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Some case example exact solutions for quadratically nonlinear optical media with
PT -symmetric potentials

Y.N. Truong Vu and J. D’Ambroise
Department of Mathematics and Statistics, Amherst College, Amherst, MA, USA

F.Kh. Abdullaev
Department of Physics, Faculty of Sciences, IIUM,

Jln. Indera Mahkota, Sultan Ahmad Shah, 25200, Kuantan, Malaysia

P.G. Kevrekidis
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA USA

In the present paper we consider an optical system with a χ(2)-type nonlinearity and unspecified
PT -symmetric potential functions. Considering this as an inverse problem and positing a family
of exact solutions in terms of cnoidal functions, we solve for the resulting potential functions in a
way that ensures the potentials obey the requirements of PT -symmetry. We then focus on case
examples of soliton and periodic solutions for which we present a stability analysis as a function of
their amplitude parameters. Finally, we numerically explore the nonlinear dynamics of the associated
waveforms to identify the outcome of the relevant dynamical instabilities of localized and extended
states.

PACS numbers: 42.65.Ky, 42.65.Sf, 42.65.Tg, 42.81.Dp

I. INTRODUCTION

Recently a great deal of attention has been devoted to the investigation of quantum and classical systems with PT -
symmetric non-Hermitian Hamiltonians. It was shown in the seminal paper [1] that such type of Hamiltonians can
have real eigenvalues. Due to the analogy between the Schrodinger equation and the paraxial wave equation in optics,
this result has applications in optics; this is one among numerous other areas studied over the past decade. For optical
beams PT -symmetry imposes the condition on the complex refractive index n(x) = nr(x) + ini(x): even in space
for the real part of the refractive index nr(x) = nr(−x) and odd in space for the imaginary part ni(x) = −ni(−x).
Recently effects of PT -symmetry have been observed in optical experiments [2]. However, optics is certainly not the
sole area where PT -symmetric applications have recently emerged. More specifically, a mechanical system realizing
PT -symmetry has been proposed and realized in [3], while a major thrust of efforts has focused on the context of
electronic circuits; see e.g. the original realization of [4] and the more recent review of this activity in [5]. Additionally,
we note that further intriguing realizations of PT -symmetry have also emerged e.g. in the realm of whispering-gallery
microcavities [6]. While many of these experimental realizations have been chiefly explored at the level of linear
dynamics, the intrinsic nonlinearity of optical systems [2] and the potential nonlinearity also of electrical ones (e.g.
in the form of of a PT -symmetric dimer of Van-der-Pol oscillators [7]) have prompted a considerable amount of work
at the interface of nonlinearity and PT -symmetry.

Nonlinearity leads to new effects in the PT -symmetric systems, such as solitons (and vortices) in continuous [8, 9]
and discrete nonlinear optical media with PT -symmetric potentials [10], gap solitons in media with PT -symmetric
periodic potentials [11], non-reciprocity, instabilities and nonlinear PT -transitions in PT -symmetric (nonlinear) cou-
plers [12–17], as well as the smoothing of the spectral singularity in transmission [18], among many others. Important
applications to nonlinear plasmonic systems and metamaterials are under recent investigation [19, 20]. Additional
developments are connected with nonlinear PT -symmetric lattices [21–24] and PT -symmetry management [25–27]
etc.

In nonlinear wave equations with PT -symmetric terms, solitonic solutions can exist as was shown recently e.g. in
the works of [8, 28–31]. In the case of an NLS system with inhomogeneous in space loss/gain parameters such solutions
were found for linear PT -potentials in the work [8, 28, 32, 33], and for nonlinear PT -potentials in the works [28, 29],
for a nonlocal NLS equation in [34] and for a cubic- quintic model in [35]. Naturally, it is also of interest to find
exact solutions for solitons in other physically important systems. Recent numerical simulations of the χ(2) system
with PT -symmetric potential showed the existence of stable bright solitons [36], as well as of gap solitons in periodic
PT -symmetric potentials [37]. Discrete PT -symmetric systems with quadratic nonlinearity were also explored at the
level of oligomer systems [38].

In the present work we will study the χ(2) system with PT -symmetric potentials, describing wave processes in
quadratically nonlinear media with spatially distributed gain/loss parameters. Such systems are, in principle, of
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interest for nonlinear optics and potentially even for atomic-molecular Bose-Einstein condensates trapped in complex
potentials (see, for example, a realization of imaginary potential in [39]). In this paper, we find exact solitary and
periodic solutions of the χ(2) system. We begin in Section II by outlining the mathematical model. In Section III
we derive exact solutions in terms of the Jacobi elliptic cnoidal function, and we present special case solutions for
which we later examine stability properties. We essentially follow an inverse-function approach, somewhat reminiscent
of [40] to obtain such exact solutions for suitably tailored PT -symmetric potentials in the presence of the quadratic
nonlinearity. In Section IV we present the stability analysis of the obtained solutions as a function of the solution
parameters (such as their amplitudes), and we show the results of propagation of the solutions in the (analogous to
“time”) variable z. Finally, in Section V we make our concluding statements and present a number of possibilities for
future work.

