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ABSTRACT 

FISH OIL NANOEMULSIONS: OPTIMIZATION OF 
PHYSICAL AND CHEMICAL STABILITY FOR FOOD 

SYSTEM APPLICATIONS 
 

SEPTEMBER 2015 
 

REBECCA M. WALKER, B.S., OREGON STATE 
UNIVERSITY 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor David Julian McClements 

 
 

Emulsion-based delivery systems offer many potential benefits for incorporating 

omega-3 oils into foods and beverages.  Nanoemulsions are emulsion-based delivery 

systems that are gaining popularity because of their ease of preparation, small particle 

size, relatively high stability, high bioavailability, and production of optically transparent 

emulsions.  Fish oil (FO) nanoemulsions are potentially more susceptible to lipid 

oxidation because of their high degree of lipid unsaturation, high surface area of exposed 

lipids, and greater light penetration.  In the first study, spontaneous emulsification, a low-

energy method, was used to fabricate FO nanoemulsions.  The influence of surfactant-to-

oil-ratio (SOR) on particle size, turbidity, and physical stability was evaluated.  

Furthermore, the oxidative stability of these nanoemulsions was compared to emulsions 

produced by microfluidizer, a high-energy method.  The effect of particle size and SOR 

on oxidation was monitored by measuring lipid hydroperoxides and thiobarbituric acid 

reactive substances (TBARS).  Optically transparent nanoemulsions were formed and 
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maintained physical stability after being held at 37 °C for 14 days.  FO nanoemulsions 

produced by high- and low-energy methods had similar oxidative stabilities at 55 °C for 

14 days. These results demonstrate that spontaneous emulsification can produce fish oil 

nanoemulsion that are physically stable and oxidize at similar rates as traditionally 

prepared nanoemulsions, and are therefore potentially suitable for fortification of clear 

food systems.  Additionally, carrier oils can also impact the physical and oxidative 

stability of FO nanoemulsions.  Medium chain triglycerides, lemon oil, and thyme oil 

were chosen as carrier oils and added to the oil phase at different ratios of FO to carrier 

oil for emulsions produced by the microfluidizer.  Medium chain triglycerides and lemon 

oil produced stable FO nanoemulsions but the thyme oil only produced stable FO 

nanoemulsions at lower concentrations of carrier oil.  On the other hand, at FO to carrier 

oil ratios of 75/25, lemon oil and thyme oil nanoemulsions had high oxidative stability 

because of natural of their antioxidants.  These findings suggest that lemon oil and thyme 

oil can produce FO nanoemulsions that are physically and chemically stable and can be 

used for food system fortification.          
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CHAPTER 1 

INTRODUCTION 

Fish oil (FO) is high in omega-3 fatty acids (FAs), micronutrients that are essential 

for all humans and provide multiple health benefits (1-5).  Unfortunately, under 

consumption of omega-3 FA occurs in many Western cultures (2-5).  Foods with 

increased or added omega-3 FAs have been expanding on the food market as a way to 

increase their consumption.  There are many approaches to adding omega-3 FAs into 

foods, one of which is emulsion systems.  Emulsion systems are a useful platform for 

food fortification because they can encapsulate lipids and lipophilic bioactives for 

incorporation into aqueous foods.  Nanoemulsions in particular can expand the range of 

food products that are fortified with omega-3 FAs because of their unique characteristics.  

Nanoemulsions have small particle sizes, can be optically transparent, and have high 

kinetic stability (6-8). 

 High- or low-energy methods are used to produce nanoemulsion.  This paper will 

focus on microfluidizer (MF) as a high-energy method and spontaneous emulsification 

(SE) as a low-energy method.  Besides the amount of energy used during production, MF 

and SE methods have other differences.  MF can make nanoemulsion using lower 

concentrations of surfactant while SE commonly needs higher concentrations to form 

nanoemulsions.  Additionally, MF can expose the emulsion to heat during production 

while the SE method can expose it to air.  Both heat and air exposure can be undesirable 

when trying to control pro-oxidant exposure but can be difficult to avoid during emulsion 

fabrication.   
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 Carrier oils can be used to further decrease the particle size of emulsions.  Carrier 

oils are mixed with the FO to make up the total oil phase.  A variety of oils can be used 

including citrus oils, herb oils, and medium chain triglyceride (MCT).  Carrier oils can 

mask the FO flavor and odor, making them extremely beneficial for consumer acceptance 

of the fortified food product.  Additionally, depending on the characteristics of the carrier 

oil, they can affect the physical and oxidative stability of the emulsion.  Carrier oils can 

act as ripening retarders when they have low water solubility, which increases the 

emulsion’s resistance to Ostwald ripening (9-12).  On the other hand, carrier oils with 

natural antioxidants can inhibit oxidation while other constituents such as monoterpenes 

can themselves oxidize and increase the rate of oxidation (13, 14).   

 The physical stability of emulsions describes their ability to stay homogenous.  

Emulsions can become unstable due to many forces including gravitational separation 

(creaming and sedimentation), coalescence, flocculation, and Ostwald ripening.  

Nanoemulsions are more stable against gravitational separation, coalescence, and 

flocculation than conventional emulsions however they are more susceptible to Ostwald 

ripening (12).  Physically unstable emulsions are undesirable for incorporation into food 

products because they can negatively affect the appearance, texture, and shelf life of the 

fortified food product.  

Chemical stability of the emulsion refers to its ability to retain its properties and 

in this case, resist oxidation, under environmental conditions including air, heat, and light 

exposure.  Delaying lipid oxidation is important in order to extend the shelf life of a food 

and to maintain a palatable product that is safe and has positive health benefits (15, 16).  

FO’s high degree of unsaturation along with the larger surface area and higher degree of 
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light penetration in nanoemulsions may make FO nanoemulsion more susceptible to 

oxidation (17).  

In our investigation of FO nanoemulsions, we began by using lemon oil (LO) as 

the carrier oil for the FO and evaluated the physical stability of emulsions produce by the 

low-energy method of SE using various concentrations of surfactant.  Next we compared 

FO nanoemulsions fabricated by low-energy (SE) and high-energy (MF) methods while 

controlling the particle size and surfactant concentration in order to evaluate their effects 

on the oxidation rate of the nanoemulsions.  Lastly, we used medium chain triglycerides 

(MCT), LO, and thyme oil (TO) as carrier oils and compared their ability to form FO 

nanoemulsions and inhibit lipid oxidation.           
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CHAPTER 2 

DEVELOPMENT OF FOOD-GRADE NANOEMULSIONS 

AND EMULSIONS FOR DELIVERY OF OMEGA-3 FATTY 

ACIDS: OPPORTUNITIES AND OBSTACLES IN THE 

FOOD INDUSTRY 

2.1. Introduction 

Ecosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the long chain 

polyunsaturated fatty acids (LC-PUFAs) most commonly found in FO and are linked to 

brain development, cardiovascular health, and inflammation (2-5).  Western diets have 

been reported to be severely lacking in the amount of omega-3 FAs consumed (2-5).  

Consumption of sufficient levels of omega-3 FAs have been identified as a way to reduce 

mortality risks, especially for cardiovascular disease (18).  It is estimated that the 

mortality risk of low omega-3 intake was responsible for 84,000 deaths in the US in 

2005.  Low consumption of EPA and DHA is due to numerous factors such as the high 

cost of fish, dislike of seafood by many consumers, presence of methyl mercury, and low 

availability in many geographical locations (19-21). The low consumption of EPA and 

DHA mean that fortification of foods may be one of the most effective ways to increase 

omega-3 intake and improve health. 

Much of the early research on omega-3 FAs focused on enrichment of foods using 

alpha-linolenic acid (ALA), however more attention is now being paid to EPA and DHA.  

This rise in interest may be a result of the specific recommendation for EPA and DHA 
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intake by the National Academies and the Dietary Guidelines for Americans in 2010 or 

the Food and Drug Administration’s (FDA) approval of a qualified health claim for foods 

or supplements that contain EPA and DHA in 2004 (3, 22-25).  

The food industry is now taking measures to help consumers increase their 

omega-3 FA consumption by introduction of various kinds of functional foods.  

Functional foods provide health benefits over and above their basic nutritional aspects 

(26).  Omega-3 enriched foods are quite popular, especially beverages, and there are large 

areas of growth for omega-3 products in countries with both small and large existing 

omega-3 markets (27).  At present, there are a number of functional foods enriched with 

omega-3 FAs that are on the market, such as milk, eggs, yogurts, breads, and spreads.  

Some of these products have been naturally enriched through the diet of the chicken or 

cow they were obtained from, while others have been enriched through the addition of 

omega-3 FAs as bulk oils, emulsions, or powders (27-29).  Nevertheless, there are 

considerable challenges to incorporating omega-3 FAs into many types of functional food 

products due to their low water-solubility, poor chemical stability, and variable 

bioavailability.  Consequently, there has been growing interest in the development of 

appropriate delivery systems to encapsulate, protect, and release omega-3 fatty acids. 

Nanoemulsions have great potential for overcoming the challenges associated 

with developing omega-3 enriched food and beverage products.  They can be used to 

encapsulate oils and increase their water-dispersibility (11).  They can be designed to 

have good kinetic stability and high optical clarity, which is important for application in 

many food and beverage products (6).  They can also be designed to increase the oral 

bioavailability of encapsulated lipophilic components (30, 31).  Despite these advantages, 
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nanoemulsion-based delivery systems must still be carefully designed to ensure good 

physical and chemical stability, and high bioavailability.  The purpose of this article is to 

highlight the potential of nanoemulsions for the encapsulation, protection and release of 

omega-3 fatty acids.  These delivery systems could be used in the food industry to fortify 

foods and beverages with these bioactive lipids, or they could be used in the supplement 

or pharmaceutical industry to increase the bioactivity of therapeutic omega-3 fatty acid 

formulations. 

2.2. Omega-3 fatty acids 

2.2.1. Chemistry and health benefits 

Fat consumption is necessary for human development, health, and longevity (1).  

There are two fatty acids that have been identified as being essential in the human diet: 

linoleic acid (LA) (18:2 n-6) and alpha-linolenic acid (ALA) (18:3 n-3), which are also 

known as omega-6 and omega-3 FAs, respectively.  These substances are part of a lipid 

group collectively known as long chain polyunsaturated fatty acids.  These fatty acids are 

considered essential because they cannot be synthesized by the human body as a result of 

the lack of enzymes that can form double bonds beyond the Δ9 carbon (1).  After 

consumption, the essential fatty acids can then be converted in the human body by 

desaturation and elongation into longer chained and more unsaturated fatty acids, which 

are more bioactive than their precursors (32).  The most common derivative of LA is 

arachidonic acid (20:4 n-6) (1, 32).  ALA is converted to EPA (20:5 n-3), which is further 

elongated to DHA (22:6 n-3) (32). 

The conversion of ingested ALA to EPA and DHA within the body is not usually 

considered to be a reliable source of LC-PUFAs in the human diet.  The elongation and 



 

 7 

desaturation conversions are highly inefficient as most of the fatty acid precursors are 

utilized for energy (32).  Furthermore, the conversion yield of ALA to EPA and DHA in 

men is only 0.3-8% and < 4%, respectively (33).  In women, the conversion yield of ALA 

to EPA and DHA is 21 % and 9%, respectively.  This poor production of LC-PUFA in 

the body makes it more beneficial to consume omega-3 FAs as preformed EPA and DHA, 

rather than as ALA. 

2.2.2. Food sources 

There are many dietary sources of omega-3 FAs including fish, krill, algae, and 

land plants (19).  The type and amount of omega-3 FAs varies between sources.  Fish is 

the most common source of omega-3 FAs and the amount of EPA and DHA varies 

between fish species, time of year, the fish’s diet, and geography.  Cold water, pelagic 

fish usually have the highest levels of EPA and DHA.  Overall, in marine fish the most 

important factor is their total fat content, with high fat fish having the highest amount of 

omega-3s per serving.  Sardine, mackerel, herring, and halibut have some of the highest 

omega-3 PUFA levels but are uncommon in many diets (19).  In the United States, 

salmon, anchovies, herring, sardines, Pacific oysters, trout, and Atlantic and Pacific 

mackerel are the most commonly consumed low mercury seafood varieties (24). 

The frequent consumption of fish does raise some safety and environmental 

concerns.  Fish is susceptible to bioaccumulation of toxins and pollutants, one of the most 

common being mercury (19).  An advantage of using FOs (rather than consuming whole 

fish) is that oil refining removes the majority of these toxins. Another concern is 

overfishing of the supply that could strain the sustainability of the market (21). 
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Alternative marine sources are available as a source of omega-3 FA, without 

facing some of the challenges associated with using fish.  Krill oil can achieve higher 

levels of EPA and DHA than FO but the product has a higher cost so it is usually used in 

supplements (19).  In addition, there are marine plant sources of omega-3 FAs that can be 

used commercially in food products.  Algae are primary producers of omega-3 FAs, 

which can be cultivated to produce a continuous supply of omega-3 FAs.  While algae 

produce high amounts of DHA, the EPA levels are often lower than those found in FO 

(32, 34).  Until recently, relatively high production and purification costs limited the large 

scale manufacturing of algae oils, however, considerable advances have been made in 

recent years that have led to their increased commercial use (32, 34-36). 

The Dietary Guidelines and American Dietetic Association encourage nutrient 

consumption from food rather than supplements however, people may choose to consume 

supplements or fortified foods for many reasons including cost, their dislike of seafood, 

allergies, a vegan diet, convenience, and the inability to meet recommended EPA and 

DHA levels from their normal diet (4, 21, 24).  Consumers seeking alternative sources of 

omega-3 FAs should be aware if the products contain ALA, EPA or DHA in order to 

receive maximum health benefits. 

Land plant sources of omega-3 FAs include canola, soy, flaxseed, and walnuts 

mainly in the form of ALA (24, 32, 37).  An increased consumption of omega-3 FAs 

from these sources may have a limited effect in decreasing cardiovascular disease or a 

stroke because of the inefficient conversion of ALA to EPA and DHA (32). 

Supplements may contain EPA and DHA in different forms than the common 

triglyceride form typically found in FO (19).  Ethyl esters of omega-3 FAs are commonly 
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used in dietary supplements and pharmaceuticals because of the ability to distill the ethyl 

esters and produce highly concentrated oils (19).  The ethyl esters of EPA and DHA have 

a different absorption route in the human body than triglyceride forms, but plasma lipid 

levels appear to be equivalent, however the triglyceride form can be better utilized in the 

body (19, 38). 

2.2.3. Fish oil  

In the remainder of this section, we will primarily focus on FO as it is considered 

to be the most common, least expensive, and best source of both EPA and DHA in the 

human diet (37).  However, other sources of omega-3 fatty acids are becoming more 

economically viable, such as genetically engineered oil seeds (39, 40).   

