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We consider a chain of torsionally-coupled, planar pendula shaken horizontally by an external
sinusoidal driver. It has been known that in such a system, theoretically modeled by the discrete sine-
Gordon equation, intrinsic localized modes, also known as discrete breathers, can exist. Recently, the
existence of multifrequency breathers via subharmonic driving has been theoretically proposed and
numerically illustrated by Xu et al. in Phys. Rev. E 90, 042921 (2014). In this paper, we verify
this prediction experimentally. Comparison of the experimental results to numerical simulations
with realistic system parameters (including a Floquet stability analysis), and wherever possible
to analytical results (e.g. for the subharmonic response of the single driven-damped pendulum),
yields good agreement. Finally, we report on period-1 and multifrequency edge breathers which
are localized at the open boundaries of the chain, for which we have again found good agreement
between experiments and numerical computations.

I. INTRODUCTION

Discrete breathers, also known as intrinsic localized
modes, appear widely in damped-driven oscillator sys-
tems [1, 2], and general conditions for their appearance
have been recently established theoretically [3]. Such
time-periodic and exponentially localized in space co-
herent structures have been observed experimentally in
a diverse range of nonlinear oscillator systems, includ-
ing Josephson junction arrays [4, 5], coupled antiferro-
magnetic layers [6], halide-bridged transition metal com-
plexes [7], micro-mechanical cantilever arrays [8, 9], elec-
trical transmission lines [10] and torsionally-coupled pen-
dula [11] among others [12–14]. They have also been ar-
gued to be of relevance to various biological problems in-
cluding dynamical models of the DNA double strand [15],
as well as more recently in protein loop propagation [16].
Many of the features of the discrete breather response are
generic across these wide-ranging experimental systems;
see e.g. [17]. However, the intrinsic properties of a single
oscillator (as well as, often times, the specific nature of
the coupling) may play a key role in the observed dy-
namics and the nature of the discrete breathers formed
in the different physical systems.

Inspired by this observation, recent work has revealed

that subharmonic resonances of a single oscillator (see
e.g. [18]) may be used to excite discrete breather for-
mation in an electrical lattice [19]. More recently, this
idea has been examined further in the context of a hor-
izontally shaken pendulum (which has long been known
to display a variety of subharmonic resonances [20]), and
the possibility of mixed-frequency breathers was identi-
fied in a pendulum chain [21]. These breathers exhibit
the remarkable response that while energy is localized
on a few pendula responding at a sub-harmonic of the
driving force, the pendula in the tails of the breather are
oscillating with the driving frequency. To the best of our
knowledge, these theoretically proposed and numerically
identified subharmonic breathers in the pendulum chain
have not yet been experimentally observed. This is one
of the key goals of the present work. More specifically, we
further investigate these mixed frequency breathers theo-
retically, and compute them numerically, exploring their
spectral and dynamical stability, identifying suitable fre-
quency intervals where they may be expected to persist.
We then go on to verify their existence by means of direct
experimental observations in a horizontally shaken chain
of torsionally-coupled pendula [11, 22, 23].
We also examine the role of breather location in the

dynamics and reveal that discrete breathers may be lo-
calized at the end of the pendulum chain. To the best
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of our knowledge this is the first time the existence of
such mechanical oscillator breather edge states has been
experimentally demonstrated. Nevertheless, it should be
noted that research interest in edge states has a long his-
tory in other fields (see e.g. [25] and references therein),
including manifestations in the form of electronic surface
waves at the edge of periodic crystals (Tamm states [25]),
optical surface modes in waveguide arrays [26], and more
recently surface breather solitons in graphene nanorib-
bons [27].

Our presentation of the relevant results below is struc-
tured as follows. In Section II, we present our theoretical
model and discuss its physical parameters (of relevance
to the experiment) for a horizontally shaken pendulum
chain. The relevant dynamical equation in the form of
a damped-driven discrete sine-Gordon system is closely
related to the driven-damped form of the famous Frenkel-
Kontorova model [24, 28]. In Section III, after theoreti-
cally, numerically and experimentally corroborating the
subharmonic response of a single pendulum, we seek sub-
harmonic solutions numerically and trace their paramet-
ric interval of stability. We are then able to show their
existence experimentally, both in the case of “bulk” sub-
harmonic breathers, as well as in the form of edge modes.
Finally, in Section IV, we summarize our findings and
present some possible directions for future study.