II. THE MODEL

Let us consider the χ2 system describing the first harmonic (FH) and second harmonic (SH) propagation in quadrat-
ically nonlinear media with PT -symmetric potentials as follows:

iuz + d1uxx + V1(x)u+ iW1(x)u = u∗v (1)

ivz + d2vxx + κv + V2(x)v + iW2(x)v = u2

where V1,2(x) are even functions of x corresponding to real parts of the refraction index, and W1,2(x) are odd functions
of x pertaining to imaginary parts thereof. W1,2 describe the inhomogeneous in space gain/loss. Seeking standing
waves in the form: u(x, z) = U(x)e−iωz and v(x, z) = V (x)e−2iωz we obtain the system

ωU + d1Uxx + V1(x)U + iW1(x)U = U∗V (2)

σV + d2Vxx + V2(x)V + iW2(x)V = U2

where σ = 2ω+κ. It is useful to introduce the amplitude-phase decomposition in the form U(x) = ρ1(x)eiθ(x), V (x) =
ρ2(x)e2iθ(x). Solitonic solutions for V = W = 0 have been reported e.g. in [41–45], cnoidal wave solutions in [46],
and solitons in the conservative 2D χ(2) system with a potential V 6= 0,W = 0 were considered recently in [47]. For
a review of solitary wave dynamics in quadratic systems see e.g. [48].

Assuming that ρ2, θ are real, and that ρ1 is either real or purely imaginary, we obtain the system

ρ∗1ρ2 = ωρ1 + d1ρ1,xx − d1ρ1(θx)2 + V1(x)ρ1 (3)

ρ21 = σρ2 + d2ρ2,xx − 4d2ρ2(θx)2 + V2(x)ρ2

Wj(x)ρ2j = −jdj(ρ2jθx)x

for j ∈ {1, 2}.

III. SOLUTIONS IN TERMS OF THE CNOIDAL FUNCTION

We begin by writing ρ1,2 = F1,2(y) and θx = G(y) for y = cn(rx, k). This gives the system

F ∗1 (y)F2(y) = ωF1(y) + d1r
2Γ1(y)− d1F1(y)G2(y) + V1(x)F1(y) (4)

F 2
1 (y) = σF2(y) + d2r

2Γ2(y)− 4d2F2(y)G2(y) + V2(x)F2(y)

Wj(x)Fj(y) = jrdjdn(rx, k)sn(rx, k)
(
2F ′j(y)G(y) +G′(y)Fj(y)

)
for

Γj(y) = y(2k2 − 1− 2k2y2)F ′j(y) + (1− y2)(k2y2 + 1− k2)F ′′j (y) (5)

with j ∈ {1, 2} and where the primes denote differentiation with respect to y. Notice that by writing (4) in terms
of both x and y = cn(rx, k) we avoid restrictions on the domain which would be applicable if we composed with an
inverse function.

To find exact solutions, we apply the reverse engineering approach [28, 49]; this type of technique was applied much
earlier in order to obtain exact traveling wave solutions in dynamical lattices [40]. Our general strategy is to first
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specify the form of the functions F1,2(y), G(y) and then use (4) to solve for appropriate potentials V1,2(x),W1,2(x).
Thus, we rewrite the above equations as:

V1(x) =
F ∗1 (y)

F1(y)
F2(y)− d1r2

Γ1(y)

F1(y)
+ d1G

2(y)− ω (6)

V2(x) =
F 2
1 (y)− d2r2Γ2(y)

F2(y)
+ 4d2G

2(y)− σ

Wj(x) = jrdjdn(rx, k)sn(rx, k)

(
2
F ′j(y)G(y)

Fj(y)
+G′(y)

)
for y = cn(rx, k) and j ∈ {1, 2}. In each of the following subsections we make specific choices of F1,2 and G in
such a way that the resulting potentials V1,2, W1,2 in (6) do not contain terms with denominators (that may lead to
singularities) and they also obey the requirements of PT -symmetry (V1,2 even functions of x and W1,2 odd functions
of x). In other words, we require at least that the conditions

F1(y) | Γ1(y) (7)

F2(y) |
(
F 2
1 (y)− d2r2Γ2(y)

)
(8)

Fj(y) | F ′j(y)G(y) (9)

for j = 1, 2 are met for any choices of F1,2, G that we specify.

A. Polynomial Functions

Consider F1,2(y) in the form of generalized polynomials in y = cn(rx, k)

F1(y) = i{0,1}
k1∑

n=s1

Cny
n, F2(y) =

k2∑
m=s2

Dmy
m (10)

with coefficients Cn, Dm ∈ R, integer indexing bounds s1, s2, k1, k2 ≥ 0 with k1 > s1, k2 > s2, and Cs1 , Ck1 , Ds2 , Dk2 6=
0. Notice that we restrict our attention here to polynomials with at least two terms. The case of a monomial type
solution will be included in the next section where we consider a more general class of power functions. Recall that,
in the derivation of (3), ρ1 is required to be either real or purely imaginary. To show this in (10) we have included
an optional multiple of i in the definition of F1. In the following subsections we outline the process of solving for
V1,2,W1,2. We separate into two cases which are convenient based on the resulting maximal power of the polynomial
conditions (7)-(8).

1. Cnoidal parameter k 6= 0

To proceed in solving for V1(x) using (6) and assuming (10) we must satisfy condition (7). That is, we must have
that F1(y) is a factor of the polynomial Γ1(y). For k 6= 0, Γ1(y) will have maximal power k1 + 2 so that (7) amounts
to the condition

k1+2∑
n=s1−2

(
(n+ 2)(n+ 1)(1− k2)Cn+2 + n2(2k2 − 1)Cn − (n− 2)(n− 1)k2Cn−2

)
yn = (α1y

2 + β1y + γ1)

k1∑
n=s1

Cny
n

(11)
for some α1, β1, γ1 ∈ R with α1 6= 0. For convenience we use the convention that Cj = 0 for any index j 6∈ {s1, . . . , k1}.
Equating the coefficients of (11) then gives(

n2(2k2 − 1)− γ1
)
Cn =

(
α1 + (n− 2)(n− 1)k2

)
Cn−2 + β1Cn−1 − (n+ 2)(n+ 1)(1− k2)Cn+2 (12)

