University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 24th, 2:30 PM - 2:45 PM

Session C8: Development of Criteria for the Design and Dimensioning of Fish-Friendly Intakes for Small Hydropower Plant

Dominique Courret Pôle Ecohydraulique ONEMA – IRSTEA – IMFT (Toulouse)

Michel Larinier Institut P' de Poitiers

Laurent David Institut P', CNRS – Université de Poitiers – ENSMA

Ludovic Chatellier Institut P', CNRS – Université de Poitiers – ENSMA

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Courret, Dominique; Larinier, Michel; David, Laurent; and Chatellier, Ludovic, "Session C8: Development of Criteria for the Design and Dimensioning of Fish-Friendly Intakes for Small Hydropower Plant" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 16. https://scholarworks.umass.edu/fishpassage_conference/2015/June24/16

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Fish Passage 2015, Groningen, June 22-24, 2015

Development of criteria for the design and dimensioning of fish-friendly intakes for small hydropower plant

COURRET D¹, LARINIER M, DAVID L² and CHATELLIER L²

Several studies funded by :

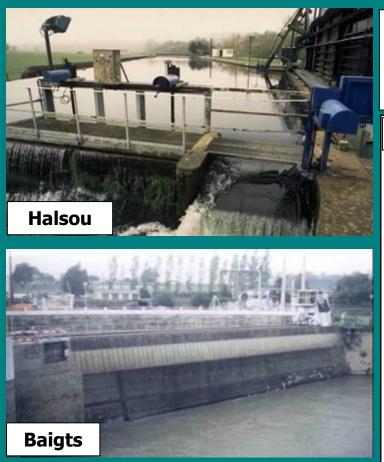


Context in France

- Downstream migration is taking into account for :
 - Salmon : smolts (+ adults)
 - Sea trout : smolts + adults
 - Can have a lot of hydropower plants on their migration route
 - Silver eels
 - → Suffered high mortality
 - Brown trout at medium or high head hydropower plant
- A lot of small hydropower plants on migration route (old mills)
 - Run-of-river operation
 - Turbine discharge mostly < 50 m³/s, some between 50 100 m³/s
 - A few big plants :
 - » Dordogne and Garonne river : 300-500 m³/s
 - » Rhine and Rhone river : $1000 1500 \text{ m}^3/\text{s}$

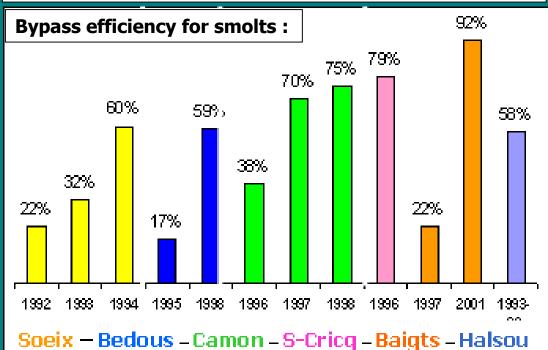
Brief overview of solutions and ONEMA positions

4 main types of solutions


- Fish friendly turbine (VLH, Screw) → Good solutions, but limited to low height dam and discharge, mostly for new equipment, not really cost-effective on existing plant
- Behavioral device (sound, light, electricity) → No system approved until now, except light to attract smolts
- Targeted shutdown of turbines → Foreseen for eels at biggest dams where other solutions are not feasible, difficult to define, ongoing research
- Material barriers which can induce both behavioral or physical effects :

 - Surface guiding wall with bypasses → Reserved to biggest dams (1 case)
 - Bypass in association with trashrack
 Main solution implemented at small plants in France

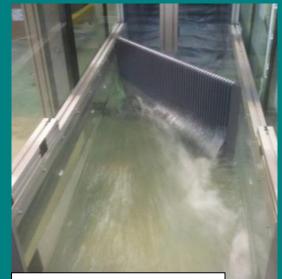
Studies conducted



- 1992 2005 : Assessment of the efficiency of bypasses in association with existing trashracks (EDF R&D – CSP – Cemagref)
- → A satisfactory solution in some cases
- → But difficulties to obtain regularly good efficiencies, especially for eels

Bypass efficiency for silver eels :

