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Dark solitons near potential and nonlinearity steps
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SCenter for Nonlinear Studies and Theoretical Division,
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We study dark solitons near potential and nonlinearitystapd combinations thereof, forming rectangular
barriers. This setting is relevant to the contexts of atoBose-Einstein condensates (where such steps can be
realized by using proper external fields) and nonlinearcsgfior beam propagation near interfaces separating
optical media of different refractive indices). We use pdyation theory to develop an equivalent particle theory,
describing the matter-wave or optical soliton dynamicshasotion of a particle in an effective potential. This
Newtonian dynamical problem provides information for tbéten statics and dynamics, including scenarios of
reflection, transmission, or quasi-trapping at such st&ps. case of multiple such steps and its connection to
barrier potentials is also touched upon. Our analyticadligteons are found to be in very good agreement with
the corresponding numerical results.

PACS numbers: 03.75.Lm, 05.45.Yv

. INTRODUCTION vortex rings[[4D], control of Faraday wavés|[41], vortexali®
dynamics in spinor BEC$ [42], and others.

The interaction of solitons with impurities is a fundamen- Here, we consider a combination of the above settings,
tal problem that has been considered in various branches ofamely we consider a one-dimensional (1D) setting involv-
physics — predominantly in nonlinear wave thedry [1] anding potential and nonlinearity steps, as well as pertineai:r
solid state physicsi:l[rzél — as well as in applied mathematic&ngular barriers, and study statics, dynamics and saagteri
(see, e.g., recent work [3] and references therein). Ealpgci of dark solitons. In the BEC context, recent experiments
in the framework of the nonlinear Schrodinger (NLS) equa-have demonstrated robust dark solitons in the quasi-1D set-
tion, the interaction of bright and dark solitons wifHike  ting [43]. In addition, potential steps in BECs can be realiz
impurities has been investigated in many works (see, e.ghy trapping potentials featuring piece-wise constant [@®fi
Refs. [458]). Relevant studies in the physics of atomic Bose(see, e.g., Refs, [44,145] and discussion in the next Sgction
Einstein condensates (BECs) have also been performed (sdgirthermore, nonlinearity steps can be realized too, upon e
e.g., Refs.[[9-13]), as well as in settings involving pant  ploying magneticallyl[46] or optically [47] induced Fesluba
wells [14]15] and barriers [16, 17] (see also Refl [18] farea resonances, that can be used to properly tune the inteatomi
lier work in a similar model). In this context, localized imp  interactions strength — see, e.g., more details in Fﬁb@p
rities can be created as focused far-detuned laser bearhs, a@nd discussion in the next Section.

have already been used in experiments involving dark $®ito  Such a setting involving potential and nonlinearity steps,
[1€,[20]. Furthermore, experimental results on the sdatier finds also applications in the context of nonlinear optics.
of _matter-w:';\ve bright solitons on Gaussian barriers inegith There, effectively infinitely long potential and nonlinigr
7Li [21] or 3°Rb [22] BECs have been reported as well. Moresteps of constant and finite height, describe interfacea-sep
recently, such soliton-defect interactions were also@equl  rating optical media characterized by different linear and-
in the case of multi-component BECs and dark-bright soli-inear refractive indiced [48]. In such settings, it hasrbee
tons, both in theory [23] and in an experiment[24]. shown [49552] that the dynamics of self-focused light chan-
On the other hand, much attention has been paid to BECsels — in the form of spatial bright solitons — can be effesd{iv
with spatially modulated interatomic interactions, stlezth  described by the motion of an equivalent particle in effecti
“collisionally inhomogeneous condensates’ [25, 26]; foea  step-like potentials. This “equivalent particle theoryta
view with a particular bend towards periodic such interac-ally corresponds to the adiabatic approximation of the per-
tions see also Ref[ [27]). Relevant studies in this contexturbation theory of solitong [1], while reflection-induceat
have explored a variety of interesting phenomena: these irdiation effects can be described at a higher-order apptaxim
clude, but are not limited to adiabatic compression of matte tion [50,[51]. Note that similar studies, but for dark satito
waves [25/ 28], Bloch oscillations of solitoris [25], emissi  in settings involving potential steps and rectangularibesy
of atomic solitons [29, 30], scattering of matter wavestigio  have also been performed — see, e.g., Ref. [53] for an effec-
barriers|[3[], emergence of instabilities of solitary wadeie  tive particle theory, and Refd, [54-56] for numerical sasdi
to periodic variations in the scattering lengthl[32], fotina  of reflection-induced radiation effects. However, to thetbe
of stable condensates exhibiting both attractive and sdgul  of our knowledge, the statics and dynamics of dark solitons
interatomic interactions [33], solitons in combined linead  near potential and nonlinearity steps, have not been system
nonlinear potentials [34-B8], generation of solitong [88H  atically considered so far in the literature, although acipe
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version of such a setting has been touch upon in Reff. [35].  especially important; here we use= 50. In this setting, our
It is our purpose, in this work, to address this problem. Inaim is to consider dark solitons near potential and nontibyea

particular, our investigation and a description of our pres  steps, located at = L. To model such a situation, we start

tation is as follows. First, in Sec. I, we provide the degeri from the Gross-Pitaevskii (GP) equation![57,, 58]:

tion and modeling of the problem; although this is done in 5w 2

the context of atomic BECs, our model can straightforwardly Bl — [_ — 32 + g(a)| V] + V(x)} T, (2

be used for similar considerations in the context of op#ss, ot 2m

mentioned above. In the same Section, we apply perturbatiofere, ¥ (z, ¢) is the mean-field wave functiom is the atomic
_theo_ry for d:_alrk solitons_to s_how tha_t, in the adiabatip apPro mass) () represents the external potential, while) () =
imation, soliton dynamics is described by the motion of an(9/4L2 )gsp is the effectively 1D interaction strength, with
equivalent particle in an effective potential. The latteasta ., — Amh2o(z) /m being its 3D counterpart andz) being
tanh-profile, but — in the presence of the nonlinearity step -the scattering length (assumed tacbe 0, vz, corresponding
can also exhibit an elliptic and a hyperbolic fixed point. Wetg repulsive interatomic interactions). The external ptis

show that stationary soliton states do exist at the fixedtpoin and the scattering length are then taken to be of the form:
of the effective potential, but are unstable (albeit in efiént

ways, as is explained below) according to a Bogoliubov-de V., <L

Gennes (BdG) analysis [57./58] that we perform; we also use Viz) = Vola) + Vi, z>1L° ®)
an analytical approximation to derive the unstable eigkesa