α1 = −k1(k1 + 1)k2, s1(s1 − 1)(1− k2) = 0, (s1 + 1)s1(1− k2)Cs1+1 = 0

where the first equation is a recursion relation that holds for n ∈ {s1, . . . , k1 + 1} and the latter three equations are
obtained from equating the coefficients of the yk1+2, ys1−2, ys1−1 terms in (11), respectively. Note that the latter
equations have made use of the conditions Ck1 , Cs1 6= 0 and Cj = 0 for j 6∈ {s1, . . . , k1}.
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From the first equation of the latter three in (12), we now have that the coefficient α1 is determined by the highest
degree chosen for F1. The latter two equations in (12) then give us a starting point for finding more specific solutions.
That is, we can look for solutions with k = 1 in terms of cn(rx, 1) = sech(rx) and these latter two equations are
satisfied. Alternatively, we can look for solutions with k 6= 1 in which case the latter equations of (12) give that either
s1 = 0 so that the first term in the polynomial F1 is required to be a constant, or the first term is required to be
of degree s1 = 1 with coefficient Cs1+1 = C2 = 0. We will proceed here to outline the general solution for cnoidal
parameter k 6= 0. Later towards the end of this section we will focus primarily on k = 1 for the special case where
F1,2 are quadratic polynomials.

The recursive equations in (12) give us k1−s1+2 conditions for the k1−s1+3 constants {β1, γ1, Cs1 , Cs1+1, ..., Ck1}.
Later we will choose β1 and then use conditions (12) to solve for the coefficients of F1 and also γ1. Now that (7) is
satisfied by imposing (12), we have V1(x) via (6) as

V1(x) = ±F2(y)− d1r2(α1y
2 + β1y + γ1) + d1G

2(y)− ω (13)

with y = cn(rx, k) as usual. The plus sign in (13) applies to F1 real (using i0 = 1 in (10)) and the minus sign applies
to F1 purely complex (using i1 = i in (10)). Since the cnoidal function is an even function of x, V1(x) is an even
function of x so that this potential is compatible with PT -symmetry. Notice that V1(x) may not be a polynomial if
G2 is not a polynomial. In Section IV, we will specify choices for the G function and we will choose ω so that V1 → 0
as x→∞.

To solve for V2(x) we must have that F2(y) statisfies condition (8). One way to proceed is to require that

F 2
1 (y) = F2(y)P (y) (14)

where P (y) is a polynomial in y. Then, similar to the F1 case, we may also impose that F2(y) | Γ2(y) so that
Γ2(y) = (α2y

2 +β2y+ γ2)F2(y) for some constants α2, β2, γ2 ∈ R with α2 6= 0. Using a similar procedure as in the F1

case, now equations (12) must hold after performing the replacements n → m, C → D and in the subscripts 1 → 2.
Using this F2-version of equation (12), now the coefficient α2 is determined by the highest degree of the polynomial
F2. Since k 6= 1 here the F2-version of the latter two equations in (12) either requires us to take s2 = 0 so that the
first term in the polynomial F2 is required to be a constant, or alternately the first term is required to be of degree
s2 = 1 with coefficient Cs2+1 = C2 = 0. Also, the k2 − s2 + 3 constants {β2, γ2, Ds2 , Ds2+1, ..., Dk2} are required to
satisfy the same recursive k2 − s2 + 2 equations in (12) but with appropriate F2-version described above.

The most obvious choice in order to satisfy both (14) and the F2-version of (12) is to take F2(y), F1(y) as scalar
multiples of each other. In other words,

F2(y) = i{0,1}AF1(y) and P (y) =
F1(y)

i{0,1}A
(15)

for some A ∈ R6=0. Since ρ2, F2 are required to be real-valued the multiple of i in front is included only if it’s included
in the definition of F1 in (10). Now we have the real-valued potential function

V2(x) =
F1(y)

i{0,1}A
− d2r2(α2y

2 + β2y + γ2) + 4d2G
2(y)− σ (16)

where later in specific examples we will choose σ to be such that V2 → 0 as x→∞.
Next we want to determine an appropriate form for the function θx = G(y) ∈ R with y = cn(rx, k) that will satisfy

(9). Since F1, F2 have been chosen to be scalar multiples of each other, if (9) holds for j = 1 then it holds for j = 2.
So, we take

G(y) = T (y)F1(y) (17)

for a function T (y) and this gives via (6)

Wj(x) = jrdjdn(rx, k)sn(rx, k) (2F ′1(y)T (y) +G′(y)) (18)

for y = cn(rx, k) and j ∈ {1, 2}. Since sn(rx, k) is an odd function of x and dn(rx, k) is even, W1,W2 are odd
functions of x as required by PT -symmetry as long as the quantity 2F ′1(cn(rx, k))T (cn(rx, k)) + G′(cn(rx, k)) is an
even function of x. This is reasonable since cn(rx, k) is an even function of x.

Now we have a complete solution of (4) given by F1,2 in (10), V1,2 in (13) and (16), and W1,2 in (18), all under the
conditions seen in (12), (15), (17). To be more explicit, let us focus on details in the case where F1 is a quadratic
function and k = 1 so that y = sech(rx). Consider F1 of the form F1 = C0 +C1y+C2y

2 for C0, C2 6= 0. Then s1 = 0
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and k1 = 2 so that the latter two equations in (12) are satisfied. Now the remaining equations in (12) give α1 = −6,
γ1 = 0 and the conditions

C1 = β1C0, C2 =
−6C0 + β1C1

4
, C3 = 0 =

(α1 + 2)C1 + β1C2

9
, (19)

that we may solve for the four constants β1, C0, C1, C2.
In the case that β1 = 0, (19) gives C1 = 0 and C2 = −3C0/2 so that combining with (15) we have

F1(y) = C0(1− 3

2
y2), F2(y) = AF1(y). (20)

Proceeding with G(y) as in (17) for any function T (y) we have by (13), (16) and (18) that

V1(x) = AC0(1− 3

2
y2) + 6d1r

2y2 + d1G
2(y)− ω (21)

V2(x) =
C0

A
(1− 3

2
y2) + 6d2r

2y2 + 4d2G
2(y)− σ

Wj(x) = jrdjtanh(rx)sech(rx) (−6C0yT (y) +G′(y)) .

