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ABSTRACT

A VULNERABILITY FRAMEWORK FOR ASSESSING
THE RISKS TO WATER SUPPLY SYSTEMS UNDER

CLIMATE UNCERTAINTY IN THE URBAN
NORTHEASTERN UNITED STATES

FEBRUARY 2016

SARAH V. WHATELEY

B.A., SKIDMORE COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Casey Brown

The northeastern United States is not commonly considered a drought prone re-

gion. Yet there are increasing pressures on water utilities throughout the region that

constrain their ability to supply reliable water. These include new constraints on

water withdrawals and requirements to release additional water for ecological pur-

poses. Finally, there is the emerging concern associated with climate change. The

vulnerability of any particular system, however, is not easily assessed, as it is de-

pendent on a variety of factors that go beyond simple changes in precipitation and

temperature. These include the size of the watershed, the volume of storage, required

releases, and water demand. This dissertation will develop a pragmatic framework

that incorporates these factors to allow rapid assessment and comparative analysis of

vii



water utilities vulnerability to climate change. The analysis uses a vulnerability-based

assessment, based on stress testing, which identifies the problematic scenarios first

and then uses climate information to provide context regarding the risk associated

with those scenarios. The approach is demonstrated in an analysis of the major cities

of the Northeast U.S., New York City, NY, Boston, MA, Springfield, MA, Hartford,

CT, and Providence, RI. Next, a generic version of the framework is implemented in

a novel online software tool designed for smaller utilities that may lack the ability to

conduct a full vulnerability analysis. Lastly, this work explores the impact of vari-

ous sources of uncertainty (i.e., internal variability, mean climate change, and future

emission scenario) on water supply in the northeastern United States. The disserta-

tion shows pragmatic approaches to climate change vulnerability analysis that water

utilities can implement and update to assess and manage their climate change risks

for both large and small utilities.
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INTRODUCTION

Water resource managers and decision-makers are faced with many uncertainties

when planning and managing water systems: future population, per capita water

demands, regulatory requirements, environmental standards, consumer preferences,

and climate change among others. These uncertainties impact both short-term op-

erational decisions (e.g. water allocation) and long-term adaptation decisions (e.g.

infrastructure investments). Despite the inherent uncertainty in future conditions,

water planners must decide how to plan and manage their water systems with the

resources available to them.

Developing effective management strategies and adaptation actions that reduce

risk to water resources requires an assessment of regional climate hazards on existing

system procedures [Mastrandrea et al., 2010b]. Climate risk assessment of water

resource systems is a process for identifying and evaluating vulnerabilities that may

threaten existing infrastructure and system performance. The process often involves

a series of climate/weather models, rainfall-runoff models, and systems models to

evaluate the impacts of climate change and variability on system functioning. Yet, this

process concentrates on identifying climate impacts of a particular system, limiting

our understanding of regional risks and pressures on water availability. Also, for

a region such as the Northeast United States, with a large concentration of highly

populated cities with significant water demands that are managed by a variety of

utilities and companies, an analysis of this type would not illustrate the potential

risks and vulnerabilities to systems related to factors such as environmental flow

requirements and changes in demand.
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An example of new requirements being made of water utilities is the recent push for

environmental flow releases. Recent work by biologists and ecologists that has linked

deterioration of the aquatic ecology in a basin to flow alteration by dams and reser-

voirs has prompted policy makers to consider environmental flow regulations [Olden

and Naiman, 2010; Richter and Thomas , 2007; Richter et al., 2011; Watts et al.,

2011]. In the Northeast, efforts have gone toward developing a framework for the

permitting of water withdrawals under the Water Management Act (WMA) to help

establish sustainable management of water resources that balance both anthropogenic

and ecological needs. Ongoing pilot studies, guided by the Massachusetts Executive

Office of Energy and Environmental Affairs (EEA), test the new Sustainable Water

Management Initiative (SWMI), designed to sustain the magnitude and timing of the

natural flow regime. However, the risk associated with requiring water utilities to

release more water under conditions of climate change is not known.

Previous studies that have explored climate change risks to water supply in the

Northeast, most of which focus on the New York City and Boston water supply sys-

tems, have found varying results [Kirshen et al., 1995; Kirshen and Fennessey , 1995;

Vogel et al., 1997b; Lettenmaier et al., 1999; Matonse et al., 2012; Blake et al., 2000;

Horton et al., 2011]. For example, Kirshen and Fennessey [1995] and Kirshen et al.

[1995] climate impact studies of municipal water supply in Metropolitan Boston es-

timated the amount of water that could be reliably supplied from the Quabbin and

Wachusett Reservoirs to the Boston area for different climate scenarios derived from

the simulations of Global Circulation Models (GCMs). They concluded that Bostons

source of water is highly sensitive to the climatic changes explored, suggesting the

potential need to develop new sources of water supply and adjust the costs of water

to users. Other work by Vogel et al. [1997a] used a simple regional hydroclimatologic

model of annual streamflow to explore the sensitivity of Bostons water supply system

performance to climate, leading roughly to the same results found in the much more
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detailed approaches used by Kirshen et al. [1995]. However, a later study done by Let-

tenmaier et al. [1999] looked at the impacts of both climatic and non-climatic effects

on future system performance for the Boston water supply system and found that the

non-climatic effects of future system performance (i.e. demand growth) exceeded the

effects of climate change over system planning horizons.

Matonse et al. [2012] investigation of the impacts of climate change on New York

City’s water supply used future climate scenarios projected by different GCMs as

inputs to a Generalized Watershed Loading Functions (GWLF) watershed model to

simulate inflows required to run a water supply systems model (OASIS). Results from

this study suggest the NYC reservoir system will continue to show high resilience and

annual reliability, and low vulnerability in the future despite projected changes in

seasonal hydrology in the region.

These studies provide snapshots of the effects of specific climate change scenarios

from certain GCMs driven by certain emissions scenarios on the systems. However,

they lack the ability to identify the specific climate changes that should cause concern

for the water managers and larger populace of the Northeast U.S. Given that climate

models are continuously being updated, that they share significant biases, and that

they are recognized to only explore the ‘minimum range of maximum uncertainty,’

the utility of information gained from previous studies may be lacking. Only Vo-

gel et al. [1997a] sought general relationships between water supply reliability and

climate change, albeit using simple analytical approximations to estimate reliability.

In addition, previous studies have focused solely on large systems, notably the water

supply systems serving New York City and greater Boston. No study in the published

literature has focused on smaller supply systems.

This dissertation seeks to efficiently identify the climate change vulnerabilities

of water supply systems in the Northeast U.S., and upon doing so, uses the iden-

tified problematic climate changes to put available climate change projections into
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context. The methodology employed in Brown et al. [2012] is used to study the mu-

nicipal surface water supply systems in Boston, MA, New York City, NY, Hartford,

CT, Springfield, MA, and Providence, RI to develop a general understanding of the

vulnerabilities to both climate change and natural variability of larger water supply

systems in the Northeast U.S. The methods are then generalized in the form of a novel

online software tool for use by managers of small water supply systems for climate

risk screening assessments. The tool is presented and demonstrated on both large

and small systems. The results reveal the differences in vulnerabilities that can be

identified by using a consistent vulnerability-based framework across systems, both

large and small.

Vulnerability-based climate risk assessment

Traditionally, water supply impact studies evaluate system performance by com-

bining downscaled Coupled Ocean-Atmosphere Global Climate Models (OA/GCM)

with rainfall-runoff models and reservoir operations models to predict future climate

risk [Rajagopalan et al., 2009a; Wilby and Dessai , 2010; Wiley and Palmer , 2008].

These ‘top-down’ or scenario-based approaches use projected climate change scenar-

ios to evaluate system performance. Top-down approaches undertaken for the pur-

poses of making adaptation or reservoir operating decisions tend to propagate signifi-

cant uncertainties, generating large uncertainty ranges in climate impacts and system

risk [Dessai et al., 2009]. For example, the inherent uncertainty in GCM projections

related to initial condition ensembles [Deser et al., 2012], climate forcings [Stainforth

et al., 2005], and model inadequacies due to poorly understood climate physics and

computational complexity [New and Hulme, 2000] make it difficult to incorporate

information from these scenarios into adaptation decisions [Stainforth et al., 2007b].

Hydrologic model error is an additional source of uncertainty, with possible errors

associated with the hydrologic model parameters, model structure, and prediction
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errors [Steinschneider et al., 2012]. There is also uncertainty in the systems mod-

els due to mismatches of operating guidelines, demand forecasts, and changes in the

priorities of system operations [Wood et al., 1997b].

Given these concerns, alternative methods of climate risk assessment have emerged

that build from the concepts of classic decision theory and scenario planning. In

standard decision theory, options are evaluated based on the reward they are expected

to deliver given a particular state of nature. The states of nature represent the

uncertain future. For each combination of a decision (e.g., selection of an option)

and a future state of the nature, there is an outcome, often called the reward. Given

this structuring of a decision problem, decision analysis then provides protocols, called

decision rules, for selecting the best option. For example, a common decision rule used

in water resources is maximizing expected utility, which uses probabilistic information

to select among alternatives under uncertainty [Weaver et al., 2012]. While decision

theory is a powerful tool for identifying optimal management strategies given the

available information, it is highly sensitive to the characterization of uncertainty.

For example, if the ‘maximize expected utility’ approach is used, then the optimal

decision is very dependent on the probabilities assigned to the future states of the

world. If a maximax decision rule is used, then its highly dependent on the judgment

of which future is most likely. Finally, if a maximin or minimax regret is used, then

it is dependent on the range of states of nature that are considered, and in particular

what the ‘worst case’ is selected to be.

Rather than suggest a single, best-guess plan of action, several studies have at-

tempted to incorporate the concept of robustness for water resources planning and

design that rely on selecting strategies that perform well across the range of generated

scenarios [Lempert and Collins , 2007; Ray et al., 2013; Watkins Jr and McKinney ,

1997]. These methods include Info-Gap Decision Theory [Ben-Haim, 2006], Robust

Decision Making (RDM) [Lempert et al., 2006; Lempert and Groves , 2010], Robust
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Optimization [Ray et al., 2013; Watkins Jr and McKinney , 1997], Real Option anal-

ysis [Wang et al., 2006], Decision-Scaling [Brown, 2010], and the scenario-neutral

approach [Prudhomme et al., 2010]. These bottom-up approaches are designed to

identify system vulnerabilities over a range of plausible future conditions to aid in

selecting robust adaptation strategies. In all cases, the concept of robustness plays a

key role in analysis, where a robust strategy has the capacity to maintain performance

amidst uncertainty [Lempert et al., 2001].

Other decision-making methods focus on maintaining flexibility in the face of

uncertainty. Forward-thinking decision-makers may try to account for the influence

of future conditions on current decisions by designing projects that allow, but do

not require, alterations to the use of a system through time. First introduced in the

economics and finance literature [Arrow and Fisher , 1974; Myers , 1977], the value of

maintaining flexibility in future decisions to avoid unwanted consequences is referred

to as an ‘option value.’ The notion of option value has been applied in water resources

planning, using ‘real options’ in engineered projects to help hedge against the risk

of unexpected future outcomes [Steinschneider and Brown, 2012]. While real-option

approaches offer a time dimension in planning, they can be technically complex to

apply to real cases because of the need to agree on the value of deeply uncertain

future options [Kalra et al., 2014]. That is, while it is useful to consider real options

among the decision options, it is not a formal decision making approach and thus

follows traditional decision analysis methods with consequent foibles.

A robust decision framework prevalent in the literature is Info-Gap Decision The-

ory. Info-Gap Decision Theory is based on the idea that there is a ‘gap’ in the

availability of information suitable to make complex decisions and this lack of knowl-

edge requires we sample a wider range of uncertainty [Ben-Haim, 2001]. The method

seeks to maximize the robustness of a decision based on minimum performance re-

quirements [Matrosov et al., 2013], where thresholds set the minimum level of system
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performance that must be achieved. In this case, the region of uncertainty surround-

ing an estimate defines the robustness of a decision. A robustness function helps

decision-makers explore the capacity of management options to meet certain perfor-

mance thresholds as uncertainty grows, and uses an uncertainty parameter, α, to

define the domain in which an option is robust. Ultimately, the decision-maker is

presented with a trade-off between higher performance (or reward) and robustness to

uncertainty.

Robust Decision Making (RDM) is an analytic method for characterizing climate

uncertainty by assessing the performance of plans over multiple climate futures. The

analysis first characterizes a problem, defines a strategy or portfolio of options to

address the problem, and then evaluates the strategy by generating future climate

scenarios using stochastic simulation, with model parameters estimated from the ob-

served historical record or downscaled climate model projections [Lempert and Groves ,

2010]. The process is iterative, and if system vulnerabilities are identified through

data mining techniques, alternative options can be explored. A regret-based def-

inition of robustness is applied with RDM, where a robust strategy has relatively

small regret when compared with the alternatives across a wide range of plausible

futures [Lempert and Groves , 2010]. Robust Decision Making is designed to identify

both the factors that cause system vulnerabilities and the strategies that reduce those

vulnerabilities under deep uncertainty.

Decision-Scaling is a methodological framework which inverts GCM-based ap-

proaches to climate risk assessment by evaluating system performance over a range of

climate futures that are systematically explored in terms of climate change and vari-

ability to reveal vulnerabilities independent of any assumed probabilities. The process

is generally referred to as a climate stress test. This is similar to the ‘scenario neutral’

approach developed by [Prudhomme et al., 2010]. Multiple sources of climate infor-

mation (i.e., climate projections, paleoclimate reconstructions, and subjective climate
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information) can be used to evaluate risks associated with the vulnerabilities iden-

tified [Brown, 2010; Brown et al., 2011]. This methodology uses a decision analysis

framework to characterize the climate future so that it is both relevant to the decision

at hand and enhances the robustness of the decision under uncertainty. Similar to

other robustness based approaches, in Decision-Scaling, robust adaptation strategies

are defined as those that perform acceptably over a range of future uncertainty and

can be compared with maximum performance over a smaller range.

Decision-Scaling has been employed in several studies of water resources man-

agement under an uncertain and changing climate regime, including climate impact

studies in the Upper Great Lakes [Brown et al., 2011; Moody and Brown, 2013], the

Niger River Basin in West Africa [Ghile et al., 2013], the Melbourne bulk water sup-

ply system in Melbourne Australia [Turner et al., 2014], several large river basins in

the Himalaya region including the Aral Sea basins (Syr Darya and Amu Darya), the

Indus Basin, the Ganges Basin, and the Brahmaputra Basin [Yang et al., 2013, 2014],

and an urban water supply system in the Northeast US [Brown et al., 2012].

The work presented in this dissertation will use a Decision-Scaling approach to

climate risk assessment in the Northeast U.S. In recognizing our limitations in pro-

jecting the future, this study uses Decision-Scaling to tailor the analysis to focus on

the future climate states that are most vulnerable and estimates probabilities asso-

ciated with those decision-relevant climate states [Brown et al., 2012]. This reduces

the computational time and resources necessary for analysis, and permits rapid iden-

tification of vulnerabilities to climate change across multiple water supply systems,

both large and small. Using a consistent vulnerability-based framework across sys-

tems of varying scale will help develop a general understanding of climate risks in the

Northeast United States.
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Application of vulnerability-based approaches in the Northeast

To date, few studies have used bottom-up frameworks to explore climatic or other

impacts on water supply utilities in the Northeast. Two noteworthy exceptions are

presented in the work of Brown et al. [2012] and Whateley et al. [2014], in which

the Decision-Scaling framework is applied to stylized municipal surface water supply

systems in the Northeast U.S. to examine water supply reliability and risks due to

climate change. The results from Brown et al. [2012] reveal that increases in tem-

perature (resulting in increases in evapotranspiration and decreases in streamflow)

and small increases in precipitation (that do not overcome these increases in evap-

otranspiration to increase streamflow) reduce reliability for the Quabbin-Wachusett

reservoir system located in central Massachusetts. In Whateley et al. [2014], the

decision-scaling framework is used to assess the impact of future climate change and

uncertainty on the Springfield Water and Sewer Commission’s (SWSC) water supply

system and results illustrate the additional robustness that can be gained through

adaptation. These analyses also incorporate climate projections from GCMs to esti-

mate probabilities of future climate states relevant to the decision at hand that may

warrant action. The analysis framework in both studies couples a stochastic assess-

ment of risks with potential insights from available climate projections for informed

decision-making under climate change uncertainty.

However, most previous Northeast risk assessment studies found throughout the

literature do not effectively explore future uncertainties, as they rely on coupled

ocean/atmosphere general circulation models (OA/GCMs) to assess climate risks [Hay-

hoe et al., 2006; Horton et al., 2011; Kirshen et al., 2008; Zion et al., 2011]. For ex-

ample, Horton et al. [2011] introduce a framework for adaptation planning in which

New York City stakeholders preselect a climate projection range to assess climate haz-

ards based on their prior experience making long-term decisions under uncertainty.

Although this paper focuses on the provision of stakeholder-relevant climate infor-
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mation for adaptation planning, it only provides a snapshot of the effects of specific

climate change scenarios from certain GCMs driven by certain emission scenarios on

New York City systems. In general, the use of GCM projections as the drivers of risk

assessment studies in the Northeast precludes the discovery of plausible climate risks

and represents a lower bound on the range of climate uncertainty [Stainforth et al.,

2007a].

In addition, most of these climate studies focus on decision-making under climate

change uncertainty and do not explore other uncertain factors often deemed more

important to planning horizons relevant to water resource systems, such as changes

in population, land use, weather variability, environmental regulation, and water de-

mand [Lins and Stakhiv , 1998]. Hawkins and Sutton [2009] and Hawkins and Sutton

[2010] further emphasize that internal climate variability (i.e. the natural fluctuations

in the climate system that arise in the absence of external forcings) is a significant

source of climate uncertainty relevant to adaptation planning at regional scales. De-

signing effective strategies for provision of water-related services in the Northeast U.S.

is dependent on the ability to characterize uncertainty and manage the resultant risks

to system performance.

Accessibility of vulnerability-based climate impact analysis

A notable gap in climate change studies related to water supply is that small

systems are rarely studied. Climate change studies are typically performed for large

water resource systems that are capable of investing the time and resources neces-

sary for such analyses. However, small water utilities may be most susceptible to

climate change but do not have the means to assess system performance under fu-

ture uncertainty. This dissertation addresses this gap, using the vulnerability-based

framework to develop an online tool that can be used to rapidly assess climate change
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and other impacts on smaller utilities (i.e. serving populations of 125,000 or less) in

the Northeast U.S.

The need for screening-level, computer-based models and tools to integrate knowl-

edge and provide support in decision-making and management is confirmed by the

scientific literature [Anderson et al., 2004; Borowski and Hare, 2006; Chapra, 1991;

Welp, 2001]. However, few software packages exist that provide these services to small

water utilities and are simple and easy to use. One exception is the U.S. Environmen-

tal Protection Agencys (USEPA) Climate Resilience Evaluation and Awareness Tool

(CREAT), designed to help the water sector assess regional and local climate-change

impacts. This desktop-based tool leads utilities through a self-directed exploration of

potential climate change related risks and adaptation options [Travers , 2010].

In contrast, a web-based screening-level tool may help narrow the persistent gap

between knowledge production and use by removing software dependencies, simpli-

fying scenario testing, and providing a user-friendly interface [Lemos et al., 2012].

Recent advances in web standards, browser performance, and free and open-source

software (FOSS) present a promising new avenue for developing planning tools that

are more user-friendly and accessible than traditional desktop software. Moreover,

these technological Web advances have transformed the implementation, design, and

deployment of decision support systems (DSS) [Bhargava et al., 2007].

