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Dark solitons near potential and nonlinearity steps
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We study dark solitons near potential and nonlinearity steps and combinations thereof, forming rectangular
barriers. This setting is relevant to the contexts of atomicBose-Einstein condensates (where such steps can be
realized by using proper external fields) and nonlinear optics (for beam propagation near interfaces separating
optical media of different refractive indices). We use perturbation theory to develop an equivalent particle theory,
describing the matter-wave or optical soliton dynamics as the motion of a particle in an effective potential. This
Newtonian dynamical problem provides information for the soliton statics and dynamics, including scenarios of
reflection, transmission, or quasi-trapping at such steps.The case of multiple such steps and its connection to
barrier potentials is also touched upon. Our analytical predictions are found to be in very good agreement with
the corresponding numerical results.

PACS numbers: 03.75.Lm, 05.45.Yv

I. INTRODUCTION

The interaction of solitons with impurities is a fundamen-
tal problem that has been considered in various branches of
physics – predominantly in nonlinear wave theory [1] and
solid state physics [2] – as well as in applied mathematics
(see, e.g., recent work [3] and references therein). Especially,
in the framework of the nonlinear Schrödinger (NLS) equa-
tion, the interaction of bright and dark solitons withδ-like
impurities has been investigated in many works (see, e.g.,
Refs. [4–8]). Relevant studies in the physics of atomic Bose-
Einstein condensates (BECs) have also been performed (see,
e.g., Refs. [9–13]), as well as in settings involving potential
wells [14, 15] and barriers [16, 17] (see also Ref. [18] for ear-
lier work in a similar model). In this context, localized impu-
rities can be created as focused far-detuned laser beams, and
have already been used in experiments involving dark solitons
[19, 20]. Furthermore, experimental results on the scattering
of matter-wave bright solitons on Gaussian barriers in either
7Li [21] or 85Rb [22] BECs have been reported as well. More
recently, such soliton-defect interactions were also explored
in the case of multi-component BECs and dark-bright soli-
tons, both in theory [23] and in an experiment [24].

On the other hand, much attention has been paid to BECs
with spatially modulated interatomic interactions, so-called
“collisionally inhomogeneous condensates” [25, 26]; for are-
view with a particular bend towards periodic such interac-
tions see also Ref. [27]). Relevant studies in this context
have explored a variety of interesting phenomena: these in-
clude, but are not limited to adiabatic compression of matter-
waves [25, 28], Bloch oscillations of solitons [25], emission
of atomic solitons [29, 30], scattering of matter waves through
barriers [31], emergence of instabilities of solitary waves due
to periodic variations in the scattering length [32], formation
of stable condensates exhibiting both attractive and repulsive
interatomic interactions [33], solitons in combined linear and
nonlinear potentials [34–38], generation of solitons [39]and

vortex rings [40], control of Faraday waves [41], vortex dipole
dynamics in spinor BECs [42], and others.

Here, we consider a combination of the above settings,
namely we consider a one-dimensional (1D) setting involv-
ing potential and nonlinearity steps, as well as pertinent rect-
angular barriers, and study statics, dynamics and scattering
of dark solitons. In the BEC context, recent experiments
have demonstrated robust dark solitons in the quasi-1D set-
ting [43]. In addition, potential steps in BECs can be realized
by trapping potentials featuring piece-wise constant profiles
(see, e.g., Refs. [44, 45] and discussion in the next Section).
Furthermore, nonlinearity steps can be realized too, upon em-
ploying magnetically [46] or optically [47] induced Feshbach
resonances, that can be used to properly tune the interatomic
interactions strength – see, e.g., more details in Refs. [30, 35]
and discussion in the next Section.

Such a setting involving potential and nonlinearity steps,
finds also applications in the context of nonlinear optics.
There, effectively infinitely long potential and nonlinearity
steps of constant and finite height, describe interfaces sepa-
rating optical media characterized by different linear andnon-
linear refractive indices [48]. In such settings, it has been
shown [49–52] that the dynamics of self-focused light chan-
nels – in the form of spatial bright solitons – can be effectively
described by the motion of an equivalent particle in effective
step-like potentials. This “equivalent particle theory” actu-
ally corresponds to the adiabatic approximation of the per-
turbation theory of solitons [1], while reflection-inducedra-
diation effects can be described at a higher-order approxima-
tion [50, 51]. Note that similar studies, but for dark solitons
in settings involving potential steps and rectangular barriers,
have also been performed – see, e.g., Ref. [53] for an effec-
tive particle theory, and Refs. [54–56] for numerical studies
of reflection-induced radiation effects. However, to the best
of our knowledge, the statics and dynamics of dark solitons
near potential and nonlinearity steps, have not been system-
atically considered so far in the literature, although a special
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version of such a setting has been touch upon in Ref. [35].
It is our purpose, in this work, to address this problem. In

particular, our investigation and a description of our presen-
tation is as follows. First, in Sec. II, we provide the descrip-
tion and modeling of the problem; although this is done in
the context of atomic BECs, our model can straightforwardly
be used for similar considerations in the context of optics,as
mentioned above. In the same Section, we apply perturbation
theory for dark solitons to show that, in the adiabatic approx-
imation, soliton dynamics is described by the motion of an
equivalent particle in an effective potential. The latter has a
tanh-profile, but – in the presence of the nonlinearity step –
can also exhibit an elliptic and a hyperbolic fixed point. We
show that stationary soliton states do exist at the fixed points
of the effective potential, but are unstable (albeit in different
ways, as is explained below) according to a Bogoliubov-de
Gennes (BdG) analysis [57, 58] that we perform; we also use
an analytical approximation to derive the unstable eigenvalues
as functions of the magnitudes of the potential/nonlinearity
steps. In Sec. III we study the soliton dynamics for various
parameter values, pertaining to different forms of the effective
potential, including the case of rectangular barriers formed by
combination of adjacent potential and nonlinearity steps.Our
numerical results – in both statics and dynamics – are found
to be in very good agreement with the analytical predictions.
We also investigate the possibility of soliton trapping in the
vicinity of the hyperbolic fixed point of the effective poten-
tial; note that such states could be characterized as “surface
dark solitons”, as they are formed at linear/nonlinear inter-
faces separating different optical or atomic media. We show
that quasi-trapping of solitons is possible, in the case where
nonlinearity steps are present; the pertinent (finite) trapping
time is found to be of the order of several hundreds of millisec-
onds, which suggests that such soliton quasi-trapping could
be observable in real BEC experiments. Finally, in Sec. IV we
summarize our findings, discuss our conclusions, and provide
provide perspectives for future studies.