2.2.4. Health aspects 

FOs have been reported to have many mechanisms by which they can reduce 

cardiovascular disease (CVD) risk factors for morbidity and sudden death.  The 

combined effects of decreased blood pressure, positive shifts in blood lipid profiles (a 

decrease in low density lipoprotein (LDL) cholesterol and increase in high density 

lipoprotein (HDL) cholesterol), lowering of plasma triacylglycerols, improved cell 

membrane stability (especially in the heart muscles that control heart rate), decreased 

platelet aggregation, and reduced inflammation contribute to these health benefits (37, 

41).  Bread rolls, cereal bars and crackers were fortified with DHA and participants 

consumed the products in order to achieve 2 g of DHA/day.  The consistent consumption 

of DHA increased HDL cholesterol in middle aged men and women and these fortified 

foods present a convenient way to incorporate omega-3 FAs into the diet (42). 



 

 10 

The EPA and DHA found in FO is also associated with the prevention and 

possible treatment of inflammatory disease like asthma, cystic fibrosis, and rheumatoid 

arthritis (37, 43).  The anti-inflammatory properties of omega-3 fatty acids may also help 

patients recover after surgery.  Omega-3 FAs administered through a parenteral route to 

patients after undergoing a liver transplant had positive effects including decreasing the 

duration of the post-transplant hospital care, reducing infectious morbidities, and 

protecting the liver from injury partially as a result of the anti-inflammatory effects of the 

PUFA (44). 

DHA has been associated with brain development because of the large amounts of 

DHA in the human nervous system (43). The cell membranes of the brain and retina of 

the eye experience a surge of DHA inclusion between the third trimester and the first year 

after birth (45). Omega-3 FAs are essential for proper brain functioning and development 

and studies have found connections between maternal consumption of fish and the visual 

acuity, higher developmental scores at 18 months, and higher IQ of infants (43, 45-47).  

These preliminary studies highlight the potential importance of DHA consumption for 

pregnant women. 

Besides brain development, omega-3 FAs have also been investigated for 

connections with mental health conditions including attention deficit hyperactivity 

disorder (ADHD), dyslexia, depression, and adult cognitive decline including dementia 

and Alzheimer’s disease (43).  All of these areas require further investigation for various 

reasons including small sample sizes, inconsistencies in regimes, drug interactions, or 

conflicting conclusions.       
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2.2.5. Dietary recommendations for LC-PUFA 

Many organizations at the national and international levels have published 

recommendations for omega-3 FA.  These recommendations vary in the specificity of 

omega-3 FA forms taken, such as fish, ALA, EPA, and DHA, and if subsets of the 

general population require different recommendations.  In the United States, the 2010 

Dietary Guidelines for Americans suggests consuming 250 mg of EPA and DHA per day 

through the means of 8 ounces (227 g) of a variety of seafood a week (24).  It is 

recommended that pregnant women consume 8 to 12 ounces (227 to 340 g) of low 

mercury seafood per week (24). 

The National Academies (USA) has made its omega-3 FA recommendations 

using adequate intake values.  An adequate intake value is used if a recommended daily 

allowance cannot be established and is determined based on the intake of healthy people 

(4). For males and females 14 years old and above, the adequate intake value of ALA, 

EPA and DHA are 1.6 and 1.1 g/day, respectively with most of the recommendation 

coming from ALA (48).  Pregnant and lactating women have an adequate intake value of 

1.4 and 1.3 g omega-3s/day, respectively. 

The American Dietetic Association and Dieticians of Canada recommend 2 

servings of fatty fish per week; 8 oz of cooked fish should provide 500 mg of EPA and 

DHA per day (49).  The American Diabetes Association suggest at least 2 servings of fish 

per week for adequate omega-3 FA consumption (50).  Commercially fried fish filets are 

excluded from this recommendation.  The American Heart Association recommends 2 

servings of fatty fish per week, a total of 8 oz in order to obtain beneficial amounts of 

EPA and DHA (51). 
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The European Food Safety Agency proposes the dietary intake of 250-500 mg of 

EPA and DHA/day for adults (37, 52).  They also acknowledge that supplementing up to 

1 g of DHA per day is safe.  The Scientific Advisory Committee on Nutrition of Great 

Britain recommends at least 2 servings of fish (140 g) per week with at least one of the 

servings from oily fish (3). In France, the French National Nutrition and Health Program 

(PNNS) recommends eating fish two times a week (53).  The French Food Safety Agency 

(AFFSA) recommends that individuals over the age of 10, including pregnant and 

lactating women, should consume 500 mg of EPA and DHA/day and a minimum of 250 

mg of DHA/day. 

The World Health Organization recommends 2 servings of fish per week in order 

for the consumer to intake about 200 to 500 mg of EPA and DHA per day (54).  The 

Australian and New Zealand National Health and Medical Research Council recommends 

430 and 610 mg/day of DHA/EPA/DPA (docosapentaenoic acid) for women and men 

between the ages of 19 and 69 years (55).  For pregnant and lactating women from 19-50 

years old, 115 and 145 mg/day of DHA/EPA/DPA is recommended. 

Western diets in general do not provide satisfactory omega-3 FA intakes.  

American’s current consumption of EPA and DHA is lower than the recommended 

values (2, 5).  On average, Americans are currently consuming 3.5 ounces (99 g) of 

seafood per week and much of it is low in omega-3 FAs (4, 24).  The National Health and 

Nutrition Examination Survey (NHANES) determined the mean intake of EPA and DHA 

through food sources by people over 19 years is 23 and 63 mg/day, respectively (2, 5).  

For individuals over the age of 19 consuming EPA and DHA through both food and 

supplement sources, they are consuming 41 and 72 mg/day, respectively.  As of the 
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2008/2009 and 2010/2011 surveys, the actual consumption of oily fish by the population 

of Great Britain was not meeting the recommendation (3, 56).  On average, only 54 g of 

oily fish were consumed per week across the age range of 19-64 years.  Adults over 65 

consumed an average of 90 g of oily fish per week.  In contrast, Japanese diets easily 

provide sufficient omega-3 FA. The Japanese population achieves the recommended 

intake values of DHA and EPA through their diet high in seafood, and their use of dietary 

fats high in ALA (57).  Japanese adults consume about 80 g of fish and shellfish per day, 

resulting in around 1-2 g of omega-3 FA per day. 

Although many of the dietary recommendations for omega-3 encourage 

consumption of fish, this is not always convenient: some people do not like fish; some 

people cannot afford fish; fresh fish spoils rapidly; fish may contain undesirable 

contaminants (such as heavy metals); overfishing may reduce the supply of fish available; 

the growing global population puts a higher demand on the available fish (19-21).  

Consequently, there is great interest in the development of alternative means of 

incorporating omega-3 fatty acids into the human diet (21).    

2.3. Nanoemulsions 

Emulsion-based delivery systems offer a number of potential benefits for 

introducing omega-3 oils into foods and beverages (17, 58, 59).  Nanoemulsions are a 

class of emulsion-based delivery systems that are becoming increasingly popular because 

of their ease of preparation, small particle size, relatively high stability, and high 

bioavailability.  
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2.3.1. Characteristics of nanoemulsions 

Oil-in-water nanoemulsions, which are the most suitable for encapsulating 

omega-3 oils, consist of emulsifier-coated lipid droplets dispersed within an aqueous 

continuous phase.  Nanoemulsions have been defined as emulsions that have mean 

particle radii below 100 nm (6, 7).  Unlike microemulsions, which also contain small 

lipid droplets dispersed in water, nanoemulsions are thermodynamically unstable systems 

(60, 61).  Nanoemulsions have been utilized in the food and pharmaceutical industries as 

delivery systems to encapsulate, protect, and control the release of a variety of bioactives 

(17, 58, 62).  The small particle size provides both benefits and challenges for 

nanoemulsions. 

The bioavailability of lipophilic bioactive components encapsulated in small 

particles is usually greater than those in larger particles, which may be due to various 

mechanisms (30, 62).  Smaller particles have a larger specific surface area allowing for 

increased enzyme activity at the oil-water interface and therefore faster lipid digestion 

(11, 62).  Smaller particles can also penetrate into the mucus layer coating the epithelium 

cells of the small intestine, thereby increasing the time for lipid digestion and absorption.  

In addition, smaller particles may be able to pass through the mucus layer and be 

absorbed by epithelium cells.  Lastly, smaller particle sizes increase the solubility of 

encapsulated lipophilic components in the aqueous phase close to the particle surfaces 

due to a curvature effect, thereby increasing the driving force for absorption (11, 62). 

Nanoemulsions are not thermodynamically stable since the separate oil and water 

phases have a lower free energy than the emulsified system (7, 11). Nevertheless, they 

can be designed to have high kinetic stability (8).  For example, nanoemulsions typically 
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are more resistant to gravitational separation, flocculation, and coalescence than 

conventional emulsions (11).  Their high stability to gravitational separation can be 

attributed to two reasons: (i) the creaming or sedimentation velocity is proportional to the 

square of the particle size; (ii) Brownian motion dominates gravitational forces for small 

droplets (7).  The high stability of nanoemulsions to droplet aggregation is due to the fact 

that the attractive forces that normally promote flocculation or coalescence weaken with 

decreasing droplet size (7).  On the other hand, nanoemulsions are often more susceptible 

to Ostwald ripening than conventional emulsions.  Ostwald ripening in O/W 

nanoemulsions involves the diffusion of the oil phase from small droplets to larger ones 

resulting in an increase in the mean droplet size (7, 11, 63).  Droplet growth due to this 

mechanism can be inhibited by careful selection of the oil phase or by addition of 

ripening inhibitors (17). 

Another potential advantage of nanoemulsions for certain applications is that they 

can appear transparent or only slightly turbid when they are fabricated to have particle 

sizes much smaller than the wavelength of light (Figure 1) (6).  Typically, the mean 

droplet radius should be less than about 20-25 nm to ensure high optical clarity of a 

nanoemulsion, which requires careful control of fabrication conditions and product 

formulation.   
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Figure 1. A schematic diagram comparing the appearance and particle size of emulsions 
and nanoemulsions.  Nanoemulsions appear transparent because the particle size is 
smaller than the wavelength of light and so they only scatter light weakly. 

 

2.3.2. Fabrication methods  

Typically, nanoemulsions require the use of high mechanical energy, high 

surfactant levels, or both in order to be produced (64).  In general, nanoemulsion 

production can be divided into high-energy and low-energy methods (65).  High-energy 

methods rely on the application of mechanical energy to disrupt the separate oil and water 

phases, mix the two phases together, and form tiny oil droplets (7, 17).  High-energy 

methods based on this principle include high pressure valve homogenizers, MF, and 

sonicators (11).  Droplet size is dependent on many variables including the production 
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method, operation settings, and system components (11).  Typically, the droplet size 

decreases with increasing energy input and duration, provided there is sufficient 

surfactant present and the oil, water, and surfactant type are carefully selected. 

In contrast, low-energy methods rely on changes in the environment or solution 

conditions to promote the spontaneous formation of tiny oil droplets (17).  The ability of 

low-energy methods to produce nanoemulsions are closely related to the physicochemical 

properties of the surfactant, and depend on the type and amount of surfactant, oil and 

water present (8).  Low-energy methods for nanoemulsion fabrication are becoming more 

popular because they can better create smaller particles sizes compared to high energy 

methods, they have lower manufacturing costs, and they have simple production methods 

(17). 

A number of low-energy emulsification methods are available, including the SE, 

phase inversion temperature (PIT), phase inversion composition (PIC), and emulsion 

inversion point (EIP) methods (11). SE uses simple mixing as one phase is slowly added 

to another to spontaneously form an emulsion, e.g., an organic phase containing 

surfactant and oil is added to an aqueous phase containing water (66).  The final emulsion 

can be manipulated by controlling many variables including which phase is added into 

the other, the composition of the phases, environmental factors (i.e. temperature and pH), 

and mixing conditions (i.e. stir speed and rate of addition) (17). The PIT method utilizes 

alterations in temperature to change the solubility or optimum curvature (molecular 

geometry) of non-ionic surfactants, which results in the conversion of an oil-in-water to a 

water-in-oil emulsion or vice versa (11, 66, 67).  Typically, a surfactant-oil-water mixture 

of appropriate composition is heated above the PIT, and then rapidly cooled with 
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continuous stirring to form a nanoemulsion.  The PIC method is similar to the PIT 

method as it relies again on a change in the solubility or optimum curvature of the 

surfactant, however instead of changing the temperature of the system, the formulation of 

the system is altered, e.g., salt concentration (66).  Both the PIT and PIC methods rely on 

a transitional-phase inversion which utilizes the change in surfactant’s functional 

characteristics (17).  The EIP method however relies on catastrophic-phase inversion 

instead of transitional-phase inversion methods.  Catastrophic-phase inversion changes 

the ratio between the oil and water phases while maintaining the surfactant’s properties 

(17).  This may occur by preparing a water-in-oil emulsion and then adding water while 

stirring.  The water will initially form more droplets in the oil however when excess 

water is added, the water becomes the continuous phase and the oil becomes droplets 

leading to the formation of an oil-in-water emulsion.      

2.3.3. Formulating safe nanoemulsions 

When formulating nanoemulsions for food systems, food safety is one of the 

greatest concerns (30), followed by the consumer’s desire for clean labels on their foods 

(68).  Reducing the particle size into the nano-range (r < 100 nm) may substantially 

change the gastrointestinal fate of ingested foods, which has led to some concern about 

the presence of engineered nanoparticles in foods (30).  As mentioned earlier, there may 

be a considerable increase in the oral bioavailability of encapsulated bioactive agents 

when they are incorporated into nanoemulsions.  In many cases, this increase may be 

desirable, but in some cases it may be undesirable.  For example, a bioactive agent may 

have an optimum blood level concentration for efficacy, but may become toxic at higher 

levels.  If a nanoemulsion greatly increased the concentration of this type of bioactive 
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agent, it may lead to high blood levels that increase toxicity.  However, this should not be 

a problem with omega-3 oils because they can usually be consumed at high levels 

without causing health problems.  Nevertheless, if the oil is highly oxidized then it may 

contain toxic reaction products that would cause a problem, although consumers usually 

reject this type of product due to poor sensory characteristics. 