The use of web applications for environmental modeling is only beginning to ap-

pear in the literature [Sun, 2013; Walker and Chapra, 2014b]. Walker and Chapra

[2014b] developed an interactive web application with a rapid screening model for

investigating potential water quality impairments due to BOD discharges. To the

authors knowledge, there are no web-based tools designed for exploring water supply

system performance under climate change. This presents an opportunity to embed

the Decision-Scaling framework into a web-based climate risk assessment tool for

water supply utilities in the Northeast U.S.
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The primary contribution of this dissertation is to present new tools and method-

ologies for exploring climate risks to water supply systems in the northeastern United

States. The following four chapters present a pathway forward in the sustainable man-

agement and planning of water resource systems given the irreducible uncertainty in

future climate, hydrologic, and socioeconomic states of the world.
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CHAPTER 1

SELECTING STOCHASTIC CLIMATE REALIZATIONS
TO EFFICIENTLY EXPLORE A WIDE RANGE OF
CLIMATE RISK TO WATER RESOURCE SYSTEMS

1.1 Abstract

There are significant computational requirements for assessing climate change im-

pacts on water resource system reliability and vulnerability, particularly when ana-

lyzing a wide range of plausible scenarios. These requirements often deter analysts

from exhaustively identifying climate hazards. This technical note investigates two

approaches for generating a subset of stochastic climate realizations that efficiently

explore a range of risk to water supply systems. In both methods, a large ensemble

of stochastic weather time series is generated to simulate the natural variability of

the local climate system, and a selected subset of these sequences is used in the im-

pacts assessment. Method 1 selects the subset by first passing the entire ensemble

through a rainfall-runoff model and then screening the hydrologic sequences using

the sequent peak algorithm. Method 2 selects a subset of climate sequences based

on climate statistics alone, prior to hydrological modeling. Both methods provide

insight for identifying the climate statistics that best relate to the vulnerability of

the water system and can be used to reduce the computational burden of modeling

climate variability and change impacts.

1.2 Introduction

In recent decades, water resource engineers have considered the implications of cli-

mate change on the planning and design of water projects [Nemec and Schaake, 1982;
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Johnson and Weaver , 2008; Horton et al., 2011; Brekke et al., 2009; Hamlet , 2011;

Mastrandrea et al., 2010a; Wiley and Palmer , 2008; Wood et al., 1997a]. General

circulation models (GCMs) are a popular tool to generate climate scenarios for use in

impact assessments but they are limited by their poor ability to simulate climate at

fine spatial and temporal scales [Grotch and MacCracken, 1991; Musau et al., 2014;

Stainforth et al., 2007b; Masson and Knutti , 2011], and their complexity makes it

computationally challenging to characterize uncertainty [Katz , 2002; Murphy et al.,

2009; Knutti and Sedláček , 2012]. A variety of downscaling procedures have been pro-

posed to alleviate some of these issues [Prudhomme et al., 2010; Lempert and Groves ,

2010; Leavesley , 1994]. One increasingly utilized approach [Wilby and Dawson, 2012;

Jones et al., 2009] relies on stochastic weather generation to create several time series

of weather that reflect climate changes consistent with GCM projections, but also

preserve local characteristics of natural variability poorly represented by the climate

models.

Researchers have long recognized the advantages of using stochastic techniques

for generating synthetic streamflow sequences for assessment of water resource sys-

tems [Fiering , 1997]. A ‘climate stress test’ represents an expansion of this traditional

approach, where the benefits of sampling a wide range of stochastically generated vari-

ability are combined with controlled sampling of changes in climate. A key feature of

the climate stress test is an exhaustive sensitivity analysis using exploratory modeling

techniques to identify plausible climate changes and realizations of natural variability

that could negatively impact the water system [Brown, 2010; Brown et al., 2012]. A

weather generator is typically used as part of the algorithm to develop these plausible

scenarios [Steinschneider et al., 2014a, 2015b; Steinschneider and Brown, 2013].

Even with modern computing power the exploratory modeling process used in the

stress test can be computationally demanding, and both accessibility to high perfor-

mance computing resources and the perceived time and effort of preparing models and
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data for exploratory analysis may limit the number of scenarios explored by analysts.

If the climate stress test is to be adopted more widely for climate change impact anal-

yses, methods are needed to overcome the computational challenges associated with

large ensembles of stochastically generated climate scenarios. Steinschneider et al.

[2014a] and Steinschneider et al. [2015b] introduce two climate selection techniques

that reduce the computational burden of exploring the effects of both climate change

and natural variability in a stress test. In both studies, a small subset of stochastic

realizations is selected from a larger ensemble of stochastic weather time series, with

the selection criteria based on climate statistics thought to be closely associated with

system performance, for example, the two year minimum precipitation. However, the

degree to which a climate statistic such as two year minimum precipitation related to

the vulnerability of the water supply system could only be determined after the full

computational modeling chain, with all its resource demands, was completed.

The objective addressed in this technical note is to develop a pre-processing

method that allows the identification of the appropriate statistic to use for assessing

the degree of challenge that a particular stochastic realization imposes on the water

resource system. This allows the selection of a subset of realizations that can be

used for stress testing the system, by selecting a set of realizations that span the

range of variability a system might face in the future in terms of the challenge to

the system (from nonthreatening to very challenging) or by choosing a small number

of challenging realizations. The method is also generally useful for identifying the

climate statistic that is most indicative of vulnerability of the system, which can then

be compared with climate change studies to assess the level of concern that climate

change poses for the system.

15



1.3 Methods

It has long been tradition to use a large number of simulations to assess the

vulnerability of a system and this trend has only increased with a number of studies in

the recent literature that run a huge suite of simulations through runoff and reservoir

models [Lempert and Groves , 2010; Brown et al., 2011, 2012; Stedinger et al., 1985]. A

contributing factor is the advanced methods based on data mining that have emerged

for evaluating and interpreting results. It is beneficial under climate change analyses

to assess the effects of climate changes and the possible variability that might be

faced in the future but attempting to do so results in computational limitations.

In addition, methods that rely on heuristic optimization approaches (e.g., genetic

algorithms) are often limited in the number of realizations that can be evaluated.

Two options are assessed for pre-processing stochastic realizations to identify cli-

matic hazards to water resource systems. Under the first approach, we drive a hy-

drologic model with all of the synthetic climate sequences and then employ sampling

techniques that eliminate the need to carry all of the simulations through the system

simulation model. In the second approach, we develop methods to select stochas-

tic realizations prior to running them through the hydrologic model. We compare

the results of these two methods against a full climate stress test using a large en-

semble of stochastic realizations to determine the benefits and costs of the increased

computational efficiency.

1.3.1 System Description

A stylized water supply system in the northeast U.S. is used to demonstrate the

proposed methods. The system and its operations are based on the Springfield Water

and Sewer Commission’s (SWSC) water supply system located in the Westfield River

Basin in Central Massachusetts. The system is composed of two primary reservoirs:

Cobble Mountain Reservoir (8.642x107 m3) and Borden Brook Reservoir (9.464x106
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m3). For the purposes of this analysis, Cobble Mountain is modeled as the major

storage reservoir and Borden Brook as a run-of-river facility. Reservoir operations in

the model are based on a simple hedging policy adapted from the SWSC Drought

Management Plan, which reduces releases in times of drought to save water for future

use [Camp Dresser and McKee, 2005]. As such, reservoir operations influence whether

the system meets the target demand and in turn, effects water supply reliability. The

system has a draft ratio (i.e., ratio of target annual demand to mean annual inflow)

of 0.64. A version of the ‘abcd’ rainfall-runoff model [Thomas , 1981a], modified to

account for snow accumulation and melt, is used to convert climate sequences to

streamflow sequences. Details on the hydrologic and system simulation model used

in this technical note can be found in Whateley et al. [2014]. More information on the

system and its operations can be found in Westphal et al. [2007] and Camp Dresser

and McKee [2005].

1.3.2 Stochastic Climate Scenarios

Both methods considered in this technical note require the generation of a large

ensemble of plausible climate scenarios that represent realizations of local-scale nat-

ural climate variability. A simple first order autoregressive model (AR(1)) was fit to

basin-averaged, annual precipitation data [Maurer et al., 2002] and used to generate

10,000, 62-year sequences of annual precipitation. Only stochastic realizations with

a mean that deviated from the historic annual precipitation mean by ≤1% were re-

tained, reducing the original 10,000 time series to 3,880. This down selection is used to

preserve the historic mean in the generated data, an important step in climate change

analyses to ensure each trace has the same baseline mean. Annual average temper-

ature values were simulated using a k-Nearest Neighbor algorithm (k-NN) whereby

historical annual temperature means were selected from historical years with similar

observed precipitation to the simulated annual precipitation from the AR(1) model.
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All annual variables are disaggregated to a monthly time step using the method of

fragments [Srikanthan and McMahon, 2001].

1.3.3 Baseline Method: Full Climate Stress Test

In a traditional climate stress test, the full ensemble of stochastic climate se-

quences is perturbed with a prescribed climate change, either as a step shift [Whate-

ley et al., 2014] or transient change [Steinschneider et al., 2015b], and used to force

a rainfall-runoff model to generate a large ensemble of climate-altered streamflow

sequences. These streamflow sequences are then passed through a water resource

simulation model to produce an ensemble of performance statistics, such as water

supply reliability and vulnerability metrics [Brown et al., 2012]. The monthly time-

based reliability [McMahon et al., 2006] and vulnerability metrics in this analysis are

defined as the probability that a system is in a satisfactory state in a given month (i.e.,

meets the target demand) and the average volumetric severity of a failure (i.e., not

meeting the target demand) during a failure month, respectively [Hashimoto et al.,

1982]. In this study, three transient linear climate change trends were imposed on

the 3,880 stochastic sequences in the Baseline method to assess system performance

under climate change: wet/no change (125% of historic precipitation and no change

in temperature), dry/hot (75% of historic precipitation and 5 degree C increase in

temperature), and no change in climate. Transient trends are imposed instead of step

changes because they reflect a more realistic depiction of future change, although step

changes can be applied with no loss of generality. These three climate changes, cou-

pled with the 3,880 stochastic simulations, produces 11,640 total simulations (3,880x3)

to be run through the hydrologic and systems models in the full stress test.
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1.3.4 Method 1: Sampling hydrologic realizations using the Sequent Peak

Algorithm

In the first method, the sequent peak algorithm (SPA) [Thomas and Burden, 1963]

is used as a pre-processing step to approximate system performance across the range

of all stochastic climate scenarios without running hydrologic simulations through

the water resources systems model. Oftentimes, water resource systems models, e.g.,

WEAP [Stockholm Environment Institute, SEI , 2001] and MODSIM [Labadie, 1995],

can take hours to days to run. In this way it provides a shortcut for choosing traces

that span the range of variability relevant to the system. The same hydrologic se-

quences as developed in the Baseline method are used as input into the SPA to

calculate the minimum required storage capacity necessary to meet target demands

for the synthetic hydrological record without incurring reservoir failure.

Kt = max{0, Kt−1 +Rt −Qt} (1.1)

K∗ = max{Kt} over all t=1,2,...,2T (1.2)

where Kt is the reservoir storage at a monthly time step t and Kt−1 is the reservoir

storage at time step t − 1. Rt is the system’s water supply demands at time step t

and Qt is the inflow into the system at time step t. K∗, the maximum of all K values,

represents the minimum total storage requirement necessary to meet water supply

demands without failure over two consecutive flow sequences (i.e. twice the period

of record). The analysis is carried out over two cycles to account for the possibility

that the critical period lies toward the end of an inflow sequence. The minimum total

storage requirement (K∗) is calculated for all hydrologic sequences. A large minimum

storage requirement implies a large maximum yield deficit and hence a challenging

realization of natural climate variability.
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The analyst then selects a small subset (5-10) of the required reservoir storages

associated with empirical quantiles of the distribution of K∗ (e.g., the 10%, 25%, 50%,

75%, 90%). The exact number of subsamples and quantiles can be chosen through

dialogue with the stakeholder partner. In some cases, only an extreme realization

may be desired. The streamflow realizations associated with these required storages

are then traced back to the specific climate realizations (from the original 3,880) used

to generate them. Similar to the Baseline method, mean climate changes are imposed

on this small subset of climate realizations by applying linear trends of future climate

change. In this study, the system model is run over 9 selected realizations of climate

variability combined with the 3 different climate trends for a total of 27 simulations,

as compared to the 11,640 in the Baseline method.

1.3.5 Method 2: Empirically sampling climate realizations

Although Method 1 shortens the amount of time that is typical of a full vulner-

ability analysis (see Table 1), there can be significant computational requirements

for running thousands of climate sequences through hydrologic models. While par-

simonious, hydrologic models (like the ‘abcd’ model) often do not add substantially

to the computational time of a stress test, the present trend in hydrology is towards

more detailed, physically-based models (e.g., DHSVM [Wigmosta et al., 1994] and

VIC [Liang et al., 1994]) that can take hours to days to calibrate and run for all

stochastic climate sequences.

In the second method, a sampling technique similar to the one presented in Stein-

schneider et al. [2014a] is introduced to select climate time series prior to running

them through any hydrologic or systems models. Here, the SPA method is applied to

the weather realizations to estimate a suitable drought statistic to use for reflecting

the challenge of each realization to the water resource system. The first step in this

procedure requires the analyst to explore the relationship between required storages
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a. b.

Figure 1.1. a. Correlation coefficients between required storages and the minimum
d-year precipitation value (i.e. minimum 2-year precipitation); b. the ratio of demand
to inflow of a water supply system versus the minimum d-year precipitation.

(the SPA metric) and the minimum d-year moving sum of annual precipitation (for all

possible d-year drought lengths from d=1 to d=62) to identify which climate statistic

is most correlated with the SPA metric. The most correlated statistic (i.e., the suit-

able drought statistic to use for analysis) is then calculated for the entire ensemble

of stochastic climate simulations and, similar to Method 1, a subset of the original

stochastic climate simulations is selected with drought statistics that span the dis-

tribution of drought statistics under the entire stochastic ensemble. These climate

realizations are post-processed with different climate trends to produce the climate

simulations that are used in the stress test.

Figure 1.1 is provided as a reference for analysts who want guidance on identifying

a suitable drought statistic without applying the SPA method to their system. Monte

Carlo methods were used to explore the relationship between the draft ratio (ratio

of demand to inflow) of a reservoir system and the minimum d-year moving sum of

annual precipitation, enabling any user with a similar demand configuration to the

test system to determine a suitable value for d based on the draft ratio of their system.

The draft ratios range from 0.32 to 0.97.
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This note illustrates a limited consideration of potential drought statistics, focus-

ing on different minimum d-year precipitation totals Y d
min on an n-year simulation.

While the selection of a single drought metric based on running annual totals of pre-

cipitation is insufficient to characterize the risk that different climate time series pose

to a water supply system, this study tests whether they provide a sufficient approxi-

mation to appropriately select a small subset of climate time series to represent the

risk of natural variability.

1.4 Application of Methods

1.4.1 Method 1: Subset stochastic ensemble based on SPA

Figure 1.2a and Figure 1.2c illustrate the relationship between the SPA metric

and water supply reliability and vulnerability, respectively, under all stochastic sim-

ulations. Data points representing nine selected results from the SPA analysis are

highlighted in red. These points correspond to streamflow realizations causing mini-

mum required storage (K∗) values at quantiles of 0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,

and 0.99 across all simulations. Quantiles are selected to ensure a full range of vari-

ability (defined in terms of the characteristics of the system) is sampled for a given

mean climate state. As such, the selected traces stress the system in such a way that

the results can be interpreted in terms of risk related to climate change. However,

having generated the subset of traces, analysis can focus on particular quantiles or

traces based on the interests of the analyst (i.e., one could place greater emphasis on

the driest realizations by focusing on the lower tail of the distribution).

The selection of stochastic simulations in Method 1 will accurately represent the

potential impacts of natural climate variability on system performance if there is a

close relationship between the SPA and performance metrics. This is because the

selected simulations, based on the quantiles of the SPA metric distribution, will also

represent similar quantiles in the distribution of performance metrics under natural
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a. b.

c. d.

Figure 1.2. Relationship between reservoir performance and required reservoir stor-
age calculated using the sequent peak algorithm (a,c) and minimum 2-year precipita-
tion (b,d). Red dots represent select required storages and minimum 2-year precipita-
tion values from the distribution of all synthetically generated realizations (obtained
using Method 1 and Method 2).
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climate variability (as represented by the 3,880 stochastic simulations) if the fits in

Figures 1.2a,c are very precise. As seen in Figures 1.2a,c, the relationship between

reservoir performance and the SPA metric is clearly linear with some noise (Pearson’s

r value of -0.71 and 0.85 for reliability and vulnerability, respectively). The strong

fit suggests that the SPA method can be an effective approach to select a subset of

stochastic simulations for the stress test. Given the noise in the relationships, we

recognize that the approach is imperfect and does not guarantee that the selected

climate sequences will represent the full range of system performance that could

arise under natural variability. This is seen by the non-monotonic progression of

the selected simulations in Figures 1.2a,c along the reliability and vulnerability axes.

However, the benefits of computational efficiency may be substantial and the selected

climate sequences still span most of the distribution of system performance across the

original stochastic ensemble.

1.4.2 Method 2: Subset stochastic ensemble based on critical climate

statistics

Results for identifying the dth drought statistic (i.e., the minimum d-year moving

sum of annual precipitation) are presented in Figure 1.1. Figure 1.1a shows the

Pearson R correlation coefficient between the SPA metric and the minimum annual,

2-year, 3-year,...,d-year moving sums of precipitation. For the system presented in this

work, the minimum 2-year moving sum of annual precipitation was most correlated

with the SPA metric (correlation of -0.72). Furthermore, results from a Monte Carlo

simulation illustrate how a system’s demand to inflow ratio can be used to choose

an appropriate dth drought statistic for any demand configuration of the test system

(Figure 1.1b).

Figure 1.2b and Figure 1.2d illustrate the relationship between system perfor-

mance metrics and the minimum 2-year precipitation values across all stochastic
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simulations, with selected quantiles (0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99) of the

2-year drought metric highlighted. The relationships in Figures 1.2b,d appear linear

within the limits of the tested data, but as expected, they are more noisy than for the

SPA metric in Figures 1.2a,c. This is because metrics derived from inflows are bound

to predict system performance with greater accuracy than those derived directly from

climate data. As such, Method 1 is more likely to choose an appropriate subset of

stochastic simulations for the stress test than Method 2. However, Method 2 does

still provide some utility in choosing stochastic simulations, as the selected sequences

generally span the range of system performance across all stochastic simulations. It

also has the considerable advantage of not requiring hydrologic modeling simulations

for selection.

1.4.3 Comparison to a full vulnerability analysis

Three climate trends were imposed on the 9 selected stochastic weather sequences

from Methods 1 and 2 and were used to drive a stress test of the Springfield system.

The results (i.e., the range of performance and computational time) are compared

against a full stress test that alters all stochastic climate realizations with the three

climate trends (Figure 1.3). Table 1 reports the computational times for Methods 1

and 2. It should be noted, however, that run time is highly variable depending on

the hydrologic and systems models used in the stress test, and the actual time values

here are less important than their relationship to one another across methods.

Figure 1.3a(b) illustrates the distribution of water supply reliability (vulnerability)

across all stochastic realizations with wet/no change, baseline, and dry/hot climate

trends imposed. The red triangles and black squares represent performance results

based on select quantiles (horizontal dotted lines) from Methods 1 and 2. Results

indicate that the selected climate simulations consistently span the majority (i.e.,

inter-quartile range) of the distribution of system performance, while Method 1 also
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tends to contain sequences nearer to the tails of the full stress test than Method 2. In

a few cases (i.e., under the wet/no change and normal reliability scenarios), reliability

values overlap and the boxes/triangles appear darker. Table 2 illustrates the percent

difference between quantiles of reliability and vulnerability across the two methods

and the full stress test.

In general, both methods, but particularly Method 1, effectively capture the full

range of variability for a given mean climate state (with percent difference values in

Method 1 ranging from 0.41 to 1.24 for reliability and 0.35 to 5.18 for vulnerability),

suggesting that these approaches can be used to lighten the computational burden

of the stress test. It is important to recognize that these methods are imperfect and

can lead to a selection of climate sequences that are unlikely to capture the complete

range of natural climate variability that can influence the system. However, given

the gains in computational efficiency, this tradeoff may be worthwhile depending on

the risk-tolerance and resources of decision-makers. Lastly, while further research is

needed to assess whether these methods would work effectively in all systems, pre-

vious work linking climate statistics to system performance of complex water supply

systems [Turner et al., 2014] suggests the plausible application of these methods to a

range of different systems.

1.5 Conclusion

This technical note explores the use of two sampling techniques to overcome com-

putational burdens of exhaustively assessing both climate change and variability im-

pacts on water resource systems. The first method employs the sequent peak al-

gorithm to screen climate and hydrologic sequences to drive a manageable number

of water resource model simulations while still exhaustively exploring vulnerabilities

using a climate stress test approach. Method 2 further reduces the computational

burden by selecting climate realizations prior to running them through a hydrologic

26



a.

b.