II. MODEL AND ANALYTICAL CONSIDERATIONS

A. Setup

As noted in the Introduction, our formulation originates
from the context of atomic BECs in the mean-field picture
[57]. We thus consider a quasi-1D setting whereby matter
waves, described by the macroscopic wave functionΨ(x, t),
are oriented along thex-direction and are confined in a
strongly anisotropic (quasi-1D) trap. The latter, has the form
of a rectangular box of lengthsLx ≫ Ly = Lz ≡ L⊥, with
the transverse lengthL⊥ being on the order of the healing
lengthξ. Such a box-like trapping potential,Vb(x), can be
approximated by a super-Gaussian function, of the form:

Vb(x) = V0

[

1− exp
(

−
( x

w

)γ)]

, (1)

whereV0 andw denote the trap amplitude and width, respec-
tively. The particular value of the exponentγ ≫ 1 is not

especially important; here we useγ = 50. In this setting, our
aim is to consider dark solitons near potential and nonlinearity
steps, located atx = L. To model such a situation, we start
from the Gross-Pitaevskii (GP) equation [57, 58]:

i~
∂Ψ

∂t
=
[

− ~
2

2m
∂2
x + g(x)|Ψ|2 + V (x)

]

Ψ, (2)

Here,Ψ(x, t) is the mean-field wave function,m is the atomic
mass,V (x) represents the external potential, whileg1D(x) =
(9/4L2

⊥
)g3D is the effectively 1D interaction strength, with

g3D = 4π~2α(x)/m being its 3D counterpart andα(x) being
the scattering length (assumed to beα > 0, ∀x, corresponding
to repulsive interatomic interactions). The external potential
and the scattering length are then taken to be of the form:

V (x) = Vb(x) +

{

VL, x < L

VR, x > L
, (3)

α(x) =

{

αL, x < L

αR, x > L
, (4)

whereVL,R andαL,R are constant values of the potential and
scattering length, to the left and right ofx = L, where respec-
tive steps take place.

Notice that such potential steps may be realized in present
BEC experiments upon employing a detuned laser beam
shined over a razor edge to make a sharp barrier, with the
diffraction-limited fall-off of the laser intensity beingsmaller
than the healing length of the condensate; in such a situa-
tion, the potential can be effectively described by a step func-
tion. On the other hand, the implementation of nonlinear-
ity steps can be based on the interaction tunability of spe-
cific atomic species by applying external magnetic or optical
fields [46, 47]. For instance, confining ultracold atoms in an
elongated trapping potential near the surface of an atom chip
[59] allows for appropriate local engineering of the scatter-
ing length to form steps (of varying widths), where the atom-
surface separation sets a scale for achievable minimum step
widths. The trapping potential can be formed optically, pos-
sibly also by a suitable combination of optical and magnetic
fields (see Ref. [35] for a relevant discussion).

Measuring the longitudinal coordinatex in units of
√
2ξ

(whereξ ≡ ~/
√
2mng1D is the healing length), timet in units

of
√
2ξ/cs (wherecs ≡

√

g1Dn/m is the speed of sound and
n is the peak density), and energy in units ofg1Dn, we cast
Eq. (2) to the following dimensionless form (see Ref. [60]):

i
∂u

∂t
= −1

2

∂2u

∂x2
+

α(x)

αL

|u|2u+ V (x)u, (5)

whereu =
√
nΨ. Unless stated otherwise, in the simulations

below we fix the parameter values as follows:V0 = 10 and
w = 250 (for the box potential),VL = 0 andVR = ±0.01 for
the potential step, as well asαL = 1 andaR ∈ [0.9, 1.1] for
the nonlinearity step. Nevertheless, our theoretical approach
is general (and will be kept as such in the exposition that fol-
lows in this section).

Here we should mention that Eq. (5) can also be applied in
the context of nonlinear optics [48]: in this case,u represents
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the complex electric field envelope,t is the propagation dis-
tance andx is the transverse direction, whileV (x) andα(x)
describe the (transverse) spatial profile of the linear and non-
linear parts of the refractive index [36]. This way, Eq. (5) can
be used for the study of optical beams, carrying dark solitons,
near interfaces separating different optical media, with (dif-
ferent) defocusing Kerr nonlinearities.

B. Perturbation theory and equivalent particle picture

Assuming that, to a first approximation, the box potential
can be neglected, we consider the dynamics of a dark soliton,
which is located in the regionx < L, and moves to the right,
towards the potential and nonlinearity steps (similar consider-
ations for a soliton located in the regionx > L and moving
to the left are straightforward). In such a case, we seek for a
solution of Eq. (5) in the form:

u(x, t) =
√

µL − VL exp (−iµLt)υ(x, t), (6)

whereµL is the chemical potential, and theυ(x, t) is the
wavefunction of the dark soliton. Then, introducing the trans-
formationst → (µL − VL) t andx → √

µL − VLx, we ex-
press Eq. (5) as a perturbed NLS equation for the dark soliton:

i
∂υ

∂t
+

1

2

∂2υ

∂x2
−
(

|υ|2 − 1
)

υ = P (υ). (7)

Here, the functional perturbationP (υ) has the form:

P (υ) =
(

A+B|υ|2
)

υH(x− L), (8)

whereH is the Heaviside step function, and coefficientsA, B
are given by:

A =
VR − VL

µL − VL

, B =
αR

αL

− 1. (9)

These coefficients, which set the magnitudes of the potential
and nonlinearity steps, are assumed to be small. Such a situ-
ation corresponds, e.g., to the case whereµL = 1, VL = 0,
VR ∼ ǫ, andaR/αL ∼ 1, where0 < ǫ ≪ 1 is a formal
small parameter (this choice will be used in our simulations
below). In the present work, we assume that the jump from
left to right is “sharp”, i.e., we do not explore the additional
possibility of a finite width interface. If such a finite width
was present but was the same between the linear and nonlin-
ear interface, essentially the formulation below would still be
applicable, with the Heaviside function above substitutedby
a suitable smoothened variant (e.g. atanh functional form).
A more complicated setting deferred for future studies would
involve the existence of two separate widths in the linear and
nonlinear step and the length scale competition that that could
involve.

Equation (7) can be studied analytically upon employing
perturbation theory for dark solitons (see, e.g., Refs. [61–
63]): first we note that, in the absence of the perturbation(8),
Eq. (7) has a dark soliton solution of the form:

υ(x, t) = cosφ tanhX + i sinφ, (10)

whereX = cosφ[x − x0(t)] is the soliton coordinate,φ is
the soliton phase angle(|φ| < π/2) describing the darkness
of the soliton,cosφ is the soliton depth (φ = 0 andφ 6= 0
correspond to stationary black solitons and gray solitons,re-
spectively), whilex0(t) anddx0/dt = sinφ denote the soli-
ton center and velocity, respectively. Then, considering an
adiabatic evolution of the dark soliton, we assume that in the
presence of the perturbation the dark soliton parameters be-
come slowly-varying unknown functions of timet. Thus, the
soliton phase angle becomesφ → φ(t) and, as a result, the
soliton coordinate becomesX = cosφ(t)

(

x − x0(t)
)

, with
dx0(t)/dt = sinφ(t).