The presence of certain components in nanoemulsions may also cause concern, 

particularly high levels of surfactants or solvents.  Surfactants are commonly used to 

stabilize nanoemulsions by adsorbing to droplet surface and protecting them from 

aggregation (58).  Large amounts of surfactant are typically needed to fabricate 

nanoemulsions using low-energy methods (such as the spontaneous emulsification or 

phase inversion temperature methods), but this is less of a problem with the high-energy 

methods commonly used in the food industry (such as high pressure homogenization or 

sonication) (69, 70).  In addition, the surfactants used to form nanoemulsions are 

typically small molecule synthetic surfactants (such as Tweens), although some progress 

has been achieved forming nanoemulsions using natural surfactants such as 

phospholipids or saponins (71, 72).  There are some health concerns associated with 

using high amounts of certain types of synthetic surfactants in foods, and so their use is 

limited by government regulations (73). Natural biopolymer-based emulsifiers, such as 

polysaccharides and proteins, cannot currently be used to form nanoemulsions by low-

energy fabrication methods (17), although they can be used to form nanoemulsions by 

high-energy methods (74).    Toxicity may also arise from the utilization of organic 

solvents in certain solvent displacement or evaporation methods used to prepare 

nanoemulsions (17).  Small traces of these solvents may remain in the emulsion and must 
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be monitored.  However, most of the fabrication methods currently used to create food 

emulsions do not require the utilization of organic solvents.  Another important issue 

affecting the potential toxicity of nanoemulsions is the fact that lipid nanoparticles may 

behave differently in the human body than the larger particles conventionally used in 

foods, e.g., the location, rate, and extent of absorption (30).   

2.3.4. Formulating label-friendly nanoemulsions 

Consumers are increasingly demanding products that are perceived to have “clean 

labels” (71, 75).  Changing to natural surfactants may be one way to meet these demands.  

One natural surfactant that has been investigated is extracted from the bark of the 

Quillaja saponin Molina tree and is marketed commercially as Q-Naturale® (Ingredion, 

New Jersey).  This surfactant has been compared to Tween 80, a common nonionic 

surfactant used in the food industry, to form nanoemulsions by a high-energy method 

(microfluidization) using medium chain triglycerides as the oil phase (71).  Q-Naturale 

exhibited effective surfactant properties, as it was able to form stable nanoemulsions 

under certain circumstances at relatively low surfactant-to-oil ratios (1:10).  The use of 

clean label ingredients also extends to any cosolvents or antioxidants that are added to the 

emulsion formulation to increase physical and chemical stability, which may narrow the 

formulation possibilities for omega-3 nanoemulsions.   

2.4. Applications of nanoemulsions in foods and beverages 

The most widely used delivery systems for incorporating omega-3 oils into foods 

and beverages are bulk oils, emulsions, and powders (76).  These powders are typically 

formed by spray drying emulsions.  Microencapsulation has proved to be a popular way 

of creating powdered omega-3 that can be incorporated into a variety of food products 
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including baked goods, spreads, and fruit beverages (77). However, this technology 

typically only delivers relatively small levels of bioactive lipids since powders usually 

only contain around 1 to 30% omega-3 FAs (29).  Microencapsulated emulsions for food 

applications have previously been discussed in detail elsewhere and will therefore not be 

reviewed further here (29, 77). 

Nanoemulsions offer a convenient means of fortifying many aqueous-based food 

and beverage products with omega-3 oils.  Fortified nanoemulsions could be introduced 

into food systems such as beverages, salad dressings, sauces, dips, and desserts (78, 79).  

Current liquid or semisolid food products that have been enriched with omega-3 FAs 

using emulsion-based delivery systems include table spreads, yogurts, and milk (80-83).  

None of these products requires the delivery system to be optically transparent, and 

therefore emulsions or nanoemulsions could be used, although there may be some 

advantages in terms of long-term stability and bioavailability from using nanoemulsions 

(84).  The optical transparency that can be achieved with nanoemulsions allows their 

application within clear food and beverage products, which would expand the functional 

food market for lipophilic bioactives.  Low-energy fabrication methods are also 

becoming a larger area of interest because of their beneficial characteristics mentioned 

previously, e.g., simplicity, low cost, and gentle processing conditions (66, 79).  That 

being said, nanoemulsions must be carefully formulated to create physically and 

chemically stable systems suitable for food applications.   

2.5. Obstacles to incorporating Omega-3 nanoemulsions in foods 

A number of obstacles must be overcome before omega-3 fortified nanoemulsions 

can be successfully incorporated into commercial food products (58), such as their 
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susceptibility to lipid oxidation, ensuring the physical stability of the system, delivering a 

nutritionally beneficial quantity of bioactive in a bioavailable form, and providing a 

palatable product that is acceptable to consumers.  A number of these challenges are 

discussed in more detail in the remainder of this section. 

2.5.1. Oxidation 

Lipid oxidation in food products causes multiple problems that impact shelf-life, 

safety, nutritional value, functionality, and flavor (15, 16).  Oxidation is readily noticed 

by consumers because the products of the reaction cause undesirable sensory attributes in 

food products at very low levels (58).  Oxidation is the reaction of unsaturated FAs free 

radicals and oxygen (Figure 2) and occurs in three stages: initiation/induction, 

propagation, and termination (15, 85, 86).  The most common mechanism for oxidation 

in emulsions is the reaction of free radicals with unsaturated lipids leading to the 

formation of lipid radicals.  These lipid radicals react with oxygen and other lipids, thus 

beginning the chain reaction (propagation) stage of lipid oxidation (85).  Before oxidation 

occurs, there is a lag phase, which is the phase that food processors attempt to extend 

through means of storage in cooler temperatures, decreased oxygen exposure, and 

addition of antioxidants (86).  Once the initiation phase has begun, the rate of oxidation 

increases exponentially and the food is spoiled. 
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Figure 2. Proposed mechanism of lipid oxidation in an oil-in-water emulsion or 
nanoemulsion.  Key: PUFA, polyunsaturated fatty acid; ROOH, lipid hydroperoxide; RO, 
alkyl radicals; L·, lipid radical; LOO-, lipid radical.  

 
 

Lipid oxidation is promoted by exposure of unsaturated lipids to air, light, heat, 

and irradiation (15). Many factors contribute to an emulsion-based delivery system’s 

susceptibility to oxidation including the composition, structure and organization of the 

oil, water and interfacial phases, as well as the type, amount, and location of any 

antioxidants present (17).  FO nanoemulsions are particularly susceptible to lipid 

oxidation for a number of reasons: high degree of lipid unsaturation; high surface area of 

exposed lipids; and greater light penetration (17).  Indeed, experimental studies have 

shown that lipid oxidation is faster in protein-stabilized nanoemulsions than in 

conventional emulsions with similar compositions, which was attributed to the higher 

lipid surface area (87).  Consequently, it may be necessary to take additional steps to 

stabilize omega-3 oils encapsulated within nanoemulsions when compared to 

conventional emulsions. 

Oxidation in nanoemulsions can be partially managed by controlling their 

physicochemical characteristics.  Surfactants can influence the droplet charge, thickness, 

and permeability, all of which control the ability of pro-oxidants, free radicals, and 
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oxygen to interact with the lipids in the droplets (17, 88).  Several studies have shown 

that anionic surfactants attract cationic transition metals while cationic surfactants repulse 

them thereby decreasing the rate of oxidation (17, 89-92).  In addition, the interfacial 

layer of an emulsion can form a physical (steric) barrier against the aqueous phase of a 

system that contains pro-oxidants (17, 92).  Thicker interfacial layers offer more 

protection, which depends on the dimensions and composition of the surfactant’s head 

and tail group.  A surfactant with a larger head group (Brij 700) was found to be better at 

slowing lipid oxidation in salmon oil-in-water emulsions than one with a smaller head 

group (Brij 76) (Figure 3) (92).  Conversely, surfactant tail length has been shown to 

have only a minor impact on oxidative stability (93). 
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Figure 3. Comparison of lipid peroxide formation in salmon oil nanoemulsions (mean 
diameter = 200 nm) stabilized by Brij 76 and Brij 700.  Samples were stored at pH 7.0 
and 32 °C.  Graph replotted from Silvestre, Chaiyasit, Brannan, McClements and Decker 
(92). 

 
 

To prevent oxidation in food systems, radical scavenging and metal chelation are 

the main antioxidant strategies (15, 17, 94).  Free radical scavengers react with free 

radicals before they can react with unsaturated FAs, and their effectiveness depends on 

their ability to donate a hydrogen atom to the free radical (95).  Flavonoids tend to be 

effective free radical scavengers by donating a hydrogen from their hydroxyl groups, 

however their ability to act as an antioxidant depends on their volatility, pH sensitivity, 

and polarity.  Metal chelation is a mechanism by which an antioxidant reduces the 
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reactivity of the transition metal or physically blocks it from interacting with the lipid 

(17).  Metal chelators in oil-in-water emulsions have been shown to promote the 

movement of iron out of the lipid phase and to remove it from the surface of oil droplets, 

thereby inhibiting lipid oxidation (90, 96, 97).  Studies of the chemical degradation of β-

carotene in nanoemulsions (another polyunsaturated bioactive lipid) have shown that the 

rate of oxidation depends on system conditions (such as pH, ionic strength, temperature, 

droplet size, and emulsifier type) and can be inhibited by adding appropriate antioxidants 

(98-101).  The addition of antioxidants has also been found to improve the stability of 

citral oil in nanoemulsions (102).  Similar factors are likely to affect the rate of omega-3 

oxidation in nanoemulsions. 

Flavonoids can act as antioxidants through the means of radical and oxygen 

scavenging and have been found to be successful in inhibiting oxidation in FO emulsions 

(103). Two Flavonoids from apples (phloretin and phloridzin) have been tested for their 

ability to inhibit oxidation of PUFA methyl esters in oil-in-water emulsions (104).  Both 

of these natural components had a significant effect in preventing lipid oxidation, with 

phloretin having a higher antioxidant activity than phloridzin, which was attributed to the 

fact that it was more lipophilic and therefore tended to accumulate within the lipid 

droplets where oxidation occurs.  Certain flavanols (quarcetine glucosides) have also 

been evaluated for their antioxidant activity in bulk FO and in fish oil-in-water 

emulsions, and compared with butylated hydroxytoluen (BHT) and alpha-tocopherol 

(105).  The emulsions were formed with methyl linolenate or DHA as the lipid phase.  In 

oil-in-water emulsions, the flavanols were less effective than BHT but more effective 
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than alpha-tocopherol in preventing oxidation.  In addition, the flavanols were more 

effective than both BHT and alpha-tocopherol in the bulk oil oxidation prevention.   

2.5.2. Physical stability 

The physical stability of nanoemulsions impacts their shelf life, appearance, 

functionality, and acceptability to consumers.  As previously mentioned, nanoemulsions 

are most susceptible to Ostwald ripening, which is driven by the degree of water-

solubility of the oil phase in the aqueous phase (9, 17).  Oils with a higher water-

solubility are more susceptible to Ostwald ripening because it is easier for them to 

migrate through the aqueous continuous phase.  Oils with a lower degree of water-

solubility, like long chain triglycerides, rarely experience Ostwald ripening.  FOs contain 

long chain triglycerides, which makes them resistant to droplet growth due to Ostwald 

ripening (106).  If nanoemulsion-based delivery systems are formulated using more 

water-soluble oils (such as flavor oils to mask off flavors), then it may be necessary to 

carefully design them to avoid Ostwald ripening.  For example it may be necessary to 

mix a certain amount of water-insoluble oil (such as fish, flaxseed, or algae oil) with a 

flavor oil to prevent droplet growth (17).  In this case, the water-insoluble oil acts as a 

ripening inhibitor. 

The surfactant type and concentration used to create a nanoemulsion or emulsions 

impacts its susceptibility to flocculation and coalescence (6, 17, 107).  Non-ionic 

surfactant-coated and polysaccharide-coated droplets tend to be stable across a wide 

range of salt and pH conditions because they are mainly stabilized by steric repulsion.  

On the other hand, phospholipid-coated and protein-coated droplets tend to be highly 

susceptible to changes in pH and ionic strength because they are mainly stabilized by 
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electrostatic interactions.  Non-ionic surfactant stabilized nanoemulsions are influenced 

by other factors, such as surfactant characteristics and temperature.  For example, 

nanoemulsions formed by spontaneous emulsification experienced coalescence during 

one month storage when using surfactants with intermediate hydrophilic/lipophilic 

balance (HLB) numbers (5-9).  These surfactants tend to be soluble in both oil and water 

and form lamellar structures instead of micelles due to their optimum curvature, which do 

not stabilize nanoemulsions very effectively (79).   Non-ionic surfactant stabilized 

nanoemulsions may also coalesce upon heating due to changes in the optimum curvature 

of the surfactant monolayer at elevated temperatures, i.e., dehydration of the head group 

(69, 108). 

Protein-coated lipid droplets are highly susceptible to flocculation at high salt 

levels or at pH values close to their isoelectric point (pI) due to a reduction in 

electrostatic repulsion between the droplets (109, 110).  Protein-stabilized nanoemulsions 

should therefore only be used under conditions that favor a strong electrostatic repulsion 

between the droplets, i.e., low ionic strength and/or pH far from pI.  Alternatively, they 

should be incorporated into products that are highly viscous or gel-like, since then even if 

aggregation does occur the nanoparticles will not separate from the product due to 

gravitational separation.       

2.5.3. Reaching the RDA 

For a product to be considered to be a functional food, it must provide health 

benefits exceeding those of basic nutrition (26).  The incorporation of FO in foods and 

beverages meets this definition based on the potential health benefits previously 

mentioned.  However, it is important that the amount of omega-3 FAs present in a 
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functional food is large enough to demonstrate a beneficial health effect (111).  Thus 

products should be fortified with an amount of FO that is a substantial amount of the 

recommended intake value if not the total amount.  The total amount of omega-3 FAs in a 

functional food product (mw-3) depends on the fraction of omega-3 FAs in the oil phase 

(Φw-3), the fraction of oil phase in a nanoemulsion-based delivery system (ΦnE), the 

amount of nanoemulsion added to the food product (ΦP), and the serving size of the 

product (mP):    

 

mw-3 = mP × Φw-3 × ΦnE × ΦP 

 

For example, for a FO containing 50% omega-3 fatty acids (Φw-3 = 0.5), that is 

converted into a 20 wt% oil-in-water nanoemulsion (ΦnE = 0.2), that is added to a food 

product that has a serving size of 280 g at a level of 10 wt% (ΦP = 0.1), then the final 

amount of omega-3 oil present is 2.8 g (2,800 mg).  As mentioned earlier, the 

recommended intake values of omega-3 fatty acids are around 250 to 1000 mg per day, 

and therefore this amount should be achievable.  The amount of nanoemulsion added to a 

food product may be limited by changes in optical properties if the nanoemulsion is not 

completely transparent.  Typically, the smaller the droplet size, the more transparent the 

nanoemulsion and therefore the more that can be incorporated before the system becomes 

turbid.  It is also important to ensure that the droplets do not grow after the food product 

has been manufactured, or this could result in an increase in turbidity during storage.     
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2.5.4. Bioavailability 

With the growing use of emulsion-based delivery systems for human 

consumption, it is important to evaluate the gastrointestinal fate of the systems to ensure 

that there are no adverse health effects, and that the bioactive being delivered is indeed 

being absorbed into the body (30, 112).  In vitro and in vivo digestion models have 

become instrumental in undertaking this kind of evaluation (113-115).  Bioaccessibility is 

an important marker used in these studies that describes the fraction of an ingested 

compound (the bioactive) that is transferred into a mixed micelle after lipid digestion 

(116). 