Figure 1.3. A distribution of a.) water supply reliability and b.) vulnerability
across all natural variability realizations under wet/no change, no change, and dry/hot
climate scenarios. Select performance quantiles (horizontal dotted lines) drawn from
all realizations using Method 1 and Method 2 are illustrated as red triangles and
black squares, respectively.
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Table 1.1. Computational times of the full vulnerability analysis, Method 1, and
Method 2.

Method
Full Vulnerability

Analysis
Method 1 Method 2

Generate Climate Realizations 80.44 80.44 80.44
Calibrate Hydrologic Model 6.93 6.93 6.93

Extreme Climate Trends 122.42 0.43 2.58
Extreme Streamflow Trends 962.68 56.95 2.37

Reservoir Systems Model 309.81 0.79 0.72
Total Time (s) 1482.28 145.54 93.04

Table 1.2. Percent difference between quantiles of reliability and vulnerability across
the two methods and the full stress test.

Reliability Vulnerability
Quantile Method 1 Method 2 Method 1 Method 2

0.01 0.89 3.92 1.22 0.97
0.05 1.17 1.87 0.35 4.46
0.1 0.72 1.57 0.65 4.12
0.25 0.42 0.28 3.56 6.98
0.5 0.56 0.98 4.90 1.06
0.75 0.42 0.28 4.1 10.60
0.9 1.24 0.27 4.79 17.25
0.95 0.55 0.55 5.18 20.67
0.99 0.41 0.82 1.5 0.68

model. Results suggest that both methods, but particularly Method 1, can effectively

reduce the computational burden of climate impact assessments for water systems,

while still effectively exploring vulnerabilities. A recognized limitation in the eval-

uation of these methods is that one relatively simple water supply system over a

restricted range of climate change scenarios (i.e., only three plausible climate change

trends) was explored. Additional analysis is required to characterize the universal ap-

plicability of these methods across different systems and system models, and across

a wider range of climate change scenarios. However, the present work suggests these

approaches are promising for characterizing the effects of climate uncertainty on wa-

ter resource systems. They are also useful for identifying key climate statistics that

are most related to a water resource systems’ climate vulnerabilities.
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CHAPTER 2

CLIMATE STRESS TESTING NORTHEAST WATER
SUPPLY: AN ASSESSMENT OF VULNERABILITIES

AND CLIMATE RISK EXPOSURE

2.1 Abstract

In the northeastern United States water is generally thought to be abundant.

Yet, increasing pressures on water utilities throughout the region, including new con-

straints on water withdrawals, requirements to release additional water for ecological

purposes, and the emerging concern associated with climate change, may constrain

their ability to supply reliable water. Assessing the vulnerability of any particular

system is challenging because a variety of factors that go beyond simple changes in

precipitation and temperature must be considered, such as the size of the watershed,

the volume of storage, required releases, and water demand. This analysis uses a

vulnerability-based framework, based on stress testing, to identify problematic sce-

narios first and then uses climate information to provide context regarding the risk

associated with those scenarios. The approach is demonstrated in an analysis of sev-

eral of the major cities of the Northeast U.S.: New York City, NY, Boston, MA,

Springfield, MA, Hartford, CT, and Providence, RI. Through comparative analysis,

this paper demonstrates a comprehensive approach to characterizing climate risks to

water supply that synthesizes across the findings of individual studies and in doing

so contributes to a deeper understanding of climate risks to water supply as demon-

strated in this application to the northeastern United States. Results of the analysis

demonstrate how vulnerabilities can be compared for different systems to help prior-

itize adaptation.
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2.2 Introduction

The Northeast U.S. has a large concentration of highly populated cities with

significant demands for water supplies that are currently being managed through a

variety of water utilities and companies. The risks faced by these utilities vary by

location and sector, and their vulnerabilities are changing not only as a result of

increasing population, changes in demand, urbanization, regulatory constraints, and

changes in technology, but also with a variable and changing climate. While previous

studies have assessed the impact of particular projections from climate models for

water systems in the Northeast US, this paper seeks to identify the specific climate

conditions that are problematic. The approach allows easy comparison of several

representative systems, five large water supply utilities in the northeastern U.S., New

York City, NY, Boston, MA, Springfield, MA, Hartford, CT, and Providence, RI.

Over the last century, the Northeast has experienced a number of short-term

droughts due to interannual variability of precipitation that, accompanied with high

demands on fresh-water resources, have stressed many of the water supply systems

in the region. In the early to mid 1960s, a combination of a low pressure anomaly

over the midlatitude North Atlantic Ocean and cold sea surface temperatures (SSTs)

on the coast resulted in a multi-year period of decreased precipitation [Seager et al.,

2012] that caused problems for many Northeast water supply systems. For example,

in 1967 the Quabbin Reservoir experienced a historic low, dropping to 44% of its total

capacity. At 38% of capacity the system begins to violate water quality standards,

and if a drought of this magnitude occurred regularly, the Boston system would need

to consider building a new, expensive treatment plant [Joyce, 1994; Lettenmaier et al.,

1999]. Similarly, between 1965-1966 the Springfield Water and Sewer Commission’s

(SWSC) primary storage was drawn down to approximately 30% [Westphal et al.,

2007] and the Metropolitan District Commission’s (MDC) reservoirs dipped to 42%

of capacity [Woodside, 2002].
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Since the significant drought of the 1960s, a subsequent wet period associated

with high pressure anomalies over the North Atlantic Ocean and warm SSTs has

favored increased precipitation in the region [Seager et al., 2012]. The combination of

a long term wetting trend and large decreases in water demand due to conservation

measures and leak detection efforts has resulted in decreased supply worries for most

water supply systems in the region. However, with climate change underway there is

natural concern that water supply systems may be vulnerable to future changes.

Climate change threatens water supply with rising temperatures [Trombulak , 2004]

that may cause increased evaporative demand, decreases in wintertime snowpack, and

earlier snowmelt [Hayhoe et al., 2006; Huntington et al., 2004]. Hayhoe et al. [2006]

suggested a general increase in drought frequency in the future, driven by soil moisture

deficits and reduced precipitation. However, a number of previous studies exploring

climate change impacts to water supply in the Northeast that model the actual water

resource system, focusing primarily on the New York City and Boston water supply

systems, have found varied results [Kirshen et al., 1995; Kirshen and Fennessey , 1995;

Vogel et al., 1997b; Lettenmaier et al., 1999; Matonse et al., 2012; Blake et al., 2000;

Horton et al., 2011].

All studies use a set of statistically downscaled GCM projections to assess the im-

pact of those projections on the water supply system. Kirshen and Fennessey [1995]

and Kirshen et al. [1995] used 4 mean climate changes from 4 GCMs under a CO2

doubling scenario covering a range of +3.11 to +8.27 degree Celsius temperature

change and -7.6 to +23% precipitation change and a single historical variability trace

to assess the Quabbin and Wachusett Reservoirs (operated by the Massachusetts Wa-

ter Resources Authority (MWRA)). The analysis showed that the climate projections

with temperature and precipitation changes of +4.9 degrees Celsius and -7.6% and

+3.67 degrees C and -1.6% caused a problematic decrease in streamflow (33% and

16%, respectively) and yield (43% and 23%, respectively), requiring development of
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new sources of water supply and other measures to provide reliable water if that par-

ticular projection came to be true. Other projections in the same study indicated

increases in system safe yield as a result of increases in precipitation, resulting in over-

all inconclusive results. Vogel et al. [1997b] linked a simple regional hydroclimatologic

model of annual streamflow (driven by the same GCM projections that were used

in Kirshen and Fennessey [1995]) with storage-reliability-resilience-yield (SRRY) re-

lations to determine the sensitivity of the Boston metropolitan water supply system

to climate change, and with the exception of one of the GCM projections explored,

their results agreed with Kirshen and Fennessey [1995] in both the direction and

magnitude of changes in yield.

Lettenmaier et al. [1999] used 5 transient GCM projections and a doubled-CO2

scenario from 3 models which showed temperature increases of 1.2 to 5.9 degrees

Celsius and precipitation changes of -6 to 15% between 1990 and 2050, and found that

the Boston system was relatively insensitive to these five climate changes, with slight

decreases in runoff primarily influenced by changes in precipitation and PET. Demand

growth scenarios of 325 mgd (based on pre-conservation average water demand level of

1987) and 285 mgd (based on pre-conservation average water demand level of 1993)

were included and led to slight declines in water supply reliability for some GCM

scenarios when compounded by decreasing runoff, illustrating greater impacts than

the climate effects alone.

Matonse et al. [2012] investigation of the impacts of climate change on New York

City’s water supply used 16 GCM projections of future air temperature and precip-

itation constructed from 3 models using a delta change method and the historical

variability trace. The results suggested that for these projections which ranged from

a 2.2 to 3.4 degree increase in temperature and 12.7 to 15.3% increase in precipitation

(for all GCM models combined), the NYC reservoir system can provide high resilience

and annual reliability.
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In sum, the studies imply a range of vulnerabilities for the systems considered and

in general indicate the present uncertainty in climate change impacts on water sup-

ply in the region. None of the results conclusively describe the climate vulnerabilities

of the systems that were studied. Instead, only the effects of the particular GCM

projections used were learned. The result is an incomplete assessment of each system

with only a small number of scenarios considered and alternative variability largely

unexplored. Consequently, the climate conditions that are problematic to these sys-

tems remains largely unknown which is remarkable given the size of the systems,

populations served and the number of previous studies.

The previous studies all reveal the impacts of specific climate projections on the

system of interest, but the results remain dependent on the climate projections that

are used and the various pre-processing steps applied to the projections. These include

a bias correction step (using multiple linear regression methods [Lettenmaier et al.,

1999] and delta-change methods [Matonse et al., 2012]) and treatment of variability

(using historical variability [Matonse et al., 2012; Kirshen and Fennessey , 1995] and

performing multiple steady state analyses by imposing mean monthly climate changes

for various decades on the historic period [Lettenmaier et al., 1999]). Thus the funda-

mental vulnerability of these systems to climate change remains unknown because the

results are conditional on these modeling choices. Furthermore, comparison across

systems is difficult for the same reasons. Vogel et al. [1997b] provides an interesting

exception, seeking general relationships between water supply reliability and climate

change, albeit using simple analytical approximations to estimate reliability.

In a study of the MWRA system, Brown et al. [2012] introduced the Decision-

Scaling framework where the vulnerability of the system to a wide range of plausible

climate changes is assessed independent of climate projections to reveal the climate

conditions that cause concern. GCM projections are then introduced within the

context of the fundamental climate vulnerability of the system. The approach has
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been subsequently expanded to incorporate a climate stress test [Steinschneider and

Brown, 2013] to systematically explore climate changes and identify vulnerabilities, to

assess adaptation options [Whateley et al., 2014; Steinschneider et al., 2015b], include

hydrologic modeling uncertainty [Steinschneider et al., 2014a], and explore the effects

of variability versus mean changes in climate (Whateley et al., submitted; Whateley

et al., in prep).

This paper demonstrates the use of the framework to conduct a comparative anal-

ysis of multiple systems within a consistent analysis that allows meaningful compar-

isons and provides fundamental insights regarding the state of water supply systems

in the Northeast U.S. The study reveals the climate changes that are problematic to

all and the climate changes that affect some but not others. The analysis is applied

to the municipal surface water supply systems in Boston, MA, New York City, NY,

Hartford, CT, Springfield, MA, and Providence, RI, which collectively supply water

to 12.8 million people, approximately 23 percent of the population in this region. The

analysis represents the most exhaustive assessment of climate risk to Northeast wa-

ter supply, systematically exploring plausible climate changes and variability effects.

While the results are specific to the region, the assessment framework is general.

The paper proceeds as follows. Section 1 describes the study sites explored in this

analysis. Section 2 presents the methods, models, and performance metrics used to

compare the multiple systems. Sections 3 and 4 present the results of this study and

a discussion of how they compare with earlier climate impact studies in the region.

Section 5 concludes the work.

2.2.1 Study sites

2.2.1.1 Massachusetts Water Resources Authority (Boston, MA)

The Massachusetts Water Resources Authority (MWRA) manages the water sup-

ply for Boston, MA and the surrounding communities (over 2.5 million people). The
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primary water supply reservoirs for the Boston system include the Quabbin Reservoir

(412 billion gallons (BG)) and the Wachusett Reservoir (65 BG). MWRA also main-

tains back-up reservoirs throughout the system, providing an additional 7.7 BG. The

Quabbin Reservoir is located eighty miles west of Boston, storing water from the east

and west branches of the Swift River. The Wachusett Reservoir is located fifty-five

miles west of Boston, and stores water from the Quinepoxet and Stillwater rivers and

Quabbin Aqueduct water transfers from the Quabbin Reservoir. Prior to 1992, water

demands exceeded the system’s safe yield of 300 mgd, however, have since decreased

to approximately 200 mgd as a result of aggressive water conservation measures.

2.2.1.2 Springfield Water and Sewer Commission (Springfield, MA)

The Springfield Water and Sewer Commission’s (SWSC) water supply system is lo-

cated in the Westfield River basin in Central Massachusetts. The system is composed

of two major water supply reservoirs: Cobble Mountain Reservoir (22,829 million gal-

lons (MG)) and Border Brook Reservoir (2500 MG). Reliable water supply from the

Cobble Mountain Reservoir is of high priority, as it is the second largest water supply

in Massachusetts. The SWSC’s water supply system is a water source for Agawam,

East Longmeadow, Longmeadow, Ludlow, Westfield, and the city of Springfield, serv-

ing a total population of around 250,000 people. Following the devastating drought

of the 1960s, a pump station was constructed such that water could be transferred

from the Littleville Reservoir to the Cobble Mountain Reservoir as a precautionary

measure against future droughts of that magnitude. The pump has never needed to

be used since its installation. Consequently, the Cobble Mountain Reservoir receives

its inflows from surface runoff, direct precipitation, and the Borden Brook Reservoir

located upstream. The Cobble Mountain system has a firm yield of 42.70 mgd, with

an actual average annual usage of 36.57 mgd [Levin et al., 2011].
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2.2.1.3 Providence Water’s Scituate Reservoir Complex (Providence, RI)

The Scituate Reservoir Complex, also managed by MWRA, is located in central

Rhode Island. The system consists of six major reservoirs: Scituate, Moswaniscut,

Regulating, Barden, Westconnaug, and Ponaganset. The reservoir system is respon-

sible for meeting the water needs of 60% of the state (650,000 people). The safe

yield of the system is 92 mgd, which is higher than the average demand supplied to

customers over the last 20 years (68 mgd). Water demand projections estimate 69

mgd and 71 mgd by 2015 and 2030, respectively.

2.2.1.4 Metropolitan District Commission’s Water Supply System (Hart-

ford, CT)

The Metropolitan District Commission is responsible for managing the water sup-

ply for the greater Hartford area (400,000 people). The system consists of two major

water supply reservoirs: Barkhamsted Reservoir (22400 MG) and Nepaug Reservoir

(9500 MG). The Barkhamsted Reservoir meets approximately 70% of the total water

demand (57 mgd) and the Nepaug Reservoir meets the remaining 30%. Additional

reservoirs are available for potential water supply along the East and West Branches

of the Farmington River, including the Colebrook Reservoir maintained by the U.S.

Army Corps of Engineers, the West Branch Reservoir (6.5 BG of potential drinking

water supply), and Lake McDonough (2.9 BG of potential water supply), however,

the main purpose of these reservoirs is not for water supply.

2.2.1.5 New York City Water Supply System (New York City, NY)

The New York City Water Supply System (NYCWSS) consists of two surface

water reservoir systems: the Croton system located in Westchester County and the

Catskill/Delaware system (referred to as the West-of-Hudson (WOH) system) located

125 miles North and West of New York City. The Croton system acts as a transfer

station for WOH, except in times of drought, when the Croton system is drawn down
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Table 2.1. Summary of system characteristics

Location Storage Capacity Population Served Demands Demand/Inflow Major Water Supply Reservoirs

New York City, NY 460,900 MG 9 million 1000 mgd 0.67

Delaware System:
Cannonsville, Neversink, Pepacton, Rondout

Catskill System:
Schoharie, Ashokan East and Ashokan West

Boston, MA
412,000 MG (Quabbin);
65,000 MG (Wachusett)

2.5 million 200 mgd 0.87 Quabbin and Wachusett

Providence, RI 39,000 MG 650,000 75 mgd 0.58
Scituate, Moswaniscut, Regulating, Barden,

Westconnaug, and Ponaganset
Hartford, CT 31,900 MG 400,000 57 mgd 0.52 Barkhamsted and Nepaug

Springfield, MA 22,829 MG 250,000 42 mgd 0.64 Cobble Mountain and Borden Brook

to meet demand. The Delaware system contains 4 reservoirs: Cannonsville (95700

MG), Neversink (34900 MG), and Pepacton (140200 MG) that operate in parallel

with each other and in series with Rondout (49600 MG) to meet 60% of the city’s

daily water. The Catskill system contains 2 reservoirs that operate in series to supply

40% of daily water needs: Schoharie (17600 MG) and Ashokan (122900 MG). Water

travels from the Delaware and Catskill systems into the Kensico Reservoir before

entering the NYC distribution system.

2.3 Methods

2.3.1 Stress test approach

Decision-Scaling is used to tailor the analysis of these large water supply systems

to focus on the future climate states that are most vulnerable and estimate probabil-

ities associated with those decision-relevant climate states [Brown et al., 2012; Ghile

et al., 2013; Turner et al., 2014; Hallegatte et al., 2012; Brown et al., 2011; Brown,

2010; Weaver et al., 2012; Whateley et al., 2014; Steinschneider et al., 2015b]. The

stress test approach used in Decision-Scaling begins with an ensemble of stochas-

tic climate sequences that are perturbed with a variety of transient linear trends

and used to force a rainfall-runoff model to generate an ensemble of climate-altered

streamflow sequences. These streamflow sequences are then passed through a water

resources simulation model to produce an ensemble of performance statistics. The

stress test approach is applied to the large water supply systems in the Northeast to
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systematically investigate the impacts of natural variability and climate change on

performance.

2.3.2 Empirically sampling climate realizations

There are significant computational requirements for assessing climate impacts

on large and complex water resource systems under uncertainty, particularly when

analyzing a wide range of climate change and natural variability scenarios. As such,

it is beneficial to strategically select stochastic realizations that capture the full range

of variability that is possible prior to running them through hydrologic or systems

models. Transient linear climate change trends can then be applied to the subset of

stochastic variability realizations to produce the climate simulations to be used in the

stress test. In this study, a new procedure is applied to the Decision-Scaling framework

to select an informed subset of stochastic climate realizations for a particular water

supply region that explores a range of climate risk to the water supply system.

The procedure uses Method 2 of Whateley et al., (submitted) to empirically sam-

ple a subset of stochastic climate realizations that represent the risk of natural vari-

ability to each of the systems. In this method, a drought index (i.e., minimum d-year

moving sum of annual precipitation) is selected for each system that represents the

difficulty of a particular realization in terms of its affects on the system being an-

alyzed. Nine climate realizations are selected with drought statistics that span the

distribution of the drought index under the entire stochastic ensemble of climate sim-

ulations. For example, for a drought index of d=2, the minimum 2-year moving sum

of annual precipitation is calculated for all stochastic simulations, and quantiles (e.g.,

0.1,0.25,0.5,0.75,0.9,etc.) of the distribution of the 2-year drought index are selected

that correspond to climate realizations. Then, transient climate change trends are

imposed on the 9 climate time series to be used in the climate stress test. In this

study, 121 transient linear trends were imposed on the 9 stochastic climate sequences
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to assess performance for each system: 25% decrease to 25% increase in historic pre-

cipitation at 5% increments and 0 to 5 degrees Celsius increase in temperature at

0.5 degree increments. The result is an exhaustive yet efficient exploration of pos-

sible climate changes and their impacts that can be used to define the problematic

conditions for each system.

