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ABSTRACT 

EVOLVABILITY OF THE SKULL: A STUDY OF GENETIC BASIS AND 

INTEGRATION IN THE TELEOST CRANIOFACIAL SKELETON 

FEBRUARY 2016 

YINAN HU, B.S., NANJING NORMAL UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: R. Craig Albertson 

 

As the field of evolutionary biology pivots away from a gene-centric view of how 

adaptive evolution proceeds, renewed emphasis is placed on the origin of phenotypic 

variation. Understanding the developmental processes that underlie the production of 

novel traits, and how they might influence evolvability, is considered a primary goal in 

the on-going “extended evolutionary synthesis”. The following dissertation explores 

these questions in the context of adaptive radiations in fish, with a focus on 

morphological variation in the craniofacial skeleton. Specifically, the first chapter 

investigates the genetic and developmental basis of shape (co-)variation in the feeding 

apparatus of African cichlid fishes, and uncovers a common signaling pathway that 

underlies the adaptive evolution of multiple elements in a complex functional structure. 

The second chapter presents a new method that is capable of evaluating phenotypic 

integration on the individual level, and demonstrates its utility in genetic mapping studies. 

The third chapter characterizes the pattern of morphological diversification in the 

Antarctic notothenioid fishes, and discusses how integration might have facilitated their 

adaptive radiation in the Southern Ocean.  
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CHAPTER I 

MULTI-LEVEL INTEGRATION UNDERLIES ADAPTIVE VARIATION IN THE 

CICHLID FEEDING APPARATUS 

 

1.1 Introduction 

The current paradigm of evolutionary biology is dominated by a “gene-centric view” of 

evolution, which is rooted from the successful fusion of Darwin’s theory of natural 

selection and the theory of genetics during the Modern Synthesis. In this view, adaptive 

evolution occurs via two processes: 1) genetic mutation; 2) sorting of genetic variation by 

natural selection. It represents a classic Darwinian framework in which natural selection 

is considered the creative force that causes adaptation (Gould 1982), and genes are 

assumed to be able to respond to selection indefinitely. Recently however, with the 

emergence of the field of Evo-Devo, this standard view of evolution has received much 

criticism (Pigliucci 2007; Pigliucci 2009; Laland et al. 2014). Because natural selection 

does not directly operate on genes, rather it is the traits translated from the genomic 

blueprint that ultimately determine the fitness of an organism. Moreover, natural 

selection operates within the context of existing variation, such that both the direction and 

intensity of natural selection could be altered by the origination of novel phenotypes. 

Therefore, understanding the processes underlies the production of phenotypic variation 

is of crucial importance towards a more comprehensive theory of evolution. 

 

The diversification of craniofacial morphology has played a key role during vertebrate 

evolution. Adaptive variation in craniofacial structure facilitates specialization to 
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different food sources and habitats, which in turn contributes to niche partitioning and 

speciation. In fact, it has been argued that most of the morphological and functional 

divergence between vertebrates can be found in the craniofacial region (Gans & 

Northcutt 1983), which reflects adaptations to a wide variety of environments. It is thus 

not surprising that myriad studies have investigated patterns of craniofacial divergence in 

various animals, including (but not limited to) dogs (Drake & Klingenberg 2010; 

Schoenebeck et al. 2012), bats (Dumont et al. 2012), birds (Abzhanov et al. 2004; 

Abzhanov et al. 2006; Brugmann et al. 2010) and cichlids (Albertson et al. 2003a; 

Albertson et al. 2003b; Roberts et al. 2011). Although recent efforts have started to 

associate variation in trophic morphology with differences in gene expression (Abzhanov 

et al. 2004; Abzhanov et al. 2006; Wu et al. 2004; Wu et al. 2006; Albertson et al. 2005), 

the causative loci that underlie these differences remain largely unknown, especially in 

terms of complex and functionally relevant patterns of craniofacial divergence. 

 

The explosive radiation of East African cichlids has produced a large degree of variation 

in craniofacial morphology (Kocher 2004; Cooper et al. 2010), providing an excellent 

system to study the genetic and developmental mechanisms that promote such variation. 

It has been shown that the diversification of trophic morphology among Lake Malawi 

cichlids is also correlated with specialized modes of feeding and resource partitioning and 

has likely contributed to their rapid speciation (Kocher 2004; Cooper et al. 2010). 

Because craniofacial structure arises from a complex and dynamic developmental 

program with both pleiotropic and modular effects (Helms & Schneider 2003), the 

expectation is that it should evolve via continuous fine-tuning steps. In accordance with 
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this prediction, it has been previously demonstrated that morphological differences 

between closely related cichlid genera are the result of directional selection on numerous 

genetic loci of small to moderate effect (Albertson et al. 2003b; Albertson et al. 2005). 

These studies identified numerous quantitative trait loci (QTL) for craniofacial 

morphology segregating in the F2 hybrid progeny of the genera Labeotropheus and 

Maylandia (Albertson et al. 2003a; Albertson et al. 2005). Although Labeotropheus and 

Maylandia are closely related rock-dwelling cichlid genera, they are divergent in 

craniofacial morphology and microhabitat utilization (Albertson & Kocher 2001; Cooper 

et al. 2010). Labeotropheus is a specialist algal scraper with robust jaws adapted for 

biting, whereas Maylandia zebra is a generalist with gracile jaws better adapted for 

suction feeding (Figure 1.1A & B). These two genera represent opposite ends of the 

benthic/limnetic eco-morphological continuum that characterizes East African cichlid 

radiations (Cooper et al. 2010) as well as many other notable divergences among teleosts 

at both the population and species level (Walker 1997; Adams & Huntingford 2002; 

Parsons & Robinson 2006; Riopel et al. 2008; Cooper & Westneat 2009). Identifying the 

molecular genetic basis for these eco-morphologic shifts therefore has the potential to 

inform a more comprehensive understanding of teleost diversity in general. 
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Figure 1.1. Ptch1 locus characterization in families, genera, and populations. Craniofacial appearance of 

(A) Labeotropheus trewavasae (image courtesy of Justin Marshall) and (B) Maylandia mbenjii.(C) Lower 

jaw phenotype measures; RA and inlever length is equivalent. (D) QTL mapping interval for MAO on 

cichlid LG12. (E) Population differentiation (FST) between Labeotropheus and Maylandia (n = 24 each) 

for SNPs at the ptch1 locus. Dashed lines indicate two experimental measures of mean FST; the lower line 

from global comparison of Labeotropheus vs. Maylandia across many populations (20), and the upper line 

from comparisons of randomized Labeotropheus and Maylandia population pairs from distinct sites (48). 

(F) Significance of association between SNPs at the ptch1 locus and MAO in the genus Tropheops (Wald 

test, n = 59); dashed line indicates a P value of 0.001. Genes in the region annotated with bold arrows. The 

SNP used to indicate long and short alleles of ptch1 is circled in E and F. From Reade B. Roberts et al. 

PNAS 2011;108:13194-13199 
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Figure 1.2. The opercular four-bar linkage system in LF and MZ. (A)LF is an algae scraper, which has a 

relatively longer RA and shorter IOP that results in slower jaw rotation. (B) MZ is a suction feeder that has 

a relatively shorter RA and longer IOP, which leads to faster jaw rotation. The black bar represents the 

fixed link, which extends from the opercle–neurocranium joint posteriorly to the mandible–quadrate joint 

anteriorly. The red bar is the input link, which extends from the opercle–neurocranium joint dorsally to the 

posterior most edge of the IOP bone ventrally. The orange bar (labeled IOP) is the coupler link, which 

extends from the posterior edge of the IOP bone to the insertion of the IOP ligament onto the ventral tip of 

the RA. The green bar (RA) is the output link, which extends from the mandible– quadrate joint to the 

ventral tip of the RA. The blue bars represent the length of the lower jaw from themandible–quadrate joint 

and the RA. Black circles represent fixed joints, whereas white circles are mobile joints. Arrowheads 

represent the direction of movement during jaw opening. From Yinan Hu, and R. Craig Albertson PNAS 

2014;111:8530-8534 
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A recent genome scan study identified single nucleotide polymorphisms (SNPs) 

exhibiting unusually high differentiation (FST) between Labeotropheus and Maylandia 

(Loh et al. 2008). The high FST of these SNPs suggests they may be linked to genetic 

loci associated with evolutionary divergence between the two genera. Roberts et al. 

(Roberts et al. 2011) summarized the overlap between these genomic locations of high 

FST SNPs and previously identified QTL (Albertson et al. 2003b; Albertson et al. 2005), 

and used them as a starting point to identify the specific genes contributing to 

morphological divergence between the genera. With additional data from a third genus 

Tropheops, Roberts et al. hypothesized that genetic variation in the cis-regulatory region 

of the ptch1 gene, which codes the receptor protein patched-1 for the Hedgehog pathway,  

mediates variation in the relative lengths of the retroarticular process (RA) of the 

mandible (Figure 1.1C-F, Roberts et al. 2011). 

 

In this chapter, I provide developmental evidence to support this hypothesis, and further 

show that ptch1 is contributing to additional variation beyond RA in the craniofacial 

skeleton. Specifically, I show that allelic variation in ptch1 is associated with variation in 

the shape of both the retroarticular process (RA) of the mandible and the interopercle 

(IOP) bone. Together these two bones contribute to a complex functional system, the 

opercular 4-bar linkage chain (Figure 1.2), which is necessary for proper jaw opening in 

teleosts (Durie & Turingan 2004). The action of this 4-bar system is powered by the 

levator opercula, a muscle that originates on the skull and inserts along the dorsal aspect 

of the operculum. As it contracts, it rotates the operculum (input link) posterodorsally. 

Then, through a ligamentous connection, the interopercle serves as a coupler link that 
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transmits the posterior motion to the RA, which is effectively the output link of this 

system that directly opens the lower jaw. Variation in the relative length of either the RA 

or IOP is predicted to significantly affect the kinematics of the system (McCarthy & Soh 

2011). Thus, the RA and IOP represent functionally integrated elements in the teleost 

skull. I show further that RA and IOP dimensions co-vary across multiple Lake Malawi 

cichlid species. Finally, I provide evidence that this co-variation may be maintained by 

both genetic and epigenetic mechanisms. In all I propose that the Hedgehog signaling 

pathway has played a critical role in promoting the functional divergence among cichlid 

species.  

 

 

1.2 Materials and methods 

1.2.1 Cichlid maintenance.   

Cichlid species were collected from Lake Malawi, and reared in 40-gallon glass aquaria, 

at 28.5°C ±1°C on a 14 hour light/10 hour dark cycle. All larvae used for this project 

were F1 or F2 derived from wild-caught stock, and obtained by natural matings. Embryos 

were extracted from mouthbrooding females between 3-4 days post fertilization (stages 

10-14), and incubated in 1 liter glass beakers with ~900mL of system water plus 2-3 

drops of methylene blue at 28.5°C ±1°C. An aeration stone was placed at the bottom of 

the flask to provide enough air to keep the embryos vigorously swirling at the bottom of 

the flask. Embryo medium was changed every 2 days. Cichlid staging was according to 

(Fujimura & Okada 2007). 
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1.2.2 In situ hybridization.  

Whole-mount in situ hybridization (WISH) was performed as previously described 

(Albertson et al. 2005). Embryos used for the reported experiments were raised, staged, 

fixed, and processed in parallel. Sense and antisense ptch1 riboprobes were made from 

cichlid clones (sequence identical for LF, accession no. JN037690, and MZ, accession no. 

JN037691), corresponding to exons 1–7 and 7–17. These yielded identical WISH results; 

data derived from the exons 1–7 riboprobe are reported. Accession numbers for gli1 and 

col1a1 probes are JN037689 and JN116727, respectively. A col10a1 riboprobe was made 

directly from cichlid cDNA using primers that contained T3 (sense) and T7 (antisense) 

RNA polymerase binding sequences: Col10a1_T3F1 

CATTAACCCTCACTAAAGGGAACAGGAGCACCAGGTAAAAGC; Col10a1_T7R1 

TA- ATACGACTCACTATAGGGAGAAGGACCTGGGAGACCAT. Polymerase 

recognition sequences are underlined. To facilitate probe penetration, alkaline hydrolysis 

was used to fragment probes to ≈500 bp. A solution of 20 mL RNA probe, 12 mL H2O, 4 

mL 0.4M sodium bicarbonate, and 4 mL 0.6M sodium carbonate was incubated at 60 °C 

for a period based on the following: time (min) = (starting kb − desired kb)/(0.11 × 

starting kb × desired kb). 