II. THE MODEL AND EXPERIMENTAL SETUP

The experimental setup is very similar to the one de-
scribed in detail in Ref. [23]. Each pendulum experi-
ences four distinct torques - gravitational, torsional, fric-
tional and driving torque. The driving torque arises due
to the horizontal shaking of the pendulum array by a
high-torque electric motor. The amplitude, A, of the
sinusoidal driving was fixed in the experiment, but the
frequency, f = ωd/(2π), was finely tunable (in 0.05 Hz
increments) and measured by magnetic sensing. Angles
were measured using a horizontal laser beam from a diode
laser attached to the frame of the pendulum array; this
beam is then periodically interrupted by the swinging
pendulum when properly aligned. This method gives an
estimated precision of about ±1 deg. An overhead web-
cam was also used to monitor and record the pendulum
motion.

As a result of the above contributions, the motion of
a single (uncoupled) pendulum is well described by the
equation,

θ̈ +
(γ1
I

)

θ̇ + ω2

0
sin θ + Fω2

d cos(ωdt) cos θ = 0, (1)

where I is the pendulum’s moment of inertia, I = ML2+
1

3
mL2, the driving strength is given by F = Aω2

0/g, and
ω0 is the pendulum’s natural frequency of oscillation with
ω2

0 = 1

I (mgL/2 +MgL). Experimentally, the number of
pendula is N = 19, L = 25.4cm, m = 13g, M = 14g,

γ1 = 500 g cm2/s, and A = 0.6cm. Pendula at the two
ends can oscillate freely (free boundary conditions).
If we add the torsional coupling to nearest-neighbor

pendula, i.e., in the presence of all four of the above
contributions, Eq. (1) becomes a system of differential
equations given by,

θ̈n + ω2

0
sin θn −

(

β

I

)

∆2θn +
(γ1
I

)

θ̇n

−
γ2
I
∆2θ̇n + Fω2

d cos(ωdt) cos θn = 0, (2)

where β is the torsional spring constant, and ∆2 rep-
resents the discrete Laplacian. We include an intersite
friction term (prefactor γ2) originating from the energy
dissipation due to the twisting of the springs [11]. Here,
we assume that nonlinearity in the undriven array enters
only through the sine-function in the gravitational term,
but not through the coupling springs. This assump-
tion seems to be experimentally justified for angle differ-
ences of up to 90 deg, but it may not work well beyond
that. Experimental values of coefficients are β = 0.0083
Nm/rad and γ2 = 70 g cm2/s. These equations can be
non-dimensionalized by introducing the following param-
eters ω = ωd/ω0, C = β/Iω2

0 , α1 = γ1/Iω0, α2 = γ2/Iω0

and rescaling time t → t/ω0, leading to the following
dimensionless equation for the nth pendulum:

θ̈n + sin θn − C∆2θn + α1θ̇n

−α2∆2θ̇n + Fω2 cos(ωt) cos θn = 0. (3)

For our experimental conditions the dimensionless pa-
rameters are C = 0.16, α1 = 64 × 10−4, α2 = 9 × 10−4

and F = 0.026. We use these parameters throughout
the theoretical investigations of this work, and consider
only variations in the dimensionless frequency parameter
ω, which is tunable as indicated above. In our plots we
transform back to physical units, plotting results versus
driving frequency in Hertz, f , where, for reference, the
natural frequency of our pendulum is f0 = ω0/(2π) =
1.04Hz.
As numerical simulations have shown that a one-peak

breather is mainly localized on a single pendulum and its
first neighbors, experimentally, the method used to ini-
tiate multifrequency breathers is by manually displacing
a group of three pendula through angles roughly pre-
dicted by the simulations. Upon release, a true breather
mode can then sometimes establish itself, depending on
whether the phase of release happened to be sufficiently
close in relation to the driver. In practice, it may take a
number of such trials before the driver can lock onto the
initialized pendula in this manner.