2.3.3 Hydrologic models

A modified version of the ‘abcd’ rainfall-runoff model [Thomas , 1981b] was used

to convert climate sequences to streamflow sequences for New York City, Providence,

Hartford, and Springfield. The modified model [Martinez and Gupta, 2010] incorpo-

rates an additional snow component (i.e. a snow storage zone) to account for the

influence of snow accumulation and melt on hydrologic processes in the northeast-

ern United States, adding an additional parameter ‘e’. The hydrologic model was

calibrated to historic streamflows on a monthly time step using the shuffled com-

plex evolutionary algorithm (SCE) [Thyer et al., 1999; Duan et al., 1992] for each

reservoir system: USGS 01181000 West Branch Westfield River at Huntington, MA

for Springfield, USGS 01188090 Farmington River at Unionville, CT for Hartford,

USGS 01115187 Ponaganset River at South Foster, RI for Providence, and using in-

flows to each of the seven reservoirs of the New York City system (i.e. Cannonsville

Reservoir, Neversink Reservoir, Pepacton Reservoir, Rondout Reservoir, Schoharie

Reservoir, and the Ashokan East and Ashokan West Reservoirs).

For the Boston system, four independent hydrology models were calibrated at

a weekly time step for each of the four basins associated with the MWRA water

supply system: the Quabbin Basin (USGS 01174565 West Branch Swift River near

Shutesbury, MA), the Wachusett Basin (USGS 01095220 Stillwater River near Ster-

ling, MA), the Ware River Basin (USGS 01173500 Ware River at Gibbs Crossing,

MA), and the Connecticut River Basin (USGS 01170500 Connecticut River at Mon-
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tague City, MA). The hydrologic model for Boston is embedded in the Stockholm

Environment Institute’s Water Evaluation and Planning tool (WEAP) [Stockholm

Environment Institute, SEI , 2001]. The WEAP model is described in more detail in

the following section.

A Nash Sutcliffe efficiency coefficient [Nash and Sutcliffe, 1970], commonly used

to assess the predictive performance of hydrologic models, was calculated for each

calibration. Nash Sutcliffe coefficients across all systems ranged from 0.33 for the

Ashokan East inflows to 0.81 for the Ponaganset River.

2.3.4 System simulation models

2.3.4.1 Boston

The simulation model of the Boston water supply system was first developed in

STELLA [US Army Corps of Engineers , 1994] in the early 1990s by researchers at the

University of Washington [Werick and Willeke, 1994] and was later translated into

the Stockholm Environment Institute’s Water Evaluation and Planning tool (WEAP).

The WEAP model used for this analysis operates on a weekly time step to calculate

reservoir storages and releases based on target storages and water demands that

fluctuate throughout the year. Specifically, from October 15 through June 14, Ware

River flows in excess of 85 mgd are diverted to the Quabbin Reservoir via the Quabbin

Aqueduct. However, flows are only diverted if the Quabbin Reservoir is below its

‘normal’ storage level (i.e. a monthly storage target defined by the MWRA). There

are also required minimum releases from the Quabbin Reservoir to the Swift River,

which are governed by flows in the Connecticut River (measured at the USGS gaging

station in Montague City, MA).

2.3.4.2 Springfield

The Springfield water supply simulation model was built in R [Whateley et al.,

2014] based on current operating policies reproduced from the SWSC’s drought man-

41



agement plan. The model operates on a monthly time step. Additional details on the

system simulation model used in this study can be found in Whateley et al. [2014]

and more information on system operations can be found in Westphal et al. [2007]

and Camp Dresser and McKee [2005].

2.3.4.3 Providence

The simulation model for Providence operates on a monthly time step. The model

was originally constructed in STELLA with the guidance of Providence Water, and

was later translated into R for this analysis. Reservoir operations in the model are rel-

atively straightforward. Water is drawn directly from the Scituate Reservoir to meet

water supply demands, with an additional minimum downstream release requirement

to the Pawtuxet River of 9 mgd. Current operations attempt to refill the reservoir

by June 1, and spill water to the Pawtuxet River when levels exceed the 400 foot

overflow spillway. The other reservoirs in the system have minimal regulation and

mostly act as run-of-river storage facilities.

2.3.4.4 Hartford

The Hartford water supply simulation model was developed in R on a monthly

time step. The two major water supply reservoirs, Barkhamsted Reservoir and

Nepaug Reservoir, were treated as run-of-river facilities left to fill and spill. Storages

and releases from these two reservoirs were calculated based on inflows and water sup-

ply demands (assumed to be constant throughout the year). Other potential water

supply was not accounted for in the model.

2.3.4.5 New York City

The New York City simulation model was developed in R on a monthly time step.

The monthly model used in this analysis was adapted from the original daily mass

balance model built in the Screening Tool for the Assessment of Turbidity and Supply
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(STATS), which is constructed using Vensim software (Rossi et al., 2015). Operations

in this model are based on the ‘New York City Rule’ [Lund and Guzman, 1999], which

defines releases from reservoirs based on the probability of refill by June 1. The

purpose of defining releases in this way is to minimize the probability of spills (i.e.

minimize expected shortages). The New York City systems model also incorporates

Federal and State regulations. More information on the system’s operations can be

found in Rossi et al. (2015).

2.3.5 Performance metrics

Common system metrics such as reliability (i.e. percentage of time a system oper-

ates without failure)(Equation 2.2), vulnerability (i.e. average magnitude of failures)

(Equation 2.3), and robustness (i.e. acceptable performance over a range of future un-

certainty) are calculated to evaluate system performance. A shortfall (Sh(t)) (Equa-

tion 2.1) occurs if monthly (weekly) system demands are not met. Reliability is based

on the total number of shortfalls over the period of record, and vulnerability is based

on the magnitude of shortfall. A reliability threshold of 95% is used to distinguish

acceptable versus unacceptable system performance. The metrics used in this anal-

ysis are adapted from Hashimoto et al. [1982], Loucks et al. [2005], and Moody and

Brown [2013].

Sh(t) =

 0 demand(t)− release(t) ≤ 0

1 demand(t)− release(t) > 0
(2.1)

R = 1−
∑T

t=1 Sh(t)

T
(2.2)

V =
T∑
t=1

demand(t)− release(t) > 0 (2.3)

A climate robustness index (CRI) is used to quantify and compare the robust-

ness across systems [Moody and Brown, 2013]. The CRI incorporates thresholds of
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acceptable performance for a system (i.e. 95% reliability) into a binary performance

function to characterize vulnerability. Climate projections are then incorporated into

the CRI to weight the robustness according to the assumed probability of a given

climate change [Whateley et al., 2014].

CRI =

∫ xJ

x0

Λ(xj)f(xj)dx (2.4)

where Λ(xj) is a binary performance function that returns a value of 1 (acceptable

performance) or 0 (unacceptable performance) for each climate scenario, xj, based

on a performance threshold and f() is a probability density function describing the

probability distribution of climate changes, X.

The climate robustness index is a useful metric for quantifying the ability of a

system to provide acceptable performance over a wide range of future climate, without

being dependent on assumed probabilities of that future climate. The CRI’s in this

study were conditioned on three probabilistic assumptions of future climate: 1) a

multivariate normal distribution fit to the ensemble of GCM projections described

earlier, 2) a uniform probability distribution over all plausible climate states explored

in this analysis, and 3) a uniform distribution applied to the GCM space (i.e., the

outermost range of the GCM projections).

Lastly, climate response surfaces are created to visually parse the climate space

(e.g. changes in mean precipitation and temperature) into regions of acceptable and

unacceptable performance based on thresholds of acceptable performance. These

provide a clear visual communication of the climate conditions that are problematic

for each system.
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Figure 2.1. (left) Historic (black line) and simulated (9 grey lines) time series
of annual precipitation (mm) from 1949 to 2010, and (right) historic (black bar)
and simulated (9 grey bars) maximum drawdown (million gallons) of the Scituate
Reservoir System in Providence, RI.

2.4 Results

2.4.1 Stochastic climate simulations compared with historic conditions

Figure 2.1 (left) illustrates the variability and range of the stochastic time series

of annual precipitation for Providence, RI over a 62-year time period from 1949-

2010 (grey lines), and how they compare with the historic annual precipitation (black

line). This 62-year period encompasses the 1960s drought, when annual precipitation

reached a historic low for all of the systems explored in this analysis. Figure 2.1 (right)

shows the historic (black bar) and simulated (9 grey bars) maximum drawdown (MG)

of the Scituate Reservoir System in Providence.

2.4.2 GCM projections

An ensemble of GCM projections (RCP emission scenario 4.5) from the World

Climate Research Programmes (WCRP’s) Coupled Model Intercomparison Project
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Table 2.2. GCM projection range, perturbation method, and variability approach
used in the climate impact studies of Northeast water supply.

Location Temperature (C) Precipitation (%) Perturbation Method Treatment of variability
New York 1.2 to 3.6 -1 to 16

Boston 1.2 to 3.7 -2 to 17
Providence 1 to 3.6 -1.5 to 17
Hartford 1.2 to 3.6 -2 to 17

Springfield 1.2 to 3.6 -2 to 17

Transient linear changes Stochastic variability traces

Phase 5 (CMIP5) multi-model dataset [Taylor et al., 2012] were used in the analysis

to illustrate the direction of GCM-based climate changes relative to the problematic

climate changes that were found as a result of the climate stress test. Gridded sim-

ulated data over each region where the reservoir system is located was downscaled

to a monthly temporal resolution and 0.125 degree spatial resolution based on the

bias-correction spatial disaggregation (BCSD) statistical downscaling method [Recla-

mation, 2013]. Mean monthly precipitation and temperature data were extracted for

the time period between 1950 and 2099, and percent and absolute differences be-

tween future (50 years centered around 2050) and historic (1950-1999) precipitation

and temperature data were calculated, respectively. The range of precipitation and

temperature projections for each location is illustrated in Table 2.2. In general, the

maximum projected CMIP5 temperature values are smaller than in previous studies

(see Table 2.4 for comparison). While the means superimposed on the climate stress

test results provide an indication of GCM trends, inter-model correlations and arbi-

trary sampling of models likely bias the visual image [Steinschneider et al., 2015a].

2.4.3 Stress test results

Figure 2.2 illustrates climate response surfaces of water supply reliability aver-

aged across the 9 realizations of climate variability. In Figure 2.2, the black contour

line indicates the 95% reliability threshold. The blue region represents acceptable

system performance (i.e., above the 95% reliability threshold) and the red region

represents unacceptable system performance. The ensemble of CMIP5 GCM projec-
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Figure 2.2. Water supply reliability for all systems averaged across 9 realizations of
natural variability.

tions are superimposed on each response surface, represented as grey points. In all

locations except Springfield, water supply reliability was above 95% across climate

change space. For Springfield’s water supply system, reliability drops below the 95%

threshold when precipitation decreases by approximately 16%.

Figure 2.3 illustrates response surfaces of water supply reliability for the ‘worst

case’ climate variability realization (i.e., the climate variability realization that has the

largest magnitude decrease in reliability across climate change space). In historical

climate terms, this stochastic realization would have a cumulative probability of being

exceeded of 0.03%, meaning it would be a drought with return period of approximately

3,000 years. For the Boston, Providence, and New York City systems (locations where

water supply demand projections are available), water supply demand was increased
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Figure 2.3. Water supply reliability for all systems averaged across 9 realizations of
natural variability for the ‘worst case’ realization.

to 250 mgd (25% increase in demand), 120 mgd (60% increase in demand), and

1600 mgd (60% increase in demand), respectively. For Boston and Providence, these

demand increases were the points at which water supply reliability first dropped below

the 95% threshold level, however, it is unlikely that these demand scenarios will occur

in the future. For New York City, even with a significant increase in demand, the

reliability remained above 95%.

Figure 2.4 illustrates vulnerability as a percentage of average monthly/weekly

demand averaged across the 9 realizations and Figure 2.5 illustrates vulnerability as

a percentage of average demand for the ‘worst case’ climate variability realization.

In this case, the vulnerability threshold is defined as a shortfall magnitude that is

1% of the average demand for the system. Water supply demand was increased for

the New York City, Boston, and Providence systems, however, the demand increases

48



0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$$
$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$3$ $$$$$$$$$4$$$$$$$$$5 0$$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$4$$$$$$$$$5

2.

1. 3.

4. 5.

Temperature$Change$(C)

Temperature$Change$(C) Temperature$Change$(C)Temperature$Change$(C)

Temperature$Change$(C)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)
P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

18

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$3$$$$$$$$4$$$$$$$$$5

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$$4$$$$$$$$5

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$$3$$$$$$$$$$$4$$$$$$$$$$5

1. New York City
2. Springfield
3. Providence
4. Hartford
5. Boston

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$$
$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$3$ $$$$$$$$$4$$$$$$$$$5 0$$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$4$$$$$$$$$5

2.

1. 3.

4. 5.

Temperature$Change$(C)

Temperature$Change$(C) Temperature$Change$(C)Temperature$Change$(C)

Temperature$Change$(C)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)
P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

18

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
T

IO
N

 C
H

A
N

G
E

 (
%

)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$3$$$$$$$$4$$$$$$$$$5

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$$4$$$$$$$$5

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$$3$$$$$$$$$$$4$$$$$$$$$$50 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

AT
IO

N
 C

H
A

N
G

E
 (%

)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 M

et
ric

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$$
$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$3$ $$$$$$$$$4$$$$$$$$$5 0$$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$4$$$$$$$$$5

2.

1. 3.

4. 5.

Temperature$Change$(C)

Temperature$Change$(C) Temperature$Change$(C)Temperature$Change$(C)

Temperature$Change$(C)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)
P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

P
re
ci
pi
ta
ti
on

$C
ha

ng
e$
(%

)

18

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$3$$$$$$$$4$$$$$$$$$5

!2
0$
$$$
$!1

0$
$$$
$0
$$$
$$1
0$
$$$
$2
0

0 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

A
TI

O
N

 C
H

A
N

G
E

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 M
et

ric

0$$$$$$$$1$$$$$$$$$$2$$$$$$$$$$$3$$$$$$$$$$4$$$$$$$$5

0$$$$$$$$$1$$$$$$$$$2$$$$$$$$$$$$3$$$$$$$$$$$4$$$$$$$$$$50 1 2 3 4 5

80
90

10
0

11
0

12
0

WATER SUPPLY VULNERABILITY

TEMPERATURE CHANGE (C)

P
R

E
C

IP
IT

AT
IO

N
 C

H
A

N
G

E
 (%

)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 M

et
ric

Figure 2.4. Water supply vulnerability as a percentage of average monthly (or
weekly for Boston) demands averaged across 9 realizations of natural variability.

explored (New York City demand increased to 1600 mgd, Boston demand increased to

400 mgd, and Providence demand increased to 160 mgd) never resulted in a shortfall

magnitude that exceeded the threshold level.

Figure 2.6 shows minimum storage as a percent of total capacity for the major

reservoirs in each system under dry conditions (top- 25% decrease in precipitation and

5 degree increase in temperature), hot conditions (middle- no change in precipitation

and 5 degree increase in temperature) and no change in climate (bottom). For New

York City, reservoir capacity is lumped together for the Delaware system and the

Catskill system.
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1. New York City
2. Springfield
3. Providence
4. Hartford
5. Boston

Figure 2.5. Water supply vulnerability as a percentage of average monthly (or
weekly for Boston) demands for the ‘worst case’ realization.
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Figure 2.6. Distribution of minimum monthly reservoir storage across 9 realiza-
tions under three extreme climate change scenarios: dry conditions- 25% decrease in
precipitation, 5 degree C increase in temperature (top), hot conditions- no change
in precipitation, 5 degree increase in temperature (middle), and no change in cli-
mate (bottom). Results are illustrated for (from left to right) the Scituate Reservoir
in Providence, Cobble Mountain Reservoir in Springfield, Barkhamsted and Nepaug
Reservoirs in Hartford, Delaware and Catskill Reservoir systems in New York City,
and the Quabbin and Wachusett Reservoirs in Boston.
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2.4.4 Climate robustness indices

Table 2.3 shows the average climate robustness indices across the 9 climate vari-

ability realizations for each water supply system. Results are shown for three proba-

bilistic assumptions of future climate change. The robustness indices for the Boston

and Springfield systems (when conditioned on a uniform probability distribution over

all grid cells, and in Springfield’s case, a uniform distribution over grid cells encom-

passing the GCM space) suggest that adaptation may be necessary in the future to

maintain acceptable performance.

Table 2.3. Average Climate Robustness Index across 9 climate variability realiza-
tions under current demand conditions given assumptions of the Multivariate Normal
and Uniform distributions over climate change and GCM space.

Boston Springfield Providence Hartford New York City
Uniform 0.99 0.75 1.0 1.0 1.0

Uniform (GCM space) 1.0 0.98 1.0 1.0 1.0
Multivariate Normal 1.0 1.0 1.0 1.0 1.0

2.5 Discussion

The results from this analysis suggest that water supply systems in the Northeast

are robust to a wide range of climate changes, including increasing temperature and

decreasing precipitation, as well as severe variability. The robustness of these sys-

tems across climate change space and averaged across climate variability realizations

is illustrated by the response surfaces in Figure 2.2 and Figure 2.4 and climate robust-

ness indices in Table 2.3. Given a reliability threshold of 95%, all systems perform

acceptably under current climate conditions (0 degree Celsius change in temperature,

0% change from historic precipitation). The Springfield system is the only system

that falls below the reliability threshold across all of climate space, but only when

precipitation drops by approximately 16%. This comprehensive assessment updates
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previous studies which were dependent on the GCM projections used and resulted in

inconclusive results due to choice of projections.

The Springfield, Boston, and Providence systems all fail to meet the reliability

threshold at the extremes of climate change space in the ‘worst case’ climate variabil-

ity/demand realization (Figure 2.3). As noted above, based on historical statistics

the return period of such a drought is approximately 3000 years and the precipitation

reduction is beyond those indicated by climate projections from GCMs.

The climate robustness index is used to compare the relative robustness of a

particular system or system configuration to other systems over a wide range of

climate changes. It is an indication of the range of climate change a system can

handle. The index can be conditioned on assumptions about the probability of future

climate changes. Under the assumption of a multivariate normal distribution fit to

the ensemble of GCM projections, the CRI suggests all systems are 100% robust to

future climate change (i.e., they maintain a reliability of 95% across climate change

space). When the range of climate changes used in the climate stress test is weighted

uniformly (uniform distribution) or the range of climate changes indicated by the

most extreme GCM projections is weighted uniformly (uniform distribution applied

to the range of GCM projections), the Springfield and Boston CRI’s fall slightly below

1 (Table 2.3).

In general, the results from this study are similar to earlier GCM-based climate im-

pact analyses of water supply in the Northeast. For example, Lettenmaier et al. [1999]

found that the Boston system was relatively insensitive to temperature increases of

1.2 to 5.9 degrees Celisus and precipitation changes of -6 to 15%, but accompanied

with demand increases, experienced slight declines in water supply reliability (3 and

39% declines in reliability for returns to 1992 and 1987 levels of demand (285 and

325 mgd, respectively). Matonse et al. [2012] also found similar results to this study

for the New York City water supply reservoirs, illustrating that changes in climate,
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Table 2.4. GCM projection range, perturbation method, and variability approach
used in this study.

Location Citation Temperature Precipitation (%) Perturbation Method Treatment of variability

New York City Matonse et al. (2011, 2012)
2.2 to 3.4

(all models combined)
12.7 to 15.3%

(all models combined)
Mean changes Historical variability trace

Boston
Kirshen et al. (1995) 3.1 to 8.3 -7.6 to 23% Mean changes Historical variability trace
Vogel et al. (1997) 3.1 to 8.3 -7.6 to 23% Mean changes Historical variability trace

Lettenmaier et al. (1999) 1.2 to 5.9 -6 to 15% Transient changes Historical variability trace

as projected by 16 GCMs, will not result in substantial changes in annual reliabil-

ity in the future. However, several earlier studies were difficult to compare to this

study because they used alternative performance measures (i.e., measures other than

reliability, vulnerability, and robustness) or other/unknown treatments of variability

that were inconsistent with the systematic way that variability was treated here. For

example, Kirshen and Fennessey [1995] and Kirshen et al. [1995] observed a range of

potential climate change impacts on reservoir-system safe yield due to the scenarios

of 4 GCM models. They found that future temperature increases of 3.67 and 4.9

degrees Celsius with precipitation decreases of 1.6 and 7.6% respectively, resulted in

decreases in system yield, whereas temperature increases of 3.11 and 8.27 degrees

Celsius with precipitation increases of 13 and 23% resulted in increases in system

yield. Table 2.4 summarizes the range of projected temperature and precipitation

changes from GCMs, the perturbation method, and treatment of variability used in

previous climate impact studies of Northeast water supply.