The evolution of the soliton phase angle can be found by
means of the evolution of the renormalized soliton energy,
Eds, given by [61, 62]:

Eds =
1

2

∫ ∞

−∞

[

|υx|2 +
(

|υ|2 − 1
)2
]

dx. (11)

Employing Eq. (10), it can readily be found thatdEds/dt =
−4 cos2 φ sinφ dφ/dt. On the other hand, using Eq. (7) and
its complex conjugate, yields the evolution of the renormal-
ized soliton energy:dEds/dt = −

∫ +∞

−∞

(

P ῡt + P̄ υt
)

dx,
where bar denotes complex conjugate. Then, the above ex-
pressions fordEds/dt yield the evolution ofφ, namely

dφ

dt
=

1

2 cos2 φ sinφ
Re
{

∫ +∞

−∞

P (υ)ῡtdx
}

. (12)

Inserting the perturbation (8) into Eq. (12), and performing
the integration, we obtain the following result:

dφ

dt
= − 1

4

(

A+B
)

sech2
(

L− x0

)

+
1

8
B sech4

(

L− x0

)

, (13)

where we have considered the case of nearly stationary (black)
solitons withcosφ ≈ 1 (andsinφ ≈ φ). Combining Eq. (13)
with the above mentioned equation for the soliton velocity,
dx0(t)/dt = sinφ(t), we can readily derive the following
equation for motion for the soliton center:

d2x0

dt2
= −dW

dx0

, (14)

where the effective potentialW (x0) is given by:

W (x0) = − 1

8

(

2A+B
)

tanh
(

L− x0

)

− 1

24
B tanh3

(

L− x0

)

. (15)

C. Forms of the effective potential

The form of the effective potential suggests that fixed
points, where – potentially – dark solitons may be trapped, ex-
ist only in the presence of the nonlinearity step (B 6= 0). I.e.,
it is the competition between the linear and nonlinear step that



4

B

B
(2
A
+
B
)

x0

W
(x
0
)

x
0

x
0

x
0

x
0

W
(x
0
)

x
0

A>0 A<0

I

I

II

III IV

V

VI

VI

II V

IV
III

0

-A-2A -A -2A0

0

0

0

0

0

0

0

0

0

0

0

0

FIG. 1: Sketch showing domains of existence of fixed points ofthe
effective potentialW (x0) (depicted by gray areas) forA > 0 (blue
line) andA < 0 (red line). The insetsI−III (IV−VI) show the form
of W (x0), starting from – and ending to – a small finite value of non-
linearity stepB, which is gradually decreased (increased) forA > 0
(A < 0), cf. black arrows. Small rectangular (yellow) points indi-
cate parameter values corresponding to the forms ofW (x0) shown
in the insetsI− VI.

enable the presence of fixed points and associated more com-
plex dynamics; in the presence of solely a linear step, the dark
soliton encounters solely a step potential, similarly to what is
the case for its bright sibling [18]; see also below.

In fact, in our setting it is straightforward to find that there
exist two fixed points, located at:

x0± =
1

2
ln

(

−A∓
√

−B (2A+B)

A+B

)

, (16)

for B(2A + B) < 0 and−2A < B < −A, for A > 0, or
−A < B < −2A, for A < 0. In Fig. 1 we plotB(2A + B)
as a function ofB, for A > 0 (blue line) andA < 0 (red
line). The corresponding domains of existence of the fixed
points, are also depicted by the gray areas. Insets show typical
profiles of the effective potentialW (x0), for different values
of B, which we discuss in more detail below. From the figure
(as well as from Eq. (16) itself), the saddle-center nature of
the bifurcation of the two fixed points, which are generated
concurrently “out of the blue sky” is immediately evident.

First, we consider the case of the absence of the nonlinear-
ity step,B = 0, as shown in the insetsI andIV of Fig. 1, for
A > 0 andA < 0, respectively. In this case,W (x0) assumes
a step profile, induced by the potential step. This form is pre-
served in the presence of a finite nonlinearity step,B 6= 0,
namely for−A < B < 0 and0 < B < −A, in the cases
A > 0 andA < 0, respectively.

A more interesting situation occurs when the nonlinearity
step further decreases (increases), and takes values−2A <
B < −A for A > 0, or−A < B < −2A for A < 0. In this
case, the effective potential features a local minimum (maxi-
mum), i.e., an elliptic (hyperbolic) fixed point, in the region
x < 0 (x > 0) for A > 0 emerge (as per the saddle-center
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FIG. 2: (Color online) Left panel: density profile of the stationary
soliton (blue line) at the hyperbolic fixed pointx0+ = 0.66, as found
numerically, using the ansatzυs(x) = [1 − V (x)]1/2 tanh(x) in
Eq. (17), forαR/αL = 0.985, VR = 0.01, VL = 0, µL = 1; green
line illustrates the corresponding effective potentialW (x0). Right
panel: corresponding spectral plane (ωr, ωi) of the corresponding
eigenfrequencies, illustrating an exponential growth dueto an imag-
inary eigenfrequency pair.

bifurcation mentioned above) close to the location of the po-
tential and nonlinearity steps, i.e., nearx = 0; a similar sit-
uation occurs forA < 0, but the local minimum becoming a
local maximum, and vice versa. The locationsx0± of the fixed
points are given by Eq. (16); as an example, using parameter
valuesVL = 0, VR = −0.01, αL = 1 andαR = 1.015, we
find thatx0+ = 0.66 (x0− = −0.66) for the elliptic (hyper-
bolic) fixed point.

As the nonlinearity step becomes deeper, the asymptotes
(for x → ±∞) of W (x0) become smaller and eventually van-
ish. For fixedVL = 0 (andµL = 1), Eq. (15) shows that this
happens forB = −(3/2)A; in this case, the potential features
a “spiky” profile, in the vicinity ofx = 0 (see, e.g., upper
panel of Fig. 6 below). ForB < −(3/2)A, the asymptotes
of W (x0) become finite again, and take a positive (negative)
value forx < 0, and a negative (positive) value forx > 0,
in the caseA > 0 (A < 0). The spiky profile ofW (x0) in
the vicinity of x = 0 is preserved in this case too, but asB
decreases it eventually disappears, as shown in the insetsIII
andVI of Fig. 1.