An ingested nanoemulsion will pass through the mouth and stomach before 

reaching the small intestine where lipid absorption normally occurs (117, 118).  The size, 

composition, and surface characteristics of the lipid droplets within a nanoemulsion may 

change appreciably when they are exposed to gastrointestinal conditions (30).  Upon 

entering the small intestine, lipase adsorbs to the surfaces of emulsified fats and coverts 

triacylglycerols into monoacyglycerols and free fatty acids (FFA) (1).  These FAs are 

then incorporated into mixed micelles, travel through the mucus layer, and are absorbed 

by epithelium cells.  The bioavailability of encapsulated fatty acids may be inhibited if 

the ability of the lipase to adsorb to the surface of lipid droplets and hydrolyze the 

triglycerides is prevented.  The type and amounts of surfactants in a nanoemulsion may 

therefore impact the rate and extent of lipid digestion and FFA release.  For example, 

corn oil nanoemulsions made using high-energy methods experienced a lag period before 

FFA release that ranged from 5 to 20 minutes as the mean droplet radius increased (119).  

This was a result of the lipase not being able to adsorb to the surface of the droplets due 
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to the presence of excess surfactant that competed for the droplet surfaces.  In these 

emulsion, 61-71% of the FFAs were released with higher amounts of FFA being release 

as the particle radius decreased.  The obstruction of lipase as a result of high surfactant 

concentrations was also seen in medium chain triglyceride nanoemulsions containing 

vitamin E acetate made from both high and low energy methods (120).  In this study, 

both the high and low energy emulsions had comparable particle sizes and similar 

behaviors throughout the in vitro digestion and both released similar amounts of FFA. 

Surfactants can also impact the rate of lipid digestion based on their molecular 

and physicochemical characteristics. A study by Speranza et al. evaluated the effect of 

nonionic and anionic surfactants with a range of HLB numbers on the bioaccessibility of 

lipids (trioctanoyl glycerol) in emulsions using an in vitro digestion model (121).  The 

results showed that an increasing HLB number increased the lag time in the jejunum and 

decreased the rate of lipolysis.  In contrast, increasing the length of the aliphatic chain 

decreased the lag time in the jejunum, but increased the rate of lipolysis in the small 

intestine. 

After FFA and bioactives are liberated from the lipid droplets, they form mixed 

micelles that travel through the mucus layer, and are then absorbed by the intestinal 

epithelial cells.  When conventional FO emulsions were compared with FO 

nanoemulsions, the nanoemulsions had a significantly higher percentage of lipid 

absorbed compared to the conventional emulsions, which was attributed to their smaller 

particle size (Figure 4) (122).  A recent study showed that the bioaccessibility of an oil-

soluble bioactive component (vitamin E acetate) was higher in nanoemulsions prepared 

using a low-energy method (emulsion phase inversion) than in those prepared using a 
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high-energy method (microfluidization) (120). It was suggested that the high levels of 

surfactant used in the low-energy method may have increased the amount of bioactive 

incorporated into the mixed micelles.  The surfactant characteristics can also impact FFA 

absorption (121).  An increasing surfactant HLB has been reported to increase the 

bioaccessibility of FFAs in the small intestine. 

 

Figure 4. Comparison of EPA and DHA absorption in the intestinal tract of rats when 
delivered as nanoemulsions (mean diameter = 82 nm) or conventional emulsions (mean 
diameter = 1580 nm).  Volume percentage of the emulsion absorbed was measured at 
three time intervals.  *Mean values were significantly different (P<0.05).  Graph 
replotted from Dey, Ghosh, Ghosh, Koley and Dhar (122). 
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Lastly, the absorption of FOs from ingested foods is important when developing 

functional food systems.  Researchers investigated the absorption of FO in capsules 

versus microencapsulated FO incorporated into a milk shake (123).  Both treatments 

resulted in similar increases of EPA and DHA in blood plasma.  Another study looked at 

yogurt as a carrier product for algal oil nanoemulsions (mean droplet size 258 nm) versus 

bulk oil (81).  In this study, both the nanoemulsion and bulk oil increased DHA levels in 

blood lipids however; the DHA from the nanoemulsion was more bioavailable than the 

bulk oil during the first four hours of digestion (Figure 5).  Both of these studies support 

the use of microencapsulated or emulsified FO in food products and provide an 

alternative way for consumers to supplement their EPA and DHA intake without 

swallowing a large pill.  The properties of a food system that accompanies the FO also 

has importance.  When supplements were consumed with a higher fat meal compared to a 

lower fat meal, more long chain omega-3 PUFA were available, possibly due to the 

higher fat content stimulating more digestive enzymes and more mixed micelles (38).  

This again supports the use of functional foods to incorporate omega-3 FA and increase 

the absorption of the fats as an alternative to supplements.   
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Figure 5. Comparison of the mean baseline adjusted percentage blood fatty acid levels 
for DHA after subjects consumed algal oil delivered in either nanoemulsions or bulk oil 
incorporated into yogurt.  *Mean values were significantly different (P<0.05).  Graph 
replotted from Lane, Li, Smith and Derbyshire (81). 
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contents because the oils have a lower density than the gastric juices.  By using a FO 

nanoemulsions incorporated into food products, consumers can receive the benefits of 

EPA and DHA in a form other than seafood.  In addition, nanoemulsions can be designed 

to be resistant to coalescence and creaming within gastric environments by selecting 

appropriate emulsifiers so that the oil will not form a layer of oil on the top of the 

stomach contents and cause reflux issues (125-127). When functional foods are 

concerned, consumers will not sacrifice the taste of a product, even if the consumer is 

aware of the potential health benefits of the functional food (128).   

2.5.6. Consumer acceptance 

Studies disagree about which types of food a bioactive component, such as 

omega-3 oils, should be added for maximum consumer interest.  In a study by Ares and 

Gámbaro consumers were more accepting of a functional food when the carrier food was 

perceived as being healthy (129).  In a separate study by Bech-Larsen and Grunert, it was 

concluded that functional foods with a healthier base food were perceived as healthier 

compared to functional foods with an unhealthy base food, however this study also stated 

that consumers rationalized the enrichment of less healthy foods better than that of 

already healthy foods (130).  Some consumers have concerns about unhealthy foods that 

have been fortified because they may now be perceived as a health food by others when 

in fact they are not (131). 

Regardless of the carrier product, it is important to the consumer that the bioactive 

ingredient and base food are compatible; this is a stronger driving force for the 

purchasing of functional food products compared to health benefits and attitude towards 

functional foods (132).  For example, products where FO appears to be a more natural fit 
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such as fish balls, rye bread, and tuna salad were expected to receive more positive 

attention by consumers (131).  Another characteristic of FO enriched foods that should be 

considered when choosing an appropriate food carrier and in the product formulation is 

the sweetness profile.  Participants in a study evaluating the acceptance of FO fortified 

foods were put off by sweet products such as yogurt drinks and sports bars having the 

addition of FO (131).  In a separate study, women between the ages of 40 and 60 years 

did not accept the addition of sweeteners into a functional food and would rather 

consume a more natural product (128). 

It is suggested that the use of health claims on functional food labels will have a 

positive impact on the consumer’s view of the healthfulness of that food (130).  The 

source of omega-3 fatty acids used in the fortification of foods can affect the cost of the 

products but also their health benefits.  ALA omega-3s may give a cleaner label because 

they are from plant sources along with a lower price for consumers however, the 

conversion of ALA to LC-PUFA is quite low, decreasing its actual health benefits (32).  

The FDA health claim for EPA and DHA containing foods can aid in the marketing and 

advertising for qualifying products while differentiating them from products that only 

provide ALA. 

Finally, sensory aspects also play a key role in consumer acceptance of foods.  

Few studies have researched the effect of nanoemulsions on the sensory properties of 

enriched foods.  Dairy products have been the main focus of these studies.  One study 

evaluated the fishy off flavor intensity of strawberry yogurt containing emulsified omega-

3 oils after 14 days storage (80).  This study found no significant difference between the 

control and fortified yogurt samples amongst an untrained consumer panel.  Another 
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study evaluated a strawberry drinking yogurt fortified with bulk algae oil and algae oil 

nanoemulsion for smell, appearance, flavor, texture, consistency, aftertaste, and overall 

acceptability (133).  Consumers were able to identify a sensory difference between 

yogurts fortified with either bulk oil or nanoemulsions in a triangular test.  However, no 

statistically significant differences were found between the nanoemulsion-fortified, bulk 

oil-fortified, and unfortified yogurts in terms of their consistency and appearance.  The 

sensory properties of cheese fortified with bulk FO or FO nanoemulsion have also been 

evaluated (134).  Fishy off flavor was dependent on the concentration of FO in the 

sample and was more easily detected in the bulk oil-fortified samples compared to the 

nanoemulsion-fortified samples.  Clearly, more research should be conducted to evaluate 

the sensory aspects of foods fortified with nanoemulsions to better understand their effect 

on consumer acceptance. 

2.6. Conclusions 

The low consumption of omega-3 FAs in Western diets clearly shows the need for 

alternative food sources on the market that provide these essential fatty acids.  FO is an 

effective functional food ingredient because it is a good source of both EPA and DHA.  

Consumers will be more likely to buy functional foods with FO if the carrier food is 

compatible with the fat and if the foods are more savory instead of sweet.  Whether the 

FO should be added to healthy or unhealthy foods is debated and should be evaluated on 

a product-by-product basis.  Nanoemulsions are a promising way to deliver FOs into 

liquid food systems with the capabilities to protect the oil from oxidation, mask 

undesirable off-flavors, and increase oral bioavailability.  Most importantly, the ability of 

nanoemulsions to be added to clear products increases the range of products that omega-3 
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FA enrichment can be applied to.  That being said, there is still a need to expand omega-3 

nanoemulsion research in order to optimize the fabrication method and formulation as a 

way to increase palatability, shelf life, and other physical characteristics of the food 

product.   
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CHAPTER 3 

PHYSICAL AND OXIDATIVE STABILITY OF FISH OIL 

NANOMEULSIONS PRODUCED BY SPONTANEOUS 

EMULSIFICATION 

 

3.1. Introduction 

ALA (18:3 n-3), which is a type of omega-3 FA, cannot be synthesized in the 

human body and therefore it is an essential fat that must be consumed from the diet (1).  

ALA is a relatively short chain polyunsaturated fatty acid (SC-PUFA) that is converted to 

LC-PUFA after undergoing desaturation and elongation in the body (32).  These LC-

PUFA products include EPA (20:5 n-3) and its derivative, DHA (22:6 n-3), both of which 

are more bioactive than the precursor ALA (32). The conversion of ALA to EPA and 

DHA is not very efficient in the human body as many of the FAs are utilized for energy 

rather than converted to PUFAs (32).  For this reason, it is usually recommended to 

consume EPA and DHA directly, rather than ALA, to obtain the beneficial health effects 

of omega-3 FAs. 

Omega-3 FAs can be found in plants and seafood, however the amount and form 

of omega-3 FAs varies between sources (19).  Land plant sources such as canola, soy, 

flaxseed, and walnuts provide omega-3 FAs mainly in the form of ALA (24, 32, 37).  As 

for aquatic plants, algae can provide high amounts of DHA but it contains lower levels of 

EPA than FO (32, 34).  FO is a more highly regarded as an excellent dietary source of 

omega-3 FAs because it contains high amounts of preformed EPA and DHA and does not 
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need to rely on the inefficient conversion of ALA to EPA and DHA in the human body 

(34). 

FO is known to provide health benefits associated with brain development, 

inflammation, and cardiovascular disease (4).  In the United States, the 2010 Dietary 

Guidelines for Americans recommends the consumption of 250 mg of EPA and DHA per 

day through the means of 8 ounces (227 g) of a variety of seafood a week (24).  

Unfortunately, Americans are falling short of this recommendation with a current 

consumption of 3.5 ounces (99 g) of seafood per week, mostly from sources low in 

omega-3 FAs (4, 24).  This under-consumption of seafood may be attributed to taste, 

price, contamination concerns (such as heavy metals), and availability (19-21).  As a 

result, there is a need to develop alternative sources for omega-3 FAs in consumer’s diets.  

Emulsion-based delivery systems are particularly suitable for incorporating FOs into 

functional food products.  

Nanoemulsions, a class of emulsion-based delivery systems, have been of 

particular interest lately because of their simple fabrication, high physical stability, and 

high bioavailability (11). By definition, nanoemulsions have a mean droplet radii below 

100 nm, and may become optically transparent at sufficiently small particle sizes (6, 7).  

In contrast to microemulsions, which are thermodynamically stable systems, 

nanoemulsions are thermodynamically unstable systems but can be designed to be 

kinetically stable (8, 60, 61).  Nanoemulsions can be fabricated by high- or low-energy 

methods.  High-energy methods use specialized mechanical devices to breakdown the 

droplets into very fine particles, such as MF, high pressure valve homogenizers, or 

sonicators (7, 11, 12).  In contrast, low-energy methods are able to spontaneously form 



 

 41 

very fine droplets as a result of controlled changes in the environment or solution 

conditions (12).  The interest in low-energy methods for certain applications is increasing 

because of their lower manufacturing costs, simple production methods, and ability to 

create smaller particle sizes than high-energy methods (12).  SE is one of the simplest 

low-energy methods to implement since it only involves the addition of one phase into 

another phase with continuous stirring to spontaneously form a nanoemulsion (66).  

Typically in SE, the organic phase consisting of oil and surfactant is added to the aqueous 

phase. 

This study will focus on the potential of SE to fabricate FO nanoemulsions that 

are suitable for application in clear beverages.  As part of this study, the nanoemulsions 

created using this low-energy method will be compared to those produced using a high-

energy method (MF) to highlight the advantages and limitations of these different 

approaches.  The physical stability of the nanoemulsions and their susceptibility to lipid 

oxidation are obstacles that must be addressed when producing foods fortified with 

omega-3 FAs (58), and so these issues will also be evaluated in this research.    

3.2. Materials and Methods 

3.2.1. Materials 

FO (Ropufa 30 n-3 food oil) was provided by DSM Nutritional Products Ltd. 