as functions of the magnitudes of the potential/nonlirtgari o, <L

steps. In Sec. Il we study the soliton dynamics for various alz) = ar, v>1L° )

parameter values, pertaining to different forms of thective
potential, including the case of rectangular barriers fesny ~ whereV;, g anday, g are constant values of the potential and
combination of adjacent potential and nonlinearity stéps:  scattering length, to the left and right:of= L, where respec-
numerical results — in both statics and dynamics — are fountlve steps take place.
to be in very good agreement with the analytical predictions Notice that such potential steps may be realized in present
We also investigate the possibility of soliton trappingliet BEC experiments upon employing a detuned laser beam
vicinity of the hyperbolic fixed point of the effective poten shined over a razor edge to make a sharp barrier, with the
tial; note that such states could be characterized as ‘irfa diffraction-limited fall-off of the laser intensity beingmaller
dark solitons”, as they are formed at linear/nonlinearrinte than the healing length of the condensate; in such a situa-
faces separating different optical or atomic media. We showion, the potential can be effectively described by a steywfu
that quasi-trapping of solitons is possible, in the caserahe tion. On the other hand, the implementation of nonlinear-
nonlinearity steps are present; the pertinent (finite)diagp ity steps can be based on the interaction tunability of spe-
time is found to be of the order of several hundreds of mitlise cific atomic species by applying external magnetic or optica
onds, which suggests that such soliton quasi-trappingdcoulfields [46,47]. For instance, confining ultracold atoms in an
be observable in real BEC experiments. Finally, in Sec. IV weelongated trapping potential near the surface of an atom chi
summarize our findings, discuss our conclusions, and peovid[59] allows for appropriate local engineering of the saatte
provide perspectives for future studies. ing length to form steps (of varying widths), where the atom-
surface separation sets a scale for achievable minimum step
widths. The trapping potential can be formed optically,-pos

Il. MODEL AND ANALYTICAL CONSIDERATIONS sibly also by a suitable combination of optical and magnetic
fields (see Ref[[35] for a relevant discussion).
A. Setup Measuring the longitudinal coordinatein units of v/2¢

(where¢ = h/+/2mng; p is the healing length), timiin units
As noted in the Introduction, our formulation originates of v2¢/c, (Wherec, = /g1 pn/m is the speed of sound and
from the context of atomic BECs in the mean-field picturen is the peak density), and energy in unitsgef,n, we cast
[57]. We thus consider a quasi-1D setting whereby matteEq. (2) to the following dimensionless form (see Ref! [60]):
waves, described by the macroscopic wave funciidn, t), P 182
are oriented along the-direction and are confined in a - 2 @|u|2u+v(x)u, (5)
strongly anisotropic (quasi-1D) trap. The latter, has threnf ot 2 0z? aL

of a rectangular box of lengths, > L, = L. = Ly, with  \yherey = /nl. Unless stated otherwise, in the simulations

the transverse length, being on the order of the healing pejow we fix the parameter values as followi§; = 10 and

length&. Such a box-like trapping potentidl;(z), can be , _ 95 (for the box potential)}i, = 0 andVi = +0.01 for

approximated by a super-Gaussian function, of the form: 1o potential step, as well as, = 1 andag, € [0.9, 1.1] for
PN the nonlinearity step. Nevertheless, our theoretical @ggi

Vo(z) = Vo {1 — exp (— (—) )} ; (1)  is general (and will be kept as such in the exposition that fol

v lows in this section).

whereV,, andw denote the trap amplitude and width, respec- Here we should mention that Eg] (5) can also be applied in

tively. The particular value of the exponent> 1 is not the context of nonlinear optics [48]: in this caserepresents
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the complex electric field envelopejs the propagation dis- whereX = cos¢[z — z(t)] is the soliton coordinatep is

tance andc is the transverse direction, whilé(z) anda(z)
describe the (transverse) spatial
linear parts of the refractive indeix |36]. This way, Hd. (8hc

be used for the study of optical beams, carrying dark sditon

near interfaces separating different optical media, wdfifr (
ferent) defocusing Kerr nonlinearities.

B. Perturbation theory and equivalent patrticle picture

rofile of the linear and n

the soliton phase angléy| < =/2) describing the darkness
of the soliton,cos ¢ is the soliton depthd = 0 and¢ # 0
correspond to stationary black solitons and gray solitoss,
spectively), whilexy(¢) anddx/dt = sin ¢ denote the soli-
ton center and velocity, respectively. Then, considering a
adiabatic evolution of the dark soliton, we assume that én th
presence of the perturbation the dark soliton parameters be
come slowly-varying unknown functions of tinte Thus, the
soliton phase angle becomgs— ¢(t) and, as a result, the
soliton coordinate becomes = cos ¢(t)(z — zo(t)), with

Assuming that, to a first approximation, the box potentialdo(t)/dt = sin (t). _
can be neglected, we consider the dynamics of a dark soliton, The evolution of the soliton phase angle can be found by

which is located in the region < L, and moves to the right,

towards the potential and nonlinearity steps (similar aters
ations for a soliton located in the regian> L and moving

to the left are straightforward). In such a case, we seek for a

solution of Eq.[(b) in the form:

u(z,t) = /pL — Vi, exp (—ippt)v(z,t), (6)

where up, is the chemical potential, and thex,t) is the
wavefunction of the dark soliton. Then, introducing theant-a
formationst — (ur, — Vi)t andx — /u, — Vox, we ex-

means of the evolution of the renormalized soliton energy,

Ey,s, given by [61] 62]:

By = %/0; {|UI|2+(|U|2—1)2}da@. (11)

Employing Eq.[(ID), it can readily be found thak,,/dt =
—4cos? ¢ sin ¢ dp/dt. On the other hand, using E@ (7) and
its complex conjugate, yields the evolution of the renormal
ized soliton energy:dEy,/dt = —ff:f (Pv; + Puy)de,
where bar denotes complex conjugate. Then, the above ex-

press Eq[{5) as a perturbed NLS equation for the dark solitorpressions fotlE,, /dt yield the evolution ofs, namely

v 10% 9
15+5@_(|U| —1)’U =

Here, the functional perturbatid?(v) has the form:

P(v). (7)
P(v) = (A+ BJv|*)vH(z — L), (8)

where# is the Heaviside step function, and coefficieAts3
are given by:

VR — Wi
= RTL g2k (9)
pr — VL o,

—+o0

d 1
_¢ — 71{6{
dt 2 cos? ¢ sin ¢

P(v)@tda:}. (12)

— 0o

Inserting the perturbatiof](8) into Eq._{12), and perforgnin
the integration, we obtain the following result:

dp

i (A + B) sech? (L — xo)