 

1.2.3 QTL mapping.   

I photographed and measured the length and width of the IOP in 114 F2 individuals 

derived from a cross between LF and MZ as described in (Albertson et al. 2003a; 

Albertson et al. 2003b). The calculated length-width ratio was used for QTL mapping, 

which was done in R using Multiple-QTL Mapping routines described in (Arends et al. 
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2010). Genome-wide significant threshold (α = 0.05) was calculated by permutation tests 

with 1,000 repeats. 

 

1.2.4 Cyclopamine treatment.  

LF larvae (stage 17) from the same brood were divided into three treatment groups, 

cyclopamine treatment (LF CyA), ethanol control (LF EtOH), and untreated control (LF), 

with the same amount of larval fish water. In the cyclopamine treatment group, 

cyclopamine stock solution (10mM cyclopamine in ethanol) was added to reach a final 

concentration of 50 μM, based on (Fraser et al. 2008). The same volume of ethanol or 

larval fish water was added to the ethanol control and untreated control group 

respectively. Animals were treated for 6 hours in the dark at 28.5°C, and then washed 

with larval fish water several times before returning to standard culture flasks. At stage 

25 (12 dpf), they were euthanized and stained with alizarin red and alcian blue for bone 

and cartilage (Walker & Kimmel 2007), then imaged with a Leica DFC450 C digital 

microscope camera mounted to a Leica M165 FC microscope. An MZ brood was stained 

and imaged with the same procedure for comparison. Measurements of bone 

development were taken from images with ImageJ 1.47. 

 

1.2.5 Digital modeling of the opercular 4-bar linkage system.  

Models were built in GeoGebra (http://www.geogebra.org/cms/en/). Lateral images of LF 

and MZ were imported as background to locate joint positions in default state (mouth 

closed). During simulations of mouth opening, the input link (opercle) was rotated 

posteriorly until the coupler link (IOP) and output link (RA) were aligned, which 
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prevents further rotation of the input link. The rotation of the input link was done 

stepwise with increments of 0.5°. At each increment, the corresponding output link 

rotation was recorded (ΔO), which was measured as the change in the angle between the 

output link and the fixed link. The KT ratio was then calculated at each increment as the 

output link rotation (ΔO) divided by the input link rotation (0.5°). When simulating ptch1 

induced phenotypic changes, I increased the length of coupler link (IOP) and decreased 

the length of output link (RA) from the LF model by 10%, 15% and 20% (e.g., model 

“ptch1 10%” is a LF model with 10% longer IOP and 10% shorter RA). These three 

models were chosen because they roughly approximate the magnitude of QTL effects of 

ptch1 on IOP (17%) and RA (11%) shapes. 

 

1.2.6 Monitoring gaping frequency.  

Fish larvae were transferred to a small petri dish with ~10mL system water, and then 

allowed a 10min acclimation period before placed under a Leica M165 FC microscope. 

Gapes were counted real-time by looking at individual larva under the scope with a 

stopwatch. Disrupted observations (e.g. larva escaped field of view) were not recorded 

such that only continuous observations of more than 60 gapes were included in 

subsequent analyses. 

 

1.2.7 Manipulation of gaping frequency.  

MZ larvae (6dpf) from a single brood were divided into two groups: 1) Control group 

where individual larva was kept in large containers with ~150 mL of system water; 2) 

Experiment group where individual larva was kept in small containers with ~12mL of 
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system water. Water is replaced twice a day. The restriction of water/space appears to 

increase the frequency of gaping, though it might also introduce unexpected 

environmental variations. 

 

1.2.8 IOP Surgery.  

I anaesthetized stage 17 LF larvae from the same brood with tricaine at 0.2mg/mL 

according to (Neiffer & Stamper 2009), and the interopercle-mandibular ligament (IOPL) 

on the right side was cut with extra-fine forceps. Larvae were transferred into fresh larval 

fish water immediately after surgery to recover before returning to standard culture flasks. 

For sham surgeries, an incision of similar size was made to the tissue just anterior to the 

RA where no ligaments or skeletal elements were present. Control larvae were exposed to 

tricaine for approximately the same period of time but no surgery was performed. All 

larvae were allowed to develop for an additional four days to stage 23 (10dpf) and then 

euthanized and prepared for measurements (cleared and stained as above). 

 

 

1.3 Results and discussion 

1.3.1 Differential ptch1 expression surrounding the retroarticular and interopercle 

immediately precedes differential bone development.  

The signatures of genetic divergence in ptch1 is immediately upstream of the coding 

region (Roberts et al. 2011), which suggests adaptation occurred via modulations in cis-

regulatory elements. To explore potential roles for ptch1 and Hedgehog signaling during 

cichlid craniofacial bone development, I examined the expression of ptch1, gli1, a 
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downstream target of the Hedgehog pathway, and two osteogenic markers, col1a1 and 

col10a1 via in situ hybridization in two cichlid species, Labeotropheus fuelleborni (LF) 

and Maylandia zebra (MZ) (Figure 1.3; Figure 1.4A-F; Figure 1.5).  Dimensionality of 

the lower jaw is determined early, and in comparisons of LF and MZ differences in the 

shape of the lower jaw precursor (Meckel's cartilage) are evident as early as 5 days post-

fertilization (dpf), stage 17-18 (Albertson et al. 2005; Fujimura & Okada 2007). By the 

following day (stage 18-19) many of the bones that constitute the feeding apparatus have 

begun to condense, and at this early stage one can observe discrete nodes 

of ptch1 expression in areas where bone development has or will be initiated (Figure 

1.3B–D & 1.3F–H). Notably, species exhibit differences in ptch1 expression that 

correlate with biting and suction feeding jaw morphologies. In the long RA species LF 

there is marked expression of ptch1 surrounding the lower jaw at this stage, with nodes of 

robust expression in or adjacent to areas of skeletal differentiation, including the regions 

where the dentary and RA will form (Figure 1.3B & D). In contrast, levels of ptch1 are 

much lower in the short RA species MZ in the same context (Figure 1.3F & H). Unlike 

expression at the developing lower jaw, levels of ptch1 expression are similar between 

LF and MZ in the developing fin-ray elements of the tail (Figure 1.3C & G). Quantitative 

differences in gene expression is then verified by q-PCR and pixel density analysis for 

both ptch1 and gli1 (Roberts et al. 2011). 

 

Additionally, considerable overlap between ptch1 and col1a1 expression posterior to the 

RA is also observed (Figure 1.4A-F; Figure 1.5). Specifically, ptch1 and gli1 are broadly 

expressed in the hyoid region of the skull, surrounding the interopercle-mandibular 
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ligament (Figure 1.4C-D; Figure 1.5A-B). Within this ligament, col1a1 is expressed in 

the anterior region (Figure 1.5C), while col10a1 is expressed in the posterior region 

(Figure 1.4E-F; Figure 1.5D), indicating the onset of IOP bone deposition. Immediately 

after this stage of differential Hh expression, patterns of col10a1 expression also differ 

between these two species. Compared to MZ, LF has a relatively wider and shorter 

expression domain of col10a1 in the IOP (Figure 1.4E-F; Table 1.1), as well as an 

expanded expression domain at the base of the RA process (asterisk, Figure 1.4E-F). For 

the IOP, differences in col10a1 gene expression predict differences in IOP shape across 

multiple stages of larval and juvenile development (Figure 1.4E-L; Table 1.1). Thus, 

different IOP shapes observed in adult fish (Figure 1.4M-N) can be traced to differential 

gene expression at the earliest stages of IOP bone development. 

 

The IOP is a specialized sesamoid bone that is not present in basal fish groups (Lauder & 

Liem 1983). Shared among halecostome fishes, the IOP provides an novel biomechanical 

pathway of lower jaw depression, and is thought to be an evolutionary innovation that 

promotes the versatility of mouth opening mechanisms (Lauder 1980; Lauder 1982). 

Since col1a1 expression within this ligament is located in the same region where ptch1 is 

differentially expressed between LF and MZ (Roberts et al. 2011), I hypothesized that in 

addition to RA, the development of species-specific IOP shape might also be regulated by 

ptch1/Hedgehog signaling. 
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Age 
Mean width/length ratio of IOP (±S.E.) 

p value 
LF MZ 

6 dpf* 0.152 ± 0.012 0.120 ± 0.005 p = 0.040 

9 dpf 0.157 ± 0.016 0.023 ± 0.004 p < 0.001 

12 dpf 0.243 ± 0.005 0.185 ± 0.008 p < 0.001 

26 dpf 0.315 ± 0.003 0.265 ± 0.007 p < 0.001 

adult 0.405 ± 0.007 0.312 ± 0.007 p < 0.001 

 

Table 1.1. Width/length ratio of the IOP at different stages in LF and MZ. * At this stage the bone 

deposition in the IOP has just started and cannot be visuallized by alizerin red staining, so I measured the 

expression domain of Col10a1 instead. From Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-

8534 
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Figure 1.3. Interspecific differences in ptch1 expression. Craniofacial outcomes in (A) LF and (E) MZ 

larvae at 13 dpf; LF larvae exhibit accelerated bone (pink) development compared with MZ; cartilage stains 

blue. ptch1 in situ labeling in representative 6-dpf (stage 17-18) (B–D) LF and (F–H) MZ larvae: (B and F) 

Lateral whole-mount view of lower jaw with nodes of ptch1 expression, particularly in mesenchymal cells 

at the distal (arrow) and proximal (arrowhead) ends of the lower jaw precursor where the dentary and RA 

process will form, respectively. (C and G) Ptch1 labeling is qualitatively similar in developing fin-ray 

elements of tail (arrows). (D and H) Flatmount preparation of the jaw joint in lateral view, showing the 

cartilaginous precursor of the RA process (outlined) relative to node of ptch1 expression. dnt, dentary; mx, 

maxilla; pap, posterior articulation process; pmx, premaxilla. (Scale bars, 200 μm in A, B, E, and F; 100 

μm in C and G; and 10 μm in D and H.) From Reade B. Roberts et al. PNAS 2011;108:13194-13199 
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Figure 1.4. Differential expression of ptch1 in the pharyngeal skeleton precedes differential development 

of the IOP in LF and MZ. (A–F) In situ hybridization results showing gene expression at stage 17–18 (5.5–

6 dpf). (A and B) Lateral view of the whole mount. (C–F) Flat mount preparations of the pharyngeal 

skeleton. (G–L) Flat mount of cleared and stained (alizarin red and Alcian blue) pharyngeal skeletons. 

Dashed line outlines the IOP. (M and N) Dissected adult IOP. bsr, branchiostegal rays; ch, ceratohyal; e, 

eye; iopl, interopercular–mandibular ligament; m, Meckel’s cartilage; pq, palatoquadrate; ra, retroarticular. 

From Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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Figure 1.5. Hypothesized model of Hedgehog signaling pathway mediates both RA and IOP development. 

A-D: In situ hybridization results showing the expression of ptch1, gli1, col1a1 and col10a1 in LF at stage 

17-18. Ptch1 is the receptor of the Hedgehog pathway; Gli1 is a downstream target of the Hedgehog 

pathway; Col1a1 is a marker for early osteoblast differentiation; col10a1 is a marker for late osteoblast 

differentiation. E: An illustration of the hypothesis depicting the expression of all four genes around the 

IOP and RA. bsr: branchiostegal rays; ch: ceratohyal; iop: interopercle; iopl: interopercla-mandibular 

ligament; pq: palatoquadrate; ra: retroarticular. Scale bar, 100 μm. From Yinan Hu, and R. Craig Albertson 

PNAS 2014;111:8530-8534 
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Figure 1.6. QTL mapping results for IOP shape. Showing QTL intervals associated with the width/length 

ratio of IOP across the cichlid genome. Dotted line indicates genome-wide significance threshold (α=0.05). 

From Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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QTL 
model 

Linkage 
group 

Position 
of LOD 
peak 
(cM) 

Bayes 
credible 
interval 
of QTL 
peak 
(cM) 

Nearest 
marker 

LOD 
PVE 
(%) 

Coeficient 
of 

additive 
effect 

Coefficient 
of 

dominance 
effect 

IOP 
W/L 
ratio 

12 25 18 - 42 MET3573 6.245 17 0.0595 0.0005 

 
Table 1.2. QTL mapping results for width/length ratio of IOP. PVE, percent variance explained. From 

Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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1.3.2 A single QTL for IOP shape maps to ptch1.  