III. RESULTS

We first examine a single damped-driven pendulum. In
general, we have observed similar behavior to that found
in [21], where the same system was studied in a slightly
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FIG. 1: (a) (Color online) The response curve of a single
driven-damped pendulum. The filled circles indicate exper-
imental data, the black and green lines are numerical re-
sults and the red line represents the analytical prediction.
Black lines correspond to stable solutions and green to un-
stable solutions. For the main resonance at around 1 Hz, all
three traces agree quite well. Notice, however, that due to
the sine-expansion approximation, for the subharmonic res-
onance, the analytical prediction deviates from the numeri-
cal/experimental data for large amplitudes, as expected. (b)
Zoom showing the peak corresponding to main resonance. (c)
Zoom showing the origin of the subharmonic resonance.

different range of parameters. Examining the response
of the system to different frequencies and amplitudes of
the driving force, we obtain the resonance curves shown
in Fig. 1. Since a pendulum is an oscillator character-
ized by soft nonlinearity, we have found experimentally
and numerically that the resonance curve exhibits the
characteristic bend toward lower frequencies, as is the-
oretically expected [18]. At higher frequencies we find
the well known pendulum subharmonic response [29]. A
subharmonic branch starting at around three times the
natural frequency can be obtained both in the experi-
ment and in the numerics. Here, the pendulum responds
to the driver by swinging at a frequency that is one-third
of the driving frequency, f . In this way, for every three
periods of the shaken table, the pendulum performs one
complete swing. It is also interesting to note that larger
response amplitudes can be achieved via subharmonic
driving than with direct driving. Numerically we have
found higher-order resonances, but these resonances cor-
respond to frequencies not accessible in our experimen-
tal setup. In particular, we have found numerical solu-
tions starting at around five and seven times the external
driver frequency. Numerical simulations have shown that
subharmonic breathers corresponding to these high fre-
quencies are mostly unstable, with the exception of fre-
quencies within very narrow intervals close to the starting
frequency value.

In order to get approximate analytical solutions to
Eq. (1), we Taylor-expand the trigonometric functions
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FIG. 2: The pendulum array: (a) The period-1 breather pro-
file depicted as the maximum amplitude of each pendulum
(no phase information). Experimental (numerical) angles are
indicated by circles (stars). (b) The Floquet multipliers for
the breather solution shown in the left panel are all within
the unit circle, indicating its spectral stability. Both solu-
tions correspond to a frequency of 0.91 Hz.

and obtain (in dimensionless form),

θ̈ + θ +

[

α1θ̇ −
θ3

6
+ Fω2 cos(ωt)

(

1−
θ2

2

)]

= 0, (4)

Assuming that in the main resonance case the solution
takes the form,

θ = V cos(ωt+ φ), (5)

and in the subharmonic case,

θ = V1/3 cos(ωt+ φ) + V1/3 cos(ωt+ φ1/3) +

A1/3 cos(ωt/3) +B1/3 sin(ωt/3), (6)

and using the harmonic balance method [30], a set of alge-
braic equations can be deduced in order to get the values
of parameters V, φ, V1/3, φ1/3, A1/3 and B1/3. Approxi-
mate resonance curves have been obtained, as shown in
Fig. 1. We note that these approximate solutions show
good agreement in the main resonance case (as previously
also indicated in Ref. [21]), but also in the subharmonic
resonance case when the amplitude oscillations are not
too large. It is relevant to point out here that the Taylor
expansion utilized in order to obtain the analytical re-
sults is only valid for small values of θ; in that light, the
range of agreement of the theoretical results with the ex-
perimental (and numerical) ones is well beyond the realm
of applicability of the theoretical approximation.
Having mapped out the response regime for a single

pendulum, let us now turn to the full pendulum array.
The existence of period-1 breather solutions has already
been established experimentally for this system [23]. As a
check, we start with the known period-1 breather and ver-
ify that experiments and numerics are in good agreement.
This is demonstrated in Fig. 2 which depicts the maxi-
mum amplitude of oscillation for each pendulum. Numer-
ical simulations performed with longer chains (N = 41)
show that this behavior is independent of the length of
the chain.
Let us now consider the pendulum array in the case of

the subharmonic response of the chain. One might ex-
pect that by turning on the coupling and moving away
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FIG. 3: The pendulum array: (a) The subharmonic breather
profile corresponding to 1.95 Hz depicted as the maximum
amplitude of each pendulum (no phase information). Experi-
mental (numerical) angles are indicated by circles (stars). (b)
The Floquet multipliers for the breather solution shown in (a)
are all within the unit circle, indicating breather stability. (c)
The pendula as seen by the overhead web-cam. The multi-
breather mode at 1.75 Hz is sharply localized and the center
pendulum is clearly seen to exceed 180 deg.