D. Solitons at the fixed points of the effective potential

The above analysis poses an interesting question regard-
ing the existence of stationary solitons of Eq. (5) at the fixed
points of the effective potential. To address this question, we
use the ansatzu(x, t) = exp(−it)υs(x), for a stationary soli-
tonυs(x), and obtain from Eq. (5) the equation:

υs = −1

2

d2υs
dx2

+
α(x)

αL

|υs|2υs + V (x)υs. (17)

Notice that we have assumed without loss of generality a unit
frequency solution; the formulation below can be used at will
for any other frequency. The above equation is then solved
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FIG. 3: (Color online) Same as Fig. 2, but for a soliton located at the
elliptic fixed pointx0− = −0.66; this state is found using the initial
ansatzυs(x) = [1− V (x)]1/2 tanh(x+ 0.2). The spectral plane in
the right panel illustrates an oscillatory growth due to thepresence
of a complex quartet of eigenfrequencies.

numerically, by means of Newton’s method, employing the
ansatz (forL = 0):

υs(x) = [1− V (x)]1/2 tanh(x− x0). (18)

As shown in the left panel of Fig. 2, assuming an ansatz within
Eq. (18) in which the soliton is initially placed atx0 = 0, we
find a steady state exactly at the hyperbolic fixed pointx0+ =
0.66, as found from Eq. (16). On the other hand, the left panel
of Fig. 3 shows a case where the initial guess is assumed in
Eq. (18) to have a soliton positioned atx0 = −0.2, which
leads to a stationary soliton located exactly at the elliptic fixed
pointx0− = −0.66 predicted by Eq. (16).

It is now relevant to study the stability of these station-
ary soliton states, performing a Bogoliubov-de Gennes (BdG)
analysis [57, 58, 62]. We thus consider small perturbationsof
υs(x), and seek solutions of Eq. (17) of the form:

u(x, t) = e−it
[

υs(x) + δ
(

b(x)e−iωt + c̄(x)eiω̄t
)]

, (19)

where(b(x), c(x)) are eigenmodes,ω = ωr + iωi are (gen-
erally complex) eigenfrequencies, andδ ≪ 1. Notice that
the occurrence of a complex eigenfrequency always leads to
a dynamic instability; thus, a linearly stable configuration is
tantamount toωi = 0 (i.e., all eigenfrequencies are real).

Substituting Eq. (19) into Eq. (5), and linearizing with re-
spect toδ, we derive the following BdG equations:

[

Ĥ − 1 + 2
α(x)

αL

υ2
s

]

b+
α(x)

αL

υ2
sc = ωb, (20)

[

Ĥ − 1 + 2
α(x)

αL

υ2
s

]

c+
α(x)

αL

υ2
sb = −ωc, (21)

whereĤ = −(1/2)∂2
x + V (x) is the single particle operator.

This eigenvalue problem is then solved numerically. Exam-
ples of the stationary dark solitons at the fixed pointsx0± of
the effective potentialW , as well as their corresponding BdG
spectra, are shown in Figs. 2 and 3. It is observed that the
solitons are dynamically unstable, as seen by the presence of

1-B
1.01 1.012 1.014 1.016 1.018 1.02

ω
i

0

0.01

0.02

0.03

1-B
1.01 1.012 1.014 1.016 1.018 1.02

ω
i

×10-4

0

1

2

3

1-B
1 1.15 1.3 1.45 1.6

ω
r

0

0.05

0.1

0.15

0.2

0.25

FIG. 4: (Color online) Top panel: the imaginary part of the eigen-
frequency,ωi, as a function of1 − B (with B < 0), for a soliton
located at the hyperbolic fixed point,x = x0+. Middle and bottom
panels show the dependence of imaginary and real parts,ωi andωr,
of the eigenfrequency on1 − B, for a soliton located at the elliptic
fixed point,x = x0−, i.e., the case that leads to an eigenfrequency
quartet. Solid blue curves correspond to the analytical prediction [cf.
Eqs. (23) and (24)], blue circles depict numerical results,while yel-
low squares depict eigenfrequency values corresponding tothe cases
shown in Figs. 2 and 3. For the top and middle panelsA = 0.01,
while for the bottom panelA = −(2/3)B; in all cases,µL = 1.

eigenfrequencies with nonzero imaginary part in the spectra,
although the mechanisms of instability are distinctly different
between the two cases (of Figs. 2 and 3).

To better understand these instabilities, and also providean
analytical estimate for the relevant eigenfrequencies, wemay
follow the analysis of Ref. [64]; see also Ref. [65] for applica-
tion of this theory to the case of a periodic, piecewise-constant
scattering length setting. According to these works, solitons
persist in the presence of the perturbationP (υ) of Eq. (8) (of
strengthA, B ∼ ǫ) provided that the Melnikov function con-
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dition

M ′(x0) =

∫ +∞

−∞

∂P (υ)

∂x
sech2(x− x0)dx = 0, (22)

possesses at least one root, sayx̃0. Then, the stability of
the dark soliton solutions atx0± depends on the sign of the
derivative of the function in Eq. (22), evaluated atx̃0: an in-
stability occurs, with one imaginary eigenfrequency pair for
ǫM ′′(x̃0) < 0, and with exactly one complex eigenfrequency
quartet forǫM ′′(x̃0) > 0. The instability is dictated by the
translational eigenvalue, which bifurcates from the origin as
soon as the perturbation is present. ForǫM ′′(x̃0) < 0, the
relevant eigenfrequency pair moves along the imaginary axis,
leading to an immediate instability associated with exponen-
tial growth of a perturbation along the relevant eigendirection.
On the other hand, forǫM ′′(x̃0) > 0, the eigenfrequency
moves along the real axis; then, upon collision with eigenfre-
quencies of modes of opposite signature than that of the trans-
lation mode, it gives rise to a complex eigenfrequency quartet,
signaling the presence of an oscillatory instability. The rele-
vant eigenfrequencies can be determined by a quadratic char-
acteristic equation which takes the form [64],

λ2 +
1

4
M ′′(x̃0)

(

1− λ

2

)

= O(ǫ2), (23)

where eigenvaluesλ are related to eigenfrequenciesω through
λ2 = −ω2. Since the roots ofM ′′(x0) are the two fixed points
x0±, we may evaluateM ′′(x0±) explicitly, and obtain:

M ′′(x0±) = − 2sech2(x0±) tanh(x0±)

×
[

A+B tanh2(x0±)
]

. (24)

To this end, combining Eqs. (23) and (24) yields an analytical
prediction for the magnitudes of the relevant eigenfrequen-
cies, for the cases of solitons located at the hyperbolic or the
elliptic fixed points ofW (x0).