Equations (20)-(21) give us a solution that we will refer to as the dark-dark soliton case. In Section IV we show the
dark soliton shape, analyze the stability of the dark-dark soliton, and show plots over the propagation variable z for
a specific choice of the function G and other parameters.

We also consider here the case of β1 6= 0, for which (19) gives two possibilities for the coefficients of the polynomial
F1. Then combined with (15) we have

F1(y) = C0(1±
√

22y + 4y2), F2(y) = AF1(y). (22)

Letting G(y) be as in (17) for some T (y) function we then obtain

V1(x) = AC0(1±
√

22y + 4y2)− d1r2(±
√

22y − 6y2) + d1G
2(y)− ω (23)

V2(x) =
C0

A
(1±

√
22y + 4y2)− d2r2(±

√
22y − 6y2) + 4d2G

2(y)− σ

Wj(x) = jrdjtanh(rx)sech(rx)
(

2C0(8y ±
√

22)T (y) +G′(y)
)

for j ∈ {1, 2}. These solutions are quite interesting in their own right, as the one with the + sign corresponds to
an antidark-antidark soliton setting of a pair of bright solitary waves on top of a non-vanishing background. On the
other hand, the solution with the − sign is especially structurally complex, resembling a conglomeration of multiple
–more specifically of 4– dark solitons.

2. Cnoidal parameter k = 0 and y = cos(rx)

For F1,2 of the polynomial form (10) now consider the case of k = 0, or y = cos(rx). In solving for V1(x)
the polynomial condition analogous to (11) has maximal power k1. This roughly makes sense because when we
differentiate a cos(rx) or sin(rx) the result is a function of the same overall power (in contrast to derivatives of
sech(rx) and tanh(rx), for example). The analogue of (11) in this case is

k1∑
n=s1−2

(
(n+ 2)(n+ 1)Cn+2 − n2Cn

)
yn = γ1

k1∑
n=s1

Cny
n (24)

for γ1 6= 0. Equating coefficients we get

Cn =
(n+ 2)(n+ 1)Cn+2

n2 + γ1
for n ∈ {s1, . . . , k1 − 1}

γ1 = −k21, s1(s1 − 1) = 0, (s1 + 1)s1Cs1+1 = 0 (25)

where the latter three equations came from equating the coefficients of the yk1 , ys1−2, ys1−1 terms in (24), respectively.
As before, the first equation of the latter three in (25) shows that the coefficient γ1 is determined in terms of the
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maximal power k1 of the polynomial F1. The latter two equations in (25) then show that either s1 = 0 so F1 must
have a constant term, or alternatively the first term is required to be of degree s1 = 1 with coefficient Cs1+1 = C2 = 0.
The remaining recursive equations in (25) then give us k1 − s1 conditions for k1 − s1 + 1 unknowns {Cs1 , . . . , Ck1}.
Choosing one of these coefficients will lead us to find the others. In solving for V2 we have similar conditions to (25)
for the constants γ2 6= 0 and {Ds2 , . . . , Dk2} where in (25) one should replace n → m, C → D and in the subscripts
1 → 2. We proceed in a similar way as in the k 6= 0 case above, assuming the forms of F2, G as seen in (14), (15),
(17) and finally we have

V1(x) = ±F2(y)− d1r2γ1 + d1G
2(y)− ω (26)

V2(x) =
F1(y)

i{0,1}A
− d2r2γ2 + 4d2G

2(y)− σ

Wj(x) = jrdj sin(rx) (2F ′1(y)T (y) +G′(y))

for j ∈ {1, 2}.
Let us focus on the details of the quadratic case where F1 = C0 + C1y + C2y

2 for C0, C2 6= 0 and s1 = 0, k1 = 2.
(25) then gives γ1 = −4, C0 = −C2/2, and C1 = 0. Then, we have

F1 = C0(1− 2y2), F2(y) = AF1(y). (27)

We also have γ2 = −4 by the V2 analogue of (25) (see description above). Proceeding with G(y) as in (17) for some
function T (y) we have

V1(x) = AC0(1− 2y2) + 4d1r
2 + d1G

2(y)− ω (28)

V2(x) =
C0

A
(1− 2y2) + 4d2r

2 + 4d2G
2(y)− σ

Wj(x) = jrdj sin(rx)(−8C0yT (y) +G′(y))

for j ∈ {1, 2}. Equations (27)-(28) give us a solution that we call the quadratic oscillatory case. In Section IV we
show the shape of the solution, analyze the stability, and explore its dynamics over the evolution variable (z).

B. Power Functions

Next we take F1(y) and F2(y) to be power functions

F1(y) = i{0,1}Cyp1 , F2(y) = Dyp2 (29)

for p1, p2 ≥ 0 and C,D 6= 0. This special case considerably simplifies the relevant compatibility conditions. In
particular, substituting (29) into (6) and examining conditions (7)-(8) we require that either k = 1 and 2p1 ≥ p2, or
p1 = p2 = 1.