from the anti-continuous limit, and similar to the period-
1 breather solution, a (multifrequency) breather emerges
in which the center pendulum performs periodic (sub-
harmonic) motion, whereas pendula in the wings of this
mode respond weakly at the driving frequency. Previ-
ous numerical studies have shown that, for a different
range of control parameter values, and close to the sub-
harmonic bifurcation (f ≈ 3 Hz), this breather exists but
is unstable, except for small frequency windows below
the bifurcation point [21]. In our system, in contrast,
we have been able to identify such a mode experimen-
tally for a range of frequencies, and its existence and
dynamical stability have been corroborated by numerical
computations. It should also be noted that, as indicated
also in [21], the precise stability details of such a subhar-
monic breather depend strongly on the number of pen-
dula in the chain, with a smaller N favoring more robust
configurations.

The mode profile corresponding to a frequency close
to 2 Hz is mapped out in Fig. 3(a). The x-axis denotes
the node index, and the y-axis plots the angles (away
from vertically down) at the instantaneous turning point
of the center pendulum. Note the excellent agreement
between experiment and simulations in the left panel at
around 1.95 Hz. In both traces, the center pendulum
oscillates between roughly 180◦ and -180◦. In further
agreement with numerical results, the peak of the ex-
perimental breather is observed to be out-of-phase with
the tails at the turn-around points of the center pendu-
lum (i.e., an out-of-phase breather), as shown in Fig. 4.
(It should be noted that the angles of only the breather
center and pendula to one side of it were experimentally
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−10
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p
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t/T

FIG. 4: Numerical mixed-frequency breather trajectory
across one period (T = 2π/ω) for f = 1.95 Hz and N = 19
(amplitude in degrees). (a) Trajectory corresponding to cen-
tral peak pendulum (continuous line) and its first neighbor
(dashed line). (b) Trajectory corresponding to the edge pen-
dulum at the end of the chain (continuous line) and normal-
ized external driving force (dashed line), that is proportional
to − cos(ωdt).

measured to high precission, but the the breathers were
visually found to be very close to symmetric about the
ILM-center.)
Fig. 3(b) shows the Floquet multipliers of this solution

demonstrating its stability. Numerical simulations per-
formed with longer chains (N = 41) show that this be-
havior is independent on the length of the chain. Figure
3(c) shows a snapshot recorded by the overhead camera
for a driver frequency of 1.75 Hz. The mode is sharply
localized with one pendulum acquiring an amplitude ex-
ceeding 180◦.
It is illuminating to study the effect of the driver fre-

quency on the profile of this multifrequency breather.
Figure 5 maps out the amplitude of this breather solu-
tion as a function of the frequency; it thus represents a
response curve for the multifrequency breather. We see
(blue stars) that over much of the frequency interval that
exhibited subharmonic response in the single pendulum,
the breather solution is unstable against perturbations.
There is, however, one band around 2 Hz and another
narrow band around 3 Hz in which the multifrequency
breather is predicted to be stable. Around 2 Hz, the sta-
ble breather is out-of-phase, by which we mean that the
center and the tails are out of phase. At 3 Hz, the sta-
ble breathers are more spread along the chain and the
subharmonic frequency component (originating from the
center pendulum) is still somewhat present at the tails.
Our detailed numerical continuation for the experi-

mental parameters while varying the frequency identify
two different stable subharmonic breather solutions - one
at high frequency around 3 Hz and the other at low fre-
quency around 2 Hz. Also note that there are two numer-
ical solutions at each driver frequency (shown in Fig. 5 as
red and green dotted lines), but the smaller-amplitude so-
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FIG. 5: (Color online) Amplitude in degrees plotted against
the driver frequency corresponding to subharmonic breather
families. The continuous black and blue lines indicate the two
different regimes of stable numerical breathers (around 2 and
3Hz, respectively). The dotted red lines show the unstable
breathers. The (blue) circles depict the experimental results.
Notice the two frequency intervals of stability - one around
2 Hz, and the other, very small, around 3 Hz. The differ-
ent bifurcations (B1: Bifurcation associated with a conjugate
pair of complex Floquet multipliers crossing the unit circle
bifurcation; B2: Bifurcation associated with a real Floquet
multiplier crossing the unit circle) lead to the destabilization
of the breathers. The relevant scenarios are discussed in detail
in the text.