!
4
+ %B sech? (L — xo), (13)

where we have considered the case of nearly stationaryk{blac

These coefficients, which set the magnitudes of the potentiggjitons withcos ¢ ~ 1 (andsin ¢ ~ ¢). Combining Eq.[{I8)
and nonlinearity steps, are assumed to be small. Such a sitiy;ith the above mentioned equation for the soliton velocity,

ation corresponds, e.g., to the case where= 1, V1, = 0,
Vr ~ ¢, andar/ar, ~ 1, where0 < ¢ < 1 is a formal

dxo(t)/dt = sin¢(t), we can readily derive the following
equation for motion for the soliton center:

small parameter (this choice will be used in our simulations

below). In the present work, we assume that the jump from

left to right is “sharp”, i.e., we do not explore the addit&n

possibility of a finite width interface. If such a finite width

was present but was the same between the linear and nonlinhere the effective potentidl’ (z) is given by:

ear interface, essentially the formulation below would b#&
applicable, with the Heaviside function above substituigd
a suitable smoothened variant (e.gtaah functional form).

A more complicated setting deferred for future studies woul
involve the existence of two separate widths in the linear an
nonlinear step and the length scale competition that thatico

involve.

Equation [[T) can be studied analytically upon employing
—[61

perturbation theory for dark solitons (see, e.g., R
[63)): first we note that, in the absence of the perturbaf@n
Eq. (1) has a dark soliton solution of the form:

v(z,t) = cosptanh X + isin ¢, (10)

Py AW
TE T dny (14)
W(xg) = — %(214 + B) tanh (L — xo)
1
- 5B tanh® (L — o). (15)

C. Forms of the effective potential

The form of the effective potential suggests that fixed
points, where — potentially — dark solitons may be trapped, e
ist only in the presence of the nonlinearity stép#£ 0). l.e.,
itis the competition between the linear and nonlinear dtap t



A>0 0.03 °
1
f -~ 0.02
<o 0.8 oor
= ~ 06 '
+ 0 X 04 3 0
< )
N 111 292 0.01
N —_ .
m s 0| < 0.02
0.2 . 0.03 °
1
i 5 0 %), 5 -0.05 0 0.05
, X w
‘ r

FIG. 2: (Color online) Left panel: density profile of the soaary
soliton (blue line) at the hyperbolic fixed point = 0.66, as found
, , , , , numerically, using the ansaiz(z) = [1 — V(z)]"/? tanh(z) in
FIG. 1 Sketch .showmg dom{:uns of existence of fixed pointthef Eq. [17), forar /ar, = 0.985, Vi = 0.01, Vi, = 0, 1, = 1; green
effective potentialV’ (zo) (depicted by gray areas) fof > 0 (blue |ine jllustrates the corresponding effective poteniilzo). Right
line) andA < 0 (red line). The insets—I1I (IV —VI) show the form panel: corresponding spectral plane. (w;) of the corresponding

of W (zo), starting from —and ending to —a small finite value of non- ejgenfrequencies, illustrating an exponential growth uan imag-
linearity step3, which is gradually decreased (increased)4or 0 inary eigenfrequency pair.

(A < 0), cf. black arrows. Small rectangular (yellow) points indi
cate parameter values corresponding to the formig/¢t,) shown

in the insetd — VI. bifurcation mentioned above) close to the location of the po

tential and nonlinearity steps, i.e., near= 0; a similar sit-
jation occurs ford < 0, but the local minimum becoming a
local maximum, and vice versa. The locatians. of the fixed
points are given by EqL(16); as an example, using parameter
valuesVi, = 0, Vg = —0.01, a1, = 1 andag = 1.015, we
find thatzo, = 0.66 (xo— = —0.66) for the elliptic (hyper-
bolic) fixed point.

As the nonlinearity step becomes deeper, the asymptotes

1 AT/ ~BRATDB) (for z — +o00) of W (xo) become smaller and eventually van-
Tor = —In , (16)

enable the presence of fixed points and associated more co
plex dynamics; in the presence of solely a linear step, the da
soliton encounters solely a step potential, similarly tawis
the case for its bright sibling [18]; see also below.

In fact, in our setting it is straightforward to find that ther
exist two fixed points, located at:

ish. For fixedV;, = 0 (andpg, = 1), Eq. [I%) shows that this
A+B happens foB = —(3/2) 4; in this case, the potential features
a “spiky” profile, in the vicinity ofz = 0 (see, e.g., upper
for B(2A + B) < 0and—2A < B < —A,for A > 0,0r  pang| of Fig[® below). FoB < —(3/2)A, the asymptotes
—A < B < =24, for A <0.InFig.[lwe plotB(2A + B)  of W (xo) become finite again, and take a positive (negative)
as a function ofB, for A > 0 (blue line) andA < 0 (red  yajue fors < 0, and a negative (positive) value far> 0,
line). The corresponding domains of existence of the fixeq, the cased > 0 (A < 0). The spiky profile of ¥ (z) in
points, are also depicted by the gray areas. Insets showalypi the vicinity of + = 0 is preserved in this case too, but &s

profiles of the effective potential’(xo), for different values  jocreases it eventually disappears, as shown in the iHgets
of B, which we discuss in more detail below. From the figuregnqv1 of Fig.[I.

(as well as from Eql(16) itself), the saddle-center natire o
the bifurcation of the two fixed points, which are generated
concurrently “out of the blue sky” is immediately evident. D. Solitons at the fixed points of the effective potential
First, we consider the case of the absence of the nonlinear-
ity step,B = 0, as shown in the insefsandIV of Fig.[d, for
A > 0andA < 0, respectively. In this casél/ (z() assumes
a step profile, induced by the potential step. This form is pre
served in the presence of a finite nonlinearity stBp# 0,
namely for—A < B < 0 and0 < B < —A, in the cases
A > 0andA < 0, respectively.
A more interesting situation occurs when the nonlinearity 1d%v,  alz),
step further decreases (increases), and takes valRds < Us = 5o T a—L|Us| vs + V(2)vs. a7
B < —-AforA>0,or—A < B < —2Afor A <O0. Inthis
case, the effective potential features a local minimum {max Notice that we have assumed without loss of generality a unit
mum), i.e., an elliptic (hyperbolic) fixed point, in the regi  frequency solution; the formulation below can be used dt wil
x < 0(x > 0)for A > 0 emerge (as per the saddle-centerfor any other frequency. The above equation is then solved

The above analysis poses an interesting question regard-
ing the existence of stationary solitons of EHd. (5) at thediixe
points of the effective potential. To address this question
use the ansatz(x,t) = exp(—it)vs(z), for a stationary soli-
ton v (), and obtain from Eq[{5) the equation:




-4
12 x10 §
. 251 o ° 0.03 :
08 13 .— 0.02 E
o~ 0.6 aw _ 05 ! |
= 3 0 co—— 0.01 .
=04 E -0.5 I
=02 =S |
15 0 :
0l EERVA SN\ N 1.01 1.012 1.014 1.016 1.018 1.02
! 1-B
02 ! 254 ® d
' x10™
-5 x,.0 5 -0.03 0 0.03
X W 3
FIG. 3: (Color online) Same as FIg. 2, but for a soliton lodaéethe -2 y i ‘
elliptic fixed pointzo— = —0.66; this state is found using the initial 3 ! .
ansatz, (z) = [1 — V(x)]*/? tanh(z 4 0.2). The spectral plane in 1 A !
the right panel illustrates an oscillatory growth due to pinesence '
of a complex quartet of eigenfrequencies. X
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numerically, by means of Newton’s method, employing the

ansatz (forl = 0):

vs(z) = [1 — V(2)]"/? tanh(z — 20). (18)

As shown in the left panel of Fifj] 2, assuming an ansatz within
Eqg. (I8) in which the soliton is initially placed at = 0, we
find a steady state exactly at the hyperbolic fixed point =
0.66, as found from Eq[{16). On the other hand, the left panel
of Fig.[3 shows a case where the initial guess is assumed in
Eg. (I8) to have a soliton positioned & = —0.2, which
leads to a stationary soliton located exactly at the edifixied
pointzg_ = —0.66 predicted by Eql{16).

It is now relevant to study the stability of these station-
ary soliton states, performing a Bogoliubov-de Gennes (BAGFIG. 4: (Color online) Top panel: the imaginary part of thgesi-
anaIysisEI?EﬂZ]. We thus consider small perturbatigns frequency,w;, as a function oft — B (with B < 0), for a soliton

vs(), and seek solutions of E{17) of the form: located at the hyperbolic fixed pc.)inzt,:. 2o+ . Middle and bottom
panels show the dependence of imaginary and real parenmdw..,

1) = it 5 (b —iwt | = iwt 19 of the eigenfrequency oh — B, for a soliton located at the elliptic
u(x, ) € [US(I) + ( (x)e + C(x)e )] » (19) fixed point,z = z(_, i.e., the case that leads to an eigenfrequency
where(b(z), c(z)) are eigenmodes; = w, -+ iw; are (gen- quartet. Solid blue curves correspond to the analyticaliptien [cf.

erally complex) eigenfrequencies, afid< 1. Notice that £ds:[28) and{24)], blue circles depict numerical resultsije yel-

. low squares depict eigenfrequency values corresponditigetcases
the occurrence of a complex eigenfrequency always leads t own in FigsR anfl3. For the top and middle pankls. 0.01,

a dynamic instability; thus, a linearly stable configurati® 1.0 for the bottom panell — —(2/3)B; in all casesyr, — 1.
tantamount tav; = 0 (i.e., all eigenfrequencies are real). '

Substituting Eq.[{29) into EgX5), and linearizing with re-
spect taj, we derive the following BdG equations:

[ﬁl -1+ 2@@] b+ @vgc = wb, (20)  eigenfrequencies with nonzero imaginary part in the spectr
aL aL although the mechanisms of instability are distinctly efiént
[H 14 2@1)?] - @vfb — _we, (21) betweenthe two cases (of Figs. 2 &hd 3).
o1, a1,

. To better understand these instabilities, and also praide
whereH = —(1/2)9% + V(z) is the single particle operator. analytical estimate for the relevant eigenfrequenciesnag
This eigenvalue problem is then solved numerically. Examfollow the analysis of Ref[[64]; see also Réf.[65] for apph
ples of the stationary dark solitons at the fixed poinfs of  tion of this theory to the case of a periodic, piecewise-tamts
the effective potentidll’, as well as their corresponding BdG scattering length setting. According to these works, st
spectra, are shown in Fids. 2 dnd 3. It is observed that thpersist in the presence of the perturbatiofv) of Eq. (8) (of
solitons are dynamically unstable, as seen by the presdnce strengthA, B ~ ¢) provided that the Melnikov function con-



dition Ill. DARK SOLITONS DYNAMICS

T 9P (v
M'(z0) = / %sech2 (x —xo)dx =0, (22) We now turn our attention to the dynamics of dark solitons
- near the potential and nonlinearity steps. We will use, as a

possesses at least one root, say Then, the stability of guideline, the analytical results presented in the prevgme-
the dark soliton solutions aty. depends on the sign of the tion, and particularly the form of the effective potenti@lur
derivative of the function in Eq[{22), evaluatedigt an in- @m is to study the scattering of a dark soliton, initially lo
stability occurs, with one imaginary eigenfrequency pair f cated in the regiorr < L and moving to the right, at the
eM" (i) < 0, and with exactly one complex eigenfrequency potential and nonlinearity steps (similar consideratiéosa
quartet foreM” (&) > 0. The instability is dictated by the soliton located in the region > L and moving to the left, are
translational eigenvalue, which bifurcates from the origs  Straightforward, hence only limited examples of the latype
soon as the perturbation is present. Ebf”(#,) < 0, the  Will be presented). We will consider the scattering progess
relevant eigenfrequency pair moves along the imaginary, axi the presence of: (a) a single potential step, (b) a potesntia
leading to an immediate instability associated with expene nonlinearity step, and (c) two potential and nonlinearigps.
tial growth of a perturbation along the relevant eigendicec Attention will be paid to possible trapping of the soliton
On the other hand, foeM” (Z,) > 0, the eigenfrequency in the vicinity of the location of the potential and nonlimea
moves along the real axis; then, upon collision with eigenfr ity steps, and particularly at the hyperbolic fixed point émh
quencies of modes of opposite signature than that of the-tranpresent) of the effective potential. Notice that in the eanof
lation mode, it gives rise to a complex eigenfrequency @iart Optics such a soliton trapping effect could be viewed as-a for
signaling the presence of an oscillatory instability. Tekes ~ mation of surface dark solitons at the interfaces betwedn op

vant eigenfrequencies can be determined by a quadratie ch&@! media exhibiting different linear refractive indicesdaif-

acteristic equation which takes the form![64], ferent defocusing Kerr nonlinearities (or atomic mediarbea
ing different linear potential and interparticle inteliaatprop-
1 A - - i
A2 4 ZM"(SEo) (1 _ 5) = O(e), (23) erties at the two sides of the interface).
where eigenvaluesare related to eigenfrequenciethrough A. Asingle potential step