As a first step toward testing this hypothesis about IOP, I conducted a QTL analysis in an 

F2 population derived from a cross between LF and MZ.  A single QTL interval on 

linkage group (LG) 12 that affected the width/length ratio of the interopercle was 

detected (Figure 1.6). And as predicted, the QTL peak was located squarely on the ptch1 

locus, and the allelic effects were consistent with the interspecific variation observed 

between parental species: inheritance of the ancestral (LF) ptch1 allele was associated 

with the development of a relatively wider and shorter IOP, whereas the derived (MZ) 

allele was associated with a relatively narrower and longer IOP. The QTL exhibited an 

additive mode of inheritance (Table 1.2), and accounted for 17% of the phenotypic 

variance in the F2 population. 

 

1.3.3 Chemical manipulation of the Hedgehog signaling pathway recapitulates 

natural interspecific variation in RA and IOP shape.  

The gene expression data was consistent with recent work demonstrating a role for 

Hedgehog signaling in bone development (Abzhanov et al. 2007; Hammond & Schulte-

Merker 2009), and genetic mapping on IOP shape indicates ptch1 is also involved in 

morphological variation in the IOP. Therefore, I predicted that modulation of the 

Hedgehog pathway can lead to variation in both RA and IOP shape. To test this 

prediction I treated LF larvae with cyclopamine, an antagonist of Hedgehog pathway 

signaling (Chen et al. 2002), at a critical stage of craniofacial bone development and 

ptch1 expression (stage 17). During normal development, both ptch1 and its downstream 

target gli1 are expressed in areas adjacent to or coincident with the bone differentiation 
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marker col1a1 (Figure 1.5A-B; Figure 1.7A-L). In treated larvae, I found that expression 

of both ptch1 and gli1 is dramatically and globally reduced (Figure 1.7P-W). I also found 

that bone development is delayed in areas where ptch1 is normally expressed (Figure 

1.7X-AA). Specifically, less col1a1 expression was observed around the developing RA, 

whereas more cells were expressing col1a1 around the branchiostegal rays and within the 

caudal fin (Figure 1.7Y–AA), suggesting that these structures were in a more 

undifferentiated state after cyclopamine treatment relative to control animals. Expression 

of col1a1 around the dentary was relatively unaffected by cyclopamine treatment (Figure 

1.7X); however, this is likely because development of this structure was well underway at 

the stage when animals were treated. 

 

Overall, these patterns of expression were consistent with the phenotypic outcome of 

cyclopamine treatment. Specifically, I found that cyclopamine-treated larvae exhibit 

significantly reduced RA length (measured as MAO), whereas the dentary and overall 

length of the lower jaw, which is determined primarily by outgrowth of Meckel's 

cartilage that occurs earlier than the stages examined here, remains roughly the same 

(Figure 1.8). In addition, I also found that treated LF larvae exhibited IOP width/length 

ratios that were statistically indistinguishable from those of MZ (Figure 1.9). Thus, in 

terms of gene expression patterns (Figure 1.7), relative bone development (Figure 1.7), 

MAO (Figure 1.8), and IOP shape (Figure 1.9), cyclopamine-treated LF recapitulate a 

suction-feeding, MZ-like phenotype. Although the specific cellular mechanism of how 

ptch1 affects RA and IOP development remains to be investigated, these results suggest 

that both RA and IOP shape is specifically mediated by the Hedgehog signaling pathway. 
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In addition, note that treated animals exhibited bifurcated expression of col1a1 within the 

developing branchiostegal rays (asterisk in Figure 1.7Z), as well as aberrant expression 

within the dermal fin ray elements of the caudal fin (arrow in Figure 1.7AA). These 

patterns are also consistent with craniofacial defects after cyclopamine treatment, in 

which fusion of the branchiostegal rays and truncation of the caudal fin ray elements 

were observed (Figure 1.7AC-AD; Figure 1.9A). These data extend previously 

documented roles for Hedgehog signaling in dermal bone development (Abzhanov et al. 

2007; Hammond & Schulte-Merker 2009) and suggest that this pathway plays an 

important role in polarizing dermal bone development along a proximal–distal axis. It is 

well established that Hedgehog signaling is critical for the proper patterning and 

polarization of several organs in various animal taxa (Krauss et al. 1993; Ingham & Fietz 

1995; Koyama et al. 1996; Chuong et al. 2000; Tanaka et al. 2000; Harris et al. 2005), but 

here a similar role has been documented for bone development. The extent to which 

Hedgehog-mediated outgrowth of other dermal bones (e.g., RA) has influenced species-

specific differences in craniofacial shape would be a fruitful area of future investigation. 
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Figure 1.7. Hedgehog pathway is necessary for proper craniofacial bone development. Expression of the 

Hedgehog receptor ptch1 (A–D), its downstream target gli1 (E–H), and the bone differentiation marker 

col1a1 (I–L) is shown in 6dpf (stage 12) Labeotropheus fuelleborni (LF) larvae. Co-localized expression 

was observed around the developing dentary (A, E, I), retroarticular (B, F, J), branchiostegal rays (C, G, K; 

note the discrete node of ptch1 expression at the distal end of these bones in C, arrow; although gli1 

expression was not observed around these structures, G), and within the dermal fin ray elements of the 
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caudal fin (arrowheads D, H, and L). Mineralized structures are shown as a reference in older fish (12 

dpf,M–O). Treatment with a Hedgehog pathway inhibitor resulted in the down-regulation of Hedgehog 

signaling and aberrant craniofacial bone development. LF larvae were treated with 50 μM of cyclopamine 

at 5.5 dpf (stage 11) for 6 h. Expression of ptch1 (P-S) and its downstream target gli1 (T–W) were 

drastically reduced. Although expression of the osteoblast differentiation marker col1a1 was relatively 

unaffected in the dentary (X), its expression in other structures suggests an attenuation and/or delay in bone 

development. Specifically, col1a1 expression was reduced around the retroarticular process (Y), whereas 

expanded expression was observed around the branchiostegal rays (Z) and within the caudal fin(AA), 

suggesting that these structures are in a more undifferentiated state relative to control animals. Also notice 

the bifurcated expression of col1a1 in the branchiostegal rays of cyclopamine-treated animals (asterisk in 

Z), as well as disorganized expression within the developing caudal fin ray elements (arrow in AA). The 

phenotypic outcome of this treatment is consistent with altered patterns of gene expression. Although the 

dentary is relatively unaffected in cyclopamine-treated animals, the length of the retroarticular process is 

reduced in treated animals (AB). In addition, the branchiostegal rays are bifurcated and fused in treated 

animal (AC), and dermal fin ray elements are dramatically reduced in the caudal fin(AD). bsr, 

branchiostegal rays; cfr, caudal fin rays; dnt, dentary; M, Meckel’s cartilage; pap, posterior articulation 

process; ra, retroarticular. (Scale bars, 10 μmin A–C, E–G, I–K, P–R, T–V, and X–Z; and 100 μmin D, H, 

L–O, S, W, and AA–AD.) From Reade B. Roberts et al. PNAS 2011;108:13194-13199 
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Figure 1.8. Treatment of biting species larvae with a Hedgehog pathway inhibitor recapitulates a suction-

feeding jaw phenotype. LF larvae were treated with (A) 0.5% ethanol (EtOH control, n =7) or (B)50 μM 

cyclopamine (cyc, n = 10) for 6 h at stage 12; RA length measured at 12 dpf (black arrow in A and B). (C) 

Relative to the length of the lower jaw (measured as the distance between the center of the jaw joint and the 

tip of the dentary), RA length (measured as the distance from the posterior tip of the posterior articulation 

process to the ventral tip of the retroarticular) was significantly reduced in cyclopamine treatment group 

compared with the control LF group but was not significantly different from MZ control larvae (n = 7). 

Larvae treated with ethanol were in- distinguishable from untreated siblings (n =6). P values, one-way 

ANOVA. (Scale bar, 100 μm.) From Reade B. Roberts et al. PNAS 2011;108:13194-13199 
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Figure 1.9. Cyclopamine treated LF larvae recapitulates an MZ-like IOP phenotype. LF larvae were treated 

with either 50 μM cyclopamine (CyA, n = 7) or 0.5% ethanol (EtOH control, n = 7) for 6 hours at stage 17 

(6 dpf). IOP length and width (black arrows) measured at stage 25 (12 dpf). A-B: flat mount of cleared and 

stained pharyngeal skeletons. C: Barplot showing the width/length ratio of IOP was significantly reduced in 

cyclopamine treated group compared with the EtOH control group, but was not significantly different from 

untreated MZ larvae (n = 8). Larvae treated with ethanol were not distinguishable from untreated siblings 

(n = 5). ch: ceratohyal; iop: interopercle; pop: preopercle; pq: palatoquadrate; ra: retroarticular; P values, 

Tukey’s HSD. Scale bar, 200 μm. From Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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With these data, I propose that natural variation in both IOP shape and RA length 

between LF and MZ is caused, at least in part, by two alternatively fixed ptch1 alleles. 

The functional difference between these two alleles results in different transcript levels 

being produced in an area of the skull where both the IOP and RA develop (Figure 1.3; 

Figure 1.4A-F; Figure 1.5; (Roberts et al. 2011)). The LF allele is associated with 

elevated ptch1 expression, a relatively long RA, and a relatively wider/shorter IOP. The 

MZ allele is associated with reduced ptch1 expression, a shorter RA, and narrower/longer 

IOP. 

 
 

1.3.4 Co-variation of interopercle and jaw shape among natural populations of 

cichlids.  

The above results suggest that a single locus alters two functionally related bones in the 

cichlid skull. I next set out to assess whether this genetic association is reflected in 

patterns of variation among natural populations of cichlids. To this end I measured IOP 

and RA dimensions in several closely related wild caught cichlid species from Lake 

Malawi that exhibit a range of foraging modes. Besides LF and MZ, an additional four 

species from the Tropheops species complex were included. Whereas LF and MZ 

represent opposite ends of the biting-suction feeding continuum among mbuna, 

Tropheops species were chosen that represent various points along this continuum. I 

show that patterns of variation in the relative length of the RA, measured as the 

mechanical advantage of jaw opening (MAO), precisely matches that of the width/length 

ratio of the IOP in these six species (Figure 1.10). Moreover, patterns of co-variation are 

consistent with the frequency of ptch1 alleles across species. In LF, the ancestral allele is 

fixed, and they show the highest MAO and width/length ratio of the IOP. In MZ, the 
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derived allele is fixed, and they show the lowest MAO and width/length ratio of IOP. 

Among Tropheops species, the two ptch1 alleles are still segregating, and they show a 

range of MAO and IOP ratios. Notably, Tropheops species fixed for the derived allele 

exhibit MAO and IOP phenotypes that match those of MZ, whereas species with higher 

frequencies of the ancestral allele have phenotypes closer to LF (Figure 1.10). These 

results support the assertion that the Hedgehog signaling pathway contributes to ongoing 

trophic adaptations in Malawi cichlids (Roberts et al. 2011). 

 

Co-variation, or integration, of traits is believed to be a major factor that determines 

evolvability (Klingenberg 2008). In particular, coordinated changes in multiple traits can 

promote patterns of variability that, when aligned with the vector of selection, can result 

in rapid evolutionary responses (Schluter 1996). As two out of three movable links in the 

opercular 4-bar system, the RA and IOP represent functionally integrated elements of the 

teleost head. Here I show that these elements are also integrated at the evolutionary (i.e., 

the co-variation across species), developmental, and genetic levels. This widespread 

integration may provide greater insights to the outstanding diversity in cichlid trophic 

morphology: instead of two independent mutations, these fish can generate 

morphological changes in two bones that operate in a common function via a single 

mutation that affects the Hedgehog signaling pathway (e.g. ptch1). 
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Figure 1.10. Co-variation of MAO and width/length ratio of IOP across species. LF, Labeotropheus 

fuelleborni, 0% MZ (derived) ptch1 allele; T.wezi, Tropheops sp. from chinyamwezi, 27% MZ ptch1 allele; 

T.kwazi, Tropheops sp. from chinyankwazi, 59% MZ ptch1 allele; T.int, Tropheops intermedius, 100% MZ 

ptch1 allele; T.gra, Tropheops gracilior, 100% MZ ptch1 allele; MZ, Maylandia zebra, 100% MZ ptch1 

allele. From Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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Figure 1.11. Kinematic transmission ratio (KT) during jaw opening in digital models of the opercular 4-bar 

linkage system. X axis: the rotation of the input link from starting position. Y axis: KT. LF: model that 

represents the LF morphology; MZ: model that represents the MZ morphology; Ptch1 10%: modified LF 

model with 10% longer IOP and 10% shorter RA; Ptch1 15%: modified LF model with 15% longer IOP 

and 15% shorter RA; Ptch1 20%: modified LF model with 20% longer IOP and 20% shorter RA. From 

Yinan Hu, and R. Craig Albertson PNAS 2014;111:8530-8534 
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1.3.5 Ptch1 induced changes to the RA and IOP are predicted to influence the 

mechanics of the opercular 4-bar linkage system.  