While climate change and variability do not appear to be major threats to water

supply in the Northeast, a combination of these climatic changes with demand growth

may pose a problem in the future. Specifically, the Boston and Providence water

supply systems perform well under current demands, but increases in demand (25%

increase for Boston and 60% increase for Providence) may cause problems in the

future if they coincide with 2+ degree Celsius increases in temperature and decreases

in precipitation of approximately 20% (due to internal climate variability and climate

change). By any measures this is an extreme scenario but provides an indication of the

specific conditions that are problematic. This is demonstrated in Figure 2.3. While it
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is difficult to predict what future water demands will be as more people move to urban

areas from rural communities and temperatures increase over time, water utilities

in this region have made great strides in system efficiency. Since the 1960s, many

utilities have changed their overall management approach from increasing supply to

meet demands to promoting water conservation and managing demand to fall within

current supplies. The results in this analysis suggest that the improvements made by

many of these systems over the last 50 to 100 years have increased their robustness

to future climatic stressors.

The primary factors that seem to contribute to system vulnerabilities and poor

system performance include system size and demand requirements. Springfield is the

smallest of the five systems explored based on the current population, demand require-

ments, and reservoir storage availability, and had the greatest number of shortfalls

under the more extreme climate change scenarios. Other larger systems explored in

this study generally maintained high performance across climate change space. How-

ever, the New York City and Boston water supply systems, the two largest water

supply systems in this study, suffered from significant storage drawdowns under ex-

treme climate conditions despite their continued ability to meet demands (Figure 2.6).

Large decreases in reservoir storage can cause water quality issues, which ultimately

may require expensive treatment options. Thus, it is vital to consider reservoir stor-

age levels in addition to performance metrics when assessing the vulnerabilities of

water supply systems in this region.

Although many of these large systems have improved management practices, ad-

dressed infrastructure weaknesses, and lessened demand requirements since the 1960s

drought, they have not yet been tested with another drought event of this severity.

The combination of increased population, decreased precipitation due to internal at-

mospheric variability, and potential increases in temperature in the future may cause

difficulties for the water supply systems in the Northeast. The results from this anal-
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ysis, however, suggest that most of these utilities have improved over the last 50-100

years and have developed the necessary management and storage requirements to

remain robust in the future.

There are some limitations associated with the reservoir operations models (i.e. an

incomplete representation of the physical systems and unaccounted for water supply

reserves) that are important to consider when analyzing the vulnerabilities to water

supply in this region. For example, the systems models in this study do not consider

direct reservoir evaporation, and with increased temperatures, this may contribute

to water shortages in the future. For example, approximately 9% of the Quabbin

Reservoir capacity evaporates each year based on historic temperatures. In addition,

interbasin water transfers and backup water sources are not accounted for in this

study, which could be tapped into under emergency drought conditions.

2.6 Conclusion

The ability to reliably meet water supply demands in the future is of high priority

for water utilities. In general, many of the water utilities in the northeastern United

States are not concerned about their ability to meet water supply needs despite future

uncertainty. Since the 1960s drought of record, utilities have operated their systems in

an anomalously wet period of atmospheric variability and have successfully been able

to improve system performance with strict conservation measures and infrastructure

developments. This study confirmed the robustness of several of the large water

supply systems in the Northeast, and in doing so, presented the most comprehensive

analysis of the state of water supply in this region.

The stress test approach used to assess climate risks in this study enabled the

exploration of system vulnerabilities to a wide range of potential future mean changes

in climate, while simultaneously exploring the impacts of natural climate variability on

system performance. The combination produced the most comprehensive assessment
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of Northeast U.S. water supply to date and enables conclusions about these systems

that are not affected by the uncertainty of climate change projections. In a region

with a large concentration of highly populated cities with significant demands for

water supply, this study also assessed the impacts of demand increases in the future.

The combination of these system stressors is ultimately what will define water supply

system performance in the future.

Lastly, the comparative vulnerability-based approach presented in this study uniquely

addresses the state of water supply in the Northeast by quantifying the robustness of

systems using the climate robustness index. The ability to quantify the robustness of

systems helps identify relevant risks independent of any assumed likelihoods of future

climate states occurring. Future studies of water supply systems in the Northeast can

use this metric to investigate the robustness of alternative system adaptations if the

current operational strategies are ever deemed inadequate.
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CHAPTER 3

A WEB-BASED SCREENING MODEL FOR CLIMATE
RISK TO WATER SUPPLY SYSTEMS IN THE

NORTHEASTERN UNITED STATES

3.1 Abstract

The aim of this study is to describe the development and application of a web-

based decision support tool (ViRTUE) for performing climate risk evaluations of

water supply systems. The tool is designed for small-scale water utilities in the

northeastern United States that may lack the resources for detailed climate change

risk investigations. Development of this tool demonstrates a relatively new approach

to web application development using the Shiny framework for the R programming

language to create an interactive environment for stakeholders and water managers

to explore climate vulnerabilities. Using a decision-scaling framework, the tool allows

the user to perform a climate stress test to evaluate the performance and vulnerabil-

ity to water supply shortfalls of local reservoir systems over a wide range of potential

climate change scenarios using a generic systems model. Probabilities of future cli-

mate conditions derived from climate projections then help inform utility operators

of impending risk.

3.2 Software availability

Product Title: Vulnerability and Risk Assessment Tool for Water Utilities (ViRTUE)

Developer: Sarah Whateley

Contact Address: Dept. of Civil and Environmental Engineering,
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University of Massachusetts Amherst, 130 Natural

Resources Rd. Amherst, MA 01003

Contact Email: swhatele@umass.edu

Available Since: 2013

Programming Language: R

Availability: https://virtue.shinyapps.io/myapp

Source Code: https://github.com/swhatele/ViRTUE

Cost: Free

3.3 Introduction

Water resource managers and decision-makers are faced with many uncertainties

when planning and managing water systems including changes in future population,

per capita water demands, regulatory requirements, environmental standards, and

climate, among others. These uncertainties impact both short-term operational deci-

sions (e.g. water allocation) and long-term adaptation decisions (e.g. infrastructure

investment). Despite the inherent uncertainty in future conditions, water planners

must decide how to plan and manage their water systems with the resources avail-

able to them. This study addresses these issues through a pragmatic framework for

rapid assessment of climate change vulnerability for water utilities. The framework

is implemented in a novel web-based tool called Vulnerability and Risk Assessment

Tool for Water Utilities (ViRTUE), which is designed for small-scale water utilities

that may lack the financial or technical resources to perform more detailed climate

change risk investigations.

Developing effective management strategies and adaptation actions that reduce

risk to water resources requires an assessment of regional climate hazards on exist-

ing system infrastructure and operations [Mastrandrea et al., 2010a]. Climate risk

assessment of water resource systems is a process for identifying and evaluating vul-
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nerabilities that may threaten existing infrastructure and system performance. The

process often involves a series of climate/weather models, rainfall-runoff models, and

systems models to evaluate the impacts of climate change and variability on sys-

tem functioning. Yet, this process can be time and resource intensive, especially for

smaller utilities that often lack the ability to conduct a full vulnerability analysis.

In general, the water resources literature focuses primarily on large systems, with

relatively few applications for small-scale systems. Climate change studies are typi-

cally performed for large water resource systems that are capable of investing the time

and resources necessary for such analyses [Horton et al., 2011; Kirshen et al., 2008;

Lettenmaier et al., 1999]. However, small water utilities may be most susceptible to

climate change but do not have the means to assess system performance under future

uncertainty. While potentially less equipped to perform computationally-intensive cli-

mate analyses, small systems may have more flexibility, less institutional complexity,

and greater adaptive capacity to cope with climate change than larger systems [Ham-

let , 2011]. The development of an easily accessible (i.e. web-based) climate vulnera-

bility tool, designed for rapid assessment of climate risks to water resources systems,

would encourage smaller utilities to identify and prepare for potential vulnerabilities

in the future.

The need for screening-level, computer-based models and tools to integrate knowl-

edge and provide support in decision-making and management is supported by the sci-

entific literature [Anderson et al., 2004; Borowski and Hare, 2006; Chapra, 1991; Welp,

2001]. However, few software packages exist that are inexpensive, simple to use, and

provide these services to small water utilities. One exception is the U.S. Environmen-

tal Protection Agency’s (USEPA) Climate Resilience Evaluation and Awareness Tool

(CREAT) designed to help the water sector assess regional and local climate-change

impacts. This desktop-based tool leads utilities through a self-directed exploration of

potential climate change related risks and adaptation options [Travers , 2010]. In con-

60



trast, a simple, web-based tool for assessing climate vulnerabilities of water systems

may provide advantages such as ease of use, accessibility, collaboration, instant mod-

ifications, and wide availability [Byrne et al., 2010]. A web-based screening-level tool

would also help narrow the persistent gap between knowledge production and tool

use by removing software dependencies, simplifying scenario testing, and providing a

user-friendly interface [Lemos et al., 2012]. Finally, this tool is designed to employ

the decision-scaling methodology [Brown, 2010; Brown et al., 2011, 2012; Whateley

et al., 2014], a vulnerability-led alternative to the GCM projection-led assessment

process employed in CREAT.

Recent advances in web standards, browser performance, and free and open-source

software (FOSS) present a promising new avenue for developing web-based tools that

are more user-friendly and accessible than traditional desktop software [Swain et al.,

2015]. These advances in web technologies have transformed the implementation,

design, and deployment of decision support systems (DSS) [Bhargava et al., 2007;

Booth et al., 2011; Sun, 2013]. Decision support systems provide users with computer-

based tools (i.e. models and data processing capabilities) that help support complex

decision-making and encourage interactive problem solving [Salewicz and Nakayama,

2004]. In the last decade, web-based approaches to DSS software have increased

the accessibility of decision-making tools to individuals without extensive modeling

experience.

The use of web applications for environmental modeling is becoming more com-

mon in the literature [Goodall et al., 2011; Walker and Chapra, 2014a]. For exam-

ple, [Walker and Chapra, 2014a] developed an interactive web application, WIRM,

with a rapid screening model for investigating potential water quality impairments

due to biochemical oxygen demand (BOD) discharges. The WIRM tool gives users

the ability to interactively adjust parameters for rapid evaluation and visualization

of the relationships between parameter values and model output. As another ex-
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ample, [Goodall et al., 2011] present an application for a service-oriented comput-

ing (i.e. where software systems are interconnected to allow for community and

multidisciplinary modeling) for modeling water resource systems using web services.

Specifically, their study seeks to develop standards and procedures for data gathering,

processing, and visualization of hydrologic simulation models on the web with the ob-

jective of more robust and effective implementation design. Yet, many modern web

technologies such as these require prior knowledge of and experience with standard

web languages (HTML, JavaScript, and CSS), making the web development process

inaccessible to many researchers and practitioners.

In more recent years, the development of new web frameworks offers an opportu-

nity to create web applications directly from common scientific languages such as R

and Python. This further increases the accessibility of scientific research and mod-

eling tools because researchers can create web applications based on programming

languages they are already familiar with, and without needing to become experts in

web development. This paper presents a web-based tool developed using the Shiny

web application framework [RStudio, Inc., 2014] for the R statistical computing lan-

guage [Team, 2014]. Shiny allows users with no web development skills to create

interactive and fully-featured web applications written entirely in the R language.

Using Shiny, the application developer can write both the front-end (i.e. client-side)

user interface and the back-end (i.e. server-side) computational engine using famil-

iar R functions and syntax. Shiny automatically converts the user interface code into

standard web languages (HTML, CSS, and JavaScript) that can be run in any modern

web browser. Shiny also handles client-server communications for passing application

inputs and outputs between the user and the server, facilitating rapid development

of interactive user interfaces.

Recently, publications of Shiny web applications have appeared in a wide range

of scientific fields, including a web-based mapping application for precision agricul-

62



ture [Jahanshiri and Shariff , 2014], the development of a data exploration tool for

microbial communities [Beck et al., 2014], an interactive web application to assist

in knowledge elicitation about water requirements of floodplain and wetland veg-

etation [Guillaume and Fu, 2013], and a web server for predicting transcriptional

regulatory modules [Liu and Miranda-Saavedra, 2014]. The role of Shiny in all of

these applications is to take complex scientific concepts and present them through an

intuitive and user-friendly graphical interface. The Shiny web application framework

thus offers a promising new method for developing decision support applications in

the water resources community. In particular, the server side framework, which of-

fers reactive expressions that automatically regenerate output data and figures when

changes are made to the input [Wan and Hudak , 2000], allows developers to create in-

teractive web applications that are well suited for self-directed climate risk assessment

of water resource systems.

To the authors’ knowledge, there are no web-based tools designed for exploring

water supply system performance under climate change. This study addresses this

gap by presenting a web-based tool that uses a vulnerability-based framework to

rapidly assess climate change and other impacts on small water supply utilities (i.e.

serving populations of 250,000 or less). This tool also demonstrates a new approach

for enabling researchers and practitioners to create web-based modeling software that

can be programmed entirely within the R programming language. Section 2 intro-

duces traditional methods of assessing climate impacts on water supply systems and

describes the vulnerability-based framework used in ViRTUE to allow water utilities

to interactively evaluate risks to their systems. Section 3 describes the development

approach, model theory, and workflow used in ViRTUE. Section 4 illustrates an ap-

plication of the tool in a case study of a water supply system in the northeastern

United States and compares the vulnerabilities identified using ViRTUE with output

from an independent simulation model of the case study system. Section 5 describes
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outreach and feedback on the application and utility of the tool for small-scale water

supply systems in the northeastern United States. Sections 6 and 7 end the paper

with a discussion and conclusion of the tool’s contributions to the water resource and

environmental modeling communities.

3.4 Climate Risk Assessment Methodologies

3.4.1 Scenario-Based Climate Risk Assessment

Traditionally, water supply impact studies evaluate system performance by com-

bining downscaled Coupled Ocean-Atmosphere Global Climate Models (OA/GCM)

with rainfall-runoff models and reservoir operations models to predict future climate

risk [Rajagopalan et al., 2009b; Wiley and Palmer , 2008; Wilby and Dessai , 2010].

These top-down or scenario-based approaches use projected climate change scenarios

to evaluate system performance.

Top-down approaches undertaken for the purposes of making adaptation or op-

erational decisions tend to propagate significant errors, generating large uncertainty

ranges in climate impacts and system risk [Dessai , 2009]. For example, the inherent

uncertainty in GCM projections related to initial condition ensembles [Deser et al.,

2012], climate forcings [Stainforth et al., 2005], and model inadequacies due to poorly

understood climate physics and computational complexity [New and Hulme, 2000]

make it difficult to incorporate information from these scenarios into adaptation de-

cisions [Stainforth et al., 2007b].

Given these concerns, alternative methods of climate risk assessment have emerged

that build from the concepts of decision theory and scenario planning. Rather than

suggest a single, best-guess future, these methods attempt to incorporate the concept

of robustness into water resources planning and design, selecting strategies that per-

form well across a range of generated scenarios [Lempert and Collins , 2007; Ray et al.,

2013; Watkins Jr and McKinney , 1997]. These methods include Info-Gap Decision
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Theory [Ben-Haim, 2001], Robust Decision Making (RDM) [Lempert et al., 2006;

Lempert and Groves , 2010], Robust Optimization [Ray et al., 2013; Watkins Jr and

McKinney , 1997], Real Option analysis [Wang et al., 2006], Decision-Scaling [Brown,

2010], and the scenario-neutral approach [Prudhomme et al., 2010]. Such ‘bottom-up’

approaches are designed to identify system vulnerabilities over a range of plausible

future conditions to aid in selecting robust adaptation strategies.

3.4.2 Decision-Scaling: A Vulnerability-Based Framework

Decision-scaling is a bottom-up methodological framework which inverts GCM-

led approaches to climate risk assessment by evaluating system performance over a

range of climate futures independent of any assumed probabilities [Brown et al., 2011].

Rather than evaluate vulnerabilities among a small set of future climate projections as

generated by the GCMs, the decision-scaling method involves systematically explor-

ing a virtually unlimited number of future scenarios to reveal system vulnerabilities

by using a stochastic weather generator. The process is generally referred to as a cli-

mate stress test [Brown and Wilby , 2012]. Multiple sources of climate information (i.e.

GCM projections, paleoclimate reconstructions, and subjective climate information)

can be used to evaluate risks associated with the vulnerabilities identified [Brown,

2010; Brown et al., 2011]. This methodology uses a decision analysis framework to

characterize the future climate so that climate scenarios are derived from the deci-

sion at hand. Similar to other robustness-based approaches, decision-scaling defines

robust adaptation strategies as those that perform acceptably over a range of future

uncertainty [Steinschneider et al., 2014b; Whateley et al., 2014; Moody and Brown,

2013].

In this study, the decision-scaling framework is embedded in a web-based tool

designed for water utilities in the northeastern United States. In recognition of lim-

itations in projecting the future climate, the tool uses decision-scaling to tailor the
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analysis to focus on the future climate states that pose the greatest threat to sys-

tem performance and estimates probabilities associated with those decision-relevant

climate states [Brown and Wilby , 2012]. This reduces the computational time and

resources necessary for analysis, and permits rapid identification of vulnerabilities to

climate change. It is particularly well suited for small utilities, which comprise small

spatial areas and thus are not well served by coarse resolution GCM projections.

3.5 ViRTUE: Vulnerability and Risk Assessment Tool For

Water Utilities

The Vulnerability and Risk Assessment Tool for Water Utilities (ViRTUE) is a web

application for assessing risks to small-scale water supply systems in the northeastern

United States (available at https://virtue.shinyapps.io/myapp). While ViRTUE is

currently designed for the Northeast U.S. in terms of data availability and vetted

hydrologic models, in principle it is fully generalizable to other regions. The tool

provides a mechanism to understand and explore individual water utilities climate

risk exposure using a stress test, in which the performance of local reservoir systems

is tested over a wide range of potential climate and socioeconomic changes. The

components and workflow of the application are illustrated in Figure 3.1. This section

will describe the development approach, model theory, and interface/workflow of

ViRTUE.

3.5.1 Development Approach

ViRTUE was developed using the Shiny web application framework for the R

programming language. R is a free and open source statistical programming lan-

guage that is becoming increasingly popular among environmental modelers and sci-

entists [Muenchen, 2013]. Traditionally, converting a simulation model or statistical

analysis to a web application required substantial knowledge of standard web lan-
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Figure 3.1. Schematic diagram of the components and workflow of the ViRTUE
application to assess climate risks to water supply systems.
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guages (HTML, CSS, and JavaScript) in order to construct the user interface. This

requirement presents a challenge for scientists and engineers who are not familiar

with modern web languages or development practices. The Shiny web development

package provides a powerful framework allowing researchers to write web applications

using only R functions and syntax. Because Shiny converts the R source code into

HTML/JS/CSS automatically, the developer can create an entire interactive web ap-

plication in R (see Interactive Web Apps with shiny Cheat Sheet for a template of the

software architecture1). Although knowledge of HTML, CSS, and JavaScript is not

required, Shiny also provides the flexibility to incorporate these languages to create

more advanced and innovative web features. For example, ViRTUE incorporates an

open-source JavaScript library for interactive maps, called leaflet2, which enables the

user to click on a map to define the location of their reservoir system.

3.5.2 Model Theory

The stress test approach used in ViRTUE begins with the generation of monthly

time series of precipitation and temperature using a stochastic weather generator.

The weather generator is a stochastic model for generating synthetic time series of

climate variables. It allows exploration of user defined climate changes, including

changes in means and variability that are plausible yet not sampled by GCM pro-

jections [Steinschneider and Brown, 2013; Stainforth et al., 2007b]. While the use of

climate change projections can reveal vulnerabilities to the projections that happen

to be used, this approach reveals vulnerabilities to specific climate changes.

The monthly weather generator in ViRTUE couples a wavelet decomposition with

an autoregressive model of annual precipitation to account for low frequency climate

oscillations in the Northeast [Steinschneider and Brown, 2013]. A k-nearest neighbor

1http://shiny.rstudio.com/images/shiny-cheatsheet.pdf

2http://leafletjs.com, accessed December 15, 2014
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resampling approach is then used to disaggregate the stochastically generated annual

precipitation time series to a monthly time step, preserving the covariance structure

between weather variables. The weather generator is trained using historical data

from a gridded observed meteorological dataset covering 1949-2010 (over a 1/8 degree

grid cell space) [Maurer et al., 2002]. Multiple climate realizations (i.e. fifty time

series of monthly precipitation and temperature) are generated to account for internal

climate variability (i.e. the natural fluctuations in the climate system that arise in

the absence of external forcings).