(Basal, Switzerland).  The oil was composed of 101 mg of EPA/g of oil, 148 mg of 

DHA/g oil, and 312 mg of total n-3 PUFA/g of oil.  LO was kindly donated by Citrus & 

Allied Essences (Lake Success, NY, USA).  The supplier reported the chemical 

composition as determined by gas chromatography (Table 1).  Non-ionic surfactant, 

polysorbate 80 (Tween 80), sodium benzoate, thiobarbituric acid (TBA), butylated 
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hydroxytoluene, 1,1,3,3-tetraethoxypropane (TEP), barium chloride, iron (II) sulfate 

heptahydrate, hydrochloric acid, and cumene hydroperoxide were purchased from Sigma-

Aldrich Co. (St. Lois, MO, USA).  Citric acid, isooctane, 1,2-propanol, methanol, and 

butanol were purchased from Fisher Scientific (Waltham, MA, USA).  Trichloroacetic 

acid (TCA) and ammonium thiocyanate were purchased from Acros Organics (Geel, 

Belgium).  Ethanol was purchased from Pharmco-AAPER (Brookfield, CT, USA).  All 

solvents and reagents were of analytical grade or higher.  Double distilled water was used 

to prepare all solutions.   

 
Table 1. Concentration of constituents in threefold (3x) lemon oil, provided by Citrus & 
Allied Essences (Lake Success, NY). 
 

Constituent Concentration in lemon oil (%) 
α-Thujene 0.00 
α-Pinene 0.70 
Camphene 0.00 
Sabinene 0.30 
β-Pinene 4.90 
Myrcene 0.80 
Octanal 0.01 
Limonene 63.00 
α-Phellandrene 0.02 
γ-Terpinene 14.00 
Terpinolene 1.80 
Linalool 0.60 
Citronellal 0.30 
α-Terpineol 0.30 
Neral (citral B) 2.38 
Geranial (citral A) 3.84 
Neryl acetate 0.97 
Geranyl acetate 0.60 
(E)-caryophyllene 0.90 
Trans-α-bergamotene 0.90 
β-bisabolene 1.40 
Total (%) 97.72 
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3.2.2. Emulsion preparation 

3.2.2.1. Low-energy method: Spontaneous emulsification 

Nanoemulsions were prepared by SE for physical and oxidation stability 

evaluation.  The organic phase consisted of a mixture of FO (5 wt %) and LO (5 wt %), 

which were stirred at 750 rpm for 15 min, and then stirred for an additional 30 min after 

adding non-ionic surfactant (2.5-20 wt% Tween 80).  The aqueous phase was buffer (70.0 

- 87.5 wt%) consisting of 0.8 wt% citric acid and 0.08 wt% sodium benzoate at pH 3.0, in 

order to simulate the aqueous phase of a beverage system.  In this method, the organic 

phase was added to an aqueous phase using an automatic pipette (Ranin 10 mL E4 XLS, 

Mettler-Toledo International Inc., Columbus, OH, USA) while stirring at 500 rpm for 15 

min.   

3.2.2.2. High-energy method: Microfluidizer 

Nanoemulsions were also prepared using a MF for oxidation stability evaluation.  

FO (10 wt%) and LO (10 wt%) were mixed for 15 min at 750 rpm.  Buffer (78 wt%) was 

mixed with Tween 80 (2 wt%) for 30 min at 750 rpm.  The two phases were added 

together and mixed for 2 min with a hand mixer (Bamix ESGE Ltd, Swtizerland) to form 

a course emulsion.  Samples were passed through a MF (M-110L, Microfluidics, Newton, 

MA) 3 times at 12,000 PSI.          

3.2.2.3. Post-production alterations of emulsions 

All emulsions were diluted to 1 wt% oil (0.5 wt% FO and 0.5 wt% LO) with 

buffer solution and then stirred for 5 minutes at 300 rpm.  Finished emulsions were held 
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in 50 mL disposable centrifuge polypropylene tubes (Fisher Scientific, Pittsburg, PA, 

USA).  Each formulation was made in duplicate. 

For the emulsions used in oxidation studies, additional surfactant was added 

during the dilution stage to evaluate the effect of surfactant and particle size on oxidation.  

For these emulsions, Tween 80 was mixed with the volume of buffer used for dilution at 

750 rpm for 30 min.  This solution was added to the emulsion to dilute to 1 wt% oil (0.5 

wt% FO and 0.5 wt% LO) and stirred at 300 rpm for 5 min.  Iron (100 µM) as FeSO4 was 

also added to all emulsions used in the oxidation studies to accelerate the lipid oxidation 

reaction.  Emulsions were observed using optical microscopy on day 0 and 14 of the 

oxidation experiments (Nikon Eclipse 80i, Nikon Instrument Inc., Melville, NY).  Each 

formulation was made in duplicate.   

3.2.3. Surfactant concentration 

The effect of surfactant concentration in the SE nanoemulsions was evaluated by 

varying the surfactant-to-oil ratio (SOR) while keeping the amount of oil (FO and LO) 

constant (10 wt %).    

 

%𝑆𝑂𝑅 = 100  ×  𝑚!/𝑚! 

 

where ms is the mass of the surfactant and mo is the total mass of the oil phase. 

3.2.4. Particle size measurements 

The particle size distribution (PSD) of all emulsions was measured by either 

dynamic (Zetasizer Nano ZS, Malvern Instruments, Malvern, UK) or static light 

scattering instruments (Masterszier 2000, Malvern Instruments, Malvern, UK).  Static 
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light scattering was used to measure the size of the droplets in emulsions containing 

relatively large droplets (d > 1 µm), and in this case the particle size was reported as d32.  

On the other hand, dynamic light scattering was used to analyze emulsions containing 

relatively small droplets (d < 1 µm), and the particle size was reported as the Z-average 

diameter and polydispersity index (PDI).  PDI is a measure of the narrowness of the size 

distribution; values ≤ 0.1 designate a very narrow size distribution (135).  All samples 

were measured in duplicate.  

3.2.5. Turbidity measurement 

The turbidity of samples was determined using a Thermo Scientific Evolution 

Array UV-Visible Spectrophotometer (Waltham, MA, USA).  The turbidity was 

measured at 600 nm at the temperature at which the samples were being held.  All 

samples were measured in duplicate. 

3.2.6. Oxidation measurements 

3.2.6.1. Peroxide value 

Emulsions were held in 50 mL disposable centrifuge polypropylene tubes (Fisher 

Scientific, Pittsburg, PA, USA) and incubated in the dark at 55 °C for 14 days, with 

measurements being taken every 2 days.  Lipid hydroperoxides were measured using a 

method adapted from Shantha and Decker (136).  Lipids from the emulsion were 

extracted by adding the emulsion (0.3 mL) to a 3:1 v/v mixture of isooctane/2-propanol 

(1.5 mL) and vortexing the mixture for 10 s, 3 times followed by centrifugation (1000 g) 

for 2 min.  The top layer (0.2 mL) was mixed with 2:1 v/v methanol/1-butanol (2.8 mL), 

followed by 30 µL of 1:1 v/v 3.94 M ammonium thiocyanate/ferrous iron solution 
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(solution prepared by mixing equal amounts of 0.132 M BaCl2 and 0.144 M FeSO4).  

After 20 min, absorbance was measured at 510 nm using an UV- visible 

spectrophotometer (Ultraspec 3000 pro, Biochrom Ltd, Cambridge, UK).  

Hydroperoxides were calculated as mM cumene hydroperoxide using a cumene 

hydroperoxide standard curve at concentrations of 0-0.5 mM. All samples were measured 

in triplicate. 

3.2.6.2. Thiobarbituric acid-reactive substances (TBARS) 

TBARS samples were held in 50 mL disposable centrifuge polypropylene tubes 

(Fisher Scientific, Pittsburg, PA, USA) at 55 °C in the dark and were measured every 2 

days for 14 days using the method of McDonald and Hultin (137).  Emulsion (1.0 mL) 

and TBA reagent (2.0 mL) (15% w/v trichloroacetic acid, 0.375% w/v thiobarbituric acid, 

and 0.25 M HCl with 2% BHT in ethanol solution) were vortexed in glass test tubes with 

screw caps.  The tubes were placed in a water bath (90 °C) for 15 minutes, and then 

moved to a room temperature water bath to cool for 10 minutes.  The tubes were 

centrifuged (1000 g) for 15 minutes, then sat for 10 more minutes.  The absorbance of the 

supernatant was measured at 532 nm.  Concentrations of TBARS were calculated as µM 

using a standard curve of TEP at concentrations between 0-20 µM.  All samples were 

measured in triplicate. 

3.3. Experimental design and data analysis 

All measurements were done in duplicate or triplicate and results are reported as 

mean ± standard deviation.  Statistical analysis was carried out by analysis of variance 

(ANOVA) and Tukey test with confidence interval of 95% using Minitab 16 software 

(Minitab Inc., State College, PA, USA). 
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3.4. Results and discussion 

The term “emulsions” is used to refer to both nanoemulsions (d < 200 nm) and 

conventional emulsions (d > 200 nm) in the remainder of this study, since both types of 

systems could be formed depending on the initial composition. 

3.4.1. Effect of surfactant concentration on physical stability 

Emulsions were prepared using SE with 10 wt% total oil phase (50 wt% FO and 

50 wt% LO) and different SOR values.  These emulsions were then diluted to 1 wt% total 

oil phase and held at 5, 20, and 37 °C for 14 days to evaluate their physical stability.  

SOR had a large impact on the mean particle diameter of the emulsions: as the SOR 

increased, the mean particle diameter decreased (Figure 6).  The dependence of the mean 

particle size on SOR did not depend strongly on storage time (Figure 6a) or holding 

temperature (Figure 6b).  Previous studies have also reported similar trends when using 

low-energy methods such as SE and emulsion phase inversion to prepare emulsions (70, 

79, 106, 135, 138). 

After fabrication of the emulsions, the mean particle diameters ranged from 106 

to 7,800 nm for SORs 1.75 and 0.5, respectively (Figure 6).  Emulsions with SORs of 

0.63 and below were significantly larger than those with SORs of 0.75 and above (p < 

0.05).  However, true nanoemulsions (d < 200 nm) were only formed with SORs from 

1.00 to 1.75 (6, 7).  These particle size results agree with those of a recent study that also 

prepared FO nanoemulsions using SE (106).  The fact that there was no significant 

change in the mean particle size of the emulsions after they were held at 5, 20, and 37 °C 

for 14 days, suggests that they were stable against droplet growth from flocculation, 

coalescence, and Ostwald ripening (12). 
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Figure 6. Influence of surfactant-to-oil ratio (SOR) on the mean particle diameter of oil-
in-water emulsions produced by spontaneous emulsification (SE) (A) after being held at 
14 °C for 14 days and (B) on day 14 at all temperatures.  All systems were made with a 
total oil phase content of 10% wt (50% fish oil (FO) and 50% lemon oil (LO)) and were 
diluted to 1% wt total oil phase before measurement.  Particle sizes on day 0 were 
measured immediately after producing the emulsion. 
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Only the particle size distributions of the emulsions held at 20 °C for 14 days are 

shown since these were representative of the other holding temperatures and storage 

times (Figure 7).  At SORs from 1.25-1.75, emulsions containing small droplets with a 

narrow particle size distribution were formed.  At higher SORs the emulsions still had a 

monomodal particle size distribution, but the majority of droplets were much larger (> 10 

µm).  It is important to note that during the fabrication of emulsions using high SORs (≥ 

1.75) gel-like globules were observed by eye and under an optical microscope (data not 

shown).  At SOR values of 2.00 and above, these gel-like structures did not dissolve 

during the 15 min period after preparing the emulsions, and so these samples were not 
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analyzed further.  Gel-like structures also formed at SOR 1.75, but fewer were observed 

and they disappeared after the emulsions were diluted to 1% wt oil.  We hypothesize that 

these were liquid-crystalline regions formed from surfactant, oil, and water at relatively 

high surfactant levels.  Further research is needed to evaluate the precise range of 

conditions where these globules form, and to develop effective strategies to disrupt them, 

if this is possible.  While emulsions with such high surfactant concentrations may not be 

of commercial interest to the food industry because of legal and cost concerns, they may 

be suitable for application in the pharmacological industry, especially for topical 

treatments.   
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Figure 7. Influence of SOR on the particle size distribution of oil-in-water emulsions 
produced by SE held at 20 °C on day 14. All systems were made with a total oil phase 
content of 10% wt (50% FO and 50% LO) and were diluted to 1% wt total oil phase 
before measurement.   
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decreased.  Emulsions appear opaque when their particle size is comparable to the 
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slightly turbid or transparent when their particle sizes are smaller than the wavelength of 

light (6). 

Figure 8. Influence of SOR on the turbidity of oil-in-water emulsions produced by SE 
(A) after being held at held at 20 °C for 14 days and (B) on day 14 at all temperatures.  
All systems were made with a total oil phase content of 10% wt  (50% FO and 50% LO) 
and were diluted to 1% wt total oil phase before measurement.  Turbidity on day 0 was 
measured immediately after producing the emulsion. 

 
 

 

 

 

 

 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0 5 10 15 

A
bs

or
ba

nc
e 

(c
m

-1
) 

Day 

SOR 1.75 
SOR 1.50 
SOR 1.25 
SOR 1.00 
SOR 0.75 
SOR 0.63 
SOR 0.50 
SOR 0.25 

A 



 

 53 

 

 

The overall dependence of turbidity on SOR for emulsions prepared using the SE 

method did not depend strongly on storage time (Figure 8a) or holding temperature 

(Figure 8b). Emulsions with SORs of 0.75 and below were significantly more turbid than 

those with SORs of 1.00 and above (p < 0.05).  The origin of this effect can be attributed 

to the observed differences in droplet size (Figure 6).  The droplets formed at lower 

SORs (0.25-0.75) are much larger than those formed at higher SORs (1.00-1.75), and 

therefore they scatter light more strongly leading to a higher turbidity.  The turbidity of 

many of the emulsions was lower after 14 days storage than immediately after 

preparation (Figure 8a), which suggests that there may have been a decrease in droplet 
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number or size.  A possible explanation for this phenomenon is solubilization of some of 

the oil phase in surfactant micelles during storage. 

Additional information about the influence of SOR on the storage stability of the 

emulsions was obtained from visual observations of their appearance (Figure 9).  For the 

sake of brevity, only images from day 0 and 14 for emulsions stored at 37 °C are shown 

since they gave similar trends as the other samples, but exhibited the largest overall 

change in appearance.  Immediately after fabrication (day 0), only the emulsions with 

SORs from 1.25 to 1.75 were optically transparent, whereas emulsions with lower 

surfactant concentrations were opaque.  After 14 days storage, the range of SOR levels 

where emulsions appeared transparent at higher surfactant values increased, which again 

suggested that there was a reduction in the number or size of the oil droplets during 

storage (possibly due to solubilization).  In addition, there was evidence of an opaque 

layer on the top of the emulsions with the lower SOR levels, which can be attributed to 

rapid creaming of the large fat droplets.  
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Figure 9. Influence of SOR on the appearance of oil-in-water emulsions produced by SE 
(A) on day 0 at 20 °C and (B) on day 14 held at 37 °C. All systems were made with a 
total oil phase content of 10% wt (50% FO and 50% LO) and were diluted to 1% wt total 
oil phase before measurement.  Images on day 0 were taken immediately after producing 
the emulsion.  
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3.4.2. Effect of particle size and surfactant concentration on lipid oxidation 

In this series of experiments, the influence of droplet size and surfactant 

concentration on the oxidative stability of fish oil-in-water emulsions prepared by low-

energy (SE) and high-energy (MF) methods was examined.  Emulsions with different 
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droplet sizes were prepared using the low-energy method by varying the SOR (Figure 6).  