To investigate the potential biomechanical outcome of Hedgehog-induced shape variation 

in the IOP and RA, I built digital models and simulated the movement of the opercular 4-

bar linkage system under different scenarios (Figure 1.11) and monitored changes in 

kinematic transmission ratio (KT) during jaw opening. First, I simulated the model with 

parameters that depicted the parental phenotypes, and show that during jaw opening, KT 

is higher in the suction-feeding species (MZ) than the biting species (LF). This is 

consistent with the general observation that suction-feeding species usually possess 4-bar 

systems that are capable of faster jaw movements, i.e. higher KT (Westneat 1994; 

Westneat 1995; Wainwright 2004). Next, I manipulated parameters in the LF model (i.e., 

representing the ancestral condition) to simulate ptch1-mediated phenotypic changes in 

the IOP and RA toward a more MZ-like condition (i.e., representing the derived 

condition). Note here I was using the IOP as a proxy for the coupler link since it 

contributes to ~85% of the length of the coupler link in both species. As expected, I 

found that with a progressively longer IOP, and progressively shorter RA, KT shifts away 

from the LF/ancestral model towards the MZ model (Figure 1.11). 

 

1.3.6 Is covariation of IOP and RA shape due to genetic or epigenetic mechanisms? 

I have demonstrated that IOP and RA shapes (i) are affected by a single QTL that maps 

to ptch1, (ii) are similarly affected by cyclopamine treatment at the same stage of cichlid 

craniofacial development, and (iii) co-vary across closely related and ecologically similar 

cichlid species (Hu & Albertson 2014). These observations are consistent with a role for 
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genetic pleiotropy in mediating both IOP and RA dimensions. However, given the 

functional linkage between these two elements, which is evident at early stages of cichlid 

craniofacial development (i.e., when the RA and IOP first mineralize), it is also possible 

that the shape of one of these elements is influenced by the shape of the other via 

epigenetic processes (e.g. mechanically induced bone deposition). To address this 

question, I tested the hypothesis that during jaw opening, the repeated pulling of the IOP 

on the RA (via the interopercle-mandibulary ligament, IOPL) will stimulate bone 

deposition on the RA. Key to the credibility of this hypothesis is the observation that 

cichlid larvae start to repeatedly open and close their jaws soon after the lower jaw forms 

(~stage 17-18, 6dpf). This gaping behavior begins as the RA and IOP first develop, and 

occurs at a surprisingly high frequency that ranges from 160 ~280 times/min. It is 

unlikely that this behavior is due solely to respiration and/or ionoregulation needs, 

because at this early stage gill filaments are still developing, and the skin alone is 

sufficient for gas and ion exchange (Rombough 2002). Interestingly, there also appears to 

be species-specific differences in gaping frequency: on average, LF larvae gapes faster 

than MZ, and a third species Tropheops tropheops (TT) that has an intermediate bone 

morphology, gapes at an intermediate frequency (Figure 1.12). This trend coincides with 

differences in RA length, therefore I predict that, as an alternative (or complement) to 

respiration and ionoregulation, this repeated opening of the lower jaw via contraction of 

the interopercle-mandibular ligament will introduce mechanical stress upon the RA, 

thereby inducing bone deposition on this element (Nomura & Takano-Yamamoto 2000; 

Thompson et al. 2012). 
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To test this hypothesis, I manipulated the gaping frequency in MZ larvae by restricting 

them in a smaller container with much less water, which leads to a higher gaping 

frequency (Figure 1.13). Note that this approach may also induce unnoticed physiological 

response besides the behavioral change in gaping (e.g. higher levels of stress hormones), 

so the results should be interpreted with caution. Nevertheless, MZ larvae kept in small 

containers started to gape significantly faster at 8dpf, and when essayed for phenotype on 

10dpf, they developed a longer RA compared to the control group (Figure 1.14; p<0.002, 

two tail t-test), while the overall developmental progress remained the same (based on 

standard length and caudal fin skeleton). Since frequent gaping likely produces a larger 

amount of mechanical stimulus, this observation is consistent with my hypothesis that 

variation in RA development could be induced epigenetically. 
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Figure 1.12. Gaping frequency of cichlid larvae over ontogeny. 

 
 
 
 
 
 
 
 
 

120

140

160

180

200

220

240

260

280

300

320

6dpf 7dpf 8dpf 9dpf 10dpf

Fe
q

u
en

cy
 (

ti
m

e/
m

in
) 

Age 

LF

MZ

TT



35 

 

 
Figure 1.13. MZ larvae restricted in smaller container showed higher gaping frequency. Control: MZ 

larvae kept in large flask/beaker with ~150mL fish water. Experiment: MZ larvae kept in small beaker with 

~12mL fish water. 
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Figure 1.14. Variation in gaping frequency is associated with relative RA length in MZ. x-axis: average 

gaping frequency of each individual larva from 6dpf to 10dpf. y-axis: relative RA length measured on 

10dpf. Red dots: individuals kept in flask/large beakers. Black dots: individuals kept in small beakers. 
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Figure 1.15. Surgical manipulation of the IOP influences bone development in the RA. Top panel: flat 

mount of cleared and stained pharyngeal skeletons of one representative individual from the experiment 

group showing the surgery side (A) and intact side (B). Black arrowhead points to a breakage in the IOP 

resulted from the surgery. Asterisks: RA. Bottom panel: boxplot summarizing the result of the IOP surgery 

experiment. In the experiment group (n = 26), the IOPL was cut; in the sham group (n = 23), a cut with the 

same size was made in tissue just anterior of RA; in the control group (n = 14), fish larvae were exposed to 

the same dose of anesthetic for the same time period, but no surgery was performed. All surgery was 

performed in stage 17 (early 6dpf) LF larvae on the right side only. IOP and RA shapes were measured at 

stage 23 (10dpf). ***: statistical significance (p<0.05), Tukey’s HSD. 
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Next, in order to more explicitly test this hypothesis, I surgically cut the interopercle-

mandibular ligament on the right side of LF larvae at stage 17 (6dpf), while the left side 

was left intact. Fish were allowed to recover for 4 days, at which point they were assessed 

for differences in bone morphology. My prediction was that the RA on the surgical side 

should receive less mechanical stress and thus would become shorter than the RA on the 

intact side. To account for generalized effects of surgery (e.g., inflammation), I 

performed sham surgeries where incisions of a similar size were made to tissue 

immediately anterior to the RA. Notably, my surgical manipulation of the IOPL resulted 

in a breakage in the IOP (Figure 1.15A, arrowhead), which likely attenuates the amount 

of force that can be transmitted from the IOPL to the RA. Moreover, and consistent with 

my prediction, surgical manipulation of the IOP resulted in changes in the RA (Figure 

1.15C). Specifically, I found that the RA on the surgical side was significantly shorter 

compared to the control side (p<0.001, Tukey’s HSD), which suggests that the observed 

effect is due to differential forces being propagated to different sides of the fish. It is also 

notable that the effects on RA development after surgical manipulation of the IOP were 

observed in less than 4 days. If extrapolated over months of development and differential 

mechanical stress, it is certainly plausible that genetic effects specific to IOP could be 

propagated to the RA. Thus, the phenotypic integration between IOP and RA could be 

due to either the pleiotropic effects of ptch1/Hedgehog signaling shared by these two 

bones, or epigenetic factors that influence bone development via mechanical stress. The 

data presented in this chapter certainly leave open the possibility that both may be 

playing a role in mediating the co-variation between IOP and RA on a broader 

evolutionary scale (i.e. across species). They also underscore the importance of 
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developmental processes when studying the mechanisms that underlie the manifestation 

of adaptive phenotypic variation. 

 

1.4 Conclusion  

One of the key questions in evolutionary studies is how genetic variation translates into 

ecomorphological adaptation, and ultimately fitness (Dalziel et al. 2009; Irschick et al. 

2013; Parsons & Albertson 2013). Here I present empirical evidence that variation at a 

single locus affects multiple components in a dynamic mechanical system characterized 

by several distinct moving elements. I show that in cichlids, ptch1 mediates 

morphological variation in both the IOP and RA (integrated genetically). I also 

demonstrate that the mode of action of this affect can be traced to early stages of bone 

development – e.g., expression patterns of the osteogenic marker col10a1 differ between 

LF and MZ. Ultimately, these molecular and anatomical differences translate to variation 

in the mechanical properties of the opercular 4-bar linkage model (integrated 

functionally), a complex functional system that is predicted to play important roles in the 

ecological divergence among closely related teleost species (Westneat 1994; Westneat 

1995; Wainwright 2004). I show further that the coordinated morphological evolution 

between IOP and RA across multiple cichlid species (integrated evolutionarily) may be 

the result of both genetic and epigenetic mechanisms (integrated developmentally). In all, 

this work offers an integrative view on how adaptive radiations can occur at the genetic, 

developmental and functional levels. 
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CHAPTER II 

A NEW METHOD TO EVALUATE PHENOTYPIC INTEGRATION ON THE 

INDIVIDUAL LEVEL 

 

2.1 Introduction 

How traits co-vary with each other can impose constraints that may have profound effects 

on the outcome of evolution. The study of phenotypic integration provides an empirical 

approach to study such trait interactions, typically through measures of covariance 

(Pavlicev et al. 2009; Parsons et al. 2012). While important roles for integration have 

long been recognized in evolutionary biology (Mayr 1954; Olson & Miller 1958), it has 

received increased attention in recent years as researchers have begun to focus more 

explicitly on the origins of phenotypic variation (Pigliucci 2004; Hallgrimsson & Hall 

2005; Klingenberg 2008). Specifically, integration is thought to be a major factor 

determining evolvability (i.e., the propensity to produce adaptive variation) by 

concentrating variation along certain dimensions that ultimately biases the direction of 

evolution (Klingenberg 2008). The dimensions that explain the greatest amount of 

variation are determined by the pattern of integration, which refers to the structure of 

covariation among sets of traits (e.g., Figure 2.1B&C). They are predicted to influence 

the rate of adaptation toward a fitness optimum, with faster rates associated with patterns 

that are more in line with the axis of selection (i.e. evolutionary line of least resistance. 

Schluter 1996). The magnitude of integration refers to the strength of correlation among 

traits. A low degree of correlation (Figure 2.1A) might be associated with greater 

opportunity for a phenotype to evolve in a number of directions, whereas higher degrees 
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of correlation should limit the potential direction of evolutionary change to fewer 

dimensions (Figure 2.1B&C). While the effects of integration may degrade over time 

(Schluter 1996), there is evidence that integration has influenced evolution over extended 

periods of time (Marroig & Cheverud 2005). Thus, a largely open question in the field is 

the degree to which integration itself may evolve over time. A key step in addressing this 

question is to garner a better understanding of the genetic basis of phenotypic integration. 

 

Recent progress along these lines has been made through the analysis of phenotypic 

integration in laboratory mutants, which has demonstrated that both the magnitude and 

pattern of integration can be influenced through the manipulation of candidate genes with 

known function and developmental roles (Hallgrímsson et al. 2009).  However, the extent 

to which genes identified via mutagenesis contribute to variation in integration within and 

among natural populations remains unclear. As a complement, I believe that the 

application of forward genetics (i.e., genetic mapping) has the potential to greatly 

facilitate our ability to understand the genetic basis and evolution of phenotypic 

integration. One obstacle to this approach is the ability to measure phenotypic integration 

at the individual-level. Traditionally, integration is assessed within populations since such 

studies require measuring patterns and magnitudes of covariation in groups. Recently, 

however, Parsons et al. (2012) adopted a jackknife approach that allowed inter-individual 

variation in integration patterns to be evaluated and genetically mapped for the cichlid 

mandible (Parsons et al. 2012). Here I extend this approach to assess the genetic basis of 

the magnitude of phenotypic integration. 
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Figure 2.1. How integration influences evolution. Adapted from Klingen- berg 2010. A) Representation of 

a population with a low magnitude of integration among a set of traits. Variation is evenly distributed in 

phenotypic space, and thus this trait complex can respond with equal efficiency to selection in any direction 

(maximized opportunity). B) A representative population with a high magnitude of integration among the 

same set of traits. In this example, there is a high degree of correlation among traits, and so variation is 

concentrated along one dimension in phenotypic space. Compared to a, this trait complex is predicted to 

evolve faster if the direction of selection is parallel to the primary axis of phenotypic variation, but it won’t 

be able to respond as quickly if the axis of selection is perpendicular to that of phenotypic variation. C) A 

population with a high magnitude of integration among the same set of traits, but with a different pattern of 

integration than b. Variation is concentrated along a different dimension in phenotypic space. From Yinan 

Hu et al. Evol Bio 2014;41:145-153. 
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The East African cichlids provide an excellent opportunity to study phenotypic 

integration and its influence on evolvability as these fishes demonstrate an outstanding 

capacity for rapid and repeated phenotypic diversification (Danley & Kocher 2001; 

Cooper et al. 2010; Parsons et al. 2011). Morphological variation in the cichlid feeding 

apparatus, which is predicted to affect mechanical properties and thus facilitate trophic 

adaptation, is a particularly important dimension of divergence among cichlid radiations 

(Cooper et al. 2010). The observation of dramatic yet highly stereotypical patterns of 

trophic divergence among cichlid lineages triggers the question of what role phenotypic 

integration has played during these radiation events. To begin to address this question, I 

compared integration magnitude between two Lake Malawi cichlid species that exhibit 

different degrees of eco-morphological specialization. Assuming that selection favors the 

coordination of traits during adaptation to a specialized niche (Rosas-Guerrero et al. 