lution (green line) is always found to be unstable. For the
low-frequency family (around 2 Hz), the transition from
stability to instability proceeds via a bifurcation associ-
ated with a conjugate pair of complex Floquet multipli-
ers crossing the unit circle (B1), a Neimark-Sacker bifur-
cation (NSB). However, for the high-frequency breather
family (around 3 Hz), the relevant destabilization arises
through a real multiplier crossing the unit circle at (1, 0),
as shown in detail in Fig. 5.
In our experiments, it has been possible to detect

an interval of frequencies around 2 Hz where the sub-
harmonic breather exists, in good agreement with the
numerical predictions. Also, in experiments, the NSB
has been observed, occurring when a stable subharmonic
breather, after a slight variation in the driver frequency,
experiences oscillations that grow in amplitude until the
breather finally vanishes. This type of instability also
occurs for the period-1 breather and was experimentally
tracked and illustrated in Ref. [22].
The question then arises if breathers can also be ob-

served within the high-frequency interval (around 3 Hz).
Numerically (and consonantly to the above Floquet-
multiplier stability analysis), we have found that around
that value, in a very narrow interval of frequency val-
ues, different stable breather-like solutions can exist, very
close in frequency values, as shown in Fig. 6. Simulations
in longer chains show essentially the same phenomenon.
In experiments, in general, and for long time intervals,
one-site and two-site breather-like transient states have
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FIG. 6: Stable breather-like solutions corresponding to fre-
quencies close to 3 Hz. (a) Breather profile (maximum am-
plitude in degrees) and (b) Floquet exponents corresponding
to 3.1 Hz (one site breather).
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FIG. 7: A nonlinearly localized edge state for f = 0.92 Hz:
(a) The edge breather profile - experimental (numerical) re-
sults are shown as circles (stars). Numerically stable breather
located at the chain center and corresponding to the same fre-
quency is shown as squares. (b) The Floquet multipliers for
the edge breather are all within the unit circle indicating sta-
bility.

been observed.
We now turn to another type of nonlinearly localized

mode that can be observed in the pendulum chain sys-
tem, namely a mode that is localized at the chain bound-
ary. Such modes have been extensively studied in other
contexts such as nonlinear optics [31], yet we are not
aware of such robust, experimentally demonstrated ex-
amples in pendulum arrays. It should also be noted
that such modes have also been recently created in other
damped-driven mechanical systems such as e.g. granular
crystals [32]. As before, the two boundaries are open,
and the driving is spatially homogeneous. Nonetheless,
we can demonstrate both experimentally and numerically
the existence (and stability) of modes localized over a few
pendula near the edges of the chain with the interior pen-
dula almost at rest. We find an edge state may be excited
independently of the behavior at the other edge. An ex-
ample with both edges excited is shown in Fig. 7. The
driver frequency (as well as the response frequency) here
is chosen below the linear dispersion curve at f = 0.92
Hz. Note that the linear standing-wave modes are con-
fined to the interval between 1.04 Hz and 1.34 Hz. The
experimental data (circles) and the numerical simulation
(stars) show close agreement - in both cases, the edge
pendula attain an amplitude of oscillation of roughly
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FIG. 8: A multifrequency edge breather driven subharmon-
ically near f = 3.0 Hz. (a) The experimental profile found
for f = 3.04 Hz is depicted as black circles. In addition, two
numerical solutions are shown: the red squares represent a
solution at f = 2.97 Hz that is found to be weakly unsta-
ble, see (c). The blue stars depict a nearby solution that is
dynamically stable, see (b), corresponding to f = 3.11 Hz

.

100◦, whereas the next pendula further in are found to be
below 40◦ in amplitude. Floquet analysis demonstrates
that the numerical profile is indeed stable, corroborating
the experimental observability of the relevant mode. We
find that an edge breather typically has a lower maxi-
mum amplitude than the corresponding bulk breather,
and it exhibits a more extended domain of stability.

As is evident in the numerical simulations, the ampli-
tude of this edge-breather is frequency dependent, with
lower driver frequencies giving rise to larger angles. It is
clear that this mode should not be confused with a linear
standing wave, where the edges also exhibit large oscil-
lations. For instance, the second mode (just above the
uniform mode) corresponding to a frequency of 1.048 Hz
has the two pendula at the opposite edges oscillate π out-
of-phase. The nonlinear mode discussed here, however,
oscillates in-phase and is sharply localized at the edges
with interior pendula almost at rest. Furthermore, nu-
merical simulations in longer chains show the same phe-
nomenon.