1. Cnoidal parameter k = 1 and y = sech(rx)

In the case of k = 1 we can have non-integer p1 and p2; this is in contrast to the polynomial case. For this case, we
apply (6) and find

V1(x) = ±Dyp2 − d1r2p1(1− 2y2)− d1r2p1(p1 − 1)(1− y2) + d1G
2(y)− ω (30)

V2(x) = ±C
2

D
y2p1−p2 − d2r2p2(1− 2y2)− d2r2p2(p2 − 1)(1− y2) + 4d2G

2(y)− σ

Wj(x) = jrdj tanh(rx) (2pjG(y) + yG′(y))

for j ∈ {1, 2}. As long as (2pjG(y) + yG′(y)) are even functions in x, which is easy to choose since y = sech(rx) is
an even function of x, then W1 and W2 are odd and compatible with the PT symmetry criterion. We refer to the
solutions given in (29) and (30) as the bright-bright soliton case. In section IV we show the wave’s shape, analyze its
stability and explore its direct numerical evolution. Note that the case p1 = p2 = 2 corresponds to solitonic solutions
found by Karamzin-Sukhorukov in [41], and 2p1 = p2 = 2 to solitonic solutions found by Menyuk et al. [44].
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2. Powers p1 = p2 = 1

In the case p1 = p2 = 1, we have

V1(x) = ±Dy − d1r2(2k2 − 1− 2k2y2) + d1G
2(y)− ω (31)

V2(x) = ±C
2

D
y − d2r2(2k2 − 1− 2k2y2) + 4d2G

2(y)− σ

Wj(x) = jrdjdc(rx, k)sn(rx, k) (2G(y) + yG′(y))

where j ∈ {1, 2}. Similar to the previous section, we only need to choose a function G(y) so that (2G(y) + yG′(y)) is
an even function of x in order to satisfy the PT symmetry criterion. Equations (29) and (31) give us a solution we
call the linear oscillatory case. More details are included in Section IV.

C. Other solutions

Here, we introduce a possibility which is distinct from the previous ones as follows. We introduce F1(y) and F2(y)
in the form

F1 = iAyp(1− y2)1/2, F2 = Byq (32)

for p, q ≥ 0 i.e., a non-polynomial form. By (6) and examining conditions (7)-(8) we find that we must have
p(p − 1)(1 − k2) = q(q − 1)(1 − k2) = 0 and q ≤ 2p. That is, we require that either k = 1 with q ≤ 2p, or
p = q = 1, or p = q = 0. We will focus on the former two cases. As for W1,2 in (6) and condition (9), we find that
G(y) must be in the form

G(y) = Cya(1− y2)b (33)

where a, b ∈ N.

1. Cnoidal parameter k = 1 and y = sech(rx)

In the k = 1 case, we have the solutions

ω = −d1r2p2, V1(x) = −Byq + d1r
2y2(p+ 1)(p+ 2) + d1G

2(y) (34)

σ = −d2r2q2, V2(x) = −A
2

B
y2p−q(1− y2) + d2r

2y2q(q + 1) + 4d2G
2(y)

with q ≤ 2p and G(y) in the form of (33). Since for this family of solutions the form of G is specified, it is immediately
clear which choices of ω, σ will give V1,2 → 0 as x → ∞. In contrast to previous sections, those choices have been
made in (34). Also, we have by (6)

W1 = Crd1sech(rx) tanh(rx)
(
ya−1(1− y2)b(a+ 2p)− 2ya+1(1− y2)b−1(b+ 1)

)
W2 = 2Crd2 tanh(rx)

(
ya(1− y2)b(a+ 2q)− 2bya+2(1− y2)b−1

)
. (35)

Equations (32)-(35) give us a solution that bears a bright soliton coupled with a dark-in-bright soliton. The latter
involves a pair of bright solitary waves coupled in a bound state anti-symmetric (i.e., they bear a phase difference
of π) configuration; another example of this form has been previously reported e.g. in [50]. More details on the
propagation of this solution and its stability are included in Section IV.

2. Powers p = q = 1

In the case where p = q = 1, we obtain

ω = −d1r2(5k2 − 4), V1(x) = −By + 6d1r
2k2y2 + d1G

2(y) (36)

σ = −d2r2(2k2 − 1), V2(x) = −A
2

B
y(1− y2) + 2d2r

2k2y2 + 4d2G
2(y).
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Again here since G is known we have made choices of ω, σ reflected in (36) so that V1,2 → 0 as x → ∞. With G(y)
as in (33) we have

W1 = rCd1sn(rx, k)dn(rx, k)
(
ya−1(1− y2)b(a+ 2)− 2ya+1(1− y2)b−1(b+ 1)

)
W2 = 2rCd2dc(rx, k)sn(rx, k)

(
ya(1− y2)b(a+ 2)− 2bya+2(1− y2)b−1

)
. (37)

We will refer to the solution in (32)-(33) and (36)-(37) as the non-polynomial oscillatory solution. In the special case
of k = 1, this reverts to a waveform of the same type as the one examined above (namely, a bright solitary wave
coupled to a dark-in-bright one). More details are provided on this solution in Section IV.

IV. STABILITY AND DYNAMICS OF THE SOLUTIONS

To study the stability of solutions we will first present the corresponding linear stability analysis framework. We
begin by writing

u = (U(x) + a(x)eλz + b(x)∗eλ
∗z)e−iωz, v = (V (x) + c(x)eλz + d(x)∗eλ

∗z)e−2iωz (38)

where U(x), V (x) are the exact solutions of (2) found in Section III. Substituting (38) into the system (1) we obtain
in the first order set of equations

i

ω + L1 −V −U∗ 0
V ∗ −ω − L∗1 0 U
−2U 0 2ω + κ+ L2 0

0 2U∗ 0 −2ω − κ− L∗2


abc
d

 = λ

abc
d

 , (39)

where the operators L1,2 are Li = di∂xx + Vi(x) + iWi(x) for i ∈ {1, 2}. If, for a given solution, the corresponding
eigenvalue λ has a positive real part then the solution is unstable as is readily seen in (38); otherwise the solution is
stable.