However, the fact that these emulsions had different surfactant levels may also have 

influenced their oxidative stability.  For this reason, we added extra surfactant to some of 

the emulsions after they were prepared so that we could produce emulsions that had 

different particle sizes, but similar surfactant concentrations.  A similar procedure was 

also carried out for the emulsions prepared using the high-energy method.  These samples 

could then be used to disentangle the effects of droplet size from those of surfactant 

concentration on lipid oxidation.  A summary of the different samples prepared for this 

study is given in Table 2. 

Table 2. Comparison of the composition and structure of different nanoemulsions used in 
the oxidation studies.  All of the emulsions contained the same final level of oil (1 wt%).  
Key: SE = spontaneous emulsification (Low-energy); MF = Microfluidization (High-
energy). 

Sample Name Preparation Method SOR Initial Droplet 
Diameter (nm) 

SE D 1.00 SE – all surfactant added 
initially 1.00 132.7 ± 6.4 

SE D 1.75 SE – all surfactant added 
initially 1.75 96.5 ± 2.0 

SE S 1.75 SE – some surfactant added to 
SE D 1.00 after formation 1.75 136.0 ± 3.8 

MF D 0.10 MF – all surfactant added 
initially 0.10 151.8 ± 2.1 

MF S 1.00 MF – some surfactant added 
to MF D 0.10 after formation 1.00 161.1 ± 1.8 

MF S 1.75 MF – some surfactant added 
to MF D 0.10 after formation 1.75 166.5 ± 1.8 

 

Initially, low-energy emulsions were prepared using SORs of 1.00 (“SE D 1.00”) 

and 1.75 (“SE D 1.75”) because they gave relatively stable emulsions containing large 

and small droplet sizes, respectively (Table 2).  Additional surfactant was then added to a 
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portion of the SE D 1.00 emulsion to produce an emulsion that contained relatively large 

droplets and a high surfactant concentration (“SE S 1.75”).  Here, the middle letter 

designations that either the diameter (“D”) or surfactant level (“S”) was being controlled.  

The diameter was controlled by adding all the surfactant prior to emulsion formation, 

whereas the surfactant level was controlled by adding some of the surfactant after 

emulsion formation.  For the sake of comparison, a high-energy emulsion was also 

prepared with an SOR of 0.10 (“MF D 0.10”) using a MF.  Additional surfactant was also 

added to some of this emulsion to prepare final samples that had SOR values similar to 

those found in the low-energy emulsions: “MF S 1.00” and “MF S 1.75” (Table 2). 

The prepared emulsions were found to be relatively stable to lipid oxidation when 

stored under ambient conditions.  We therefore accelerated the lipid oxidation reaction by 

adding a pro-oxidant (100 µM iron) and holding them at an elevated temperature (55 °C) 

during storage.      

3.4.2.1. Physical stability of emulsions during oxidation  

Influence of initial particle size: We examined the influence of the initial particle 

size on the stability of the emulsions to droplet growth during storage at the same 

surfactant level, i.e. SOR = 1.75 (Figure 10a).  Interestingly, the droplet growth rate 

depended on both the initial particle size and the homogenization approach used.  Droplet 

growth was fastest for the low-energy emulsion to which surfactant was added after 

emulsion formation, which initially had an intermediate particle size.  On the other hand, 

droplet growth was slowest for the high-energy emulsion, which initially had the largest 

particle size.  This result suggests that the initial structural organization of the oil and 
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surfactant molecules within the emulsions played an important role in determining their 

stability to droplet growth. 

Figure 10. Effect of (A) SOR and (B) added surfactant on mean particle diameter for 
emulsions made by MF and SE and held at 55 °C with added iron.  All emulsions were 
diluted to 1% wt total oil phase. 
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Influence of surfactant concentration:  We also examined the influence of the 

SOR on the stability of emulsions that initially had similar particle sizes (Figure 10b).  

These emulsions were all fabricated using the MF, but different amounts of surfactant 

were added after production.  There was little change in the mean particle diameter 

during storage of the emulsion containing no surfactant added after homogenization (MF 

D 0.1), which suggests that it was relatively stable to droplet growth.  On the other hand, 

there was an appreciable increase in the mean droplet diameter for the two emulsions 

containing additional surfactant (MF S 1.00 and MF S 1.75) during storage, with the 

growth rate increasing with increasing surfactant concentration.  A similar result was 
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obtained for emulsions produced by SE: the droplet diameter increased by 60% after 14 

days storage for the SE S 1.00 emulsion, but by 117% for the SE D 1.75 emulsion.  These 

results suggest that the presence of free surfactant within the aqueous phase of the 

emulsions increased the droplet growth rate.  There are a number of potential reasons for 

this phenomenon: (i) micelles formed by non-ionic surfactants are known to generate an 

osmotic attraction to oil droplets due to a depletion effect, which can promote 

coalescence (140); (ii) micelles can solubilize and transport oil molecules between 

emulsion droplets, which can enhance Ostwald ripening (141). 

In summary, the stability of the emulsion droplets to growth during storage 

appears to depend on at least three factors: initial particle size; total surfactant 

concentration; and preparation method (low-energy versus high-energy).  The frequency 

of droplet collisions is known to decrease with increasing droplet size, whereas the 

coalescence efficiency is known to increase (142).  The rate of Ostwald ripening is 

known to increase with decreasing particle size, increasing polydispersity, and increasing 

free surfactant concentration (63, 143).  Consequently, the dependence of droplet growth 

on these factors may be quite complex.       

In all the emulsions produced using the low-energy method, there was a 

considerable increase in the mean particle diameter during storage (Figure 10a).  This 

increase was not observed in the experiments on the influence of SOR on emulsion 

stability reported earlier, and can be attributed to the elevated storage temperature and the 

presence of iron.  Elevated temperatures are known to promote droplet coalescence in 

emulsions stabilized by non-ionic surfactants due to dehydration of their head groups.  

For example, Gulotta et al. (106) conducted a thermal stability analysis on nanoemulsions 
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that contained 10% oil (50% FO and 50% LO), 10% Tween 80, and 80% aqueous phase.  

This experiment showed that rapid droplet growth occurred between 50 and 68 °C, which 

was attributed to coalescence caused by surfactant head group dehydration.  Absorbance 

measurements and visual observations were also made on the same samples during 

storage, which showed that there was an increase in turbidity in the emulsions that 

underwent droplet growth (data not shown), as would be expected due to the increase in 

the light scattering ability of the larger droplets. 

The ζ-potential was measured throughout emulsion storage to provide some 

indirect information about changes in interfacial properties (data not shown).  The 

charges of the emulsions were initially between around -1 and -1.5 mV, which can be 

attributed to the fact that the emulsions were stabilized by a non-ionic surfactant, and that 

any free fatty acid impurities will be protonated under acidic conditions.  Haahr et al. 

(144) reported similar values for emulsions prepared from medium chain triglycerides 

(MCT), FO, Tween 80, and buffer solution (10 mM acetate-imidazole buffer, pH 3).  The 

droplet charge of the emulsions prepared in our study became slightly more negative after 

14 days storage, which may have occurred due to the generation of some free fatty acids 

caused by hydrolysis of the triglyceride molecules during storage.  Emulsion MF S 0.10 

had the lowest concentration of free surfactant and a slightly more negative charge (-1.5 

and -2.0 mV on days 0 and 14, respectively) than the other emulsions (-0.9 and -1.2 mV), 

which may have been because the surfactant micelles in these emulsions contributed to 

the signal used to calculate the ζ-potential.   

Microscopic images of the emulsions on days 0 and 14 were used to provide 

further information about their structural properties (Figure 11).  Initially, there was no 
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evidence of any visible particles in any of the samples, which is to be expected given the 

small particle sizes of the emulsions.  Nevertheless, there was evidence of some multiple 

emulsions within the SE S 1.75 emulsion on day 14.  These results suggest that some 

complex, non-equilibrium structures were formed in the emulsions when excess 

surfactant was added to the SE D 1.00 emulsion.  In addition, transparent fragments were 

observed in the SE S 1.75 and SE D 1.75 emulsions (Figure 11c).  We also attempted to 

study these fragments using cross-polarized optical microscopy but they did not polarize 

light and remained dark against the black background (data not shown), meaning that 

they are isotropic and not anisotropic liquid crystalline structures (79, 145).  At this time, 

it is unclear what these fragments may be and further investigation is needed.  

Nevertheless, the microscopy images clearly show that different structures are present in 

emulsions that have similar overall compositions (SOR = 1.75), which highlights the 

importance of the preparation method used on their structural and physicochemical 

properties.    
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Figure 11. Microscopic images of emulsions made by MF and SE methods and held at 
55 °C with added iron at (A) day 0 and (B) day 14. (C) shows enlarged sections of 
abnormalities found in the emulsions on day 14.  All emulsions were diluted to 1% wt 
total oil phase.  Images were taken at 60x magnification.  The black bars at the bottom of 
each picture are the scales for 10 µm.   
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3.4.2.2. Oxidative stability of emulsions 

  Lipid oxidation in emulsions typically occurs at the oil-water interface due to the 

interaction of free radicals with unsaturated lipids within the droplets (15, 85).  In these 

systems, lipid oxidation is usually catalyzed by transition metals, such as iron, which are 

also responsible for accelerating lipid oxidation by decomposing hydroperoxides into free 

radicals (85, 146).  The rate of lipid oxidation in emulsions is therefore dependent on the 

relative location of lipid substrates (polyunsaturated fatty acids) and pro-oxidants 

(transition metals and hydroperoxides) in the system (85).  In the current study, lipid 

hydroperoxide levels and TBARS were measured to monitor the primary and secondary 

oxidation products of the emulsions throughout a 14-day oxidation study.   

Influence of initial particle size:  In this series of experiments, we compared the 

oxidation in emulsions that had similar surfactant levels (SOR = 1.75), but different 

initial particle sizes and preparation methods.  Overall, the time-dependence of lipid 

oxidation in all of the emulsions was fairly similar, irrespective of the preparation 

method, with all of the emulsions reaching a peak in hydroperoxide levels after 12 days 

storage (Figure 12a).  However, the low-energy emulsions with added surfactant (SE S 

1.75) did have a slightly higher hydroperoxide value than the other emulsions towards the 

end of the incubation period.  Interestingly, the SE S 1.75 emulsions also had a greater 

particle size (236 nm) than the SE D 1.75 (192 nm) and MF S 1.75 (212 nm) emulsions at 

these storage times.  We had expected a higher rate of oxidation in emulsions with 

smaller particle sizes because of the greater surface area of the oil droplets, which would 

allow for more oxidation reactions to occur at the droplet surface.  However, it is also 

possible for participants in the lipid oxidation reaction to partition into the surfactant 
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micelles, which would be expected to alter the lipid oxidation rate.  In addition, there may 

have been only a limited number of reactants in the system and all of them may already 

have been at the droplet surface (85, 147).  

Figure 12. Effect of (A) particle size and (B) surfactant on hydroperoxide values for 
emulsions made by MF and SE methods and held at 55 °C with added iron for 14 days.  
All emulsions were diluted to 1% wt total oil phase.     
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Previous researchers have also reported different dependences of lipid oxidation 

on particle size.  Studies of oxidation in protein-stabilized corn oil-in-water emulsions 

found that particle size did not have a major impact on their oxidative stability, but 

emulsifier type did (148).  Studies with fish oil-in-water emulsions reported that 

oxidation occurred more quickly in smaller droplets, but this effect could also have been 

due to the fact that different emulsifier types were used (144).  Another study using fish 

oil-in-water emulsions also reported that particle size was not a major factor influencing 

the rate of oxidation, when compared to other factors such as emulsifier type (149).  
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Overall, these findings suggest that droplet surface area is not a major factor impacting 

the chemical stability of encapsulated polyunsaturated lipids. 

As for secondary oxidation products, emulsion MF S 1.75, which had the largest 

initial particle size (166 nm) but ended with an intermediate particle size (226 nm), 

reached the highest TBARS value within the 14-day study compared to the SE emulsions 

(SE D 1.75 and SE S 1.75) (Figure 13a).  Based on these results, the fabrication method 

may have a larger impact on the secondary oxidation products than the emulsion particle 

size.  The lower concentration of secondary oxidation products in the low-energy 

emulsions suggests a slower lipid oxidation rate or inhibition of hydroperoxide 

degradation. 
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Figure 13. Effect of (A) particle size and (B) surfactant on TBARS for emulsions made 
by MF and SE methods and held at 55 °C with added iron for 14 days.  All emulsions 
were diluted to 1% wt total oil phase.     
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Influence of surfactant concentration:  All low-energy emulsions (SE D 1.00 and 

SE S 1.75; data not shown) and high-energy emulsions (MF D 0.10, MF S 1.00 and MF S 

1.75) reached similar peak hydroperoxide values on day 12 (Figure 12b).  The SE 

emulsions followed a similar TBARS trend but SE D 1.00 had higher TBARS values 

than SE S 1.75 starting on day 2.  In addition the MF D 0.10 emulsion reached a peak 

TBARS value on day 14 while the emulsions with added surfactant (MF S 1.00 and MF S 

1.75) had high TBARS values on day 10, which plateaued through day 14 (Figure 13b).   
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It was expected that the higher concentration of surfactant would have slowed 

down the rate of oxidation in the emulsions.  Surfactants affect many characteristics of an 

emulsion including droplet charge, interfacial layer thickness, and permeability, which in 

turn influence accessibility of pro-oxidants, free radicals, and oxygen to the droplet lipids 

(17, 88).  Surfactant can be found surrounding the oil droplets in the emulsion and as 

surfactant micelles in the aqueous phase when excess surfactant is used (85).  In this case, 

the non-ionic surfactant produced minimal particle charge and because of that, it is not 

expected to have impacted the lipid oxidation greatly.  Surfactant at the interfacial layer 

can also form a physical (steric) barrier between pro-oxidants and the lipid phase (17, 

92).  The effectiveness of the interfacial layer relies on its thickness, which is dependent 

on surfactant’s head group.  Brij 700 has a larger head group than Brij 76 and was found 

to be more effective at decreasing the rate of oxidation than Brij 76 (92).  