It is relevant to point out that a subharmonic version
of these edge-breathers also exists around a frequency, f ,
of 3 Hz. Figure 8 presents the experimental data as black
circles (f = 3.04 Hz). We see that the edge pendulum
swings with an amplitude of around 75◦, but crucially
now at a third of the driver frequency, f/3. The re-

sponse of the interior pendula, in contrast, is dominated
by the driver frequency, f . This mode was found to per-
sist throughout the time horizon of our experiments.
Figure 8 superimposes two numerical traces for two

closely-spaced driver frequencies (f = 2.97 Hz and 3.11
Hz). The first one (squares) matches the experimen-
tal observation very well, but Floquet analysis reveals
it to be weakly unstable. In fact, the instability is of
the NS type, in contrast to the previous subharmonic
breather (in the chain interior). The second numerical
trace (stars) features a slightly larger f , and is stable,
but departs from the experimental profile. It is likely
that either small lattice inhomogeneities or weak non-
linearities in the torsional springs were responsible for
stabilizing the observed multifrequency edge mode in the
experiment.

IV. CONCLUSIONS

In the present work, we revisited the chain of cou-
pled torsion pendula, an experimental setup for which
there is a well-established theoretical model accounting
for torsional contributions from gravity, nearest neigh-
bors, friction and external drive. This damped-driven
system was previously illustrated to feature prototypical
discrete breather waveforms. Recent explorations [21]
have suggested the possibility of subharmonic breather
structures, which are unstable for larger chains but po-
tentially stable for smaller lattices. In the present work,
we have confirmed this expectation via a combination of
theoretical modeling (and where possible analysis), nu-
merical computation and experimental realization. We
have indeed observed not only period-1 breathers but
also multifrequency / subharmonic breathers as robust
structures in the system, in line with our numerical com-
putations, in the appropriate parametric regimes guided
by the theoretical analysis. In addition to revealing the
subharmonic breathers and their good agreement with
experimental observations, we have also revealed surface
breather modes, which have also been experimentally
identified.
Clearly, this system is a prototypical one for the

exploration of nonlinear structures, of their properties
and interactions. One can envision multiple directions
for future investigation, including the study of modu-
lational instability (MI) as a source for the generation
of the breathers, the examination of multipeak breather
structures (that have emerged as being relevant here –
due to their connection to the high-frequency branch–
, but are also a potential by-product of the MI), the
study of breather-breather or breather impurity inter-
actions/scattering, among many others. A number of
these topics are presently under investigation and will be
reported in future publications.
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R. Carretero-González, P.G. Kevrekidis and A.J. Siev-

ers, Phys. Rev. Lett. 108, 084101 (2012).
[20] R.A. Struble and J.A. Marlin, Quart. J. Mech. Appl.

Math. 18, 405 (1965).
[21] Y. Xu, T.J. Alexander, H. Sidhu, and P.G. Kevrekidis,

Phys. Rev. E 90, 042921 (2014).
[22] R. Basu Thakur, L.Q. English and A.J. Sievers, J. Phys.

D 41, 015503 (2008).
[23] L.Q. English, “Experimental Results in Pendula Arrays”

in The sine-Gordon Model and its Applications Ed. J.
Cuevas et al., Springer, 2014.

[24] O.M. Braun and Yu.S. Kivshar, Phys. Rep. 306, 1
(1998).

[25] S.G. Davidson and M. Steslicka, Basic Theory of Surface
States Oxford Science, New York, 1996.

[26] I.L. Garanovich, A.A. Sukhorukov and Yu.S. Kivshar,
Phys. Rev. Lett. 100, 203904 (2008).

[27] A.V. Savin and Yu.S. Kivshar, Phys. Rev. B 81, 165418
(2010).

[28] J. Cuevas, P.G. Kevrekidis, F.L. Williams (Eds.), The
sine-Gordon Model and its Applications: From Pendula
and Josephson Junctions to Gravity and High Energy
Physics, Springer-Verlag, (Heidelberg, 2014).

[29] W. Chester, IMA J. Appl. Math. 15, 289 (1975).
[30] A.A. Qaisia and M.N. Hamdan, J. Sound Vib. 305, 772

(2007).
[31] S. Suntsov, K. G. Makris, D. N. Christodoulides, G.
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