A? = —w?. Since the roots af/” () are the two fixed points

1 1~ H2 Y
To:, We may evaluatd/” (o) explicitly, and obtain: Ouir first scattering “experiment” refers to the case of a po-

M"(zg+) = — 2sech?(zo+)tanh(zoy) tential step only, corresponding tb > 0 andB = 0 (cf. in-
« [A n BtanhQ(:vOi)} (24) setlin Fig[1). In this case, the effective potential hasdsby
' the form shown in the top panel of FId. 5, while the associated

To this end, combining Eq4._(23) aiid{24) yields an analyticaphase-plane is shown in the middle panel of the same figure.
prediction for the magnitudes of the relevant eigenfrequenClearly, according to the particle picture for the solitdriree
cies, for the cases of solitons located at the hyperboliber t Previous section, a dark soliton incident from the left todea
elliptic fixed points of¥ (z). the potential step can either be reflected or transmittettieif

Figure[3 shows pertinent analytical results [depicted bysoliton has a velocity = dzo/dt, and thus a kinetic energy
(red) solid lines], which are compared with corresponding n 1 1 1
merical results [depicted by (blue) points]. In particulive K = -v? = =sin? ¢ ~ =¢?, (25)
top panel of the figure illustrates the dependence of theimag 2 2 2
inary part of the eigenfrequency (real part of the eigeraglu smaller (greater) than the effective potential stapl’ =
w; on the parameter — B (with B < 0), for a soliton l0- 1/ (400) — W (—o0), as shown in the top panel of Fig. 5, then
cated at the hyperbolic fixed point, = o, ; this case is it will be reflected (transmitted). Notice the approximatio
associated with the scenarld”(zo) < 0. The middle and  (sin¢ ~ ¢) here which is applicable for low speeds/kinetic
bottom panels of the figure shows the dependence; @id  energies. This consideration leadsfto< ¢. or ¢ > ¢, for
wr on'1 — B, but for a soliton located at the elliptic fixed reflection or transmission, where the critical valteof the
point,z = xo_; in this caseM"(z) > 0, corresponding to  soliton phase angle is given by:
an oscillatory instability as mentioned above. It is readib-
served that the agreement between the theoretical predicti b = V2AW. (26)
of Eqgs. [2B) and[{24) and the numerical result is very good:;
especially, for values of — B close to unity, i.e., inthe case  In the numerical simulations, we found that the thresh-
|B| < 0.15 where perturbation theory is more accurate, theold between the two cases is quite sharp and is accurately
agreement is excellent. predicted by Eq.[{26). Indeed, consider the scenario shown

We should also remark here that a similarly good agreemerinh Fig. [3, corresponding to parameter valugs = 0,
between analytical and numerical results was also found (rd/lg = 0.01, ar = ar, andu, = 1. In this case, we
sults not shown here) upon using as an independent parameferd that AW = 4.99 x 10~3, which leads to the critical
the strength of the potential step (4), instead of the strength value (for reflection/transmission) of the soliton phasglan
of the nonlinearity step~ B), as in the case of Fifj] 4. de = 9.99 x 1072. Then, for a soliton initially placed at
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FIG. 5: (Color online) The case of a single potential stép= 0.01
and B = 0, corresponding té7, = 0, Vg = 0.01, ar = ar, and <

ur, = 1. Top panel (a): effective potenti& (z¢); shown also is the
potential difference\ W = W (+o00) — W (—o00) = 4.99 x 1075,
Middle panel (b): corresponding phase plane; inset showitial -
conditions (red squares A and B) for the trajectories cpording 0 200
to reflection or transmission, while stars and crosses tegspec- t
tive PDE results. Bottom panel: contour plots showing traigion
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of the dark soliton density for the initial conditions degid in the
middle panel, i.e.go = —5 and¢ = 9.6 x 1072 (left), or ¢ = 0.1
(right); note that, herep. = 0.099. Thick (blue) solid lines show
PDE results, while dashed (white) lines depict ODE results.

FIG. 6: (Color online) Similar to Fid.]5, but for a potentiatcha
nonlinearity step,A = 0.01 and B = —0.015, corresponding to
Vi, = 0, V& = 0.01, ar/ar = 0.985, andur, = 1. Top and
bottom panels show the effective potenii&l(xo) and the associated

phase plane, respectively; the potential now featureslgtieland

a hyperbolic fixed point aty ~ +0.65 (cf. vertical dashed lines).

In the phase plane, initial conditions —marked with red sesta at
xo = —b, and for initial velocities corresponding to phase points A (zo = —5, ¢ = 0.034), B (zo = —5, ¢ = 0.022), C
angles¢p = 9.6 x 1072 or ¢ = 0.1, we observe reflection (zo = —5, ¢ = 0.021) andD (zo = —1.3, ¢ = 0.002) lead
or transmission, respectively. The corresponding solitan  to soliton transmission, quasi-trapping, reflection, asdiltions
jectories are depicted both in the phase plang dxo/dt) in around the elliptic fixed point, respectively; asterigkmsses and
the middle panel of Figi]5 and in the space-time contour plot§tars depict PDE results. The four bottom respective coritnis
showing the evolution of the soliton density in the bottom-pa show the evolution of the soliton density; again, thick biues and
els of the same figure (see trajectories A and B for reflection’ hite dashed lines depict PDE and ODE results, respectively
and transmission, respectively). Note that stars and esdss
the middle panel correspond to results obtained by direct nu
merical integration of the partial differential equatid?E),
Eq. (8), while the (white) dashed lines in the bottom panels
depict results obtained by the ordinary differential egprat  Next, we study the case where both a potential and a non-
(ODE), Eq. [14). Obviously, the agreement between theoretijinearity step are present (i.e4, B # 0), and there exist
cal predictions and numerical results is very good. fixed points of the effective potential. One such case that

Here we should recall that in the case where the nonlineaiwe consider in more detail below is the one corresponding to
ity step is also presentX # 0), and whenB > —A (for A = 0.0l andB = —0.015 (respective parameter values are
A > 0)orB < —A (for A < 0), the form of the effective po- VL =0, Vg = 0.01, ar /ar, = 0.985, andur, = 1). Note that
tential is similar to the one shown in the top panel of Elg.rb. | for this choice the effective potential asymptotically ishres,
such cases, corresponding results (not shown here) are quas shown in the top panel of FIg. 6; nevertheless, results qua
itatively similar to the ones presented above (for£ 0 and  itatively similar to the ones that we present below can atso b
B = 0); in addition, we have again captured accurately theobtained for nonvanishing asymptoticsiof(z ).
velocity threshold for reflection/transmission. The effective potential now features an elliptic and a hyper