2011), my prediction was that, relative to the more generalized feeder, the specialized 

species should exhibit a more integrated phenotype. Using a new statistical approach I 

then measured and genetically mapped QTL related to the magnitude of integration in the 

mandible of an F2 population derived from these two species. I identified several regions 

of the genome as well as epistatic interactions that modulate mandibular integration, 

offering new insights into the genetic bases of integration in the cichlid mandible. 
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Figure 2.2. The left lateral view of the cichlid mandible showing the landmark positions and the pattern of 

integration in the F2 population. Adapted from Parsons et al. 2012. A) The anatomical regions of the 

mandible in a representative sample and the landmarks (large black circles) and semilandmarks (small 

black circles) collected for analysis. dent. reg. dentigerous region, crnd. pro. coronoid process, art. excurv. 

articular excurvation, pri. pro. primordial process, mand. lat. line. form. mandibular lateral line foramina, 

art. web articular web, r. art. pro. retroarticular process, susp. art. fac. suspensoriad articulation facet. B), 

Venn diagrams depicting individual modules in the mandible. T-Mod the tooth-bearing module, A-Mod the 

articular module, L-Mod the lateral line module, AE-Mod the articular extension module. From Yinan Hu 

et al. Evol Bio 2014;41:145-153. 
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2.2 Methods 

I used wild-caught individuals from two Lake Malawi cichlid species, Labeotropheus 

fuelleborni (LF, n=25) and Maylandia zebra (MZ, n=25) and an F2 hybrid population 

(n=144) derived from crossing these two species (see Albertson et al. 2003a for details) 

in this study. LF is a phenotypically derived, ecologically specialized species with short, 

robust jaws for scraping algae from the rocky substrate (Albertson & Kocher 2001). 

Among the majority of East African cichlid species, LF occupies a novel region of 

craniofacial morphospace (Cooper et al. 2010). MZ on the other hand, exhibits a more 

generalized trophic phenotype with a relatively elongated craniofacial skeleton that it 

used to forage both from the substrate and the water column (Albertson & Kocher 2001; 

Cooper et al. 2010). Landmarks used for this analysis are shown in Figure 2.2. Landmark 

data was acquired as described in Parsons et al. 2012 and processed in R (version 2.15.1). 

 

A covariance-based principal components analysis (PCA) was performed on partial 

warps scores. PC scores for PC1 were used to map the primary axis of shape variation, 

which describes relative differences in jaw height and length (Albertson & Kocher 2001; 

Albertson et al. 2003a; Albertson et al. 2005; Albertson et al. 2008). Magnitudes of 

integration were determined from eigenvalues which are scalar values that represent the 

amount of variation accounted for by each PC axis (Pavlicev et al. 2009). When the 

covariance (integration) among traits is high, the first few PC axes will account for much 

of the total variance. Correspondingly, these axes will present high eigenvalues relative to 

subsequent axes, and thus the variance among eigenvalues will be high.  Alternatively, 

when the covariance among traits is low, the variance will be distributed more evenly 
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over many PC axes, and the variance among eigenvalues will be low. I took this approach 

to compare the magnitude of integration between LF and MZ at the population level 

using MorphInt (Peres-Neto 2005; MorphInt: available upon request from Peres-Neto. 

pedro@uqam.ca). Covariance matrices were used for the PCA, and confidence intervals 

(alpha=0.05) and associated P-value were calculated via bootstrapping the difference in 

eigenvalue variance 1000 times. I used Disparitybox6 to calculate “Foote disparity” as a 

measure of shape variances between the two groups (following Cooper et al. 2010). 

 

In order to transform integration into a quantitative trait, I estimated each individual’s 

contribution to the magnitude of integration at the population-level. This was achieved by 

calculating the variance of scaled eigenvalues (VSE) of the whole population (scaled 

eigenvalues provide estimates of the percent variance accounted for by each axis) and the 

VSE of the same population without a particular individual. The difference between these 

two VSE values was then assigned to that individual as its integration score. If VSE goes 

up after removal of an individual, it can be inferred that that individual detracted from the 

overall magnitude of integration within the population, and would result in a negative 

score. Alternatively, if VSE goes down, then the individual that was removed must have 

contributed to overall integration, and its integration score would be positive. Thus, this 

metric provides a relative assessment of the contribution of an individual to the 

integration magnitude of the whole population. This process was repeated for every 

individual in the population. Eigenvectors were determined from the entire F2 population 

and held constant to prevent axes rotation during the calculation. This step ensured that 

only magnitudes and not patterns of integration changed during the removal of each 
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individual. I performed the analysis on partial warp scores extracted from morphological 

data of the mandible. Integration metrics were derived from landmark datasets for the 

entire lower jaw, as well as subsets of the data which describe previously identified 

modules (see Figure 2.2 and Parsons et al. 2012) within the lower jaw. See appendix for 

the R script for this procedure. 

 

QTL analyses were then conducted on PC1 scores and these newly generated integration 

scores using routines available in R and described in Broman and Sen (2009). Standard 

interval mapping was performed first, and significant QTLs were selected as potential 

cofactors that were then verified by backward elimination during subsequent Multiple-

QTL Mapping (MQM) scans at default significance threshold of 0.02 (Arends et al. 

2010). J-qtl (version 1.3.3) was used for two-QTL scans (epistatic interactions). I used 

Haley-Knott regression as scan method. Logarithm of the odds (LOD) scores for 

interaction were calculated as the LOD for the full model minus the LOD for the additive 

model and so were interpreted as evidence for interaction (Broman & Sen 2009). 

Genome-wide significant thresholds (α=0.05) for all QTL analyses were calculated by 

permutation tests with 1000 repeats. 
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Table 2.1. Results of single QTL analysis. Grey shaded cells represent allelic effects that increase trait 

value in the F2. *All LOD scores are significant at the 0.95 level. PVE, percent variance explained by the 

QTL. From Yinan Hu et al. Evol Bio 2014;41:145-153. 
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Table 2.2. Results of epistatic QTL analysis. Grey shaded cells represent allelic effects that increase trait 

value in the F2. *All LOD scores are significant at the 0.95 level. PVE, percent variance explained by the 

QTL. From Yinan Hu et al. Evol Bio 2014;41:145-153. 
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2.3 Results 

According to expectations, the population-level comparison showed that LF, the 

phenotypically extreme species, had a significantly (P<1*10
-6

) higher integration 

magnitude (0.001316) than MZ (0.001053). Note that LF analyzed here did have a higher 

Foote’s disparity than MZ (not shown), which increases the statistical power for detecting 

integration in the LF population. While increased power does not necessarily guarantee a 

higher magnitude of integration, the result of my population level comparison should be 

interpreted with caution. Nevertheless, based on this result I predicted that alleles 

inherited from LF would contribute to higher magnitudes of integration in the F2 

population. 

 

Overall I identified three QTLs and two epistatic interactions that significantly affect the 

magnitudes of integration, and another QTL that influences the shape of the cichlid 

mandible (Table 2.1& 2.2). For the full lower jaw I detected one QTL on linkage group 

(LG) 19 where LF alleles had a recessive effect increasing integration magnitude. I also 

detected one epistatic interaction in which integration magnitude was increased when two 

MZ alleles on LG6 were paired with two LF alleles on LG11, whereas all other allelic 

combinations had similar integration magnitudes. Notably, the single-QTL on LG19 

overlapped with a previously identified QTL for integration pattern (Parsons et al. 2012), 

suggesting a potential interaction between pattern and magnitude of integration. I also 

found one QTL on LG20 that influences the shape, represented by PC1 score here, of the 

full lower jaw. 
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Next, I analyzed integration magnitudes for previously identified modules within the 

lower jaw (Figure 2.2B). For the module that defines the posterior, or articular, region of 

the lower jaw (A-Mod), I identified one QTL on LG2 where LF alleles act to increase 

integration via a dominant mode of action. I also identified one interaction for this 

module between loci on LG10 and LG20. The homozygous MZ genotype at both loci 

increased integration magnitude. Notably, in my single QTL models the MZ/MZ 

genotype at each locus did act to increase integration magnitudes, but the effects were not 

significant. The same locus on LG20 contributes to shape variation in this module as well 

as the full lower jaw, suggesting a potential relationship between shape and integration. 

For the tooth-bearing module (T-Mod), I identified one QTL on LG9 where the 

heterozygous genotype increased integration magnitudes (i.e., overdominance). I was not 

able to detect any significant QTLs or interactions for neither the lateral line module (L-

Mod) nor the articular extension module (AE-Mod). 

 

 

2.4 Discussion 

The Lake Malawi cichlid radiation event occurred over the past ~700,000 years and has 

resulted in more than 700 species (Danley & Kocher 2001; Turner et al. 2001), among 

which LF is one of the most phenotypically derived as it occupies a unique area of 

craniofacial morphological space (Cooper et al. 2010). It is also arguably one of the 

cosmopolitan cichlid species in the lake as it can be found at nearly every rocky shore 

(Ribbink et al. 1983). Interestingly, the ecological success of LF, in terms of abundance 

and geographical distribution, may have come at the expense of future diversification, as 
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it is one of the only two species within the genus Labeotropheus (Ribbink et al. 1983; 

Konings 2001). The genus Maylandia, on the other hand, contains many species that are 

relatively diverse in terms of ecology and morphology (Konings 2001; Streelman et al. 

2007). Although fewer species of Labeotropheus does not necessarily mean they are less 

evolvable, these trends are consistent with the idea that LF may be constrained in a way 

that prevents further diversification. One hypothesis is that the extreme jaw shape of LF 

has evolved at the expense of evolvability: their mandibles are highly integrated which 

may have facilitated their adaptation to their current niche, presumably an evolutionary 

optimum, yet such high magnitudes of integration now serve as an evolutionary 

constraint that limits variability and further evolution. My population-level comparison of 

integration magnitude is consistent with this hypothesis. While a higher degree of 

integration is associated with eco-morphological specialization in LF, lower magnitudes 

of integration are associated with the more generalized trophic architecture of MZ. Here, 

lower magnitudes of integration may have facilitated the diversification in this group: 

variation is distributed relatively evenly in the morphological space and thus can respond 

to selection on multiple directions, i.e. divergent selection. 

 

Differences in the magnitude of integration between LF and MZ at the population level 

led to the prediction that alleles from LF should increase integration. Two out of three 

QTLs identified in my single-QTL analysis were consistent with this prediction, but my 

genetic data also underscore the complexity and non-additive nature of this trait. To 

illustrate the complexity of the underlying mechanisms that produces phenotypic 

integration, Hallgrímsson proposed the Palimpsest Model (Hallgrímsson et al. 2009) in 
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which the final pattern of covariance is determined by multiple layers of developmental 

processes. In other words, each developmental process will generate different covariance 

patterns and the final output is the result of many such patterns superimposed upon each 

other. Since development is hierarchical, the effect of each covariance generating process 

may either reinforce or dilute subsequent processes, making it very difficult to decipher 

the mechanisms that underlie patterns and magnitudes of covariation observed in the 

adult structure. As a solution, Hallgrímsson proposed that a reverse genetic approach, 

such as the evaluation of chemically induced mutations in laboratory organisms, could 

provide an inroad into the molecular mechanisms that underlie integration. 