Linear trends in temperature and precipitation are applied to each variability re-

alization to simulate transient climate change. This approach allows plausible climate

change space to be effectively and exhaustively explored. Currently the changes in

climate that can be explored in the tool are limited to percent changes in mean annual

precipitation and absolute changes in mean annual temperature from historic values

for the region of interest (i.e. the latitude and longitude coordinates of the water

supply reservoir). Exploration of variability changes are also possible but have not

been incorporated yet.

The monthly weather variable time series, adjusted to represent climate changes,

are then used as input to a lumped-parameter hydrologic model to estimate monthly

streamflow. This hydrologic model is adapted from the ‘abcd’ model developed by

[Thomas , 1981a]. The original ‘abcd’ model was modified to account for the influence

of snow accumulation and melt on hydrologic processes in the northeastern United

States, which introduces a fifth parameter (e) and is commonly referred to as the

‘abcde’ model [Steinschneider et al., 2012; Martinez and Gupta, 2010]. The abcde

model is calibrated to historic streamflows within ViRTUE using the shuffled complex

evolutionary algorithm (SCE), a probabilistic global optimization method designed for

parameter estimation in conceptual rainfall-runoff models [Thyer et al., 1999; Duan

et al., 1992]. This model was chosen for use in ViRTUE because of its parsimonious
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nature (i.e. few parameters) and geographic and hydrologic compatibility in the

Northeast.

The output of the hydrologic model is then used as input for a simple, reservoir

systems model that follows ‘standard’ operating policies (i.e. meet a release target if

sufficient water is available, otherwise release all available water in the current time

step) so that it is generalizable to any system [Loucks et al., 2005]. The reservoir model

is designed for the analysis of a single reservoir system, however, multiple reservoirs

can be lumped together for a crude assessment of total system risk. In practice,

standard operating policies are used primarily for planning purposes. Alternatively,

the user can select a hedging option that imposes pre-specified operating policies that

reduce releases in times of drought (i.e. when reservoir levels drop below drought

severity thresholds) to explore system performance under operational practice. Most

operators adopt hedging policies to save water in the reservoir for future releases in

case there is an extended period of low inflows [Loucks et al., 2005]. In ViRTUE,

hedging policies are adapted from the Springfield Water and Sewer Commission’s

(SWSC) drought severity index curves, which are typical of small systems [Camp

Dresser and McKee, 2005; Westphal et al., 2007].

3.5.3 Tool Workflow

The decision-scaling framework embedded in ViRTUE leads a user through a self-

guided, six-step process arranged as a series of tabbed panels on the user interface.

In the first three steps of the process, the user performs a climate stress test of their

system to identify vulnerabilities based on a wide range of potential climate change

scenarios (as described above). After performing the stress test, the user is presented

with additional information regarding the probabilities of these scenarios based on

GCM output in order to assess the risk of not meeting water supply demands. Note

that these GCM projections are best viewed as subjective probabilities of future
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climate change. Ultimately they categorize the climate change projections in terms

of whether they indicate problems for the utility or not. A more formal approach

for developing climate change probabilities is in development, although they will

necessarily remain subjective probabilities [Steinschneider et al., 2015a].

ViRTUE is designed to be used by stakeholders and water managers without the

need for external support from scientists or engineers by providing guiding instructions

through each step of the analysis. In addition, users can download the results of each

step in the analysis and save key figures for their records and for use in climate reports.

The following sub-sections describe each of the six steps of the analysis in detail.

Step 1: Choose Location

In the first step of ViRTUE, the user specifies the location of their reservoir system

by clicking on an interactive map. The location information (i.e. latitude/longitude)

is used to retrieve historical climate data for that location to create synthetic future

climate time series using the weather generator described in Section 3.2. Climate

changes are imposed on one of the stochastically generated weather realizations, cho-

sen at random from the fifty total realizations created. As a result, for each iteration

of the tool a slightly different result will emerge based on the randomly selected

weather realization chosen for that analysis. After all climate change scenarios are

created, time series of historic monthly precipitation (mm) and temperature (degrees

C) from 1949 to 2010 are presented to the user.

Step 2: Generate Streamflow

In the second step, the user provides historical flow data to calibrate the rainfall-

runoff model described in Section 3.2. The historical flow data can be provided as

either direct inflows to the reservoir or measured streamflow from a nearby moni-

toring gage. If flows are taken from a nearby gage station (Qgagedt), the tool uses
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a simple drainage area ratio method to scale the volume of water coming into the

system [Archfield and Vogel , 2010].

Qungagedt =
Au
Ag
Qgagedt (3.1)

where Qgagedt are historic flows at a nearby gage, Au is the drainage area of the

ungaged site, Ag is the drainage area of the gaged site (required as input in Tab

2), and Qungagedt are the ungaged flows into the reservoir. The ability to estimate

streamflow at an ungaged site (Qungagedt) is particularly important for small reservoir

systems that have short or no historic inflow records.

When the historical flow data are uploaded, the application uses the historical

climate data retrieved in step 1 to calibrate the rainfall-runoff model using the SCE

algorithm as described in Section 3.2. After this model is calibrated, the user interface

displays hydrographs and flow duration curves of the historical and simulated flows for

evaluating the calibration. The goodness-of-fit of the model calibration is indicated

by the Nash-Sutcliffe efficiency (NSE) coefficient [Nash and Sutcliffe, 1970]. For users

unfamiliar with this metric, instructions on how to interpret its value are provided

by clicking on the plot.

Step 3: Water Supply Performance

In step 3, the calibrated rainfall-runoff model is coupled to the reservoir systems

model described in Section 3.2. The user provides a series of inputs including reservoir

capacity, drainage area of the reservoir (Au), daily water supply demands, and the

threshold for system reliability (i.e. 95%). The reliability threshold defines what is

considered acceptable performance in terms of reliability (i.e. the acceptable number

of shortfall months over the period of record) for the system [Hashimoto et al., 1982].
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R = 1−
∑T

t=1 Sh(t)

T
(3.2)

where R is the difference between unity and the ratio of the total number of

shortage months that occur and the total number of months in the record (T ). The

shortfall function, Sh(t), is a binary variable that is set to one if releases are less than

the water supply demand for month t, and zero otherwise.

After the inputs are specified, the application uses the climate-altered flow real-

izations generated from the calibrated rainfall-runoff model as input into the generic

systems model to simulate system performance. The results are presented as a series

of plots including annual reservoir storages as a percent of capacity, monthly stor-

ages for a particular month of choice (e.g. April storages from 2014-2075), average

monthly inflows into the reservoir, and overall water supply reliability (R).

In addition to evaluating system performance based on historical climate condi-

tions, the user can also interactively explore the impact of incremental changes in

climate and other variables on system performance using slider bars on the user in-

terface. Adjustments that can be made include changes in mean annual temperature

(0 to 5 degree C at 0.5 degree intervals), changes in mean annual precipitation (75

to 125% of the historic mean at 5% intervals), changes in mean annual demand (0 to

200% of the historic mean at 5% intervals), additional storage capacity (0 to 200% at

10% intervals), and additional minimum flow (0 to 300 MGM at 5 MGM intervals).

Although most of this paper focuses on climate risks to water systems, the allocation

of limited water supplies to meet both human and ecological needs remains a challenge

for small utilities. As such, the capability to explore changes in population (demand)

and regulatory policies (minimum flow requirements) is included in ViRTUE.

Lastly, there are two simple system alternatives that can be explored. The first

alternative is increasing reservoir size by adjusting an additional storage capacity

option. This alternative approach requires significant capital investment. The second
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alternative strategy is to alter operating policies, which requires much less investment

by a utility. Clicking the ’Hedge’ checkbox of ViRTUE imposes restrictions on water

supply releases during droughts (see section 3.2) beyond what the standard operating

rules would predict. Implementing release rules provides a more realistic depiction

of system performance since ‘standard’ operating policies are not often followed in

practice.

Step 4: Climate Change Projections

In step 4, ViRTUE provides information about the distributions of changes in

mean precipitation (%) and mean temperature (Celsius) based on an ensemble of

GCM projections (RCP emission scenario 4.5) from the World Climate Research

Programme’s (WCRP’s) Coupled Model Intercomparison Project Phase 5 (CMIP5)

multi-model dataset. Gridded simulated data was downscaled to a monthly temporal

resolution and 0.125 degree spatial resolution based on the bias-correction spatial

disaggregation (BCSD) statistical downscaling method [Reclamation, 2013]. This tab

allows users to visualize the range of climate changes (centered around 2050) projected

for the region where their reservoir system is located. The GCM output is specific

to the location of the user’s system as specified in step 1. The GCM projections

allow utilities to better assess the likelihood of climate risks identified through the

stress test. The projected changes are displayed as a histogram reflecting the range

and frequency of the climate changes represented by the ensemble of climate change

projections. The purpose of this step is to illustrate the kinds of climate changes that

a representative set of projections indicates for their location.

Step 5: Stress Test Results

In step 5, an overview of the results from the climate risk assessment is presented

to the user. This overview is shown as a climate response surface of water supply

reliability. A climate response surface is a representation of system performance (i.e.
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contours of system reliability) across climate change space (e.g. changes in annual

mean temperature and precipitation). In this display the climate response surface is

divided into regions of ‘acceptable’ and ‘unacceptable’ system performance according

to a user-specified reliability threshold level. The climate change space encompasses

the full range of mean changes in precipitation and temperature that can be explored

in step 3.

The user can adjust the reliability threshold, which changes the areas defined as

acceptable and unacceptable. Additionally, GCM projections are superimposed on

the climate response surface to illustrate the distribution and range of the projec-

tions relative to the impacts (in terms of reliability) that such changes would have.

In this way the projections are put into the context of their implications for the sys-

tem. However, rather than simply learning whether projections indicate risks or not,

this visualization allows the user to determine which climate changes cause hazards,

whether those changes are sampled by the projections or not. For instance, if a water

utility only has trouble meeting demands when mean precipitation decreases and the

GCM projections show only increases in mean precipitation in the future, they may

conclude that their system is at low risk of failure.

Step 6: Climate Risk

In the final step, the overall risk in terms of acceptable/unacceptable system

performance is presented. Here risk is defined as the fraction of projections that fall

below the reliability threshold level. The results are shown in the form of a bar chart

with one bar illustrating the fraction of GCM projections that fall above the threshold

of reliability (acceptable) and the other bar showing the fraction of GCM projections

that fall below the threshold of reliability (unacceptable).

75



3.6 Case Study: Springfield Water and Sewer Commission

To demonstrate an application of ViRTUE, we present a case study using the

Springfield Water and Sewer Commission’s (SWSC) water supply system. The reser-

voir system, located in the Westfield River Basin in Central Massachusetts, consists

of three major reservoirs: Cobble Mountain Reservoir (total storage at max eleva-

tion is 22,829 MG), Borden Brook Reservoir (2,500 MG), and Littleville Reservoir

(10,560 MG). The SWSC serves a population of approximately 250,000 people in

Massachusetts, including the municipalities of Agawam, East Longmeadow, Ludlow,

Westfield, and Springfield. For the purposes of this analysis, Cobble Mountain Reser-

voir was treated as the system’s major storage reservoir, with inflows from surface

runoff, direct precipitation, and the Borden Brook Reservoir located upstream. The

Borden Brook Reservoir was excluded from the analysis because it has minimal active

operation and primarily functions as a run-of-river facility.

3.6.1 Model Application

Figure 3.2 shows a screen shot of ViRTUE after the first step of analysis is com-

plete. In this case, the marker is placed at the base of the Cobble Mountain Reservoir

and time series of historical average monthly precipitation (mm) and temperature

(Celsius) from 1949-2010 are generated and displayed on the user interface.

Figure 3.3 illustrates output from the second step of ViRTUE, in which the abcde

model is calibrated to historic flows at the West Branch Westfield River station at

Huntington, MA (USGS 01181000). Since flows in this case are taken from a nearby

gage station (Qgagedt), the tool uses the drainage area ratio method described earlier.

Calibration of the model in this case yielded a Nash-Sutcliffe efficiency of 0.58, which

is acceptable for a water supply system with no flood risk concerns.

Figure 3.4 shows a screen shot of performance results generated from the tool’s

systems model under base case conditions (i.e. no change in mean climate or de-
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Figure 3.2. Screen shot of the ‘Choose Location’ tab of ViRTUE. Climate altered
time series of monthly precipitation and monthly temperature are generated in this
step by clicking on the map near the reservoir system of interest. Time series of
historic average monthly precipitation (left) and temperature (right) appear on the
user interface.
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Figure 3.3. A hydrograph (left) and flow duration curve (right) produced in the
‘Generate streamflow’ tab of ViRTUE. The black lines illustrate historic flows and
the red lines illustrate modeled flows. The Nash-Sutcliffe efficiency value of 0.58
quantifies the performance of the abcde hydrologic model calibration.

mands). Under base case conditions the water supply reliability over the period of

record is 100% (top left plot in Figure 3.4). In addition, the storage as a percent of

capacity fluctuates between 80% and 100% (top right), and the April storage remains

near capacity for all future years (bottom left). The hydrograph (bottom right) peaks

in April for both the base case flows (blue line) and all climate altered flows (grey

polygon), which is expected in a region where the wintertime snowpack persists into

the late spring. In addition, flows are the lowest in the hot summer months.

Figure 3.5 illustrates the distributions of changes in mean precipitation (%) and

mean temperature (Celsius) based on an ensemble of GCM projections from the

WCRP’s CMIP5 multi-model dataset. The GCM projections suggest mean tempera-

ture increases of 2.4 degrees Celsius and mean precipitation increases of 7.5% by the

year 2050.
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Figure 3.4. System diagnostics of ViRTUE: Period of record water supply reliability
(top left), reservoir storage as a percent of capacity (top right), annual storage for a
particular month (bottom left), and monthly inflows into the system (bottom right).
The left panel illustrates climatic and socioeconomic changes (slider bars) that can be
explored to test system performance. Storage capacity, drainage area of the reservoir,
a target reliability, and daily water supply demands are the inputs required.
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Figure 3.5. Distribution of changes in mean precipitation (%) and mean temperature
(Celsius) based on an ensemble of GCM projections (RCP emission scenario 4.5 from
the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison
Project Phase 5 (CMIP5) multi-model dataset
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The climate response surface of water supply reliability for the Springfield water

supply system is illustrated in Figure 3.6. Regions in blue are considered ‘accept-

able’ system performance according to a user-specified reliability threshold level (i.e.

the black contour line represents a water supply reliability of 95%). Regions in red

are considered ‘unacceptable’ system performance. Additionally, the ensemble of

GCM projections are plotted as black points on the climate surface. An analysis

done strictly with GCM projections would suggest Springfield’s system will perform

acceptably in the future. However, if projections are wrong and mean precipitation

decreases (by approximately 15%), water supply reliability would drop below the 95%

threshold.

Results from Figure 3.7 illustrate that 100% of the GCM projections in Figure 3.6

fall above the reliability threshold. Therefore, the Springfield system performs ade-

quately across all future climate projections and the fraction of climate projections

that suggest acceptable performance is 1 (fraction of climate projections that suggest

unacceptable performance is 0).

3.6.2 Validation

A comparison of the generic system simulator embedded in ViRTUE with a more

detailed simulation model of Springfield’s reservoir operating policies (outside of the

tool) was conducted.

Figure 3.8 compares the climate response surfaces of reliability using output from

ViRTUE (left) and a reservoir model of Springfield’s water supply system (right).

The Springfield simulation model that incorporates more realistic reservoir-operating

policies exhibits modest differences with the ViRTUE results. For example, the sys-

tem specific model yields unacceptable system performance when mean precipitation

is reduced by ∼6% whereas the ViRTUE simulator reports vulnerability beginning at
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Figure 3.6. Climate response surface of water supply reliability for the Springfield
water supply system. Regions in blue are considered ‘acceptable’ system performance
according to a user-specified reliability threshold level. Regions in red are considered
‘unacceptable’ system performance. Additionally, an ensemble of GCM projections
are plotted as points on the climate surface.
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Figure 3.7. Fraction of climate projections that suggest acceptable/unacceptable
system performance
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Figure 3.8. Climate response surface for Springfield’s water supply reliability using
ViRTUE’s system simulator (left) and a systems model that accounts for Springfield’s
reservoir rule curves (right)

a reduction of ∼15%. However, the results are generally consistent and provide the

same message regarding climate risk to this system.

Output from the system simulator was also compared with historical data to

assess the tool’s ability to capture known risks from the past. For example, during

the period between 1964 and 1967, the northeast United States experienced a severe

drought and the Cobble Mountain Reservoir dropped down to approximately 30%

of capacity. This was the most severe drawdown on record. During this period of

time, there was a 20-25% drop in total precipitation for a few years. Validation results

demonstrated the tool’s ability to reproduce the Cobble Mountain Reservoir’s drop in

storage during this period of time (i.e., reservoir storage dropped to 25% of capacity

between 1965 and 1966).
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3.7 User Feedback

In addition to evaluating the tool by comparing its performance with output from

a simulation model specific to the system, the application and utility of the web-

based tool to water supply systems in the Northeast was assessed through interviews

with water managers and stakeholders. Development of the tool has involved signif-

icant outreach efforts throughout the Northeast, including meetings, webinars and

phone conversations with several water utilities and companies in the region (e.g.

Springfield Water and Sewer Commission, Amherst Public Works, Scituate Water

Department, and United Water), attendance at local water conferences (e.g. New

Hampshire Department of Environmental Service’s (DES’s) Annual Drinking Water

Source Protection Conference in Concord, NH and NEWWA Spring Conference and

Exposition in Worcester, MA), and demonstrations for representatives at regulatory

agencies and governmental organizations (e.g. Massachusetts Division of Ecological

Restoration, Massachusetts Water Works Association (MWWA), Executive Office of

Energy and Environmental Affairs in Boston, MA, and the Environmental Protection

Agency (EPA)).

This outreach has helped shape the various components of the tool and the de-

sign of its interactive interface. For example, water supply operators at the SWSC

requested that monthly storages for a particular month of choice (e.g. April storages

across time) appear on the tool’s interface, since monthly storage variations impact

both reservoir operations and system performance. Other utilities suggested the tool

output (i.e., historical climate plots, hydrologic model calibration and reservoir per-

formance plots, etc.) be downloadable for use in annual reports. In addition, several

small utilities at the DES’s Annual Drinking Water Source Protection Conference in

Concord, NH emphasized the importance of being able to use measured flows at a

nearby gage station instead of direct inflows to their reservoir because they either had

no inflow data or only a short record of streamflow measurements. Lastly, a number
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of users of the tool (e.g., Amherst Public Works) indicated a need for a groundwater

component, as the tool is currently designed only for surface water utilities. As such,

we aim to expand the tool to groundwater-sourced utilities in the future.

3.8 Discussion

Two key findings emerge from this analysis. First, a new web-based tool, ViRTUE,

was successfully created using the Shiny web framework for small-scale water supply

utilities to assess risks to their systems, where ordinarily such analyses would not be

feasible. With very few inputs (see Figure 3.1) the simple, screening level vulnera-

bility assessment in ViRTUE yields time series of historic climate, system reliability,

storages, and inflows for a range of climatic and demand conditions. In addition,

an ensemble of climate projections are provided, with results showing where in cli-

mate change space a system is vulnerable and the fraction of climate projections that

suggest acceptable/unacceptable system performance according to a threshold of re-

liability. From these results, a water supply manager may choose to take action to

better prepare for potential future changes that pose a risk to system performance,

whether those changes include climate change, changes in demand, or additional min-

imum flow requirements. If their system exhibits significant vulnerabilities, a more

in depth analysis of risks may be warranted.