B. A potential and a nonlinearity step



bolic fixed point, located at, ~ F0.65 respectively. In this %10

case too, one can identify an energy threshdld’, now de- T[T ————
fined asAW = W (x4 )W (—00) = W(zo+), needed to be > g g ]
overcome by the soliton kinetic energy in order for the salit \g Ot | m
21 | |
-4 - —

to be transmitted (otherwise, i.e., féf < AW, the soliton

is reflected). Using the above parameter values, we find that
AW = 2.4 x 10~* and, hence, according to EE.126), the crit-
ical phase angle for transmission/reflectiomis~ 0.022. In

the simulations, we considered a soliton with initial piosit

and phase angle, = —5 and¢ = 0.034 > ¢., respectively

(cf. point A in the phase plane shown in the second panel
of Fig.[B8), and found that, indeed, the soliton is transrditte
through the effective potential barrier of strengtfiV’. The
respective trajectory (starting from point A) is shown ir th
second panel of Fif] 6. Stars along this trajectory, as veell a
contour plot A in the same figure, show PDE results obtained
from direct numerical integration of Eq.l(5); as in the cabe o
Fig.[3, the (white) dashed line corresponds to the ODE result >0

To study the possibility of soliton trapping, we have also -5
used an initial condition at the stable branch, incoming to-
wards the hyperbolic fixed point, namelyy = —5 and
¢ = ¢ ~ 0.022 (point B in the second panel of Figl 6). In

t t
this case, the soliton reaches at the location of the hyfierbo © T D 1
fixed point (cf. incoming branch, marked with pluses) and ap- 9 5
pears to be trapped at the saddle; however, this trappingecc <o 0.5 X 05
only for a finite time (fort ~ 600). At the PDE level, this can 3 0
be understood by the the fact that such a configurationdi.e., g 200 t400 0 '30 200 : 200 0

. . 2 .. 600
stationary dark soliton located at the hyperbolic fixed pam
unstable, as per the analysis of Sec. II.D. Then, the sadion

capes and moves to the regiom:of- 0, following the trajec-  giG_ 7: (Color online) Similar to Figl6, for a potential andianlin-
tory marked with pluses far > zo (here, the pluses depict earity step, but now forl = 0.01 and B = —0.017, corresponding
the PDE results). The corresponding contour plot B, in theo 14, = 0, Vg = 0.01, ar /a1, = 0.983, andyur, = 1. The effective
third panel of Fig[h, shows the evolution of the dark solitonpotential W (xo) (top panel), exhibits an elliptic and a hyperbolic
density. Note that, in this case, the result obtained by tREO fixed point, atror = +0.44 (vertical dashed lines). In the associ-
(cf. white dashed line) is only accurate up to the escape, timeated phase plane (second panel) shown are initial consjtion a
as small perturbations within the infinite-dimensionatteys ~ Soliton moving to the right, at points Acg = —5, ¢ = 0.005) and

destroy the delicate balance of the unstable fixed point. B (z0 = —1, ¢ = 0.001), as well as for a soliton moving to the left,
. . at points C £o = 5, ¢ = 0.031 > ¢. ~ 0.030) and D @o = 5,
For the same form of the effective potential, we have alsq, — ( 929 < ¢.): in the relevant trajectories, stars, X marks, pluses

used |n|t|a| COI’IditiOﬂS tha.t |ea.d to SO|it0n reﬂeCtion. HI'I]II:— and asterisks' respectivew, denote PDE results. Conrmw con-
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ular, we have again useth = —5 and¢ = 0.021 < ¢.,  tour plots for the soliton density are shown in the bottomgismwith
as well as an initial soliton location closer to the potdntia the dashed white lines depicting ODE resullts.
and nonlinearity step, namelyy, = —1.3, and¢ = 0.002.

These initial conditions are respectively indicated by(tieel)

squares C and D in the second panel of Elg. 6. Relevant trgective potential, as shown, e.g., in the example of Bige® (s
jectories in the phase plane, as well as respective PDEsesuk|so inset 11l of Fig[dL). For this form ofV (), parame-
(cf. stars and X marks), can also be found in the same panelrs 4 and B are A = 0.01 and B = —0.017 (for Vi, = 0,
while contour plots C and D in the bottom panel of Hi§. 6 15, — 0.01, agr /o = 0.983, anduy, = 1), while there exist
show the evolution of the soliton densities. It can readéy b again an elliptic and a hyperbolic fixed pointagt. = +0.44
observed that for the slightly subcritical value of the ghas respectively. In such a situation, if a soliton moves from th
angle ¢ = 0.021), the soliton is again quasi-trapped at the |eft towards the potential and nonlinearity steps, andaseti
hyperbolic fixed point, but for a significantly smaller tinfer(  sufficiently far from (close to) them — cf. initial condition
t =~ 150) On the other hand, when the soliton is |n|t|a”y at point A (po|nt B) — then it will be transmitted (perform
located closer to the steps and has a sufficiently smalaliniti oscillations around:_). On the other hand, if a soliton is
velocity, it performs oscillations, following the peri@dorbit jnitially placed at somery > z,, and moves to the left to-
shown in the second panel of Fig. 6. wards the potential and nonlinearity steps, it faces arceffe
In all the above cases, we find a very good agreement bdive barrier AW (cf. top panel of Fig[17), now defined as
tween the analytical predictions and the numerical resultsAW = W (xo4) — W (+o0). In this case too, choosing an an
Similar agreement was also found for other forms of the efinitial condition corresponding to the stable branch, imatg



towardszo., i.e., for the critical phase angle. ~ 0.03, itis
possible and achieve quasi-trapping of the soliton for aefini
time, of the order of ~ 600. As such a situation was al-

ready discussed above (cf. panel B of Elg. 6), here we presen X

results pertaining to the slightly supecritical and sutimzal
cases, namely = 0.031 > ¢. and¢ = 0.029 < ¢; cf.
(red) squares C and D in the second panel, and correspon
ing contour plots in the bottom panel of Fid. 7. It is readily
observed that, in the former case, the soliton is initiakyns-
mitted through the interface; however, it then follows geica
tory surrounding the homoclinic orbit (see the orbit marked

with plus symbols, which depicts the PDE results, in the sec-
ond panel of Figl17), and is eventually reflected. In the case

¢ = 0.029 < ¢, the soliton reaches,, stays there for a
time ¢ ~ 180, and eventually is reflected back following the
trajectory marked with asterisks (see second panel ofFig. 7
In all cases pertaining to this form & (z), the agreement
between the analytical predictions and the numerical re&ul
very good as well.