In the following subsections, we will apply the linear stability analysis and show the results of numerical propagation
of the solutions we found in Section III according to (1) using a standard explicit 4th order Runge-Kutta code. We
focus on the three solitonic solutions derived in Section III, of dark-dark, bright-bright and also bright coupled with
the dark-in-bright waveforms, and also on the three oscillatory solutions derived in Section III in each of the quadratic,
linear and non-polynomial cases considered. In each subsection, we start by specifying G(y) and other parameters
as is necessary. We find that in all cases the solutions are unstable with increasing strength of instability as the
amplitude parameters increase. Each example we consider has various regions of weak and strong instability as is
discussed in the following subsections.

Notice also that the equation

d

dz
P (z) = −2

∫ (
W1(x)|u(x, z)|2 +W2(x)|v(x, z)|2

)
dx (40)

can be derived from the system (1) where the combined power function P (z) is defined as P (z) =∫ (
|u(x, z)|2 + |v(x, z)|2

)
dx. Equation (40) acts as a numerical check of all of the simulations performed in this

section.

A. Solitonic Solutions (k = 1)

1. Dark-dark solitary wave

For the solutions presented in Section III A in equations (20)-(21) we additionally make the choice here of G(y) =
KF1(y) with K ∈ R. Also choosing ω, σ so that V1,2 → 0 as x→∞ gives

ω = AC0 + d1K
2, V1 = AC0(1− 3

2
y2) + 6d1r

2y2 + d1K
2(1− 3

2
y2)2 − ω (41)

σ =
C0

A
+ 4d2K

2, V2 =
C0

A
(1− 3

2
y2) + 6d2r

2y2 + 4d2K
2(1− 3

2
y2)2 − σ

Wj = −9jrdjK tanh(rx)sech2(rx). (42)
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FIG. 1: This figure shows stability analysis and time propagation plots for the dark-dark soliton case. The parameters
d1 = d2 = 0.1, r = 1 and K = 0.05 are fixed in every plot. The contour plot in the upper left depicts max(Re(λ)) as a function
of amplitude parameters C0 and AC0 of the F1, F2 functions. The other seven plots correspond to the point (1, 1) in the dim
but non-zero region of the contour plot. At this point we have max(Re(λ)) ≈ 0.5201. In the left two plots of the bottom
row, we show the magnitudes of the real and imaginary parts of the potential functions: |V1(x)|, |V2(x)| and |W1(x)|, |W2(x)|
respectively. In the top two plots of the center column, we show the magnitudes of the eigenvectors |a(x)| (blue), |c(x)| (green)
and the eigenvalues λ in the complex plane that correspond to the stationary solutions seen in the top right panel. The right
column shows the magnitudes of the solution at t = 0 and at later times. Here we find that the unstable solution loses its dark
soliton shape over time, with the destabilization manifesting across much of the x axis.

We present the stability analysis of this family of solutions in Figure 1. We find that as the amplitudes C0, AC0 of the
F1, F2 functions, respectively, increase the solution becomes increasingly unstable. The panels of time propagation
plots in Figure 1 show that over the dynamical evolution, these unstable dark soliton solutions will not maintain
the dark soliton shape. Instead, the wide range of unstable eigenmodes in the system will induce a form of “lattice
turbulence” whereby the end dynamical result will appear to bear no clear solitonic (or other) structure.

2. Antidark-antidark solitary wave

For the solutions presented in Section III A in equations (22)-(23) with the + sign, we take G(y) = KF1(y) with
K ∈ R. Also choosing ω, σ so that V1,2 → 0 as x→∞ gives

ω = AC0 + d1K
2, V1 = AC0(

√
22y + 4y2)− d1r2(

√
22y − 6y2) + d1K

2(1 +
√

22y + 4y2)2 − d1K2 (43)

σ =
C0

A
+ 4d2K

2, V2 =
C0

A
(
√

22y + 4y2)− d2r2(
√

22y − 6y2) + 4d2K
2(1 +

√
22y + 4y2)2 − 4d2K

2

Wj = 3jrdjKtanh(rx)sech(rx)
(√

22 + 8sech(rx)
)
. (44)

We present the stability analysis of this family of solutions in Figure 2. We find that as the amplitudes C0, AC0

of the F1, F2 functions, respectively, increase the solution becomes increasingly unstable with a pattern similar to
the previous example. However, here the eigenvectors are localized. The panels of time propagation plots in Figure
2 show that over the dynamical evolution, these soliton solutions will not maintain the soliton shape. Instead, the
turbelence occurs near the center of the lattice, close to the solution’s peak. The instability is similar over time to
what is observed in the dark-in-bright example below.
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FIG. 2: This figure shows stability analysis and time propagation plots for the antidark-antidark soliton case. The placement
of the figures follows the same pattern as that of Figure 1. The parameters d1 = d2 = 0.1, r = 1 and K = 0.05 are fixed in
every plot. The point C = D = 0.5 from the upper left contour plot corresponds to max(Re(λ)) ≈ 1.5547, and the other seven
plots show details about these amplitude values. Here we find that the unstable solution loses its soliton shape in a way that
is similar to the dark-in-bright example below in Figure 5.