 

My data support the idea that phenotypic integration has a complex genetic basis, but it 

also suggests that a classic forward genetic approach (e.g. genetic mapping) can be used 

to complement work in laboratory mutants to study the mechanisms that underlie 

phenotypic integration. Genetic mapping does not require prior knowledge about the 

developmental mechanisms that underlie a trait complex. Here I am using it as an 

unbiased scan through the genome for loci that predispose developmental systems to 

produce interactions among sets of traits. Moreover, loci identified via genetic mapping 

have the potential to decipher the Palimpsest in ways that are perhaps more concrete than 

the analysis of mutants. For one, integration QTLs represent the loci that are associated 

with actual (rather than potential) species divergence. In addition, understanding non-

additive modes of inheritance of integration, including epistatic interactions, can provide 

insights into loci that may potentially be acting during multiple developmental processes. 

For example, the two epistatic loci identified in my analysis that by themselves only 
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slightly increase integration magnitudes in the articular module, but together contribute to 

a significant increase in integration, potentially represent two distinct layers of the 

Palimpsest (i.e. distinct developmental events). Testing this hypothesis will require 

narrowing QTL intervals and identifying the causative genes and developmental 

processes that underlie this trait. With advances in sequencing and genotyping 

technologies (e.g., RAD sequencing, reviewed by Rowe et al. 2011), this is not an 

insurmountable task. 

 

My data reveal a complicated relationship between shape and integration. Specifically, I 

document a strong non-linear relationship between PC1 score (shape) and the magnitude 

of integration (Figure 2.3): Individuals who possess the most extreme jaw shape 

contribute more to the magnitude of integration while individuals with average shape 

contribute less. This is not surprising as PCA, by definition, describes coordinated shifts 

among phenotypic characters, and thus individuals with extreme positive or negative PC1 

scores should exhibit the strongest correlation among traits. The observation that a shape 

QTL potentially mediates an epistatic interaction for phenotypic integration underscores 

the protracted, non-linear relationship between integration and shape. While the amount 

of variation explained by PC1 relative to other axes likely has the most pronounced 

influence on estimates of the overall magnitude of integration, phenotypic integration is 

the overall level of inter-correlation among traits (Olson & Miller 1958), and thus should 

also be influenced by covariation along other PCs. I did not detect significant QTL for 

variation along subsequent PC axes, which is likely an artifact of the limited power of 

this experimental design, but the relationship between integration and shape does 
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disappear after PC1 (not shown). In essence, by employing a statistical design that 

involves PCA, integration and shape are inherently coupled, but I maintain that they are 

measures of different aspects of phenotype variation. Most relevant to this study, they are 

distinct in that they map to different genomic regions in most of my QTL scans, which 

suggest they are regulated by different genetic factors. On one hand I detect QTL for 

shape variation, whereas on the other hand I also find largely distinct QTL for shape 

covariation. Both are critical for assessing the evolutionary potential of a complex trait. 

 

This work complements and extends the recent investigations into the genetic basis of 

integration patterns in the cichlid mandible (Parsons et al. 2012). Whereas this previous 

work identified the pattern of integration for the cichlid mandible, and defined “modules” 

(i.e., internally integrated anatomical regions) within the jaw, here I explore the 

magnitude of integration within each module. Together these methods offer a hierarchical 

approach for investigating integration at the genetic level, wherein the genetic basis of the 

pattern of integration (i.e., modularity) is analyzed first, followed by an analysis of 

integration magnitudes within each predefined modules. These methods should address 

the reality of integration more directly than either does alone, and offer more proximate 

insights into the genetic basis of integration. 
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Figure 2.3. Relationships between shape and integration. Shown by ordinary least squares regression 

between PC1 score (shape) and individual magnitudes of integration. A) in the entire lower jaw; B) in the 

articular module; C) in the articular extension module; d in the lateral line module; e in the tooth-bearing 

module. From Yinan Hu et al. Evol Bio 2014;41:145-153. 
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This individual-level metric of integration is readily accessible for analyzing integration 

in other traits (Albertson et al. 2014), and the application extends beyond genetic 

analyses. With this new tool we are now able to quantify inter-individual variation in 

phenotypic integration, which can also be leveraged to understand how integration is 

inherited (i.e., through estimates of heritability), how integration evolves (i.e., through 

phylogenetic analysis, see Smith et al. 2015), and even how integration is tied to fitness. 

In other words, this tool can be used to gain an explicit understanding of how genetic and 

developmental architecture influences fitness by mediating shifts in phenotypic 

integration. This framework is what will ultimately lead to a comprehensive 

understanding of how integration influences organismal development, adaptation and 

evolution. 
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CHAPTER III 

CRANIOFACIAL INTEGRATION AND EVOLUTION IN AN EXTREME 

ENVIRONMENT: THE ADAPTIVE DIVERSIFICATION OF ANTARCTIC 

NOTOTHENIOIDS 

 

 

3.1 Introduction 

Adaptive radiation refers to the rapid diversification of multiple lineages from a common 

ancestor as a consequence of adaptations to different ecological niches. It is an important 

evolutionary process that is thought to have produced much of the diversity of life on 

earth (Simpson 1953, Schluter 2000). Research programs in many well-known adaptive 

radiations such as Darwin’s finches, East African cichlid fishes, Caribbean Anolis lizards, 

Hawaiian silverswords and so on have made significant contributions towards a better 

understanding of the processes and mechanisms through which diversity arises and is 

maintained over time (Baldwin & Sanderson 1998; Seehausen 2006; Grant & Grant 2008; 

Losos 2009). 

 

Antarctic notothenioid fishes offer a rare example of an extensive adaptive morphological 

radiation in an extreme environment (Eastman & McCune 2000; Eastman 2005). During 

a series of cooling events over the past 40 million years, the dramatic drop in water 

temperature of the Southern Ocean has led to the local extinction of most near-shore fish 

lineages (Eastman 1993). However, the evolution of anti-freeze glycoproteins in 

notothenioids enabled these ancestrally benthic fishes to survive and adapt to the sub-zero 

temperatures (Matschiner et al. 2011). The evolution of “secondary pelagicism”, the 

reinvasion of the pelagic foraging niche, has fostered their morphological evolution, as 
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they diversified to fill the newly available pelagic habitats (Eastman & DeVries 1981; 

Eastman 2005). Antarctic notothenioids now represent the primary teleost lineage in the 

Southern Ocean and are of fundamental importance to the local ecology (La Mesa et al. 

2004). Insights from this clade would complement our current understanding of adaptive 

radiations from other system, which largely occur in tropical and sub-tropical regions. 

 

Adaptive radiations are generally thought to occur via expanded ecological opportunities, 

which can be facilitated by the evolution of key-innovations, extinction of competitors, 

colonization of new habitats or other scenarios wherein empty niches become available to 

a lineage (Schluter 2000; Yoder et al. 2010). Diversification is then driven by a 

combination of divergent selection and relaxed stabilizing selection in the new 

environment. Widely embraced by evolutionary biologists since the modern synthesis, 

this classic neo-Darwinian view of evolution was built upon the assumption that the 

phenotypic variation that natural selection acts upon is largely determined by genes, and 

thus trait evolvability is a direct consequence of additive genetic variation (Pigliucci 2007; 

Laland et al. 2014). More recently however, with the emerging field of evo-devo, 

increasing attention has been devoted to characterizing how phenotypic variation 

originates. It is now widely accepted that not all genetic variation is expressed, rather, 

phenotypic variation may be biased or limited by developmental processes, such that 

evolution proceeds within the boundaries of developmental constraints (Hendrikse et al. 

2007). Understanding how these constraints may affect evolvability is considered as a 

central question in the on-going “extended evolutionary synthesis” (Pigliucci 2009). 
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The covariation of traits (i.e. phenotypic integration) is predicted to exert profound 

influences on evolvability and is currently under heavy investigation (Klingenberg 2008; 

Klingenberg 2009; Young et al. 2010; Parsons et al. 2011; Hu et al. 2014; Collar et al. 

2014). A group of integrated traits is considered a “module”.  Within the same module, 

shifts in one trait is predicted to be accompanied by corresponding changes in all other 

traits so that the entire module responds to selection in a coordinated fashion and results 

in a biased phenotypic response. Whether or not such bias is advantageous depends on 

the specific selection regimes imposed on the phenotype in question. Theoretical work 

(e.g., Klingenberg 2008) predicts that if selection favors shifts in a subset of traits in a 

module but not the rest, adaptation may be impeded. In fact, much recent work has found 

integration a constraining force in adaptive evolution (Young et al. 2010; Kimmel et al. 

2012; Sears et al. 2013). But if selection happens to align with the pattern of integration 

and favors changes of the module as a whole, adaptation could occur rapidly. If true, this 

theoretical framework might explain why some lineages exhibit more extensive and/or 

rapid evolutionary radiations than others. However, empirical support for integration 

promoting adaptive diversification is rare. Moreover, the extent and efficiency through 

which integration itself can evolve across a clade is not well understood. Additional 

progress on this front is necessary to further our understanding of trait evolvability. 

 

In this study, I show that variation in head shape aligns well with niche partitioning 

among notothenioid fishes, highlighting a key role for divergent selection with respect to 

foraging niche in this group. I document further the evolution of morphological 

integration among notothenioids, and show that the evolution of exceptionally high levels 
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of integration coincides with an accelerated rate of morphological evolution in the icefish 

family Channichthyidae. Taken together, I propose that shifts in integration can be 

considered as a key innovation in this group, and may have facilitated their radiation into 

pelagic feeding habitats. 

 

 

3.2 Materials and methods 

3.2.1 Fish specimen and phylogenetic data.  

I collected 63 individuals of 21 notothenioid species during the Antarctic expedition B-

037 with RV Laurence M. Gould in 2014. Specimen were fixed in 10% formalin on site, 

and preserved in 70% ethanol. Species were identified mostly by experienced research 

personnel with reference to Fishes of the Southern Ocean (Gon, O. & P.C. Heemstra 

1990), ambiguities were verified by gene sequence from published data (Near et al. 2012). 

Additionally, 14 specimens of 9 notothenioid species from Harvard Museum of 

Comparative Zoology, and 1 Pogonophryne scotti specimen collected by H.W. Detrich in 

2012 were also included in this study, consisting a total of 78 individuals and 30 species 

(Table 3.1). I re-derived the phylogeny of notothenioids based on Near et al. (2012), 

following the same methods described therein. In brief, a Bayesian phylogenetic analysis 

was performed on sequence data that includes 5 nuclear genes (RPS71, myh6, sh3px3, 

tbr1, and zic1) and 2 mitochondrial genes (nd2 and 16S rRNA) from 83 notothenioid 

species. BEAST analyses were run 5 times with 3*10
7
 generations each through the 

CIPRES Science Gateway (Miller et al. 2010), sampling at every 1000 generations. 

Resulting trees were combined with LogCombiner v2.2.1 
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(http://beast.bio.ed.ac.uk/LogCombiner), and summarized in TreeAnnotator v2.2.1 

(http://beast.bio.ed.ac.uk/TreeAnnotator). 

 

3.2.2 Morphological data collection and analyses.  

3D-landmarks were obtained using the R package StereoMorph (Olsen & Westneat 2014). 

In brief, two cameras were arranged in fixed positions with overlapping field of views, 

and were calibrated using a standard checkerboard pattern. Landmarks were first 

digitized on regular 2D images from each camera and then reconstructed into 3D 

according to the calibration coefficients. 19 landmarks were recorded from one side of 

the head, and were then mathematically reflected across the midline assuming left-right 

symmetry, making a total of 35 landmarks (Figure 3.1; Table 3.2). Head width at multiple 

landmark positions were measured to assure the accuracy of reflection. Using routines in 

the Geomorph package (Adams & Otárola-Castillo 2013), the raw 3D landmark 

coordinates were aligned with a Generalized Procrustes Analysis. In order to control for 

common allometric effect across species, shape data were then regressed against centroid 

size of the head to obtain the residual shape component for subsequent analyses. Feeding 

habitat and specific diet items were based on published literature (Table 3.4). Modes of 

evolution were evaluated via a multivariate model-fitting approach with the R package 

mvMORPH (Clavel et al. 2015). Models were ranked according to the Akaike 

Information Criterion (Burnham & Anderson 2002). 
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taxa name number of specimen Source 

Bathydraco_marri 2 B037 

Chaenocephalus_aceratus 5 B037 

Cryodraco_antarcticus 1 B037 

Champsocephalus_gunnari 4 B037 

Chionodraco_rastrospinosus 4 B037 

Chaenodraco_wilsoni 3 B037 

Dolloidraco_longedorsalis 2 B037 

Dissostichus_mawsoni 1 B037 

Pseudochaenichthys_georgian 2 B037 

Gobionotothen_gibberifrons 3 B037 

Harpagifer_antarcticus 2 B037 

Lepidonotothen kempi 7 B037 

Lepidonotothen_larseni 4 B037 

Lepidonotothen_nudifrons 4 B037 

Notothenia_coriiceps 6 B037 

Notothenia_rossii 2 B037 

Pagetopsis_macropterus 1 B037 

Trematomus_eulepidotus 3 B037 

Trematomus_hansoni 3 B037 

Trematomus_scotti 3 B037 

Pogonophryne_scotti 1 H.W. Detrich 2012 

Chionobathyscus_dewitti 1 Harvard MCZ 

Chionodraco_myersi 1 Harvard MCZ 

Dacodraco_hunteri 2 Harvard MCZ 

Eleginops_maclovinus 2 Harvard MCZ 

Patagonotothen_tessellata 2 Harvard MCZ 

Patagonotothen_cornucola 1 Harvard MCZ 

Trematomus_borchgrevinki 2 Harvard MCZ 

Trematomus_newnesi 2 Harvard MCZ 

Trematomus_bernacchii 2 Harvard MCZ and B037 
 

Table 3.1. List of notothenioid specimen used in this study. B037: fish specimen collected during Antarctic 

expedition B-037 in 2014. Harvard MCZ: specimen from Harvard Museum of Comparative Zoology. H.W. 