Tween 80 has a low critical micelle concentration (CMC; <0.1 mM), a point 

where the surface of the lipid particles are saturated with surfactant and the excess 

surfactant forms surfactant micelles (150).  Surfactant micelles have been shown to 

decrease lipid oxidation through multiple mechanisms (151).  One such way is by 

solubilizing iron or hydroperoxides as a means to decrease pro-oxidants in the emulsion 

(152, 153).  Secondly, surfactants, including Tween 20, have been shown to increase the 

solubilization of antioxidants into the aqueous phase of the emulsion (154).  Lastly, it has 

also been hypothesized that tocopherols in FO can form surfactant co-micelles, which act 

as a reservoir for the antioxidants and they can be released as they were needed to extend 

the lag period of the oxidation process (154). 
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Despite all of the potentially positive impacts that surfactant can have on lipid 

oxidation in emulsions, surfactant itself can form hydroperoxides (146).  The polyethers 

found in the hydrophilic head group of Tweens are easily oxidized and form 

hydroperoxides and their degradation products (146, 155, 156).  Nuchi et al. showed that 

Tween 20 high in hydroperoxides increased the rate of oxidation in salmon oil emulsions 

(146).  The oxidation of the surfactants themselves may have contributed to the 

hydroperoxides measured in the FO emulsions in our study instead of slowing down the 

oxidation.  Additionally, the high temperature and addition of iron into the FO emulsions 

may have increase the oxidation rate making it difficult to find differences in the 

oxidation rate between the emulsions.    

3.5. Conclusions 

This study determined that the low-energy method of spontaneous emulsification 

can produce optically transparent nanoemulsions at higher SORs (≥ 1.25).  These 

nanoemulsions were physically stable when stored at 37 °C for 14 days, but exhibited 

some droplet growth when stored at a higher temperature, which was attributed to 

coalescence caused by surfactant head group dehydration.  Neither particle size nor 

surfactant had a major impact on the rate of lipid oxidation in the FO emulsions.  These 

findings on physical and chemical stability suggest that spontaneous emulsification may 

be used to produce FO emulsions used to fortify transparent food or beverage systems.  
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CHAPTER 4 

INFLUENCE OF CITRUS AND HERB OILS ON FISH OIL 

NANOEMULSION FORMATION AND OXIDATIVE 

STABILITY 

4.1. Introduction 

Sufficient consumption of omega-3 FAs has been linked to reduced mortality 

risks, especially for cardiovascular disease (18).  The mortality risk of insufficient 

omega-3 consumption was responsible for an estimated 84,000 deaths in the US in 2005.  

Additionally, EPA and DHA, omega-3 LCPUFAs most commonly found in FO, are 

linked to other health benefits including brain development and the treatment of 

inflammatory diseases (2-5).  Currently, Western cultures are greatly under consuming 

omega-3 FAs (2-5).  This low consumption may be for many reasons including the high 

cost of fish, dislike of seafood by many consumers, presence of methyl mercury, and low 

availability in many geographical locations (19-21).  The fortification of foods with fish 

oil, a good source of EPA and DHA, may be an effective way to increase omega-3 

consumption and nanoemulsions offer a versatile platform in which to do this (34).   

Nanoemulsions are a type of emulsions-based delivery system characterized by 

their small particle size (r < 100 nm) and thermodynamic instability (6, 7, 60, 61).  They 

are gaining popularity because of their ease of preparation, small particle size, relatively 

high stability, and high bioavailability.  The food and pharmaceutical industries are 

currently using these delivery systems to encapsulate, protect, and control the release of 

bioactives (17, 58, 62).   
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Despite the many benefits of nanoemulsions, there are still obstacles to overcome 

for their food fortification including lipid oxidation.  Oxidation in emulsion systems 

usually occurs at the oil-water interface and is commonly attributed to free radicals 

reacting with unsaturated lipids within the droplet and forming lipid radicals (15, 85).  In 

food products, lipid oxidation causes a variety of problems that negatively affect shelf 

life, safety, nutritional value, functionally, and flavor (15, 16).   

Physical stability of the nanoemulsion can also be a challenge in nanoemulsions.  

Physically unstable emulsions can cause undesirable changes to the appearance, texture, 

and shelf life of the food product.  Compared to conventional emulsions, nanoemulsions 

are more stable against gravitational separation, coalescence, and flocculation but are 

more susceptible to Ostwald ripening (12).  Ostwald ripening in oil-in-water 

nanoemulsions is described as an increase in mean droplet size as a result of the diffusion 

of the oil phase from small droplets to larger ones (7, 11, 63).   

Carrier oils offer some benefits to address these problems of oxidative and 

physical instability.  Carrier oils are mixed with the lipophilic bioactive, in this case FO, 

to make up the total oil phase.  Carrier oils with natural antioxidants can improve 

oxidative stability.  In addition, when carrier oils have low water solubility, they can act 

as ripening retarders and improve the emulsion’s resistance to Ostwald ripening (9-12).  

A variety of oils can be used as carrier oils, including essential oils.  Essential oils 

are bioactives utilized by the food and pharmaceutical industries not only for their flavor 

and aroma but also for their antioxidant, antibacterial, and antifungal activity (157, 158).  

While the monoterpenes in essential oils can oxidize (13, 14), essential oils have not 

exhibited pro-oxidant activity at any concentration (Misharina and others 2011).  
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Additionally, the flavoring capabilities of essential oils are especially beneficial for FO 

nanoemulsions because they can mask the FO flavor and odor, making the FO 

nanoemulsion fortified food product more acceptable to consumers.  This paper will 

focus on lemon oil (LO) and thyme oil (TO) as citrus and herb oil carrier oils, 

respectively.    

LO is widely used in the food industry and can be found in soft drinks, dairy 

products, candies, and baked goods (14).  It is largely comprised of limonene followed by 

α-pinene and γ-terpinene but citral is the major flavor and aroma constituent (14, 158, 

159).  In emulsions, lemon oil has had positive impacts on the physical and oxidative 

stability (13, 160). 

TO has been studied as a natural antioxidant for meat and meat products (161-

163).  In emulsions, it has exhibited antimicrobial and antioxidant activity (160, 164, 

165).  The main phenols in thyme are thymol and carvacrol, which are also largely 

responsible for its antioxidant activity (166).  The antioxidant mechanisms of thyme oil 

include radical scavenging and inhibition against oxidation induced by Fe2+/ascorbate and 

Fe2+/H2O2 (167). 

This study will focus on the potential use of essential oils as carrier oils in FO 

nanoemulsions produced with the high-energy method of MF.  The carrier oils evaluated 

include MCT as a control, model carrier oil; LO as a citrus oil, which can be used in 

beverages or sweet food applications; and TO as an herb oil, which can be used in savory 

food applications.  These emulsions will be evaluated based on their physical stability 

and susceptibility to lipid oxidation as those are common obstacles that must be 

overcome in omega-3 FA fortified foods (58).   



 

 77 

4.2. Materials and Methods 

4.2.1. Materials 

FO (Omega 30 TG Food Grade Fish Oil (Non-GMO)) was provided by DSM 

Nutritional Products Ltd. (Basal, Switzerland).  The oil was composed of 157 mg of 

EPA/g oil, 99 mg of DHA/g oil, and 326 mg of total omega-3 as triglycerides/g of oil.  

Ten fold LO was kindly donated by International Flavors & Fragrances Inc. (New York, 

NY, USA).  TO was purchased from Essential7 (Golden, CO, USA).  Polysorbate 80 

(Tween 80), polysorbate 20 (Tween 20), sodium benzoate, barium chloride, iron (II) 

sulfate heptahydrate, hydrochloric acid, cumene hydroperoxide, thiobarbituric acid 

(TBA), butylated hydroxytoluene (BHT), 1,1,3,3-tetraethoxypropane (TEP), sodium 

carbonate, Folin & Ciaocatleu reagent, and gallic acid were purchased from Sigma-

Aldrich Co. (St. Lois, MO, USA).  Citric acid, 1,2-propanol, isooctane, butanol, and 

methanol were purchased from Fisher Scientific (Waltham, MA, USA).  Trichloroacetic 

acid (TCA) and ammonium thiocyanate were purchased from Acros Organics (Geel, 

Belgium).  Ethanol was purchased from Phamco-AAPER (Brookfield, CT, USA).  All 

solvents and reagents were of analytical grade or higher.  Double distilled water was used 

to prepare all solutions.   

4.2.2. Emulsion preparation 

All emulsions were prepared by microfluidizer (MF) with a total oil phase of 5 

wt%.  For emulsions with mixtures of FO and carrier oil, FO (1.25-3.25 wt%) and carrier 

oil (1.25-3.25 wt%) were mixed for 15 min at 750 rpm.  Buffer (0.8% citric acid, 0.08% 

sodium benzoate, pH 3.0) simulating an acidic beverage system was mixed with Tween 

80 (1.5 wt%) for 30 min at 750 rpm.  The oil and aqueous phases were combined and 
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mixed with a hand mixer (Bamix ESGE Ltd, Swtizerland) for 2 min to form a course 

emulsion.  Samples were passed through a MF (Microfluidics M-110P, Westwood, MA, 

USA) 5 times at 20,000 PSI.  Each formulation was produced in duplicate.  All samples 

were stored in amber glass bottles at 20 °C in the dark for 28 days for physical stability 

evaluation.           

4.2.3. Particle size measurements 

The particle size (Z-average), particle size distribution (PSD), and polydispersity 

index (PDI) of all emulsions, except the 100% TO emulsion, was measured by dynamic 

light scattering (Zetasizer Nano ZS, Malvern Instruments, Malvern, UK) because of their 

smaller droplet size (d < 500 nm).  The mean particle diameter (d32) and PSD of the 

100% TO emulsion was measured by static light scattering (Masterszier 2000, Malvern 

Instruments, Malvern, UK) because of its larger droplet size (d > 500 nm).  All samples 

were measured in duplicate.  

4.2.4. Visual observations 

The influence of carrier oil on the macroscopic appearance of the emulsions was 

documented using a digital camera (Nikon CoolPix L4, Melville, NY, USA) for both the 

physical and oxidative stability studies.  During the oxidation experiments, emulsions 

were observed using optical microscopy on the first and last day of measurements (Nikon 

Eclipse 80i, Nikon Instrument Inc., Melville, NY). 
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4.2.5. Oxidation measurements 

2.5.1. Lipid hydroperoxides  

Emulsions were held in amber glass bottles and incubated in the dark at 20 °C for 

42 days.  Measurements were taken every 3 days.  Lipid hydroperoxides were measured 

using a method adapted from Shantha and Decker (136).  An extraction of the emulsion 

lipids was performed by adding the emulsion (0.3 mL) to a mixture of isooctane/2-

propanol (3:1 v/v; 1.5 mL) and vortexing it 3 times for 10 s, followed by centrifugation 

(1000 g) for 2 min.  The top layer (0.2 mL) was mixed with methanol/1-butanol (2:1 v/v; 

2.8 mL), followed by the addition of 3.94 M ammonium thiocyanate/ferrous iron solution 

(1:1 v/v; 30 µL).  The ferrous iron solution was prepared by mixing equal amounts of 

0.132 M BaCl2 and 0.144 M FeSO4.  The absorbance was measured at 510 nm after 20 

min using an UV- visible spectrophotometer (Ultraspec 3000 pro, Biochrom Ltd, 

Cambridge, UK).  Hydroperoxides were calculated as mM cumene hydroperoxide using a 

cumene hydroperoxide standard curve (0-0.5 mM) and all data was normalized based on 

the concentration of day 0. All samples were measured in triplicate. 

4.2.5.2. Thiobarbituric acid-reactive substances (TBARS) 

TBARS samples were held in amber glass bottles at 20 °C in the dark for 42 days.  

Samples were measured every 3 days using the method of McDonald and Hultin (137).  

TBA reagent (15% w/v trichloroacetic acid, 0.375% w/v thiobarbituric acid, and 0.25 M 

HCl with 2% BHT in ethanol solution; 2.0 mL) and emulsion (1.0 mL) were combined 

and vortexed in glass test tubes with screw caps.  The tubes were placed in a water bath 

(90 °C) for 15 min, and then cooled in a water bath (room temperature) for 10 min.  The 

tubes were centrifuged (1000 g) for 15 min, and left to sit for 10 min.  The absorbance of 
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the supernatant was measured at 532 nm (Ultraspec 3000 pro, Biochrom Ltd, Cambridge, 

UK).  Concentrations of TBARS were calculated as µM using a standard curve of TEP 

(0-20 µM) and all data was normalized based on concentrations of day 0.  All samples 

were measured in triplicate. 

4.2.6. Total phenolic content 

4.2.6.1. Extraction of phenolic compounds 

Phenolic compounds were extracted from the LO and TO using an adapted 

method from Rombaut et al. (168).  Tween 20 (0.2 g) and oil (5g) were mixed with 

methanol/water (4:1 v/v; 10 mL) for 5 min at 400 rpm.  The mixture was sonicated in an 

ultrasonic bath for 15 min, and then mixed for another 5 min.  The mixture was 

centrifuged (2,000 g) for 20 min.  The supernatant was removed and the remaining oil 

phase was re-extracted using the described method above.  The supernatants from both 

extractions were combined and stored at 4 °C in the dark for further analysis.  Each oil 

was extracted in duplicate. 

4.2.6.2 Folin-Ciocatleu assay 

Total phenolic content of the oil extracts was determined (168, 169).  Folin-

Ciocatleu reagent/water (9/1 v/v; 1 mL) was added to 0.2 mL extract.  After 5 min, 

sodium carbonate solution (7.5% in water m/v; 0.8 mL) was added and the mixture was 

vortexed.  The samples were placed in a water bath (50 °C) for 10 min then cooled for 5 

min.  The absorbance was measured at 750 nm (Ultraspec 3000 pro, Biochrom Ltd, 

Cambridge, UK).  Gallic acid (0- 80 mg/L) in methanol/water (4:1 v/v) was used to make 
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a standard curve.  Results are expressed as g gallic acid equivalents (GAE) per kg oil.  

All samples were measured in triplicate.   

4.3. Experimental design and data analysis 

All measurements were made in duplicate or triplicate and results are stated as 

mean ± standard deviation.  Statistical analysis was carried out with Minitab 17 software 

(Minitab Inc., State College, PA, USA) by analysis of variance (ANOVA) and Tukey test 

with a confidence interval of 95%. 

4.4. Results and discussion 

4.4.1. Determination of surfactant concentration 

The effect of surfactant concentration on the mean particle diameter of FO 

nanoemulsions was evaluated in order to determine the optimal Tween 80 concentration 

to use throughout the subsequent studies.  Surfactant concentrations of 0.5, 1.0, 1.5, and 

2.0 wt% were evaluated in FO nanoemulsions produced with 5 wt% total oil phase (50 

wt% FO and 50 wt% MCT).  As the surfactant concentration increased, the mean particle 

diameter of the nanoemulsions decreased significantly (p < 0.05) (Figure 14).  