Figure 4 shows pertinent analytical results [depicted by
(red) solid lines], which are compared with corresponding nu-
merical results [depicted by (blue) points]. In particular, the
top panel of the figure illustrates the dependence of the imag-
inary part of the eigenfrequency (real part of the eigenvalue)
ωi on the parameter1 − B (with B < 0), for a soliton lo-
cated at the hyperbolic fixed point,x = x0+; this case is
associated with the scenarioM ′′(x0) < 0. The middle and
bottom panels of the figure shows the dependence ofωi and
ωr on 1 − B, but for a soliton located at the elliptic fixed
point,x = x0−; in this case,M ′′(x0) > 0, corresponding to
an oscillatory instability as mentioned above. It is readily ob-
served that the agreement between the theoretical prediction
of Eqs. (23) and (24) and the numerical result is very good;
especially, for values of1 − B close to unity, i.e., in the case
|B| . 0.15 where perturbation theory is more accurate, the
agreement is excellent.

We should also remark here that a similarly good agreement
between analytical and numerical results was also found (re-
sults not shown here) upon using as an independent parameter
the strength of the potential step (∼ A), instead of the strength
of the nonlinearity step (∼ B), as in the case of Fig. 4.

III. DARK SOLITONS DYNAMICS

We now turn our attention to the dynamics of dark solitons
near the potential and nonlinearity steps. We will use, as a
guideline, the analytical results presented in the previous sec-
tion, and particularly the form of the effective potential.Our
aim is to study the scattering of a dark soliton, initially lo-
cated in the regionx < L and moving to the right, at the
potential and nonlinearity steps (similar considerations, for a
soliton located in the regionx > L and moving to the left, are
straightforward, hence only limited examples of the lattertype
will be presented). We will consider the scattering processin
the presence of: (a) a single potential step, (b) a potentialand
nonlinearity step, and (c) two potential and nonlinearity steps.

Attention will be paid to possible trapping of the soliton
in the vicinity of the location of the potential and nonlinear-
ity steps, and particularly at the hyperbolic fixed point (when
present) of the effective potential. Notice that in the context of
optics such a soliton trapping effect could be viewed as a for-
mation of surface dark solitons at the interfaces between opti-
cal media exhibiting different linear refractive indices and dif-
ferent defocusing Kerr nonlinearities (or atomic media bear-
ing different linear potential and interparticle interaction prop-
erties at the two sides of the interface).

A. A single potential step

Our first scattering “experiment” refers to the case of a po-
tential step only, corresponding toA > 0 andB = 0 (cf. in-
set I in Fig. 1). In this case, the effective potential has typically
the form shown in the top panel of Fig. 5, while the associated
phase-plane is shown in the middle panel of the same figure.
Clearly, according to the particle picture for the soliton of the
previous section, a dark soliton incident from the left towards
the potential step can either be reflected or transmitted: ifthe
soliton has a velocityv = dx0/dt, and thus a kinetic energy

K =
1

2
v2 =

1

2
sin2 φ ≈ 1

2
φ2, (25)

smaller (greater) than the effective potential step∆W =
W (+∞)−W (−∞), as shown in the top panel of Fig. 5, then
it will be reflected (transmitted). Notice the approximation
(sinφ ≈ φ) here which is applicable for low speeds/kinetic
energies. This consideration leads toφ < φc or φ > φc for
reflection or transmission, where the critical valueφc of the
soliton phase angle is given by:

φc =
√
2∆W. (26)

In the numerical simulations, we found that the thresh-
old between the two cases is quite sharp and is accurately
predicted by Eq. (26). Indeed, consider the scenario shown
in Fig. 5, corresponding to parameter valuesVL = 0,
VR = 0.01, αR = αL and µL = 1. In this case, we
find that∆W = 4.99 × 10−3, which leads to the critical
value (for reflection/transmission) of the soliton phase angle
φc = 9.99 × 10−2. Then, for a soliton initially placed at
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FIG. 5: (Color online) The case of a single potential step,A = 0.01
andB = 0, corresponding toVL = 0, VR = 0.01, αR = αL, and
µL = 1. Top panel (a): effective potentialW (x0); shown also is the
potential difference∆W = W (+∞)− W (−∞) = 4.99 × 10−3.
Middle panel (b): corresponding phase plane; inset shows the initial
conditions (red squares A and B) for the trajectories corresponding
to reflection or transmission, while stars and crosses depict respec-
tive PDE results. Bottom panel: contour plots showing the evolution
of the dark soliton density for the initial conditions depicted in the
middle panel, i.e.,x0 = −5 andφ = 9.6 × 10−2 (left), or φ = 0.1
(right); note that, here,φc = 0.099. Thick (blue) solid lines show
PDE results, while dashed (white) lines depict ODE results.

x0 = −5, and for initial velocities corresponding to phase
anglesφ = 9.6 × 10−2 or φ = 0.1, we observe reflection
or transmission, respectively. The corresponding solitontra-
jectories are depicted both in the phase plane(x0, dx0/dt) in
the middle panel of Fig. 5 and in the space-time contour plots
showing the evolution of the soliton density in the bottom pan-
els of the same figure (see trajectories A and B for reflection
and transmission, respectively). Note that stars and crosses in
the middle panel correspond to results obtained by direct nu-
merical integration of the partial differential equation (PDE),
Eq. (5), while the (white) dashed lines in the bottom panels
depict results obtained by the ordinary differential equation
(ODE), Eq. (14). Obviously, the agreement between theoreti-
cal predictions and numerical results is very good.

Here we should recall that in the case where the nonlinear-
ity step is also present (B 6= 0), and whenB > −A (for
A > 0) orB < −A (for A < 0), the form of the effective po-
tential is similar to the one shown in the top panel of Fig. 5. In
such cases, corresponding results (not shown here) are qual-
itatively similar to the ones presented above (forA 6= 0 and
B = 0); in addition, we have again captured accurately the
velocity threshold for reflection/transmission.

t
0 500 1000

x

-9

-5

0

5

9

0

0.5

1

B

FIG. 6: (Color online) Similar to Fig. 5, but for a potential and a
nonlinearity step,A = 0.01 andB = −0.015, corresponding to
VL = 0, VR = 0.01, αR/αL = 0.985, andµL = 1. Top and
bottom panels show the effective potentialW (x0) and the associated
phase plane, respectively; the potential now features an elliptic and
a hyperbolic fixed point atx0 ≈ ±0.65 (cf. vertical dashed lines).
In the phase plane, initial conditions –marked with red squares– at
pointsA (x0 = −5, φ = 0.034), B (x0 = −5, φ = 0.022), C
(x0 = −5, φ = 0.021) andD (x0 = −1.3, φ = 0.002) lead
to soliton transmission, quasi-trapping, reflection, and oscillations
around the elliptic fixed point, respectively; asterisks, crosses and
stars depict PDE results. The four bottom respective contour plots
show the evolution of the soliton density; again, thick bluelines and
white dashed lines depict PDE and ODE results, respectively.