The performance of ViRTUE was evaluated by application to a representative

water supply system in the Northeast, the Springfield Water and Sewer Commis-

sion’s (SWSC) water supply system. The results from the screening-level analysis

of ViRTUE provide the same message regarding climate risk to the system as the

results found using the system-specific simulation model of the Springfield system

(Figure 3.8), and thus demonstrate the value of the tool for a vulnerability assess-

ment of small systems. Future versions of the tool will also illustrate changes in

internal variability within the same iteration.
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While this study presents an application of ViRTUE to a water supply system in

the Northeast, the components of the tool can be adjusted for use in other regions

of the world. To do so would require some minor adjustments, i.e., adjusting the

parameters of the weather generator to account for low frequency variability in the

region, uploading historical climate data for the region to the server, evaluating the

performance of the ‘abcd’ hydrologic model to ensure it is a suitable structure for

many catchments in the region (if not, it could be replaced with a new hydrologic

model), and uploading GCM projections for the specific region of interest to the

server. It is important to note, however, that using ViRTUE in regions that are

data-sparse may be more difficult because of the need for long annual precipitation

time series in estimating parameters in the wavelet decomposition. While the tool is

generalizable to other regions, it should be tested on a case-by-case basis.

The second finding is that the Shiny web framework, as demonstrated by ViRTUE,

introduces a relatively new approach to web application development that allows

modelers to focus less on specific web technologies, and instead focus on converting

their existing models and analyses into interactive web applications. As such, it is a

valuable resource for individuals with limited web development skills looking to make

models and tools more accessible to the water resources community. There is demand

for more decision-making tools in water resources, however, they are often difficult

to come by because of the divergent skill sets of scientists, engineers, web developers

and decision makers. This paper demonstrates the use of the Shiny web framework

to bridge that gap, allowing for collaborative development of web tools that can be

coded in the widely-used and free R statistical computing language. Web-based tools

of this nature offer opportunity for more dynamic and collaborative water resource

management.
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3.9 Conclusion

The study was motivated by the belief that small water utilities may be vul-

nerable to climate change but lack the resources to assess their risks. A web-based

climate risk assessment tool, ViRTUE, was designed to help water utilities, partic-

ularly small-scale operators with less time and resources to invest in such studies,

to identify vulnerabilities to changes in climate, demand, and environmental flow

regulations. ViRTUE provides utilities the opportunity to perform a self-directed

vulnerability analysis through an easy-to-use and widely-accessible platform. A web-

based platform offers many advantages, such as wide availability, user accessibility,

instant modifications, and the removal of software dependencies. There are also some

disadvantages of using the web for such analyses including security vulnerabilities

(i.e. concern for putting sensitive system specifications online), over simplification of

system attributes made to support web-based simulation, and slower analyses than

desktop tools due to network traffic and downloading time [Byrne et al., 2010]. Over-

coming these potential challenges with web-based simulation is vital for widespread

use and acceptance of web-based tools in the water resources community.

The tool presented in this study is designed to assist water managers confronted

with the potential challenges of climate impacts through a screening level risk as-

sessment of water supply systems. Ultimately, decision-makers must address water

resources management under uncertain future climate and socioeconomic changes.

With no financial consequences and minimal time investment, utilities can interac-

tively explore the vulnerabilities of their system and begin to assess the potential

investments they may need to make in the future. The application of this tool will be

particularly potent in developing countries, where utilities often lack alternative mod-

eling tools. For small-scale water supply systems, a web-based tool may be the only

option to assess system vulnerabilities under future uncertainty for their planning

and management.
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CHAPTER 4

ASSESSING THE RELATIVE EFFECTS OF EMISSIONS,
CLIMATE MEANS, AND VARIABILITY ON WATER

SUPPLY

4.1 Abstract

Designing effective strategies for provision of water-related services is dependent

on the ability to characterize uncertainty and manage the resultant risks to system

performance. This work explores the impact of various uncertainties (i.e. internal

variability, mean climate change, and future emission scenarios) on water supply in

the northeastern United States. A new framework is implemented to explore the

vulnerability of reservoir systems to climate change and attribute vulnerabilities to

changes in mean climate, natural variability or greenhouse gas emission scenarios.

The analysis of variance (ANOVA) is used to develop a generalized understanding of

the contributions of these uncertainties to system performance. A diagnosis of the

relative risks to water supply will help water resource engineers better plan and adapt

to uncertain future conditions. The results indicate that uncertainty in water supply

system performance can be attributed mostly to uncertainty in internal variability

over policy-relevant planning horizons and thus adaptation efforts should focus on

managing climate variability.

4.2 Introduction

The water resources community faces prodigious challenges in planning and man-

aging adaptation to a changing and uncertain climate. Uncertainty in the magnitude

90



of internal climate variability coupled with the potential for substantial climate change

during the next century makes it difficult for decision-makers to identify effective and

robust adaptation strategies [Dessai and Hulme, 2007]. Quantifying the influence of

different sources of climate uncertainty on water resource system performance may

help guide adaptation efforts. For example, while the effects of natural climate vari-

ability cannot be reduced in the long term [Knutti , 2012], improvements in seasonal

and interannual forecasting may help inform operational decisions. Moreover, vul-

nerabilities to mean changes in precipitation or temperature would guide one toward

tracking the evolution of changes and projections of such changes over time.

In many cases, adaptation planning to climate change is based on highly uncertain

projections of future climate derived from global climate models (GCMs). The uncer-

tainty in GCM projections (e.g., temperature and precipitation) is due to inaccuracies

in the climate model structure, unknown greenhouse gas emission scenarios and initial

conditions, internal variability, and downscaling methods [Yip et al., 2011; Hawkins

and Sutton, 2009; Groves et al., 2008]. While there are a large number of projections

available based on a range of emission scenarios, adaptation planners are unsure of

what future to plan for or how to best characterize the future. A common approach

is to use a set of GCM projections for vulnerability analysis to reveal vulnerabilities

to the projections used, yet it is still unclear whether to attribute the vulnerabil-

ity to aspects of the projection (e.g., future emission scenario) or the fundamental

vulnerability of the system to changes in climate.

Climate research provides insight into the relative effects of the components of un-

certainty in future climate and climate projections. For example, studies have disag-

gregated the inherent uncertainty in climate model projections from GCMs into com-

ponents of initial condition uncertainty, model uncertainty, and emission scenario un-

certainty to characterize their relative importance in predicting climate variables (i.e.,

temperature and precipitation) over different spatial and temporal scales [Hawkins
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and Sutton, 2010, 2009; Cox and Stephenson, 2007; Yip et al., 2011]. For exam-

ple, Hawkins and Sutton [2009] estimate the contribution of sources of uncertainty by

fitting polynomial functions to temperature predictions from 15 different GCMs, un-

der historical forcings and three future Intergovernmental Panel on Climate Change

(IPCC) Emission Scenarios (SRES A1B,A2, and B1). In further work, they investi-

gate the contribution of uncertainty by utilizing precipitation projections [Hawkins

and Sutton, 2010]. In general, for time horizons of 3 decades or longer, Hawkins and

Sutton [2010] found that scenario uncertainty dominates. However, the dominant

sources of uncertainty for policy-relevant spatial (regional) and temporal scales (30

to 50 years) are model uncertainty and initial condition uncertainty (internal variabil-

ity), with internal variability dominating for the first two decades. Yip et al. [2011]

found comparable results using the analysis of variance (ANOVA) to attribute uncer-

tainty from multimodel ensembles into scenario uncertainty, model uncertainty, and

internal variability.

While climate research has explored components of uncertainty in future climate

and climate projections, no work has gone toward diagnosing the effect of various

sources of uncertainty on water supply systems. However, several studies have looked

at the effect of different sources of uncertainty on flood frequency [Kay et al., 2008;

Reynard et al., 2004], runoff [Arnell , 1999; Dobler et al., 2012; Bosshard et al., 2013;

Prudhomme and Davies , 2008a, b; Wilby , 2005], and hydropower production [Finger

et al., 2012]. Most of these studies found that GCM structure (e.g., parameteri-

zations) is an important source of uncertainty in climate change impact studies on

a regional scale. For example, Kay et al. [2008] explored the uncertainty in future

greenhouse gas emissions, GCM structure, downscaling from GCMs, and the internal

variability of the climate system (i.e., uncertainty in the initial conditions of GCMs),

among other sources of uncertainty on flood frequency impact in England. The re-

sults from this study suggest that uncertainty from GCM structure (from 5 GCMs)
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is the dominant source of uncertainty in predicting the change in flood magnitude

at five return periods (2,5,10,20 and 50 years), but this is mostly driven by the pre-

dictions of one of the five GCMs explored. Prudhomme and Davies [2008a, b] also

found that GCM uncertainty (from 3 GCMs) is the largest source of uncertainty in

the impact of climate change on monthly mean flows at four British catchments, with

downscaling uncertainty also significant. Using ANOVA techniques, Bosshard et al.

[2013] quantified the contributions of different uncertainty sources (i.e., uncertainties

arising from 8 different climate models, 2 statistical postprocessing techniques, and

2 hydrological models) on seasonal runoff and found that the climate models are the

dominant source of uncertainty during summer and autumn, but the other sources

of uncertainty dominate during winter and spring, when runoff quantiles are low. In

general, results from these studies reveal only a limited estimation of the overall un-

certainty, since large ensembles of GCMs are not available due to the associated high

computational demand.

In this study we explore the relative effects of various sources of uncertainty (i.e.,

emission scenario uncertainty, climate change uncertainty, and internal variability)

on water supply system performance using analysis of variance methods (ANOVA).

Previous GCM-based studies that explore the relative effects of uncertainty in cli-

mate variability and uncertainty arising from climate change impacts are limited to

only a small number of scenarios and by the fact that natural variability is poorly

represented in climate models. Consequently, the results remain dependent on the

modeling choices and climate projections that are used in the analysis. Instead, the

methodology employed here samples from a wide range of stochastic variability and

mean climate change scenarios (Whateley et al., in preparation), controlling for uncer-

tainty in climate change trends versus variability without relying on GCM projections.

We illustrate the methodology by applying it to the reservoir system performance of

three water supply systems in the northeastern United States. This is the first time
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a study has assessed the relative importance of various sources of climate uncertainty

on water supply systems. The methodological approach presented in this paper is

designed to help water utilities prioritize adaptation decisions under the pressure of

both climate change and variability impacts.

The remainder of the paper is organized as follows: section 4.2 sets the stage

methodologically, describing the data generation process, variables and set up of the

analysis, and the general methodological approach. We then illustrate an application

of the ANOVA methodology to three water supply systems and present the results

in sections 4.3 and 4.4. We complete the paper with a discussion and conclusion in

sections 4.5 and 4.6.

4.3 Methods

Previous research has based their analyses on GCM projections, and in some cases

have used ANOVA techniques to attribute different uncertainty sources. Results from

these studies, however, are dependent on the models’ representation of natural climate

variability, which is not well simulated in current global climate model projections.

For this reason, a GCM-driven approach does not sufficiently sample climate variabil-

ity, which is critical in a vulnerability analysis of water supply since water availability

is often dependent on seasonal and interannual climate fluctuations. Thus, the ap-

proach is altered here. In this study we created a dataset that captures both the

the range of changes and corresponding sources of the changes seen. First, we use

stochastic weather generation to create time series of weather that preserve local

characteristics of natural variability poorly represented by the climate models. Then,

we impose transient climate change trends to capture both the joint impacts of long-

term climate change and natural climate variations. Finally, we employ analysis of

variance methods to explore the relative effects of various sources of uncertainty on

system performance. The details are described below.
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4.3.1 Generating natural variability and climate change data

This study uses a simple, first order autoregressive model fit to basin-averaged,

annual precipitation data [Maurer et al., 2002] to generate 10,000 152-year sequences

of annual precipitation data. A random sample of thirty of these sequences (all with

means less than or equal to 1% of the historic mean to preserve the historic mean in

the generated data and ensure each stochastic trace has the same baseline mean) were

carried through the analysis (Whateley et al., in review). The thirty sequences were

selected from the total to reduce the computational time of the analysis. A k-Nearest

Neighbor algorithm (k-NN) was employed to simulate annual temperature values and

all annual variables were disaggregated to a monthly time step using the method of

fragments [Srikanthan and McMahon, 2001]. At this point, with no climate changes

imposed on the generated sequences, the thirty sequences represent a range of internal

variability in the climate system.

The process then involves a mapping between the generated data, climate models,

emission scenarios, and climate variability. To account for future change, transient

linear changes were imposed on each of the thirty realizations (all with a baseline

mean that deviated from the historic mean by less than or equal to 1%). The tran-

sient changes applied to the realizations were defined based on the outermost range

of temperature and precipitation projections from a 19 member ensemble of GCMs

from the World Climate Research Programme’s (WCRP’s) Coupled Model Inter-

comparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5) multimodel dataset for

different emission scenario storylines. These include the three SRES emission sce-

narios from CMIP3 (E3): A1B, A2, and B1 (with a scenario denoted by k = 1, 2,

or 3) and the four RCPs from CMIP5 (E5): RCP 2.5, 4.5, 6, and 8.5 (k = 1, 2, 3,

or 4). We obtained monthly gridded simulated data that was downscaled to a 0.125

degree spatial resolution based on the bias-correction spatial disaggregation (BCSD)

statistical downscaling method [Reclamation, 2013]. For example, under an A2 emis-

95



sion scenario storyline, an ensemble of CMIP3 climate projections for a particular

location may suggest temperature increases between 1 and 3.5 degrees Celsius (where

temperature change is denoted by T ), and precipitation changes between -10% and

10% (precipitation change denoted by P ) by the year 2050. In this case, climate

trends between 1 and 3.5 degrees C (at 0.5 degree C increments) and -10% and 10%

change in precipitation (at 5% increments) would be imposed on the 30 stochastic

realizations (with a realization denoted by l = 1, 2, ..., 30), for a total of 30 different

climate changes (i.e., 6 temperature changes (i = 1, 2, ..., 6) x 5 precipitation changes

(j = 1, 2, ..., 5)). This results in 6 temperature observations and 5 precipitation ob-

servations for a particular emission scenario across all stochastic realizations (denoted

by Lijk) for a total of 900 (30x30) total scenarios.

4.3.2 Assessing sources of uncertainty: hydrologic and systems models

Climate-altered time series of precipitation and temperature were converted to

streamflow sequences using a hydrologic model. Streamflow sequences were then

used as input into water supply systems models to assess performance over time.

The models used in this study are described in detail below. System performance

(x(i, j, k, l)) was assessed over four consecutive thirty-eight year periods (θ1=1948

to 1985, θ2=1986 to 2023, θ3=2024 to 2061, θ4=2062 to 2100). A thirty-eight year

period, which divides evenly into the 152-years of simulated data, is long enough

to filter out interannual variation or anomalies, but also short enough to be able to

show longer climatic trends. Analysis of variance methods were then used to test

differences between temperature change, precipitation change, and emission scenario

means for each 38 year time period.

4.3.3 Analysis of variance method

Analysis of variance methods were employed to partition the observed variance

in system performance (for a 38 year period of time) into components attributable
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to different sources of variation. A three-factor fixed effects ANOVA was used to

determine the uncertainty in system response attributable to uncertainty in precip-

itation change (P ), temperature change (T ), and emissions scenario (E) and their

interactions and uncertainty in system response attributable to internal variability

(l). The resultant set up is three independent variables (i.e., the three fixed factors

are temperature change, precipitation change, and emission scenario) and one de-

pendent variable (i.e., system performance metric for a 38 year time period). The

number of levels of these factors is denoted as i, j, and k respectively, where Lijk is

the number of observations made with factor T at level i, factor P at level j, and

factor E at level k. In this study, Lijk is composed of thirty stochastic realizations.

The ANOVA was performed on the portion of climate change space defined by

CMIP3 and CMIP5 GCM projections under different assumptions of future green-

house gas concentrations as described above. The number of observations made with

factors T , P , and E for levels i, j, and k, varied based on the range of temperature

and precipitation values projected by the CMIP3 and CMIP5 GCMs (Figure 4.3).

The fixed effects model for the three-factor ANOVA is in Equation 4.1.

x(i, j, k, l) = µ+ α(i) + β(j) + ζ(k) + γ(i, j)TP + γ(i, k)TE+

γ(j, k)PE + γ(i, j, k)TPE + ε(i, j, k, l)

(4.1)

where x(i, j, k, l) is the performance metric for a given level ijk of the factors T ,P ,

and E, and a given realization l. The total ensemble mean of all simulations is µ; α(i)

is the deviation of mean temperature change from the overall ensemble mean µ; β(j)

is the deviation of mean precipitation change from the overall ensemble mean; ζ(k)

is the emission scenario deviation; γ(i, j)TP ,γ(i, k)TE, γ(j, k)PE and γ(i, j, k)TPEare

the interaction terms between mean temperature change, mean precipitation change,

and emission scenario. The error term ε(i, j, k, l) is assumed to be independent and
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identically distributed as N(0,σ2). These residuals (i.e., the unexplained variance)

calculate the variance across the L observations, representing the internal climate

variability [Yip et al., 2011].

Figure 4.1 illustrates an example of all combinations of the three factors for the

case where system performance (xijkl) was calculated for three different temperature

changes (factor T, i=3) and four different precipitation changes (factor P, j=4) for

a particular emission scenario (factor E, k=1); L=30 reservoir storage values were

made for each of the 3x4x1=12 combinations of levels (italicized) of the three factors.

The total sum of squares, SStotal, is used to express the total variation that can

be attributed to various factors (i.e., SST , SSP , SSE) and is calculated using Equa-

tion 4.2. Dividing the magnitude of ANOVA results by the total sum of squares

gives a normalized metric of the relative fraction of uncertainty contributed by the

individual and joint effects of factors.

SStotal = SST + SSP + SSE + SSTP + SSTE + SSPE + SSTPE + SSε (4.2)

In this case, SSε represents the uncertainty explained by internal climate variabil-

ity (i.e., the variance across stochastic realizations).

4.4 Application of methods

4.4.1 Reservoir system descriptions

We demonstrate the ANOVA approach using three stylized water supply systems

in the Northeast U.S. located in Springfield, MA, Providence, RI, and Hartford, CT

(Figure 4.2). We chose to explore these water supply systems because they represent

a variety of system sizes and operational strategies that may benefit from a better
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Figure 4.1. TxPxE combinations of levels of the three factors. The length of P, T,
and E vary based on CMIP3 and CMIP5 climate projections and emission scenarios.
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Figure 4.2. Map of case study locations (created on July 22, 2015 using NASA,
TerraMetrics Scribble Maps)

understanding of the relative importance of various sources of uncertainty on system

performance.

Springfield Water Supply System

The Springfield Water and Sewer Commission (SWSC) operates the Cobble Moun-

tain Reservoir (reservoir storage capacity is 22,829 million gallons (MG)) and Borden

Brook Reservoir (2500 MG) located in the Westfield River basin in Central Mas-

sachusetts. The Cobble Mountain and Borden Brook Reservoirs are the two major

water supply reservoirs used to meet the water needs of Agawam, East Longmeadow,

Longmeadow, Ludlow, Westfield, and the city of Springfield (a total population of

around 250,000). In this study, system operations were modeled in R (on a monthly
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time step) [Whateley et al., 2014] based on the SWSC’s drought management plan.

More information on the system and simulation model can be found in Whateley et al.

[2014] and Westphal et al. [2007].

Providence Water Supply System

The Massachusetts Water Resources Authority (MWRA) is responsible for man-

aging the Scituate Reservoir Complex in central Rhode Island (total system capacity

is 39,000 MG). The system, composed of six major reservoirs (Scituate, Moswaniscut,

Regulating, Barden, Westconnaug, and Ponaganset), is responsible for meeting the

water needs of 650,000 people. The simulation model used in this analysis was devel-

oped under Providence Water’s guidance, and the operations are relatively straight-

forward (Whateley et al., in prep). The monthly model was originally constructed

using STELLA modeling and simulation software and was later translated into the R

programming environment.

Hartford Water Supply System

The Hartford water supply system is managed by the Metropolitan District Com-

mission (MDC) and supplies water to the greater Hartford area (400,000 people).

Seventy percent of the total water demand is met by the Barkhamsted Reservoir

(22400 MG) and thirty percent of the total water demand is met by the Nepaug

Reservoir (9500 MG). Additional reservoirs, such as the Colebrook Reservoir, the

West Branch Reservoir, and Lake McDonough on the East and West Branches of the

Farmington River, offer additional water supply if needed, but water supply is not

their primary function. In this analysis, the Barkhamsted and Nepaug Reservoirs

were treated as run-of-river facilities left to fill and spill. The Hartford water supply

simulation model was developed in R on a monthly time step.