C. Rectangular barriers

Our analytical approximation can straightforwardly be ex-
tended to the case of multiple potential and nonlinearépst
Here, we will present results for such a case, where two step
located atr = —L andx = L, are combined so as to form
rectangular barriers, in both the linear potential and the-n
linearity of the system. In particular, we consider thedoi
ing profiles for the potential and the scattering length:

VR, |I| >L
|4 =V 27
ar, |z|>1L
= ) 28
a(z) {% oL (28)

In such a situation, the effective potential can be foune fol
lowing the lines of the analysis presented in Sec. Il.B:rtgki
into regard that the perturbatid?(v) in Eqg. () has now the
form:

Pw) = —H(z—L)], (29)

it is straightforward to find that the relevant effective gutial
is given by:

(A+ Blv]*)v[H(z+ L)

W(xo)

(2A + B) [tanh(L — zg) + tanh(L + )]

— 0ol

— Bltanh® (L — x¢) + tanh®(L + zo)).

51 (30)

+
Typically, i.e., for sufficiently large arbitrary values &f
the effective potential is as shown in the top panel of Eig. 8
in this example, we used 5, while A = 0.01 and
B = —0.015. It is readily observed that, in this case, asso-
ciated with such a potential and a nonlinearity barrier,nis a
effective potential of the form of a superposition of the ®ne
shown in Fig[®, which are now located-a6. The associated
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FIG. 8: (Color online) The case of two potential and nonliitga
steps forming respective rectangular barriers,foe 5, A = 0.01
andB = —0.015, corresponding td%, = 0, Vg = 0.01, ar/aL =
8.985, ur, = 1. Top panel (a): the effective potentill’ (zo) [cf.
Eq. (30)], featuring elliptic fixed points at the origin and4a5.66,
and a pair of hyperbolic fixed points #t4.34. Middle panel (b): the
associated phase plane; (red) squakesnd B depict different ini-
tial conditions, corresponding to quasi-trapping or datidns, while
stars and crosses depict respective PDE results. Bottoeigpaon-
tour plots showing the evolution of the dark soliton denséitythe
initial conditions depicted in the middle panel, i.eo, = —8.6 and
¢ =22 x 1072 (left), orzo = —3 and¢ = 3 x 103 (right); here,
as before, dashed (white) lines depict ODE results.

phase plane is shown in the middle panel of Eig. 8; shown also
are initial conditions corresponding to soliton quasppig,
or oscillations around the elliptic fixed point at the origin
cf. red square points A and B, respectively. The correspond-
ing soliton trajectories are depicted both in the phaseeplan
in the middle panel of Fid.]8 and in the space-time contour
plots showing the evolution of the soliton density in the-bot
tom panels of the same figure. Note that stars and plus sym-
bols in the middle panel correspond to PDE results, obtained
in the framework of Eq[{5), while the (white) dashed lines in
the bottom panels depict ODE results, obtained by Ed. (14)
for the potential in Eq[{30. Obviously, once again, agresme
between theoretical predictions and numerical resulteig v
good.

An interesting situation occurs ds decreases. To better
illustrate what happens in this case, and also to make con-

nections with earlier work [9], we consider the simpler case

of B = 0 (i.e., the nonlinearity step is absent). Then, as-
suming thatA = b/(2L) (with b being an arbitrary small
parameter), and in the limit of — 0, the potential step
takes the form of a delta-like impurity of strendih In this
case, the effective potential of Ef. {30) is reduced to thefo
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%107 condition at the stable branch, incoming towards the hyper-
— 20 ‘ ‘ ‘ ‘ bolic fixed point at the origin. Indeed, choosing = —5 and
><O 10l AW ¢ = ¢. = 5.8 x 1072 (notice that here, the corresponding
= effective barrie AW = 1.7 x 10~3 — cf. top panel of Fig.19),
; 0l | we find the following: the soliton arrives at the origin, stay

there for a timet ~ 600, and then it is transmitted through
— | the regionz > 0. In fact, the corresponding trajectory found
S at the PDE level is depicted by stars in the middle panel of
20 D)) (N Fig.[d, while the relevant contour plot showing the evolntio
T ik T of the soliton density is shown in the bottom panel of the same
figure. Notice, again, the fairly good agreement between nu-
merical and analytical results.

We note that for the same parameter values, buBfes 0,
elliptic fixed points do not exist, and the effective potahti

0

A 1 has simply the form of a seétbarrier, as mentioned above

° (see also work of Ref[[9]). In this case, starting from the
same initial positionzg = —5, and for¢ = 0.1 (correspond-

* 0 09 ingto ¢. = V2AW = 0.1), we find that the trapping time is
5 t ~ 320, i.e., almost half of the one that was when the nonlin-

earity steps are present (results not shown here). This\abse

0 0 80 °

6 -4 -2 0 2 4 6
X

400 tion, along with the results presented in the previous sasti
indicate that nonlinearity steps/barriers are necesstngrao
facilitate or enhance soliton trapping in such inhomogeiseo

FIG. 9: (Color online) The case of two potential and nonliitga ~ SE€tiNgs.
steps forming respective rectangular barriers,foe 0.1, A = 0.1
and B = —0.13, corresponding tag/ar, = 0.87, Vg = 0.1 and

ur, = 1. Top panel: the effective potenti&l (zo), featuring a hy- IV. DISCUSSION AND CONCLUSIONS
perbolic fixed point at the origin and a pair of elliptic fixedipts

at+1.38. Middle panel: the associated phase plane; (red) square . . .
depicts an initial condition corresponding to quasi-tiagpof the We have studied matter-wave dark solitons near linear po-

soliton, while stars depict respective PDE results. Botmanel:  tential and nonlinearity steps, superimposed on a boxplike

contour plot showing the evolution of the dark soliton denor tential that was assumed to confine the atomic Bose-Einstein

the initial condition depicted in the middle panel, i.es,= —5and  condensate. The formulation of the problem finds a direct

¢ = 5.8 x 107?; as before, dashed (white) lines depict ODE results.application in the context of nonlinear optics: the pentine
model can be used to describe the evolution of beams, car-
rying dark solitons, near interfaces separating opticalime

W (xo) = (b/4)sech?(zo). This result recovers the one re- with different linear refractive indices and different defis-

ported in Ref.[[0] (see also Refs. [8,110]), where the inter-ing Kerr nonlinearities.

action of dark solitons with qualized impurities was stdi _ Assuming that the potential/nonlinearity steps were small
cf. Eq. (16) of that work, but in the absence of the trappingwe employed perturbation theory for dark solitons to show
potentialU;,. that, in the adiabatic approximation, solitons behave as/eq