B. A potential and a nonlinearity step

Next, we study the case where both a potential and a non-
linearity step are present (i.e.,A,B 6= 0), and there exist
fixed points of the effective potential. One such case that
we consider in more detail below is the one corresponding to
A = 0.01 andB = −0.015 (respective parameter values are
VL = 0, VR = 0.01, αR/αL = 0.985, andµL = 1). Note that
for this choice the effective potential asymptotically vanishes,
as shown in the top panel of Fig. 6; nevertheless, results qual-
itatively similar to the ones that we present below can also be
obtained for nonvanishing asymptotics ofW (x0).

The effective potential now features an elliptic and a hyper-
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bolic fixed point, located atx0 ≈ ∓0.65 respectively. In this
case too, one can identify an energy threshold∆W , now de-
fined as∆W = W (x0+)−W (−∞) = W (x0+), needed to be
overcome by the soliton kinetic energy in order for the soliton
to be transmitted (otherwise, i.e., forK < ∆W , the soliton
is reflected). Using the above parameter values, we find that
∆W = 2.4×10−4 and, hence, according to Eq. (26), the crit-
ical phase angle for transmission/reflection isφc ≈ 0.022. In
the simulations, we considered a soliton with initial position
and phase anglex0 = −5 andφ = 0.034 > φc, respectively
(cf. point A in the phase plane shown in the second panel
of Fig. 6), and found that, indeed, the soliton is transmitted
through the effective potential barrier of strength∆W . The
respective trajectory (starting from point A) is shown in the
second panel of Fig. 6. Stars along this trajectory, as well as
contour plot A in the same figure, show PDE results obtained
from direct numerical integration of Eq. (5); as in the case of
Fig. 5, the (white) dashed line corresponds to the ODE result.

To study the possibility of soliton trapping, we have also
used an initial condition at the stable branch, incoming to-
wards the hyperbolic fixed point, namelyx0 = −5 and
φ = φc ≈ 0.022 (point B in the second panel of Fig. 6). In
this case, the soliton reaches at the location of the hyperbolic
fixed point (cf. incoming branch, marked with pluses) and ap-
pears to be trapped at the saddle; however, this trapping occurs
only for a finite time (fort ≈ 600). At the PDE level, this can
be understood by the the fact that such a configuration (i.e.,a
stationary dark soliton located at the hyperbolic fixed point) is
unstable, as per the analysis of Sec. II.D. Then, the solitones-
capes and moves to the region ofx > 0, following the trajec-
tory marked with pluses forx > x0+ (here, the pluses depict
the PDE results). The corresponding contour plot B, in the
third panel of Fig. 6, shows the evolution of the dark soliton
density. Note that, in this case, the result obtained by the ODE
(cf. white dashed line) is only accurate up to the escape time,
as small perturbations within the infinite-dimensional system
destroy the delicate balance of the unstable fixed point.

For the same form of the effective potential, we have also
used initial conditions that lead to soliton reflection. In partic-
ular, we have again usedx0 = −5 andφ = 0.021 < φc,
as well as an initial soliton location closer to the potential
and nonlinearity step, namelyx0 = −1.3, andφ = 0.002.
These initial conditions are respectively indicated by the(red)
squares C and D in the second panel of Fig. 6. Relevant tra-
jectories in the phase plane, as well as respective PDE results
(cf. stars and X marks), can also be found in the same panel,
while contour plots C and D in the bottom panel of Fig. 6
show the evolution of the soliton densities. It can readily be
observed that for the slightly subcritical value of the phase
angle (φ = 0.021), the soliton is again quasi-trapped at the
hyperbolic fixed point, but for a significantly smaller time (for
t ≈ 150). On the other hand, when the soliton is initially
located closer to the steps and has a sufficiently small initial
velocity, it performs oscillations, following the periodic orbit
shown in the second panel of Fig. 6.

In all the above cases, we find a very good agreement be-
tween the analytical predictions and the numerical results.
Similar agreement was also found for other forms of the ef-

FIG. 7: (Color online) Similar to Fig. 6, for a potential and anonlin-
earity step, but now forA = 0.01 andB = −0.017, corresponding
to VL = 0, VR = 0.01, αR/αL = 0.983, andµL = 1. The effective
potentialW (x0) (top panel), exhibits an elliptic and a hyperbolic
fixed point, atx0± = ±0.44 (vertical dashed lines). In the associ-
ated phase plane (second panel) shown are initial conditions, for a
soliton moving to the right, at points A (x0 = −5, φ = 0.005) and
B (x0 = −1, φ = 0.001), as well as for a soliton moving to the left,
at points C (x0 = 5, φ = 0.031 > φc ≈ 0.030) and D (x0 = 5,
φ = 0.029 < φc); in the relevant trajectories, stars, X marks, pluses
and asterisks, respectively, denote PDE results. Corresponding con-
tour plots for the soliton density are shown in the bottom panels, with
the dashed white lines depicting ODE results.

fective potential, as shown, e.g., in the example of Fig. 7 (see
also inset III of Fig. 1). For this form ofW (x0), parame-
tersA andB areA = 0.01 andB = −0.017 (for VL = 0,
VR = 0.01, αR/αL = 0.983, andµL = 1), while there exist
again an elliptic and a hyperbolic fixed point, atx0± = ±0.44
respectively. In such a situation, if a soliton moves from the
left towards the potential and nonlinearity steps, and is placed
sufficiently far from (close to) them – cf. initial condition
at point A (point B) – then it will be transmitted (perform
oscillations aroundx0−). On the other hand, if a soliton is
initially placed at somex0 > x0+ and moves to the left to-
wards the potential and nonlinearity steps, it faces an effec-
tive barrier∆W (cf. top panel of Fig. 7), now defined as
∆W = W (x0+)−W (+∞). In this case too, choosing an an
initial condition corresponding to the stable branch, incoming
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towardsx0+, i.e., for the critical phase angleφc ≈ 0.03, it is
possible and achieve quasi-trapping of the soliton for a finite
time, of the order oft ≈ 600. As such a situation was al-
ready discussed above (cf. panel B of Fig. 6), here we present
results pertaining to the slightly supecritical and subcritical
cases, namelyφ = 0.031 > φc andφ = 0.029 < φc; cf.
(red) squares C and D in the second panel, and correspond-
ing contour plots in the bottom panel of Fig. 7. It is readily
observed that, in the former case, the soliton is initially trans-
mitted through the interface; however, it then follows a trajec-
tory surrounding the homoclinic orbit (see the orbit marked
with plus symbols, which depicts the PDE results, in the sec-
ond panel of Fig. 7), and is eventually reflected. In the case
φ = 0.029 < φc, the soliton reachesx0+, stays there for a
time t ≈ 180, and eventually is reflected back following the
trajectory marked with asterisks (see second panel of Fig. 7).
In all cases pertaining to this form ofW (x0), the agreement
between the analytical predictions and the numerical results is
very good as well.