Nanoemulsions with surfactant concentrations of 1.5 and 2.0 wt% had mean particle 

diameters below 100 nm (95 and 82 nm, respectively).  Based on these results, we chose 

to produce all remaining emulsions for this study with 1.5 wt% surfactant since it was the 

lowest concentration at which the mean particle diameter was below 100 nm.      
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Figure 14. Effect of surfactant concentration on mean particle diameter of fish oil 
nanoemulsions with 5% wt total oil phase (50% wt FO and 50% wt medium chain 
triglyceride). 

 

4.4.2. Physical stability  

The effect of carrier oil type and ratio of FO to carrier oil on the physical stability 

of FO nanoemulsions was evaluated.  FO nanoemulsions were producing using a MF 

with 5 wt% total oil phase and 1.5 wt % Tween 80 as the surfactant.  FO/carrier oil ratios 

evaluated were 25/75, 50/50, 75/25. The carrier oils used were MCT as a control, LO as 

an essential oil for beverage or sweet food application, and TO as an essential oil for 

savory food application.  Emulsions were also made with the FO and each of the carrier 

oils as the total oil phase (referred to as 100% FO, 100% MCT, 100% LO, or 100% TO).  
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These emulsions were then held at 20 °C in the dark for 28 days to evaluate their physical 

stability.   

4.4.2.1. Mean particle diameter 

Carrier oil type had a large impact on the particle size of these emulsions (Figure 

15).  For the emulsions made with MCT as the carrier oil, the 100% MCT nanoemulsion 

had the smallest mean particle diameter (89 nm) compared to the 100% FO nanoemulsion 

(101 nm) and FO/MCT nanoemulsions (91-101 nm).  For these emulsions, as the amount 

of FO in the emulsion increased, the mean particle diameter increased.  In contrast, the 

100% LO nanoemulsion had a larger mean particle diameter (91 nm) than all of the 

FO/LO nanoemulsions (72-82 nm) and the 100% FO nanoemulsion had the largest mean 

particle diameter (101 nm).  Again, as the amount of FO increased, the mean particle 

diameter increased.  The TO emulsions saw the largest difference in mean particle 

diameters amongst themselves.  The 100% TO emulsion was significantly larger than all 

other emulsions (p < 0.05).  The 100% TO emulsion and 25/75 FO/TO emulsion did not 

form nanoemulsions (d < 200 nm) with mean particle diameters of 3,549 and 844 nm, 

respectively.  The 75/25 FO/TO nanoemulsion had the smallest mean particle diameter 

(81 nm) out of all of the TO emulsion. 
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Figure 15. Effect of fish oil to carrier oil ratio on mean particle diameter after production 
(day 0).  X/Y indicates the % Fish oil (FO)/% Carrier oil that made up the total oil phase.  
Key: MCT: medium chain triglyceride; LO: lemon oil; TO: thyme oil. 
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between the 75/25 FO/carrier oil nanoemulsions and the 100% FO emulsion may be due 

to the effect of oil viscosity and interfacial tension on droplet disruption during high-

energy fabrication of emulsions.  As the oil viscosity and interfacial tension decrease, the 

droplet size usually decreases. In this study, the essential oils have the lowest viscosities 

and interfacial tensions followed by MCT and then FO (164). 

As for the stability of the emulsions over the 28-day period, the 100% FO 

nanoemulsion had no significant change in mean particle diameter.  The nanoemulsions 

made with MCT were relatively stable.  The 100% MCT and 25/75 FO/MCT 

nanoemulsions had significant increases in their mean particle diameters increasing from 

89 and 91 nm to 95 and 95 nm, respectively.  The nanoemulsions made with LO as the 

carrier oil were stable throughout the 28-day period, with minor, insignificant changes in 

their mean particle diameters.  On the other hand, the emulsion made with 100% TO 

experienced significant droplet growth (p < 0.05), ending with a mean particle diameter 

of 119,295 nm, a 33 fold increase from the initial particle diameter of 3,549 nm.  The 

25/75 FO/TO emulsion also had increases and decreases in the mean particle diameter 

over time but ended with the same mean particle diameter (844 nm).  The instability of 

the TO emulsions can be attributed to the essential oil’s susceptibility to Ostwald 

ripening since it has a high water solubility (≈1 g L−1 for thymol at 25 °C) (164).  

4.4.2.2. Polydispersity index (PDI) and particle size distribution (PSD) 

The PDI (Figure 16) is a measure of the narrowness of the particle size 

distribution (Figure 17) with PDI values ≤ 0.1 indicating a very narrow distribution.  

After fabrication (day 0), only the 50/50 FO/TO emulsion had a PDI below 0.1 (Figure 

16 A).  The 100% LO nanoemulsion and the 25/75 FO/TO emulsion had the largest PDI 
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values of 0.21 and 0.32, respectively, due to their bimodal distributions (Figure 17 B and 

C).  All other emulsions had PDI values below 0.15 nm, still indicating quite narrow 

distributions.  The PDI values for all emulsions stayed relatively constant throughout the 

28-day study (Figure 16 B).  PSD graphs for day 28 are not shown as they are similar to 

those of day 0.   

Figure 16. Effect of fish oil to carrier oil ratio on polydispersity index (PDI) after 
production (day 0; A) and on day 28 (B). No PDI data available for 0/100 TO as it was 
measured using static light scattering.  X/Y indicates the % FO/% Carrier oil that made 
up the total oil phase. Key: MCT: medium chain triglyceride; LO: lemon oil; TO: thyme 
oil. 
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Figure 17. Effect of fish oil to carrier oil ratio on particle size distribution after 
production (day 0) for MCT (A), LO (B), and TO (C).  X/Y indicates the % fish oil/% 
carrier oil that made up the total oil phase.  Key: MCT: medium chain triglyceride; LO: 
lemon oil; TO: thyme oil.    
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4.4.2.3. Appearance 

The visual appearance of the emulsions was evaluated with images of the 

emulsion samples.  After fabrication (day 0), all emulsions were opaque (Figure 18).  

The nanoemulsions produced with LO had a yellow tint due to its natural coloring, which 

increased as the percent of LO in the nanoemulsion increased, otherwise all other 

emulsions appeared milky white.  By day 1, the 100% TO emulsion had oiling off (data 

not shown), which developed into a clear separation of phases, resulting in a layer of TO 

on top of a clear layer of buffer by day 28.  This creaming and oiling off was supported 

by the increase in mean particle diameter.  The 25/75 FO/TO emulsion also appeared to 
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be unstable toward the end of the study since it became more transparent at the bottom of 

the test tube on day 28.  Again, this instability is due to the TO’s high water solubility 

and susceptibility to Ostwald ripening (164).   

Figure 18. Images of emulsions made by microfluidization with different fish oil to 
carrier oil ratios on (A) day 0 (after production) and (B) day 28. X/Y indicates the % fish 
oil/% carrier oil that made up the total oil phase.  Key: MCT: medium chain triglyceride; 
LO: lemon oil; TO: thyme oil. 
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4.4.3. Oxidative stability 

The effect of different carrier oils (MCT, LO, and TO) on the oxidative stability 

of FO nanoemulsions held at 20 °C was evaluated.  FO nanoemulsions were produced 

with 5 wt% total oil consisting of a FO/carrier oil ratio of 75/25.  This ratio was chosen 

based on the physical stability results in section 4.4.2 as it produced stable nanoemulsions 

with similar particle sizes amongst all the carrier oils while maintaining a high load of FO 

in the nanoemulsion.  Lipid hydroperoxides and TBARS were measured to monitor the 

primary and secondary oxidation products in this 42-day study.  The total phenolic 

contents of the essential oils were determined by the Folin-Ciocatleu assay.  LO and TO 

had a total phenolic contents of 28.43 and 123.20 g GAE/kg oil, respectively.   

4.4.3.1. Oxidative stability 

Overall, the lipid hydroperoxides were consistently higher for the FO 

nanoemulsion with MCT as a carrier oil compared to those made with LO and TO 

(Figure 19).  On day 15, the lipid hydroperoxides for the MCT nanoemulsion were 3 and 

6 fold higher than those of the LO and TO nanoemulsions, respectively.  By day 42, lipid 

hydroperoxides of the MCT nanoemulsion were 8 and 35 fold higher than those of the 

LO and TO nanoemulsions, respectively.  The LO began to have slightly higher lipid 

peroxides levels than the TO around day 12. 
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Figure 19. Lipid hydroperoxides of fish oil nanoemulsions made with different carrier 
oils at a ratio of 75/25 fish oil to carrier oil after being held at 20 °C for 42 days. Key: 
MCT: medium chain triglyceride; LO: lemon oil; TO: thyme oil.  

 

This same trend was seen with the TBARS concentrations.  By day 15, the 

TBARS for the MCT emulsion were 3 and 24 fold higher than the LO and TO 

nanoemulsions, respectively (Figure 20).  At the end of the study, on day 42, the TBARS 

of the MCT emulsion were 15 and 99 fold higher than the LO and TO nanoemulsions, 

respectively.   
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Figure 20. TBARS of fish oil nanoemulsions made with different carrier oils at a ratio of 
75/25 fish oil to carrier oil after being held at 20 °C for 42 days. Key: MCT: medium 
chain triglyceride; LO: lemon oil; TO: thyme oil. 

 

Overall, the LO and TO exhibited antioxidant behavior against lipid oxidation in 

the nanoemulsion systems.  This may be attributed to the natural antioxidants in the 

essential oils.  Previous studies have also demonstrated the inhibition of lipid oxidation in 

sunflower oil emulsions by both LO and TO and in corn oil emulsions by TO (160, 165, 

166).  The total phenolic content of the TO was 4 fold higher than that of the LO, which 

may explain why the LO nanoemulsion began experiencing an increase in lipid peroxides 

much earlier than the TO nanoemulsion. 
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4.4.3.2. Physical stability of emulsions during oxidation 

The physical stability of the FO/carrier oil nanoemulsions was monitored 

throughout the oxidation study.  The MCT emulsion had significantly larger mean 

particle diameters than the LO and TO nanoemulsions on day 0 and 42 (p < 0.05).  

However, the mean particle diameter of each FO/carrier oil nanoemulsion was stable for 

the 42 days with no significant change in size.  Nanoemulsions produced with MCT, LO, 

and TO carrier oils had initial mean particle diameters of 101, 82, and 80 nm, 

respectively, and their final mean particle diameters were 102, 81, and 79 nm, 

respectively.    

The ζ-potential for all nanoemulsions was measured on the first and last day of 

the oxidation experiment (day 0 and 42) in order to evaluate any changes in interfacial 

properties.  The ζ-potentials for all nanoemulsions were only slightly negative with no 

significant difference in charge between them on day 0 or 42 (p < 0.05).  The charge was 

also stable throughout the 42-day study (Figure 21).  This minimal charge was expected 

since Tween 80 is a nonionic surfactant.  The nanoemulsion produced with MCT started 

with an initial ζ-potential of -1.60 mV and became slightly more negative over time, 

ending at -1.73 mV.  In contrast, the nanoemulsions produced with LO and TO became 

slight more positive over time.  The small charges on the emulsion particles were 

unlikely to have any affect on the oxidation of emulsions.   
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Figure 21. ζ-potential of fish oil nanoemulsions made with different carrier oils at a ratio 
of 75/25 fish oil to carrier oil after fabrication (day 0) and after being held at 20 °C for 42 
days. Key: MCT: medium chain triglyceride; LO: lemon oil; TO: thyme oil. 

 

Microscopic images of the nanoemulsions were taken on day 0 and 42 to further 

analyze their structural properties (Figure 22).  Given the small particle size of the 

emulsions, there were few visible particles in the images for both days.  This supports the 

stable mean particle size measurements previously discussed. 
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Figure 22. Microscope images of the fish oil nanoemulsions made with different carrier 
oils at a ratio of 75/25 fish oil to carrier oil held at 42 °C for 42 days.  Images were taken 
at 60x magnification.  The black bars at the bottom of each picture are the scales for 10 
µm. Key: MCT: medium chain triglyceride; LO: lemon oil; TO: thyme oil.     
 

 

4.5. Conclusions 

This study showed that physically stable FO nanoemulsions were produced by 

using MCT, LO, and TO as carrier oils at different FO/carrier oil ratios.  All 

nanoemulsions made with LO as the carrier oil were physically stable for 28 days at 20 

°C.  MCT and TO nanoemulsions were physically stable at ratios of 50/50 and 75/25 

FO/carrier oil.  At the ratio of 75/25 FO/carrier oil, LO and TO increased the oxidative 

stability of FO nanoemulsions as a result of their natural antioxidants. These findings 

suggest that LO and TO are suitable carrier oils to produce FO nanoemulsions with high 

physical and oxidative stability for food fortification.     



 

 98 

CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Nanoemulsion food systems are a versatile platform that can be used for the 

incorporation of FO into aqueous food products in order to increase omega-3 FA 

consumption in Western cultures.  Their small particle sizes can produce transparent 

emulsions, which can be added to aqueous beverages without minimal impact their visual 

appearance.  Our study demonstrated that FO nanoemulsions were produced using the 

low-energy method of SE and high concentrations of surfactant.  In addition, the rate of 

oxidation for FO nanoemulsions produced by low- and high-energy methods was not 

affected by particle size or surfactant concentration.  These findings suggest that SE may 

be a suitable method for producing FO nanoemulsion for food fortification. 

Our study also demonstrated that MCT, LO, and TO can be used as carrier oils to 

produce stable FO nanoemulsions at certain ratios of FO to carrier oil.  FO 

nanoemulsions made with a 75/25 FO to carrier oil ratio had increased oxidative stability 

when LO and TO were used as the carrier oil.  Based on these results, physically and 

chemically stable FO nanoemulsions can be produced with LO and TO carrier oils.  The 

acceptability of both a citrus and herb oil may lead to the fortification of a wider variety 

of food products including both sweet and savory foods. 

Lastly, the effect of surfactant and concentration of FO in the total oil phase on the 

chemical stability of FO nanoemulsions can be quite complex and should be studied 

further.  Surfactants have been shown to negatively affect oxidation, making it important 

to evaluate the oxidation rate of the emulsion as well as their components.  Additionally, 

the effect of FO/carrier oil ratios on physical stability was evaluated but its effect on 
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oxidative stability was not.  Different concentrations of FO and types of carrier oil may 

have positive or negative impacts on an emulsion’s susceptibility to lipid oxidation.  

Further studies should be conducted to try and optimize the FO to carrier oil ratio for 

increased oxidative stability while maintaining physical stability.   
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