Detrich 2012: specimen collected by H.W.Detrich in 2012. 
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Table 3.2. List of landmarks included in the morphometrics analysis. Right side and midline landmarks 

were digitized via Stereomorph, landmarks on the left side were derived mathematically assuming left-right 

symmetry.  
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Figure 3.1. A visualization of the landmarks capture via Stereomorph. Picture shows the head of 

Notothenia coriiceps, Landmarks on the right side and midline (1-19, shown here) are directly digitized 

from specimen images via Stereomorph. Landmarks on the left side of the skull were mathematically 

derived assuming left-right symmetry. Specific position of landmarks can be found in Table 3.2. 
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3.2.3 Morphological integration analyses.  

Hypotheses of morphological integration were evaluated with a recently developed 

method by Adams et al (Adams & Felice 2014). In brief, landmarks were divided into 

hypothetical modules (Table 3.2, and main text). The degree of covariation between the 

modules was then evaluated with a partial least squares approach while taking into 

account of phylogenetic relationships. Statistical significance was assessed via 

phylogenetic permutation with 3000 repeats. The magnitude of integration, measured as 

the variance of scaled eigenvalues of partial warp scores (i.e. percent variation explained 

by each PC axis), was assessed for each species via a recently developed jackknife 

approach (Hu et al. 2014). Integration was first measured for the whole dataset (78 

individual from 30 species), and then re-measured after removing one individual. The 

difference between the two values provides an indirect measure of integration for that 

individual, as it represents the relative contribution from that particular individual to the 

overall magnitude of integration in that group. Average magnitude of integration for each 

species was then calculated from the individual measures. 

 

3.2.4 Morphological disparity and evolutionary rate.  

Morphological disparity through time was analyzed with the R package geiger (Harmon 

et al. 2008). A morphological disparity index (MDI) statistic was derived from the 

difference between observed disparity profile and a null model from Brownian motion 

simulations with 10,000 repeats. The most recent 20% of the tree was discarded to avoid 

tip over-dispersion, which may overestimate disparity due to incomplete coverage of 

terminal taxa (Harmon et al. 2003). Rate of morphological evolution was assessed using 
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routines in the R package geomorph (Adams & Otárola-Castillo 2013). All notothenioids 

were divided into an icefish group and non-icefish group. Evolutionary rate was 

calculated according to distances in morphospace between species in each group after 

phylogenetic transformation, statistical significance was assessed via randomized 

phylogenetic simulation with 1000 repeats. 

 

 

3.3 Results and discussion 

3.3.1 Divergence in skull shape is correlated with feeding habitat.  

Variation in trophic morphology figures prominently in adaptive radiations as it’s directly 

linked to resource use (Albertson et al. 2003b; Salzburger 2009; Yoder et al. 2010). In 

order to investigate patterns of morphological variation in the notothenioid head, I 

collected 3D shape data from 30 notothenioid species, which covers all major lineages 

within the clade. I found that the primary axis of shape variation in notothenioids 

corresponds to their feeding habitat (Figure 3.2). Species with extreme negative values on 

PC1 possess wide, robust skulls, short jaws, and feed predominantly along the bottom of 

the ocean. Alternatively, species with extreme positive values on PC1 have narrow, 

streamlined skulls, dramatically elongated jaws, and feed mainly on evasive prey items in 

the water column. Note that this end of the morphospace is largely defined by the white-

blooded icefish clade (i.e., Channichthyidae). 
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Figure 3.2. Morphological variation of the head corresponds to niche partitioning among notothenioids. A) 

Comparison of head shape between Cryodraco antarcticus and Notothenia coriiceps, which represent 

opposite ends of PC1. Ball and stick plot showing the vector displacements of corresponding landmarks 

from the mean head shape of all notothenioids analyzed in lateral and frontal views. B) Phylo-morphospace 

of notothenioids. PC1 explains 64.93% of the variance, PC2 explains 6.41%. Species are grouped 

according to feeding habitats. Blue square: benthic; Red triangle: intermediate; Orange circle: pelagic; 

Green diamond: unknown. 
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Model log likelihood AICc Delta AICc AICc Weight 

OU-Diet3 26.11 -39.50 0.00 0.693 

OU-Diet5 28.42 -37.25 2.25 0.225 

OU-Single Peak 21.05 -35.10 4.40 0.077 

Brownian Motion 16.98 -29.48 10.02 0.005 

Early Burst 16.98 -26.96 12.54 0.001 

 
Table 3.3. Comparison of alternative models of head shape evolution in notothenioids. Models are ordered 

from best to worst based on AICc scores. OU-Diet3: Ornstein-Uhlenbeck (OU) multi-peak model with 

species assigned to 3 categories according to feeding habitats (pelagic, intermediate and benthic); OU-

Diet5: OU multi-peak model with species assigned to 5 categories according to feeding habitat and prey 

items (pelagic-large, pelagic-small, intermediate, benthic-soft, benthic-hard). 
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3.3.2 Divergent selection in different feeding habitats drives morphological evolution 

of the notothenioid head.  

The close association between head shape and diet implies that morphological divergence 

is being driven, at least in part, by diversifying selection for different feeding habitats. To 

test this hypothesis, I used a multivariate model-fitting approach to examine the mode of 

evolution among these fishes (Table 3.3). I compared five hypothetical modes of 

evolution: 1) Brownian Motion model, a random-walk pattern of morphological 

evolution; 2) Early Burst model, in which most morphological variation was established 

early in the radiation; 3) Ornstein-Uhlenbeck (OU) single peak model, in which 

morphological variation was driven by selection towards one evolutionary optimum; 4) 

OU multi-peak 3 diet model, where morphological variation was driven by selection 

towards three feeding habitats (benthic, intermediate and pelagic); 5) OU multi-peak 5 

diet  model, in which I refined the 3 diet model and further partitioned both the benthic 

and pelagic peak into two separate peaks based on specific food items (Table 3.4).  
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taxa name OU-Diet3 OU-Diet5 

Bathydraco_marri intermediate intermediate 

Chaenocephalus_aceratus pelagic pelagic-large 

Cryodraco_antarcticus pelagic pelagic-large 

Chionobathyscus_dewitti pelagic pelagic-large 

Champsocephalus_gunnari pelagic pelagic-small 

Chionodraco_myersi pelagic pelagic-large 

Chionodraco_rastrospinosus pelagic pelagic-large 

Chaenodraco_wilsoni pelagic pelagic-large 

Dacodraco_hunteri pelagic pelagic-large 

Dolloidraco_longedorsalis benthic benthic-soft 

Dissostichus_mawsoni pelagic pelagic-large 

Eleginops_maclovinus benthic benthic-soft 

Pseudochaenichthys_georgian pelagic pelagic-large 

Gobionotothen_gibberifrons benthic benthic-hard 

Harpagifer_antarcticus benthic benthic-soft 

Lepidonotothen kempi benthic benthic-soft 

Lepidonotothen_larseni pelagic pelagic-small 

Lepidonotothen_nudifrons benthic benthic-soft 

Notothenia_coriiceps benthic benthic-hard 

Notothenia_rossii intermediate intermediate 

Patagonotothen_tessellata benthic benthic-soft 

Patagonotothen_cornucola UNKNOWN UNKNOWN 

Pagetopsis_macropterus pelagic pelagic-large 

Pogonophryne_scotti benthic benthic-soft 

Trematomus_bernacchii benthic benthic-hard 

Trematomus_borchgrevinki pelagic pelagic-small 

Trematomus_eulepidotus intermediate intermediate 

Trematomus_hansoni benthic benthic-soft 

Trematomus_newnesi pelagic pelagic-small 

Trematomus_scotti intermediate intermediate 

 

Table 3.4. Feeding habitat and dietary categories for each notothenioid species. pelagic-large: diet includes 

a considerable proportion of fish. pelagic-small: diet mainly includes small invertebrates. benthic-hard: 

benthic feeders capable of consuming hard-shelled invertebrates such as clams. benthic-soft: benthic 

feeders that feeds on relatively soft preys. References: (Gon & Vega 1990; Eastman 1993; La Mesa et al. 

2004; Licandeo et al. 2006; La Mesa et al. 2007; Casaux & Barrera-oro 2013; Hüne & Vega 2015). 
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The best supported model was OU multi-peak 3 diet (Table 3.3), suggesting divergent 

selection for feeding habitat has shaped patterns of morphological evolution in this clade. 

The OU multi-peak 5 diet model was ranked the second highest, thus, both multi-peak 

models are significantly favored over all three single rate models, providing confidence 

in the conclusion that ecological opportunity in different feeding habitats was a major 

player during the notothenioid radiation. This association between morphological and 

behavioral divergence represents a characteristic feature of adaptive radiations in 

vertebrates. Well documented examples include beak size in Darwin’s finches, limb 

length in Anolis lizards and jaw morphology in cichlid fishes (Grant 1999; Grant & Grant 

2008; Cooper et al. 2010). Notably, the repeated adaptive radiations in African cichlids 

have resulted in a similar pattern of divergence compared to the notothenioids. In all 

three rift lakes, the primary axis of head shape variation in cichlids also aligns with a 

benthic-pelagic spectrum of feeding habitat in spite of two orders of magnitude difference 

in the age of each radiation (Cooper et al. 2010). This observation supports the prediction 

that this might represent a common selective axis among fish adaptive radiations (Cooper 

et al., 2010). 

 

3.3.3 Notothenioids exhibit highly integrated skulls.  

The first PC axis explains ~65% of the variance in head shape, while each of the 

remaining PCs explained less than 7% of the variance. This indicates that there is a 

significant amount of correlation among the landmarks examined, and suggests that the 

whole notothenioid skull may constitute an evolutionary module. To test this hypothesis, 

I used a partial least squares (PLS) based method to assess the level of covariation 
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between groups of landmarks while controlling for phylogenetic relationships (Adams & 

Felice 2014). The strength of covariation was assessed under two hypothesized patterns 

of modularity. The first is between the anterior and posterior regions of the skull (Table 

3.2), and represents a functional hypothesis. Whereas the pre-orbital region of the skull is 

composed largely of the oral jaws and is involved primarily in prey capture, the posterior 

region is involved in feeding, respiration, and houses the brain and sensory organs. 

Previous work in mammal and fish (Drake & Klingenberg 2010; Parsons et al. 2011) 

supports modularity between these regions of the skull. The second model compares the 

dorsal and ventral regions of the skull (Table 3.2), and represents more of a 

developmental hypothesis. Whereas the dorsal portion of the skull contains the dermato- 

and viscerocranium, and develops from both neural crest and non-neural crest mesoderm, 

the ventral position of the skull is composed entirely of the neural crest-derived 

viscerocranium. Modularity in this dimension has also been shown in fish (Kimmel et al. 

2012). Notably, I found no support for modularity in either dimension of the notothenioid 

skull. Instead, significant levels of covariation were detected between the hypothetical 

modules (hypothesis 1, anterior-posterior, rPLS=0.96, p<0.001; hypothesis 2, dorsal-

ventral, rPLS=0.90, p<0.003). 

 

 

 

 

 



74 

 

 
Figure 3.3. Ancestral state reconstruction of head shape PC1 and integration. Contour map phylogeny 

shows the estimated evolutionary history of each trait, produced with R package phytools (Revell 2012). 
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Figure 3.4. Relationship between head shape PC1 and magnitude of integration. Solid curve: quadratic 

regression across all notothenioids (r
2
=0.5237, p<1*10

-4
). Dashed line: linear regression within 

Channichthyidae (r
2
=0.9143, p<1*10

-5
). 