C. Rectangular barriers

Our analytical approximation can straightforwardly be ex-
tended to the case of multiple potential and nonlinearity steps.
Here, we will present results for such a case, where two steps,
located atx = −L andx = L, are combined so as to form
rectangular barriers, in both the linear potential and the non-
linearity of the system. In particular, we consider the follow-
ing profiles for the potential and the scattering length:

V (x) = Vb(x) +

{

VR, |x| > L

VL, |x| < L
, (27)

α(x) =

{

αR, |x| > L

αL, |x| < L
. (28)

In such a situation, the effective potential can be found fol-
lowing the lines of the analysis presented in Sec. II.B: taking
into regard that the perturbationP (υ) in Eq. (7) has now the
form:

P (υ) =
(

A+B|υ|2
)

υ [H(x+ L)−H(x− L)] , (29)

it is straightforward to find that the relevant effective potential
is given by:

W (x0) =
1

8

(

2A+B
)

[tanh(L− x0) + tanh(L+ x0)]

+
1

24
B[tanh3(L − x0) + tanh3(L + x0)]. (30)

Typically, i.e., for sufficiently large arbitrary values ofL,
the effective potential is as shown in the top panel of Fig. 8;
in this example, we usedL = 5, while A = 0.01 and
B = −0.015. It is readily observed that, in this case, asso-
ciated with such a potential and a nonlinearity barrier, is an
effective potential of the form of a superposition of the ones
shown in Fig. 6, which are now located at±5. The associated
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FIG. 8: (Color online) The case of two potential and nonlinearity
steps forming respective rectangular barriers, forL = 5, A = 0.01
andB = −0.015, corresponding toVL = 0, VR = 0.01, αR/αL =
0.985, µL = 1. Top panel (a): the effective potentialW (x0) [cf.
Eq. (30)], featuring elliptic fixed points at the origin and at ±5.66,
and a pair of hyperbolic fixed points at±4.34. Middle panel (b): the
associated phase plane; (red) squaresA andB depict different ini-
tial conditions, corresponding to quasi-trapping or oscillations, while
stars and crosses depict respective PDE results. Bottom panels: con-
tour plots showing the evolution of the dark soliton densityfor the
initial conditions depicted in the middle panel, i.e.,x0 = −8.6 and
φ = 2.2× 10−2 (left), orx0 = −3 andφ = 3× 10−3 (right); here,
as before, dashed (white) lines depict ODE results.

phase plane is shown in the middle panel of Fig. 8; shown also
are initial conditions corresponding to soliton quasi-trapping,
or oscillations around the elliptic fixed point at the origin–
cf. red square points A and B, respectively. The correspond-
ing soliton trajectories are depicted both in the phase plane
in the middle panel of Fig. 8 and in the space-time contour
plots showing the evolution of the soliton density in the bot-
tom panels of the same figure. Note that stars and plus sym-
bols in the middle panel correspond to PDE results, obtained
in the framework of Eq. (5), while the (white) dashed lines in
the bottom panels depict ODE results, obtained by Eq. (14)
for the potential in Eq. (30. Obviously, once again, agreement
between theoretical predictions and numerical results is very
good.

An interesting situation occurs asL decreases. To better
illustrate what happens in this case, and also to make con-
nections with earlier work [9], we consider the simpler case
of B = 0 (i.e., the nonlinearity step is absent). Then, as-
suming thatA = b/(2L) (with b being an arbitrary small
parameter), and in the limit ofL → 0, the potential step
takes the form of a delta-like impurity of strengthb. In this
case, the effective potential of Eq. (30) is reduced to the form
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FIG. 9: (Color online) The case of two potential and nonlinearity
steps forming respective rectangular barriers, forL = 0.1, A = 0.1
andB = −0.13, corresponding toaR/aL = 0.87, VR = 0.1 and
µL = 1. Top panel: the effective potentialW (x0), featuring a hy-
perbolic fixed point at the origin and a pair of elliptic fixed points
at±1.38. Middle panel: the associated phase plane; (red) squareA
depicts an initial condition corresponding to quasi-trapping of the
soliton, while stars depict respective PDE results. Bottompanel:
contour plot showing the evolution of the dark soliton density for
the initial condition depicted in the middle panel, i.e.,x0 = −5 and
φ = 5.8× 10−2; as before, dashed (white) lines depict ODE results.

W (x0) = (b/4)sech2(x0). This result recovers the one re-
ported in Ref. [9] (see also Refs. [8, 10]), where the inter-
action of dark solitons with localized impurities was studied;
cf. Eq. (16) of that work, but in the absence of the trapping
potentialUtr.

In the same limiting case of smallL, and forB 6= 0, the
effective potential has typically the form shown in the top
panel of Fig. 9; here, we useL = 0.1, while A = 0.1 and
B = −0.13, corresponding toaR/aL = 0.87, VR = 0.1
andµL = 1. Comparing this form ofW (x0) with the one
shown in Fig. 8, it becomes clear that asL → 0, the indi-
vidual parts of the effective potential of Fig. 8 pertainingto
the two potential/nonlinearity steps move towards the origin.
There, they merge at the location of the “central” elliptic fixed
point, which becomes unstable through a pitchfork bifurca-
tion. As a result of this process, an unstable (hyperbolic) fixed
point emerges at the origin, while the “outer” pair of the ellip-
tic fixed points (cf. Fig. 8) also drift towards the origin – in
this case, they are located at±1.38.

