), 285–296.

[12] Che, Shuai, Li, Jie, Sheaffer, Jeremy W., Skadron, Kevin, and Lach, John. Ac-
celerating compute-intensive applications with gpus and fpgas. In Proceedings of
the 2008 Symposium on Application Specific Processors (Washington, DC, USA,
2008), SASP ’08, IEEE Computer Society, pp. 101–107.

[13] Choi, Yuk-Ming, and So, H.K.-H. Map-reduce processing of k-means algorithm
with fpga-accelerated computer cluster. In Application-specific Systems, Archi-
tectures and Processors (ASAP), 2014 IEEE 25th International Conference on
(June 2014), pp. 9–16.

48

[14] Cioaba, Sebastian M. The np-completeness of some edge-partitioning problems.
Master’s thesis, Queens University Kingston, Ontario, Canada.

[15] Dean, Jeffrey, and Ghemawat, Sanjay. Mapreduce: Simplified data processing
on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[16] Devine, Karen D, Boman, Erik G, Heaphy, Robert T, Hendrickson, Bruce A,
Teresco, James D, Faik, Jamal, Flaherty, Joseph E, and Gervasio, Luis G. New
challenges in dynamic load balancing. Applied Numerical Mathematics 52, 2
(2005), 133–152.

[17] Frommer, Andreas, and Szyld, Daniel B. On asynchronous iterations. J. Comput.
Appl. Math. 123, 1-2 (Nov. 2000), 201–216.

[18] Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified np-complete
problems. In Proceedings of the Sixth Annual ACM Symposium on Theory of
Computing (New York, NY, USA, 1974), STOC ’74, ACM, pp. 47–63.

[19] He, Bingsheng, Fang, Wenbin, Luo, Qiong, Govindaraju, Naga K., and Wang,
Tuyong. Mars: A mapreduce framework on graphics processors. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques (New York, NY, USA, 2008), PACT ’08, ACM, pp. 260–269.

[20] Hendrickson, Bruce, and Kolda, Tamara G. Graph partitioning models for par-
allel computing. Parallel Comput. 26, 12 (Nov. 2000), 1519–1534.

[21] Hendrickson, Bruce, and Leland, Robert. The chaco users guide version 2.0.

[22] Hu, Han, Wen, Yonggang, Chua, Tat-Sang, and Li, Xuelong. Toward scalable
systems for big data analytics: A technology tutorial. IEEE Access 2 (2014).

[23] Jones, C.A. Vertex and Edge Partitions of Graphs. PhD thesis, Penn State,
Dept of Computer Science State College, PA,

[24] Katz, Leo. A new status index derived from sociometric analysis. In Psychome-
trika.

[25] Kernighan, B. W., and Lin, S. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal 49, 2 (1970), 291–307.

[26] Liben-Nowell, D., and Kleinberg, J. The link-prediction problem for social
networks. Journal of the Association for Information Science and Technology
(2007).

[27] Low, Yucheng, Bickson, Danny, Gonzalez, Joseph, Guestrin, Carlos, Kyrola,
Aapo, and Hellerstein, Joseph M. Distributed graphlab: A framework for ma-
chine learning and data mining in the cloud. Proc. VLDB Endow. 5, 8 (Apr.
2012), 716–727.

49

[28] Power, Russell, and Li, Jinyang. Piccolo: Building fast, distributed programs
with partitioned tables. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1–14.

[29] Sanders, Peter, and Schulz, Christian. High quality graph partitioning.

[30] Shan, Yi, Wang, Bo, Yan, Jing, Wang, Yu, Xu, Ningyi, and Yang, Huazhong.
Fpmr: Mapreduce framework on fpga. In Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(New York, NY, USA, 2010), FPGA ’10, ACM, pp. 93–102.

[31] Song, Han Hee, Cho, Tae Won, Dave, Vacha, Zhang, Yin, and Qiu, Lili. Scalable
proximity estimation and link prediction in online social networks. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement Conference
(New York, NY, USA, 2009), IMC ’09, ACM, pp. 322–335.

[32] Suaris, P.R., and Kedem, G. An algorithm for quadrisection and its application
to standard cell placement. Circuits and Systems, IEEE Transactions on 35, 3
(March 1988), 294–303.

[33] Tsoi, Kuen Hung, and Luk, Wayne. Axel: A heterogeneous cluster with fpgas and
gpus. In Proceedings of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (New York, NY, USA, 2010), FPGA ’10,
ACM, pp. 115–124.

[34] Unnikrishnan, D., Virupaksha, S.G., Krishnan, L., Gao, L., and Tessier, R.
Accelerating iterative algorithms with asynchronous accumulative updates on
fpgas. In Field-Programmable Technology (FPT), 2013 International Conference
on (Dec 2013), pp. 66–73.

[35] Vöcking, Berthold. How asymmetry helps load balancing. J. ACM 50, 4 (July
2003), 568–589.

[36] Yeung, Jackson H. C., Tsang, C. C., Tsoi, K. H., Kwan, Bill S. H., Cheung,
Chris C. C., Chan, Anthony P. C., and Leong, Philip H. W. Map-reduce as
a programming model for custom computing machines. In Proceedings of the
2008 16th International Symposium on Field-Programmable Custom Computing
Machines (Washington, DC, USA, 2008), FCCM ’08, IEEE Computer Society,
pp. 149–159.

[37] Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J., Shenker, Scott, and
Stoica, Ion. Spark: Cluster computing with working sets. In Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing (Berkeley, CA,
USA, 2010), HotCloud’10, USENIX Association, pp. 10–10.

50

[38] Zaharia, Matei, Konwinski, Andy, Joseph, Anthony D., Katz, Randy, and Sto-
ica, Ion. Improving mapreduce performance in heterogeneous environments. In
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2008), OSDI’08, USENIX Association,
pp. 29–42.

[39] Zhang, Y, Kameda, H, and Hung, S-L. Comparison of dynamic and static
load-balancing strategies in heterogeneous distributed systems. IEE Proceedings-
Computers and Digital Techniques 144, 2 (1997), 100–106.

[40] Zhang, Yanfeng, Gao, Qinxin, Gao, Lixin, and Wang, Cuirong. imapreduce: A
distributed computing framework for iterative computation. In Proceedings of
the 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (Washington, DC, USA, 2011), IPDPSW ’11, IEEE
Computer Society, pp. 1112–1121.

[41] Zhang, Yanfeng, Gao, Qixin, Gao, Lixin, and Wang, Cuirong. Priter: A dis-
tributed framework for prioritized iterative computations. In Proceedings of the
2Nd ACM Symposium on Cloud Computing (New York, NY, USA, 2011), SOCC
’11, ACM, pp. 13:1–13:14.

[42] Zhang, Yanfeng, Gao, Qixin, Gao, Lixin, and Wang, Cuirong. Accelerate large-
scale iterative computation through asynchronous accumulative updates. In Pro-
ceedings of the 3rd Workshop on Scientific Cloud Computing Date (New York,
NY, USA, 2012), ScienceCloud ’12, ACM, pp. 13–22.

51

	Accelerated Iterative Algorithms with Asynchronous Accumulative Updates on a Heterogeneous Cluster
	Recommended Citation

	tmp.1455503086.pdf.zDXsb