3. Multiple dark solitary wave

For the solutions presented in Section III A in equations (22)-(23) with the − sign, we take G(y) = KF1(y) with
K ∈ R. Also choosing ω, σ so that V1,2 → 0 as x→∞ gives

ω = AC0 + d1K
2, V1 = AC0(−

√
22y + 4y2) + d1r

2(
√

22y + 6y2) + d1K
2(1−

√
22y + 4y2)2 − d1K2 (45)

σ =
C0

A
+ 4d2K

2, V2 =
C0

A
(−
√

22y + 4y2) + d2r
2(
√

22y + 6y2) + 4d2K
2(1−

√
22y + 4y2)2 − 4d2K

2

Wj = 3jrdjKtanh(rx)sech(rx)
(
−
√

22 + 8sech(rx)
)
. (46)

We present the stability analysis of this family of solutions in Figure 3. We find that as the amplitudes C0, AC0 of
the F1, F2 functions, respectively, increase the solution becomes increasingly unstable with a pattern similar to the
previous example. The panels of time propagation plots in Figure 3 show that over the dynamical evolution, these
soliton solutions will not maintain the dark soliton shape. Instead, the turbelence occurs across the x axis. The
instability is similar over time to what is observed in the first dark-dark example above.

4. Bright-Bright solitary wave

For the solutions presented in III B in equations (29) and (30) we simply choose G(y) = Ky with K ∈ R and we
take ω, σ to be such that V1,2 → 0 as x→∞. This gives the solution

ω = −d1r2p12, V1 = ±Dyp2 + d1K
2y2 + d1r

2p1(p1 + 1)y2, W1 = rd1K(2p1 + 1)sech(rx)tanh(rx) (47)

σ = −d2r2p22, V2 = ±C
2

D
y2p1−p2 + 4d2K

2y2 + d2r
2p2(p2 + 1)y2, W2 = 2rd2K(2p2 + 1)sech(rx)tanh(rx).

In Figure 4 we show the stability analysis for selected parameters. Similar to the dark-dark case, the solutions do
not maintain their shape as time progresses and the strength of instability increases as both the multipliers C and
D in (29) increase. Here, it is clear that the instability results in the breaking of the parity symmetry, leading to a
symmetry-breaking pattern.
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FIG. 3: This figure shows stability analysis and time propagation plots for the multiple dark soliton case. The placement of
the figures follows the same pattern as that of Figure 1. The parameters d1 = d2 = 0.1, r = 1 and K = 0.05 are fixed in every
plot. The point C = D = 0.5 from the upper left contour plot corresponds to max(Re(λ)) ≈ 0.5277, and the other seven plots
show details about these amplitude values. Here we find that the unstable solution loses its dark soliton shape similar to the
first dark-dark example.
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FIG. 4: This figure shows stability analysis and time propagation plots for the bright-bright soliton case with p = q = 1. The
placement of the figures follows the same pattern as that of Figure 1. Here the parameters common to all plots are d1 = d2 = 1,
r = 1 and K = 0.1. The point C = 0.5, D = 3 from the upper left contour plot corresponds to max(Re(λ)) ≈ 1.7055 and more
details regarding these specific amplitude parameters are shown in the other seven plots. Here we find that as time progresses
the solution loses its soliton shape with turbulent, symmetry-breaking behaviour occurring first nearby the central peak and
then leaking outward across the x axis.



12

−50 0 50
0

0.1

|a
(x

)|,
|c

(x
)|

x

−0.5 0 0.5
−20

0

20

Re(h)

Im
(h

)
−50 0 50

0

0.01

|W
1(x

)|,
|W

2(x
)|

x
−50 0 50

0

2

4

|V
1(x

)|,
|V

2(x
)|

x

−50 0 50
0

2

4

|u
(x

,0
)|

|v
(x

,0
)|

x

−50 0 50
0

2

4

|u
(x

,1
0)

|
|v

(x
,1

0)
|

x

−50 0 50
0

5

|u
(x

,4
0)

|
|v

(x
,4

0)
|

x

B

A

 

 

0 5

0

2

4

6

8

0.5

1

1.5

2

FIG. 5: This figure shows stability analysis and time propagation plots for the bright and dark-in-bright soliton case. The
placement of the figures follows the same pattern as that of Figure 1. Here the parameters common to all plots are d1 = d2 = 0.1,
r = 0.2 and K = 0.05. The point C = 0.5, D = 3 from the upper left contour plot corresponds to max(Re(λ)) ≈ 0.2778 and
more details regarding these specific amplitude parameters are shown in the other seven plots. Here we find that as time
progresses the solution loses its soliton shape completely.

5. Bright and Dark-in-Bright solitary Wave

For the solutions presented in Section III C in equations (32)-(35) we choose G(y) = Ky(1− y2) and obtain

ω = −d1r2p2, V1 = −Byq + d1r
2y2(p+ 1)(p+ 2) + d1K

2y2(1− y2)2

σ = −d2r2q2, V2 = −A
2

B
y2p−q(1− y2) + d2r

2y2q(q + 1) + 4d2K
2y2(1− y2)2

W1 = Krd1sech(rx) tanh(rx)(1 + 2p− (5 + 2p)y2)

W2 = 2Krd2sech(rx) tanh(rx)(1 + 2q − (3 + 2q)y2)

by choosing ω, σ as usual. The stability analysis is presented in Figure 5. Similar to the quadratic case, the strength
of instability increases as A increases and as B increases. The propagation plots in Figure 5 show that the peak
destabilizes and the amplitude spreads out over the x axis while maintaining some comparative concentration at the
center of the axis. Furthermore, a symmetry-breaking feature appears once again to be amplifed and be distinctly
observable at the end of the simulation’s reporting horizon.