In the middle panel of Fig. 9, shown also is the phase plane
associated to the effective potential of the top panel. As in
the cases studied in the previous sections, we may investi-
gate possible quasi-trapping of the soliton, using an initial

condition at the stable branch, incoming towards the hyper-
bolic fixed point at the origin. Indeed, choosingx0 = −5 and
φ = φc = 5.8 × 10−2 (notice that here, the corresponding
effective barrier∆W = 1.7× 10−3 – cf. top panel of Fig. 9),
we find the following: the soliton arrives at the origin, stays
there for a timet ≈ 600, and then it is transmitted through
the regionx > 0. In fact, the corresponding trajectory found
at the PDE level is depicted by stars in the middle panel of
Fig. 9, while the relevant contour plot showing the evolution
of the soliton density is shown in the bottom panel of the same
figure. Notice, again, the fairly good agreement between nu-
merical and analytical results.

We note that for the same parameter values, but forB = 0,
elliptic fixed points do not exist, and the effective potential
has simply the form of a sech2 barrier, as mentioned above
(see also work of Ref. [9]). In this case, starting from the
same initial position,x0 = −5, and forφ = 0.1 (correspond-
ing toφc =

√
2∆W ≈ 0.1), we find that the trapping time is

t ≈ 320, i.e., almost half of the one that was when the nonlin-
earity steps are present (results not shown here). This observa-
tion, along with the results presented in the previous sections,
indicate that nonlinearity steps/barriers are necessary either to
facilitate or enhance soliton trapping in such inhomogeneous
settings.

IV. DISCUSSION AND CONCLUSIONS

We have studied matter-wave dark solitons near linear po-
tential and nonlinearity steps, superimposed on a box-likepo-
tential that was assumed to confine the atomic Bose-Einstein
condensate. The formulation of the problem finds a direct
application in the context of nonlinear optics: the pertinent
model can be used to describe the evolution of beams, car-
rying dark solitons, near interfaces separating optical media
with different linear refractive indices and different defocus-
ing Kerr nonlinearities.

Assuming that the potential/nonlinearity steps were small,
we employed perturbation theory for dark solitons to show
that, in the adiabatic approximation, solitons behave as equiv-
alent particles moving in the presence of an effective poten-
tial. The latter was found to exhibit various forms, ranging
from simple tanh-shaped steps – for a spatially homogeneous
scattering length (or same Kerr nonlinearity, in the context of
optics) – to more complex forms, featuring hyperbolic and el-
liptic fixed points – in the presence of steps in the scattering
length (different Kerr nonlinearities).

In the latter case, we found that stationary soliton states do
exist at the fixed points of the effective potential. Using a
Bogoliubov-de Gennes (BdG) analysis, we showed that these
states are unstable: dark solitons at the hyperbolic fixed points
have a pair of unstable real eigenvalues, while those at the el-
liptic fixed points have a complex eigenfrequency quartet, dic-
tating a purely exponential or an oscillatory instability,respec-
tively. We also used an analytical approximation to determine
the real and imaginary parts of the relevant eigenfrequencies
as functions of the nonlinearity step strength. The analytical
predictions were found to be in good agreement with corre-
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sponding numerical findings obtained in the framework of the
BdG analysis.

We then studied systematically soliton dynamics, for a vari-
ety of parameter values corresponding to all possible formsof
the effective potential. Adopting the aforementioned equiv-
alent particle picture, we found analytically necessary con-
ditions for soliton reflection at, or transmission through the
potential and nonlinearity steps: these correspond to initial
soliton velocities smaller or greater to the energy of the effec-
tive steps/barriers predicted by the perturbation theory and the
equivalent particle picture.

We also investigated the possibility of soliton (quasi-) trap-
ping, for initial conditions corresponding to the incoming, sta-
ble manifolds of the hyperbolic fixed points (which exist only
for inhomogeneous nonlinearities). In the context of optics,
such a trapping can be regarded as the formation of surface
dark solitons at the interface between dielectrics of different
refractive indices. We found that trapping is possible, butonly
for a finite time. This effect can be understood by the fact that
stationary solitons at the hyperbolic fixed points are unstable,
as was corroborated by the BdG analysis. Thus small pertur-
bations (at the PDE level) eventually cause the departure of
the solitary wave from the relevant fixed points. Nevertheless,
it should be pointed out that the time of soliton quasi-trapping
was found to be of the order of600

√
2ξ/cS in physical units;

thus, typically, for a healing lengthξ of the order of a mi-
cron and a speed of soundcs of the order of a millimeter-
per-second, trapping time may be of the order of≈ 850 ms.
This indicates that such a soliton quasi-trapping effect may
be observed in real experiments. Note that in all scenarios
(reflection, transmission, quasi-trapping) our analytical pre-
dictions were found to be in very good agreement with direct
numerical simulations in the framework of the original Gross-
Pitaevskii model.

We have also extended our considerations to study cases
involving two potential and nonlinearity steps, that are com-
bined so as to form corresponding rectangular barriers. Re-
flection, transmission and quasi-trapping of solitons in such
cases were studied too, again with a very good agreement be-
tween analytical and numerical results. In this setting, special
attention was paid to the limiting case of infinitesimally small
distance between the adjacent potential/nonlinearity steps that
form the barriers. In this case, we found that, due to a pitch-
fork bifurcation, the stability of the fixed point of the effective
potential at the barrier center changes: out of two hyperbolic
and one elliptic fixed point, a hyperbolic fixed point emerges,
and the potential rectangular barrier is reduced to a delta-like

impurity. The latter is described by a sech2 effective potential,
in accordance with the analysis of earlier works [8–10].

Our methodology and results pose a number of interesting
questions for future studies. First, it would be interesting to
investigate how our perturbative results change as the poten-
tial/nonlinearity steps or barriers become larger, and/orattain
more realistic shapes (including steps bearing finite widths, as
well as Gaussian barriers – cf., e.g., recent work of Ref. [13]).
In the same context, a systematic numerical – and, possibly,
also analytical – study of the radiation of solitons during re-
flection or transmission (along the lines, e.g., of Ref. [54])
should also provide a more complete picture in this prob-
lem. Furthermore, a systematic study of settings involving
multiple such steps/barriers, and an investigation of the pos-
sibility of soliton trapping therein, would be particularly rele-
vant. In such settings, investigation of the dynamics of mov-
ing steps/barriers could find direct applications to fundamen-
tal studies relevant, e.g., to superfluidity (see, for instance,
Ref. [19]), transport of BECs [20], and even Hawking radia-
tion in analog black hole lasers implemented with BECs [66].
Finally, extension of our analysis to higher-dimensional set-
tings, would also be particularly challenging: first, in order
to investigate transverse excitation effects that are not cap-
tured within the quasi-1D setting, and second to study simi-
lar problems with vortices and other vortex structures. See,
e.g., Ref. [67] for a summary of relevant studies in higher-
dimensional settings, and Ref. [68] for a recent example of
manipulation/control of vortex patterns and their formation
via Gaussian barriers, motivated by experimentally accessible
laser beams.
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