In the same limiting case of small, and forB # 0, the alent particles moving in the presence of an effective poten
effective potential has typically the form shown in the toptial. The latter was found to exhibit various forms, ranging
panel of Fig[®; here, we use = 0.1, while A = 0.1 and  from simple tanh-shaped steps — for a spatially homogeneous

B = —0.13, corresponding taig /a;, = 0.87, Vg = 0.1 scattering length (or same Kerr nonlinearity, in the contgx
andur, = 1. Comparing this form o#l/(z() with the one  optics) —to more complex forms, featuring hyperbolic ard el
shown in Fig[8, it becomes clear that As— 0, the indi- liptic fixed points — in the presence of steps in the scatterin
vidual parts of the effective potential of Figl. 8 pertainitag  length (different Kerr nonlinearities).

the two potential/nonlinearity steps move towards theiorig In the latter case, we found that stationary soliton states d

There, they merge at the location of the “central” elliptiefi ~ exist at the fixed points of the effective potential. Using a
point, which becomes unstable through a pitchfork bifurcaBogoliubov-de Gennes (BdG) analysis, we showed that these
tion. As a result of this process, an unstable (hyperbolielfi states are unstable: dark solitons at the hyperbolic fixautpo
point emerges at the origin, while the “outer” pair of thepell  have a pair of unstable real eigenvalues, while those atlthe e
tic fixed points (cf. Fig[B) also drift towards the origin — in liptic fixed points have a complex eigenfrequency quariet, d
this case, they are located-at .38. tating a purely exponential or an oscillatory instabilisspec-

In the middle panel of Fid.]9, shown also is the phase plangively. We also used an analytical approximation to detaemi
associated to the effective potential of the top panel. As irthe real and imaginary parts of the relevant eigenfreq@snci
the cases studied in the previous sections, we may investas functions of the nonlinearity step strength. The anzdyti
gate possible quasi-trapping of the soliton, using anaihiti predictions were found to be in good agreement with corre-
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sponding numerical findings obtained in the framework of theémpurity. The latter is described by a séaffective potential,
BdG analysis. in accordance with the analysis of earlier wotK< [6-10].

We then studied systematically soliton dynamics, for a-vari  Our methodology and results pose a number of interesting
ety of parameter values corresponding to all possible faims questions for future studies. First, it would be interagtio
the effective potential. Adopting the aforementioned gqui investigate how our perturbative results change as thenpote
alent particle picture, we found analytically necessarg-co tial/nonlinearity steps or barriers become larger, analtain
ditions for soliton reflection at, or transmission througle t more realistic shapes (including steps bearing finite veickis
potential and nonlinearity steps: these correspond t@init well as Gaussian barriers — cf., e.g., recent work of Ref})[13
soliton velocities smaller or greater to the energy of theef  In the same context, a systematic numerical — and, possibly,
tive steps/barriers predicted by the perturbation thendthe  also analytical — study of the radiation of solitons durieg r
equivalent particle picture. flection or transmission (along the lines, e.g., of Ref] [54]

We also investigated the possibility of soliton (quasigptr  should also provide a more complete picture in this prob-
ping, for initial conditions corresponding to the incomjsta-  lem. Furthermore, a systematic study of settings involving
ble manifolds of the hyperbolic fixed points (which existynl multiple such steps/barriers, and an investigation of & p
for inhomogeneous nonlinearities). In the context of aptic  sibility of soliton trapping therein, would be particularele-
such a trapping can be regarded as the formation of surfaggnt. In such settings, investigation of the dynamics of mov
dark solitons at the interface between dielectrics of d#fif¢  ing steps/barriers could find direct applications to fundam
refractive indices. We found that trapping is possible,dnly  tal studies relevant, e.g., to superfluidity (see, for insta
for a finite time. This effect can be understood by the fadt tharef. [19]), transport of BEC$ [20], and even Hawking radia-
stationary solitons at the hyperbolic fixed points are Usista  tion in analog black hole lasers implemented with BECS [66].
as was corroborated by the BdG analysis. Thus small perturinally, extension of our analysis to higher-dimensioredt s
bations (at the PDE level) eventually cause the departure afngs, would also be particularly challenging: first, in erd
the solitary wave from the relevant fixed points. Nevertbgle to investigate transverse excitation effects that are apt ¢
it should be pointed out that the time of soliton quasi-tiagp  tured within the quasi-1D setting, and second to study simi-
was found to be of the order 600v/2¢/cs in physical units;  |ar problems with vortices and other vortex structures. , See
thus, typically, for a healing length of the order of a mi- e.g., Ref.[[6]7] for a summary of relevant studies in higher-
cron and a speed of sounrg of the order of a millimeter-  dimensional settings, and Ref. [68] for a recent example of
per-second, trapping time may be of the ordero850 ms.  manipulation/control of vortex patterns and their forroati

This indicates that such a soliton quasi-trapping effecy mavia Gaussian barriers, motivated by experimentally adokess
be observed in real experiments. Note that in all scenariogiser beams.

(reflection, transmission, quasi-trapping) our analytyma-
dictions were found to be in very good agreement with direct
numerical simulations in the framework of the original Gros
Pitaevskii model.

We have also extended our considerations to study cases
involving two potential and nonlinearity steps, that areneo The work of F.T. and D.J.F. was partially supported by
bined so as to form corresponding rectangular barriers. Rehe Special Account for Research Grants of the University of
flection, transmission and quasi-trapping of solitons iohsu Athens. The work of F.T. and Z.A.A. was partially supported
cases were studied too, again with a very good agreement bby Qatar University under the scope of the Internal Grant
tween analytical and numerical results. In this settingcsgd  QUUG-CAS-DMSP-13/14-7. F.T. acknowledges hospitality
attention was paid to the limiting case of infinitesimallyadim  at Qatar University, where most of this work was carried out.
distance between the adjacent potential/nonlinearipssteat  The work of P.G.K. at Los Alamos is partially supported by
form the barriers. In this case, we found that, due to a pitchthe US Department of Energy. P.G.K. also gratefully ackrowl
fork bifurcation, the stability of the fixed point of the effive ~ edges the support of NSF-DMS-1312856, BSF-2010239, as
potential at the barrier center changes: out of two hyp&bol well as from the US-AFOSR under grant FA9550-12-1- 0332,
and one elliptic fixed point, a hyperbolic fixed point emerges and the ERC under FP7, Marie Curie Actions, People, Inter-
and the potential rectangular barrier is reduced to a digkta- national Research Staff Exchange Scheme (IRSES-605096).
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