B. Oscillatory Solutions (k = 0)

1. Quadratic oscillatory solution

For the solutions in Section III A in equations (27)-(28) we take G(y) = KF1(y) similar to the dark-dark soliton
case, obtaining the following solutions

ω = AC0 + d1K
2 + 4d1r

2, V1 = −2AC0y
2 + d1K

2(1− 2y2)2 − d1K2 (48)

σ =
C0

A
+ 4d2K

2 + 4d2r
2, V2 = −2

C0

A
y2 + 4d2K

2(1− 2y2)2 − 4d2K
2

Wj = −12jrdjK cos(rx) sin(rx)

for j ∈ {1, 2}. The stability graph in Figure 6 has similar features to the one in Figure 1, showing that the changes
in stability strength of the system across the amplitudes C0, AC0 grid are similar despite very different k values.
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FIG. 6: This figure shows stability analysis and time propagation plots for the quadratic oscillatory case. The placement of the
figures follows the same pattern as that of Figure 1. Here the parameters common to all plots are d1 = d2 = 0.1, r = 0.5 and
K = 0.05. The point C = 0.5, D = 3 from the upper left contour plot corresponds to max(Re(λ)) ≈ 2.3602 and more details
regarding these specific amplitude parameters are shown in the other seven plots. Here we find that as time progresses the
instability of the solution appears across the x axis at near regular intervals, close to the periodicity of the stationary solution.
However, the solution over time does not remain truly periodic.

In the current oscillatory function case, we observe that the waves will not maintain their original shapes, with the
most apparent distortions located at near-periodic points along the x axis. These distortions will not only break the
periodicity of the structure but they will also lead (within some lattice periods of the solution) into the turbulent
dynamical evolution discussed previously.

2. Linear oscillatory solution

For the solutions in Section III B in equations (29) and (31) we take G(y) = Ky and obtain the solution

ω = d1r
2, V1 = ±Dy + d1K

2y2, W1 = 3rd1K sin(rx) (49)

σ = d2r
2, V2 = ±C

2

D
y + 4d2K

2y2, W2 = 6rd2K sin(rx).

The stability graph in this linear function case for k = 0 is presented in Figure 7. Here we see that the pattern of
the strength of the instability is more similar to that of the quadratic functions than it is to the linear functions case
with k = 1. We can see that the strength of instability increases as C,D increase. The propagation plots in Figure 7
show that over time the wave loses its original shape at points across the x axis. Here the instability is induced by
eigenvectors which also extend across the x axis and which lead to a breakup of the periodicity of the original pattern.

3. Other oscillatory solution

For the solutions in Section III C in equations (32)-(33) and (36)-(37) we choose G(y) = Ky(1 − y2), p = q = 1,
and obtain

ω = 4d1r
2, V1 = −By + d1K

2y2(1− y2)2 (50)

σ = d2r
2, V2 = −A

2

B
y(1− y2) + 4d2K

2y2(1− y2)2

W1 = Krd1 sin(rx)
(
3− 7 cos2(rx)

)
W2 = 2Krd2 sin(rx)

(
3− 5 cos2(rx)

)
.
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FIG. 7: This figure shows stability analysis and time propagation plots for the linear oscillatory case. The placement of the
figures follows the same pattern as that of Figure 1. Here the parameters common to all plots are d1 = d2 = 0.35, r = 0.25 and
K = 0.1. The point C = 0.5, D = 3 from the upper left contour plot corresponds to max(Re(λ)) ≈ 2.6630 and more details
regarding these specific amplitude parameters are shown in the other seven plots. Similar to the quadratic oscillatory case,
here we find that as time progresses the solution does not remain truly periodic.
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FIG. 8: This figure shows stability analysis and time propagation plots for the other oscillatory case. The placement of the
figures follows the same pattern as that of Figure 1. Here the parameters common to all plots are d1 = d2 = 0.1, r = 0.25 and
K = 0.05. The point C = 0.5, D = 3 from the upper left contour plot corresponds to max(Re(λ)) ≈ 2.8819 and more details
regarding these specific amplitude parameters are shown in the other seven plots. Here we find that as time progresses the
instability of the solution appears across the x axis at near regular intervals, close to the periodicity of the stationary solution.
The instability is similar to the other oscillatory cases and again leads to a periodicity breakup.

The stability graph on the left of Figure 8 shows that the strength of instability increases as B increases, yet it appears
to be roughly independent of A. The propagation panels show the distortion of the original solution occurring over
time at points across the x axis corresponding to an eigenvector that is also spread across x.
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V. CONCLUSION

In the present work, we have explored both solitary and more broadly periodic (including cnoidal and even their
trigonometric limit of k = 0) solutions of the PT -symmetric problem with quadratic nonlinearity. A reverse engineer-
ing approach was adopted herein attempting to identify even real potentials and odd imaginary ones that would be
compatible with specific cnoidal solutions (and their hyperbolic limits in the case of k = 1, as well as their trigono-
metric ones in the case of k = 0). It was shown that necessitating the existence of such solutions generally leads
to a number of plausible requirements (for the absence of singularities) that can, in turn, be used to identify wide
parametric families of potentials with the desired solutions. Relevant waveforms included, but were arguably not
limited to dark-dark or bright-bright solitary waves and more exotic generalizations thereof such as the bright wave
coupled to a dark-in-bright structure. Oscillatory variants of such hyperbolic limit solutions were identified as well.

Naturally, numerous directions of future research arise from the present considerations. Offering a systematic similar
approach could be of interest also in the case of other nonlinearities. From a stability perspective, it would appear
interesting to identify case examples with stable isolated parameter values or, more promisingly, wide parameter
ranges, as the solutions considered here seemed to be largely unstable (with bands of unstable modes) resulting in
turbulent dynamics in many of our dynamical examples. Finally, exploring two-dimensional generalizations of the
relevant PT -symmetric systems is of particular interest in its own right both at the level of discrete systems (see e.g.
the plaquette considerations of [51]) and at that of continuum ones (see e.g. [9]); see also the recent work of [52]. Such
studies are currently in progress and will be reported in future publications.
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