 

 

 

 

 



76 

 

 
Figure 3.5. Morphological disparity through time. A) Disparity plot for all notothenioids. B) for 

Trematomus. C) for Channichthyidae. Estimated disparity through time is shown in solid line. Median 

disparity simulated under Brownian motion condition in dashed line and grey polygon represents 95% 

confidence interval of the simulated disparity. 
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To assess whether high levels of integration in the notothenioids skull is being driven by 

one or few lineages, I next used the jackknife-based approach developed in the previous 

chapter to assess the magnitude of integration for each individual (Hu et al. 2014), which 

allowed me to estimate the ancestral state and evaluate the evolution of integration as 

well as its relationship with shape variation across notothenioids. Several notable 

observations were made based on this analysis (Figure 3.3 and Figure 3.4). First, 

integration varied among closely related notothenioids species, which suggests that this 

trait can evolve over relatively brief time periods. Second, I found that the icefish lineage 

showed consistently high level of integration compared to the rest of notothenioids 

(p<0.002, t-test). Finally, I showed that morphological integration is correlated with 

shape. Across all notothenioids, the best supported relationship between shape (PC1) and 

integration is quadratic (r
2
=0.5237, p<1*10

-4
), such that species with extreme head 

shapes also exhibit the highest magnitude of integration.  This nonlinear relationship 

between shape and integration has been noted in other lineages (Hu et al., 2014), and 

might reflect the inherent relationship between shape and integration when morphology is 

assessed via a PCA-based method. This is because by definition, PC1 captures the 

greatest amount of covariation among phenotypic characters, such that individuals with 

extreme PC1 scores are expected to contribute more to the overall degree of covariation 

and thus receive a higher integration score. Nevertheless, despite the statistical caveat, 

this approach is biologically valuable as it appears to measure different aspects of 

morphological variation which could lead to the discovery of distinct genetic 

underpinnings (Hu et al. 2014). Most relevant to this study, when only considering the 

icefish clade, I was able to uncover a strong linear correlation between shape and 
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integration (r
2
=0.9143, p<1*10

-5
). Interestingly, Bathydraco marri, a sister species to the 

Channighthyids, shows a very low level of integration, but has evolved a head shape 

similar to icefish (Figure 3.2; Figure 3.3), indicating that the tight correlation between 

integration and head shape is specific to Channichthydae. This is especially notable given 

that nearly half of the notothenioid craniofacial morphospace is defined by this lineage, 

and suggests that invasion of a pelagic foraging niche may have been facilitated by this 

shift in integration. 

 

3.3.4 High magnitude of integration in icefish is associated with elevated shape 

diversity and accelerated rate of morphological evolution.  

Next, I analyzed morphological disparity through time to evaluate the pattern of 

morphological diversification among notothenioids (Figure 3.5). Morphological disparity 

across the radiation as a whole is not significantly different from Brownian motion 

simulations, which suggests a steady increase in diversity over time. I further analyzed 

disparity in two subclades, Trematomus and Channichthydae (icefish), and found that 

while the disparity profile does not deviate from the null model in Trematomus, 

Channichthydae exhibited significantly higher levels of disparity, which indicates 

accelerated rates of morphological diversification with in this family. I then compared the 

rates of evolutionary change in head morphology between Channichthyds and the rest of 

notothenioids, and found that the skull shape is evolving at a significantly faster rate in 

this clade (sigmad.ratio=1.39, p=0.001). Taken together, these data shows that the high 

level of morphological integration coincides with rapid evolution of skull shape in the 

Channichthyidae. 



79 

 

3.3.5 Several key innovations underlie the origin and radiation of the notothenioid 

species flock.  

The adaptive radiation of Antarctic notothenioids is accompanied by a series of key 

innovations (Eastman 2005; Matschiner et al. 2011; Matschiner et al. 2015). Arguably the 

most important one was the emergence of anti-freeze glycoproteins (AFGPs), which 

prevent the fish from freezing in the frigid Southern Ocean (at high latitudes, water 

temperature can remain less than -1.5°C all year long), and is thus critical to their 

survival in this extreme environment (Matschiner et al. 2011). A second innovation was 

the re-evolution of neutral or near-neutral buoyancy (Eastman & DeVries 1981). 

Ancestrally, all notothenioids lacked a swim bladder, which is suitable for a benthic 

lifestyle. However, during the evolution of secondary pelagicism, several lineages have 

evolved novel mechanisms to gain enough buoyancy and successfully invaded the 

pelagic foraging niches (Eastman 2005). For instance, to achieve an overall lower density, 

many pelagic notothenioids have evolved enlarged lipid sacs within the axial musculature, 

as well as reduced bone mineralization in the skeleton (Devries & Eastman 1978; 

Eastman & DeVries 1981; Eastman 2005). These novelties are able to compensate for the 

loss of the swim bladder and significantly reduce the amount of energy required for 

vertical migration into shallower water. In addition to these novel features, we argue that 

high magnitudes of integration could be interpreted as a key innovation unique to the 

icefish family Channichthyidae, as it accompanies their rapid evolution into a unique area 

of morphospace, and also their invasion into the largely unoccupied pelagic feeding 

habitat. 
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3.3.6 Integration as a key innovation among icefishes?  

A high magnitude of phenotypic integration is generally considered to be a constraint on 

evolution, because any single mutation would cause corresponding changes in the entire 

module and would result in a higher probability of a deleterious outcome. However, 

theory predicts that if the direction of selection coincides with the axis of covariation (i.e. 

integration), accelerated evolution may result along that direction (i.e. evolutionary line 

of least resistance, Schluter 1996). I hypothesize that this is the case for the icefish 

lineage. 

 

The Channichthyidae is a unique family of fish (Kock 2005) that is well-known for their 

loss of hemoglobin (Di Prisco et al. 2002), making them the only white-blooded 

vertebrate family on earth. Unlike all other notothenioid subclades, the entire 

Channichthyid family relies heavily on pelagic prey such as krill and fishes, and their 

mode of prey capture is also unique. Many icefish species exhibit a “benthopelagic” 

mode of foraging wherein they spend much of their time on or close to the ocean floor 

but venture into the pelagic zone to actively forage on schools of small fish and 

macroinvertebrates. Most benthopelagic notothenioids have non-protractible, elongate 

jaws, a wide gape, and many, small teeth. This design enables benthopelagic icefish to 

feed efficiently on krill and schools of small fishes by expanding their buccal cavity, 

overtaking, and sifting large mouthfuls of prey (Eastman 1993). This expanded 

ecological niche in icefish is also associated with accelerated lineage diversification 

(Near et al. 2004; Near et al. 2012). The Channichthyidae is now one of the most species-

rich families with in the notothenioid clade, with at least 15 species (Kock 2005). The 
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exact age of this lineage remains elusive, mainly because of the lack of fossil records, but 

estimates range from 6 to 20 million years. By any measure, this is an extremely young 

family of fish, especially when one considers that development in the frigid Southern 

Ocean occurs at a very low pace. For instance, it can take up to 6 months for these fishes 

to hatch, and 5-8 years to reach sexual maturity (Kock 2005). Thus, even at the highest 

estimate of their age, the evolutionary history of icefish is on a similar scale of 2-4 

million years that characterizes many radiations that have taken place in the tropics, 

where generation times are on the scale of 1-2 years. 

 

It is tempting to speculate that elevated magnitudes of integration across notothenioids as 

a whole, and within icefish in particular may be due to shifts in early developmental 

patterning of the skull. The vertebrate pharyngeal skeleton is derived from neural crest 

cells, which migrate into a bilateral series of pharyngeal arches where they condense and 

differentiated into a conserved set of pharyngeal cartilages. These cartilages are the first 

elements of the vertebrate skull to develop, and patterning occurs along the dorsal-ventral 

and anterior-posterior axes through a conserved set of regulatory genes. It has been 

previously shown in notothenioids that the anterior and ventral cartilages of the 

pharyngeal skeleton develop earlier and grow faster than in other percomorph species 

(Albertson et al. 2010). In other words there is a bias toward the development of anterior 

and ventral elements of the pharyngeal skeleton. Even relatively short jawed, benthic 

notothenioids species exhibit this pattern, suggesting that this unique developmental 

program is ancestral to all notothenioids. However, the bias is greatly exaggerated in 

icefish where the development of highly elaborated ventral cartilages in larvae 
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foreshadow the elongated jaws in adults, providing clues to the developmental origins for 

this adaptive phenotype (Figure 3.6). I speculate that it is possible that such a dramatic 

change in the early patterning of the pharyngeal skeleton could serve to constrain 

variation across the remainder of the skull. For instance, it is possible that in order to 

remain functional, the development and growth of the icefish craniofacial complex is 

constrained to accommodate the early and exaggerated development of anterior and 

ventral elements. Thus, extreme jaw elongation via shifts in early developmental 

patterning events may account for the evolutionary success of the icefish, but as a 

consequence this mechanism may have led to coordinated variation throughout the rest of 

the head. To test this hypothesis one could compare early developmental patterning of an 

icefish species that exhibits high levels of integration and extreme shape along PC1 (e.g., 

C. aceratus) to that in a sister taxon to the icefish clade that still exhibits extreme PC1 

values but low magnitudes of craniofacial integration (e.g., B. marri). 
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Figure 3.6. Biased development of anterior-ventral skeleton during early development in notothenioids. 

(A-B) Cleared and stained skeletal preperations. CA: icefish species C.aceratus. LF: cichlid species L. 

fuelleborni. Note the dramatically enlarged anterior-ventral cartilages in CA compared to LF. ch, 

ceratohyal; eth, ethmoid plate; hs, hyosymplectic; m, Meckel cartilage; pq, palatoquadrate. I hypothesize 

that this pattern is key to their highly integrated skull and that ventral patterning genes may be involved in 

this change. Differences in hand2 expression in the developing pharyngeal arches between notothenioids 

species P.antarcticum (C) and LF (D) support this hypothesis. p1-7, pharyngeal arches 1-7. 
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3.4 Conclusion 

Understanding the determining factors of evolvability is an essential component in the 

on-going extended evolutionary synthesis (Pigliucci 2007; Pigliucci 2009). Although 

theory predicts that phenotypic integration could both limit and promote evolvability 

(Klingenberg 2008), empirical studies tend to find integration as a limiting factor to 

diversification (i.e. an “evolutionary constraint”) (Young et al. 2010; Kimmel et al. 2012; 

Sears et al. 2013; Collar et al. 2014; Hu et al. 2014). In this study, I investigated patterns 

of morphological diversification in craniofacial skeleton among Antarctic notothenioids. I 

show that overall these fishes possess a highly integrated skull, and the magnitude of 

integration is especially high in the icefish family Channichthyidae. I further document 

an elevated rate of morphological evolution within this clade, which is accompanied by 

an unexpected tight correlation between integration and shape, indicating that integration 

might have promoted evolvability among the icefishes. The rapid evolution of head shape 

among the channichthyids leads to their occupation of a unique region in morphospace, 

which may have facilitated their invasion into the pelagic feeding habitat. Taken together, 

this study offers a rare example in which high magnitudes of integration are associated 

with rapid adaptation and a greater evolvability, shedding new light on the mechanisms 

that influence morphological diversification. 
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APPENDIX 

R SCRIPT FOR MEASURING MAGNITUDE OF INTEGRATION ON INDIVIDUAL-

LEVEL. 

 

rm(list=ls()) 

#load data 

setwd("working directory") 

data<-read.csv("F2PWSizeRemovedForRAnalysis.csv",header=F) 

data2<-as.matrix(data) 

num.rows<-nrow(data2) 

num.cols<-ncol(data2) 

ComponentLoadings<-prcomp(data2)$rotation 

PCscore<-data2%*%ComponentLoadings 

#making the variance matrix, individual removed on the row, eigenvalue on column 

VarMatrix<-matrix(0,nrow=num.rows,ncol=num.cols) 

IndInt<-NULL   #vector for Individual integration value 

IndVar<-NULL   #vector for Variance of eigenvalue as each individual was removed 

TV<-NULL       #vector for eigenvalues 

for (j in 1:num.cols) 

{ 

TV[j]<-var(PCscore[,j]) 

} 

TotVar<-var((TV)/sum(TV))   #standardized variance of eigenvalue of the whole 

population 
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for (i in 1:num.rows) 

{ 

jacknifeMatrix<-PCscore[-i,] 

for (j in 1:num.cols) 

{ 

VarMatrix[i,j]<-var(jacknifeMatrix[,j]) 

} 

IndVar[i]<-var((VarMatrix[i,])/sum(VarMatrix[i,])) 

IndInt[i]<-TotVar-IndVar[i] 

} 

write.csv(IndInt,file="Individual Integration level.csv") 
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