101



4.4.2 Hydrologic Model

In this study, climate-altered time series of precipitation and temperature were

converted to streamflow sequences using a version of the ‘abcd’ rainfall-runoff model [Thomas ,

1981a], modified to account for snow accumulation and melt. The ‘abcd’ hydrologic

model was calibrated to historic streamflows on a monthly time step using the shuffled

complex evolutionary algorithm (SCE) [Thyer et al., 1999; Duan et al., 1992] for each

reservoir system explored. For the Springfield water supply system, the ‘abcd’ hydro-

logic model was calibrated using historic streamflow from the West Branch Westfield

River at Huntington, MA gage (USGS 01181000), which yielded a Nash Sutcliffe ef-

ficiency coefficient of 0.61. For the Providence and Hartford water supply systems,

‘abcd’ models were calibrated using historic streamflow from the Ponaganset River

at South Foster, RI gage (USGS 01115187) and Farmington River at Unionville, CT

gage (USGS 01188090), yielding Nash Sutcliffe efficiency coefficients of 0.81 and 0.63,

respectively.

4.4.3 Metric for assessing system performance

The systems models for each case study site were used to simulate mean reservoir

storage as a percentage of reservoir capacity for each 38 year time period (i.e., the

dependent variable in the analysis of variance). The metric is normalized by reservoir

capacity so that the results can be compared across systems. Mean reservoir storage

is well suited for this type of analysis because 1) it is correlated with performance

metrics such as reliability and resilience [Vogel et al., 1999] that stakeholders often

use to assess system behavior, 2) it is a meaningful metric to observe through time,

demonstrating periods of water scarcity and abundance, and 3) it directly relates to

system functioning such that a better understanding of the relative importance of

different components of variation (i.e., climate change and variability) may be useful

for improving operations.
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4.4.4 Analysis of variance methodology

The three-way ANOVA was used to quantify the uncertainty in mean reservoir

storage as a percentage of capacity over a subset of temperature changes, precipitation

changes, and emission scenarios derived from CMIP3 and CMIP5 climate projections.

Figure 4.3 illustrates the portion of the climate space over which the ANOVA was

performed for each location. Mean monthly temperature and precipitation were ex-

tracted from CMIP3 and CMIP5 datasets under different emission scenarios for the

time period between 1950 and 2099 and averaged for future (50 years centered around

2050) and historic (1950-1999) climate conditions. The analysis of variance was per-

formed over the space encompassing all emission scenario ranges for the CMIP3 and

CMIP5 datasets. In some cases, the ranges of precipitation and temperature changes

for different emission scenarios overlap.

The assumptions of the ANOVA (i.e., normality of residuals and homogeneity of

variance) were tested using the Shapiro-Wilk normality test, plotting a histogram

and Q-Q plot of the residuals, and plotting the residuals versus predicted values. The

Shapiro-Wilk tests indicated that the residuals are not distributed normally (p-value

greater than 0.05) and in general, do not exhibit constant variance (except in the first

time period). For some time periods and locations, however, the residuals appear

normal (e.g., Figure 4.4b time period 4). The heteroskedasticity of the residuals

in later time periods is illustrated in Figure 4.5. Violation of the normality and

constant variance assumptions affects the significance of the ANOVA results but

does not invalidate the overall conclusions of the analysis (Berry and Feldman, 1985;

Tabachnick and Fidell, 1996).

4.5 Partitioning uncertainty in reservoir performance

Figures 4.6a,c, and e illustrate the fraction of total variance (%) (i.e., the uncer-

tainty divided by the total sum of squares) of mean reservoir storage for Providence,
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Figure 4.3. CMIP3 (left) and CMIP5 (right) GCM ranges for different emission
scenario storylines for Springfield (top), Providence (middle), and Hartford (bottom).
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a.

b.

c.

Figure 4.4. Normal quantile-quantile plots for (a) Springfield, MA, (b) Providence,
RI, and (c) Hartford, CT ANOVA results for mean reservoir storage as a percentage
of capacity at each 38 year time period. The results shown here are from the analysis
based on CMIP3 climate projections.
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a.

b.

c.

Figure 4.5. The residuals versus predicted values for mean reservoir storage as a
percentage of capacity ANOVA results for (a) Springfield, MA, (b) Providence, RI,
and (c) Hartford, CT. The results shown here are from the analysis based on CMIP3
climate projections.

106



RI, Springfield, MA, and Hartford, CT, respectively. The total variance in mean

reservoir storage for these locations is illustrated in Figures 4.7b,d, and f. Results

show that the fraction of variance due to internal variability (blue region) dominates

for the first few decades and uncertainty in precipitation change (orange region) dom-

inates in the latter part of the century. Specifically, internal variability contributes

between 93% and 98% of the total uncertainty for all locations for mean reservoir

storage over the first 38 year time period (1948-1985). Mean precipitation change

contributes between 51% and 68% of the total uncertainty for all locations for mean

reservoir storage over the last 38 year time period (2062-2100). The fraction of to-

tal variance in mean reservoir storage due to temperature change, emission scenario,

and all interaction terms is minimal in comparison. These results, based on CMIP3

data, are similar across the three study sites, however, uncertainty in reservoir storage

due to emission scenario uncertainty and joint effects of precipitation and emission

scenario uncertainty appear in the later part of the century for the Hartford water

supply system.

Figure 4.7 shows the fraction of total variance and total variance of mean reservoir

storage using data from the CMIP5 dataset. Although the overall message is similar

to the results in Figure 4.6, where uncertainty in internal variability dominates in

the beginning of the century and uncertainty in precipitation change dominates in

the later half of the century, emission scenario uncertainty has some importance in

system response at all locations. Emission scenario uncertainty contributes between

7% and 8% of the total uncertainty by the end of the century. This may be due

to the wider range in precipitation and temperature projections for CMIP5 than for

CMIP3 [Knutti and Sedláček , 2012] and the evolution of emission scenario develop-

ment in the IPCC’s Fifth Assessment Report (focusing more on the significance of

the emission scenarios from a climate forcing perspective rather than just a human

development perspective) [Moss et al., 2010].
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a. b.

c. d.

e. f.

Figure 4.6. The fraction of total variance (%) (a,c,e) and total variance (b,d,f)
of mean reservoir storage for Providence, RI, Springfield, MA, and Hartford, CT
over a subset of temperature changes, precipitation changes, and emission scenarios
(SRES-A1B, A2, and B1) derived from CMIP3 climate projections.
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a. b.

c. d.

e. f.

Figure 4.7. The fraction of total variance (%) (a,c,e) and total variance (b,d,f) of
mean reservoir storage for Providence, RI, Springfield, MA, and Hartford, CT over a
subset of temperature changes, precipitation changes, and emission scenarios (RCP-
2.5,4.5,6.0, and 8.5) derived from CMIP5 climate projections.
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4.6 Discussion

Three key findings emerge from this analysis. First, the results from this study

can be used to help guide adaptation efforts under the competing pressures of climate

change and natural variability. The three water supply systems used to exemplify the

methodology in this study are most sensitive to uncertainty in internal variability

over policy-relevant time horizons. In other words, water availability is dependent

on the interannual variability of streamflow, which is common for systems located

in snow-dominated basins. These results highlight the importance of appropriately

sampling variability in vulnerability analyses, which few other studies have adequately

addressed. Second, we note that nothing can be done about internal variability of

the climate system from a predictive sense in the long term and thus projections do

not help in adaptation efforts. Instead, management efforts can focus on short-term

events and concerns over changes in variability. For example, water resource systems

may be able to manage variability with seasonal climate forecasts [Steinschneider

and Brown, 2012; Kim and Palmer , 1997; Sankarasubramanian et al., 2009b, a],

drought management plans and operational adjustments [Westphal et al., 2007], and

flexible adaptation strategies [Pahl-Wostl , 2007]. Real options and option-based water

transfers are some examples of flexible adaptation strategies that can be used to hedge

against the risk associated with unexpected climate outcomes [Wang et al., 2006].

Moreover, incorporating information about climate variability into water management

may aid adaptation to longer-term climate change impacts.

Lastly, if climate change uncertainty dominates (i.e., uncertainty in mean tem-

perature and precipitation change), which may be the case for very large, complex

water supply systems with multi-year reservoir storage capacities, adaptation efforts

can prioritize long-term trends instead of variability. For example, improvements in

demand efficiency and conservation efforts [Alcamo et al., 2007], infrastructure invest-

ments (e.g., leak control)(US Global Change Research Program, 2009), and economic
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policy (including water pricing) [Bates et al., 2008; Miller et al., 1997; Brookshire

et al., 2004] may make systems more robust to future change. These options offer less

expensive alternatives to infrastructure expansion.

In general, the systems explored in this study are insensitive to uncertainty in

mean climate change for planning horizons of several decades, with uncertainty in

system response mostly due to uncertainty in internal variability. Mean runoff relative

to demand may drive this distinction. Over the last several decades, significant efforts

have gone toward demand management and water supply augmentation activities in

the region (e.g., water conservation, leak control, and public education), improving

the robustness of many Northeast water systems to future change (e.g., Boston’s

water supply system was able to reduce demand below the safe yield of the reservoir

system [Kirshen and Fennessey , 1995]). A limitation of this study may be the lack

of consideration of the impacts of demand uncertainty on system performance, as

water use is mainly driven by non-climatic factors such as population and economic

growth, changes in demand, environmental flow requirements, and so on. However,

with demand projections this could be incorporated into the analysis. In addition,

the choice and range of economic scenarios (i.e., the SRES scenarios used in CMIP3

projections versus the RCP scenarios used in CMIP5 projections) effects its relative

contribution to uncertainty in system response, and the introduction of new emission

scenarios would provide more variability.

The water supply performance results (Figures 4.6 and 4.7) are similar to previous

local scale climate effects studies that found internal variability to be the dominant

source of uncertainty in temperature and precipitation projections [Hawkins and Sut-

ton, 2010; Räisänen, 2001; Deser et al., 2012], but the effects here are even more

pronounced. Also, previous climate effects studies found that the dominant sources

of uncertainty were dependent on the climate variable of interest, illustrating that

both internal variability and model uncertainty are more important for precipitation
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changes than for temperature changes [Hawkins and Sutton, 2010; Räisänen, 2001;

Hawkins and Sutton, 2009]. In this study, results showed that mean precipitation

change was the dominant source of uncertainty in predicting water supply perfor-

mance (in the later half of the century), and uncertainty in mean temperature change

had almost no influence.

4.7 Conclusion

It is challenging to plan and manage water resource systems under future climate

uncertainty. A methodology was applied in this study to partition various sources

of uncertainty (i.e., climate change, internal variability, and emission scenario) in

predicting water supply system performance to better understand their relative im-

portance over time. The results provide a fundamental understanding of the source

of vulnerabilities to climate change, and the sources of uncertainty that are most im-

portant. In addition, this study presents a new approach for prioritizing adaptation

efforts in water resources. An analysis of three water supply systems in the North-

east U.S. illustrates that uncertainty in internal climate variability is significant at

policy-relevant planning horizons. For these systems, risks associated with climate

variability should receive more attention. Uncertainty in mean changes in precipita-

tion and temperature may become more relevant in the mid-term and distant future,

but most actions taken to manage climate variability would also help to reduce the

risks associated with climate change.

The conclusion from this study is that an improved understanding of the dominant

sources of uncertainty in predicting reservoir performance, based on insights gained

from the ANOVA method, may help water managers prioritize adaptation. The

proposed method allows for a clear understanding of the relative importance of various

sources of uncertainty, and does not rely on progress in climate science to help reduce

prediction uncertainty from internal variability.
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CONCLUSION

Investigating the impact of climate change and variability on regional water supply

is essential to the sustainable management of water resource systems in the north-

eastern United States. Changes in the availability of water due to climatic changes

coupled with the intensification of anthropogenic disturbances, aging infrastructure,

population growth, and new constraints on water withdrawals for ecological purposes

challenge both the larger, sophisticated water utilities in populated urban areas, as

well as the numerous midsized and smaller cities with limited technical resources.

While some effort has gone toward exploring climate risks to large water supply

systems in the Northeast, the research on water supply system vulnerabilities is frag-

mented and small systems are relatively understudied.

This dissertation shows pragmatic approaches to climate change vulnerability

analysis that water utilities can implement and update to assess and manage their

climate change risks for both large and small utilities. A variety of new methods and

tools are presented to assess water supply systems’ vulnerabilities to a wide range of

potential challenges that go beyond simple mean changes in precipitation and tem-

perature, including changes in water demand, required releases, and natural climate

variability. The result is a better understanding of problematic future scenarios for

many individual water supply systems in the Northeast that can be used to help guide

decision-makers’ adaptation planning and infrastructure investments by identifying

the systems with the greatest risks.

The stress test approach implemented in the climate impact analyses of North-

east water supply was used to assess climate risks and explore system vulnerabilities
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across a wide range of potential changes in mean climate and natural climate vari-

ability. Given the computational demands of the exploratory modeling process used

in the stress test, a pre-processing method was developed to allow an analyst to select

a small number of climate variability realizations that span the full range of variabil-

ity a system may face in terms of the challenge to the system (Chapter 1). Using

this computationally efficient sampling technique, a comprehensive analysis of the

climate risks to several large water supply systems in the Northeast (New York City,

NY, Boston, MA, Springfield, MA, Providence, RI, and Hartford, CT) illustrated the

robustness of large water utilities in this region (Chapter 2). For the smaller utilities,

the stress test approach was embedded in an online tool to create an interactive envi-

ronment for stakeholders and water managers to explore climate vulnerabilities. The

web-based platform for climate risk assessment offers many advantages such as user

accessibility, wide availability, and instant modifications and feedback (Chapter 3).

While identifying climate vulnerabilities with the stress test approach is an impor-

tant first step toward being able to address problematic conditions through adaptation

measures, designing effective adaptation strategies is also dependent on the ability

to characterize uncertainty and diagnose risks. Analysis of variance methods were

used to gain an improved understanding of the dominant sources of uncertainty (i.e.

uncertainty in internal variability, mean climate change, and future emission scenar-

ios) in predicting reservoir performance to help water managers prioritize adaptation

(Chapter 4).

The work presented in this dissertation provides the most exhaustive assessment

of climate risks to Northeast water supply, and also reveals a number of future re-

search needs that would further increase both the accessibility and scope of climate

impact analysis in the region and elsewhere. First, there are several features that can

be added to future versions of the web-based tool ViRTUE, such as the presentation

of climate risks due to internal variability, the addition of a groundwater component,
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and a drag-and-drop simulation model feature that allows users to incorporate mul-

tireservoir operations. In addition, it would be valuable to pilot the tool in other

locations around the country and world, particularly in developing countries where

utilities often lack alternative modeling tools.

Secondly, since uncertainty in internal variability plays a large role in predicting

water supply system performance over short-term planning horizons (highlighted in

the results of Chapter 4), efforts should go toward developing and improving meth-

ods and strategies for managing variability. For example, future research should

focus on improving seasonal climate forecasts, drought management plans and oper-

ational alternatives, and flexible adaptation strategies. Thirdly, given the influence

of non-climatic factors on reservoir performance in the Northeast (i.e., changes in

demand, restrictions on water withdrawals, and minimum flow requirements), more

work should be done to better understand local demand projections and ecological

flow requirements. These factors, compounded with a changing climate regime, may

have a significant impact on the availability of water for individual systems. Yet,

there is limited data on future water demands and the research on ecological flow

requirements in this region is still in its infancy.

Lastly, despite efforts to improve the accessibility and reduce uncertainty in model-

derived climate risk assessments, significant time and resources are invested in under-

standing the impacts of climate change on individual water resource systems. Few

studies have tried to generalize the sensitivity of water supply system behavior to

future water stresses. It would be beneficial to develop systematic relationships be-

tween reservoir system properties and their sensitivities to future uncertainty in the

northeastern United States. Specifically, the vulnerability-based decision framework

could be coupled with reservoir system properties to derive response surfaces that

could be used to estimate system vulnerabilities anywhere in the region. Then, the

performance of reservoir systems with different attributes (e.g. system storage, in-
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flows, watershed areas) could be tested in a simulation environment using a stress

test that explores a wide range of potential future changes in precipitation, tempera-

ture, demand, and water withdrawals. Generalized response surfaces characterized by

reservoir system properties could be used as screening tools to help identify vulner-

abilities to uncertain future conditions and present an alternative to complex direct

impact studies.
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APPENDIX

VIRTUE SOFTWARE AVAILABILITY AND LICENSING
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Vulnerability and Risk Assessment Tool for
Water UtilitiEs (ViRTUE)
ViRTUE is an R/Shiny web application for assessing risks to small-scale water supply systems in the
northeastern United States. The tool provides a mechanism to understand and explore individual
water utilities climate risk exposure using a stress test, in which the performance of local reservoir
systems is tested over a wide range of potential climate and socioeconomic changes.

ViRTUE was developed by Sarah Whateley and the Hydrosystems Research Group at UMass
Amherst.

Features

Point-and-click map interface for viewing historical climate data for a location●

Perform a stress test of your water supply system to identify climate risks and hazards●

Interactively explore system vulnerabilities to changes in climate, demands, and minimum flow●

requirements
Explore adaptation alternatives (e.g., additional reservoir storage and operational adjustments)●

and instantaneously observe their impact on system performance
Assess the likelihood of vulnerabilities occurring based on the most up-to-date climate science●

(CMIP5 Global Climate Model projections)
Download the results of the tool’s climate risk assessment for use in reports and documents●

Step-by-step instructions and ‘help’ bubbles in each tab of the tool for ease-of-use and self-guided●

training

Availability

This repository contains the code and data requirements for the application of ViRTUE.

The live version of this site is available here: https://virtue.shinyapps.io/myapp

Local Installation/Requirements

ViRTUE requires R version 2.15 or later. For best results, use the latest version of R.

To install R and RStudio Desktop go to: https://www.rstudio.com/products/rstudio/download/

ViRTUE depends on several R packages. To install them, run the following commands from within R.

install.packages(c("shiny", "ncdf", "mnormt", "MASS", "zoo",
  "maps", "mapproj", "psych", "mnormt", "fields", "plotrix",
  "chron", "leaflet", "shinyBS", "devtools"))
devtools::install_github("trestletech/ShinyDash")
devtools::install_github("rstudio/shinyapps")



To obtain the ViRTUE source code, clone this repo using git (git clone
https://github.com/swhatele/ViRTUE.git .), or download the zip file from the repo homepage
on github and extract the files to some directory.

External Data

ViRTUE relies on one dataset that must be retrieved externally from the application due to its size.
This dataset contains monthly historical climate data for the Northeast US extracted from the
Gridded Meteorological Data: 1949-2010 dataset by Maurer et al. 2002:

Maurer, E.P., A.W. Wood, J.C. Adam, D.P. Lettenmaier, and B. Nijssen, 2002, A Long-Term
Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous
United States, J. Climate 15, 3237-3251.

This dataset can be downloaded as a zip file from the following URL:
https://s3.amazonaws.com/umass-virtue/climate-data.zip

Simply download this zip file and extract the contents to the /app folder. Note that these files must
all be located directly within the app/ folder, and not a subdirectory (e.g.
app/data_39.0625_-74.8125).

Running the Application

To start ViRTUE, open a new R session in RStudio and set the working directory to the root folder of
this repo (e.g. using setwd()).

Then run the following commands:

library(shiny)
runApp("./app")

Package Versions

The latest release of the application was tested using the following R environment:

> sessionInfo()

R version 3.2.1 (2015-06-18)
Platform: x86_64-apple-darwin14.3.0 (64-bit)
Running under: OS X 10.10.4 (Yosemite)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8



attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base

other attached packages:
[1] mnormt_1.5-3      maps_2.3-10       ggplot2_1.0.1     shinyapps_0.4.1.4
shinyBS_0.61      ShinyDash_0.0.1   leaflet_1.0.0
[8] shiny_0.12.1

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.0      rstudioapi_0.3.1 magrittr_1.5     MASS_7.3-43
munsell_0.4.2    colorspace_1.2-6 xtable_1.7-4     R6_2.1.0
 [9] plyr_1.8.3       stringr_1.0.0    httr_1.0.0       tools_3.2.1      grid_3.2.1
gtable_0.1.2     htmltools_0.2.6  digest_0.6.8
[17] RJSONIO_1.3-0    reshape2_1.4.1   htmlwidgets_0.5  mime_0.3
stringi_0.5-5    scales_0.2.5     XML_3.98-1.3     jsonlite_0.9.16
[25] httpuv_1.3.2     proto_0.3-10

License

MIT (see LICENSE file)
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