- Baigts : \approx 20% (surface), very low (bottom)
- Halsou : 56 64 %



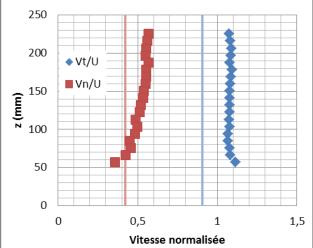
Studies conducted

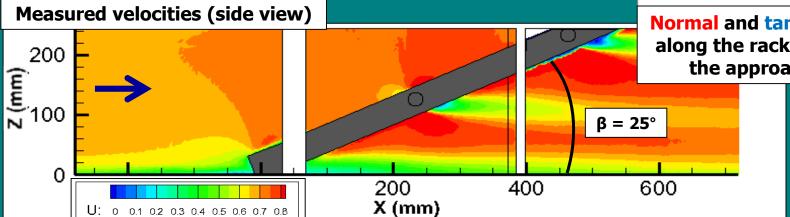
- 2007-2008 : Synthetize the feed-back of all efficiency assessment and intake design in France and abroad (mainly USA) to define criteria for systems of racks and bypasses with high efficiency (> 90%)
- → So-called "fish friendly intakes"
- ➔ Production of a technical guide in 2008

- 2010 Until now : hydraulic studies, mainly on down-scaled physical model + numerical simulation :
 - Characterize head-losses through racks in fishfriendly configurations
 - Verification of guiding conditions and adaptation of criteria
 - Precise criteria for the design of bypasses (attractivity in function of position, flow, ...)

1) Stop fish and avoid their passage through turbine

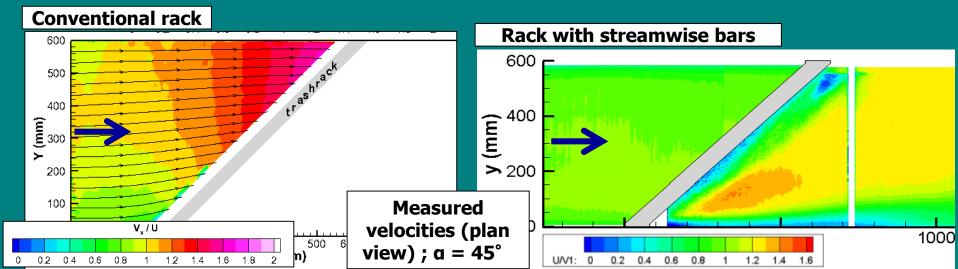
- Smolts :
 - Possible to obtain good efficiency with a behavioral effect
 - → Bar spacing : \leq 25 mm
- Silver eels :
 - Necessity to install a physical barrier : bar spacing ≤ head diameter
 - → Bar spacing : 15 20 mm to stop eels longer than 50 - 60 cm




- Velocities upstream the rack low enough to :
 - Allow fish swimming during the time necessary to find bypasses
 - Do not induce rapid passage through or impingement of fish against the rack
 - → Normal velocity (flow divided by the wetted rack surface) ≤ 50 cm/s for eels and smolts
 - → Give a minimal surface of the rack for a given turbine discharge : at least 2 m² of rack for 1 m³/s of turbine discharge

2) Guide fish towards bypasses → Inclined trashrack perpendicular to the flow :

- Moderate acceleration of velocities along the rack (≈ +10% at the top of the rack)
- Minimal inclination at $\beta \le 26$ to obtain Vt ≥ 2 Vn and guide fish to the surface
- Approach velocity acceptable up to ≈ 0.80-0.85 m/s à β = 26° → higher inclination in case of higher velocities



Normal and tangential velocity along the rack (normalized to the approach velocity)

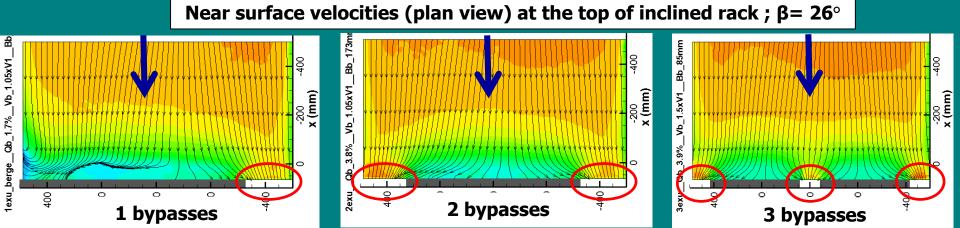
2) Guide fish towards bypasses → Angled vertical trashrack :

- Minimal angle $a \le 45^\circ$ to obtain Vt \ge Vn
- Conventional rack (bar perpendicular to the rack axis)
 - Flow acceleration along the rack + head-losses increasing with angulation
 - Approach velocity acceptable limited to 0.5 m/s at a = 45° → Low gain on acceptable approach velocity with an increase of the angulation
- Rack with streamwise bars (experimental configuration)
 - Homogeneous velocities upstream the rack + reduction of head-losses
 - Approach velocity acceptable up to 0.6 m/s à a = 45° → higher angulation in case of higher velocities, but solution to find to clean the rack

2) Guide fish towards bypasses → Angled vertical trashrack :

- Angled rack with horizontal bars are interesting :
 - no installation in France ; several installations in Deutschland and Sweden
 - Looking for studies and feedback on this configuration

• Rack in bank alignment are favorable configuration for fish guidance



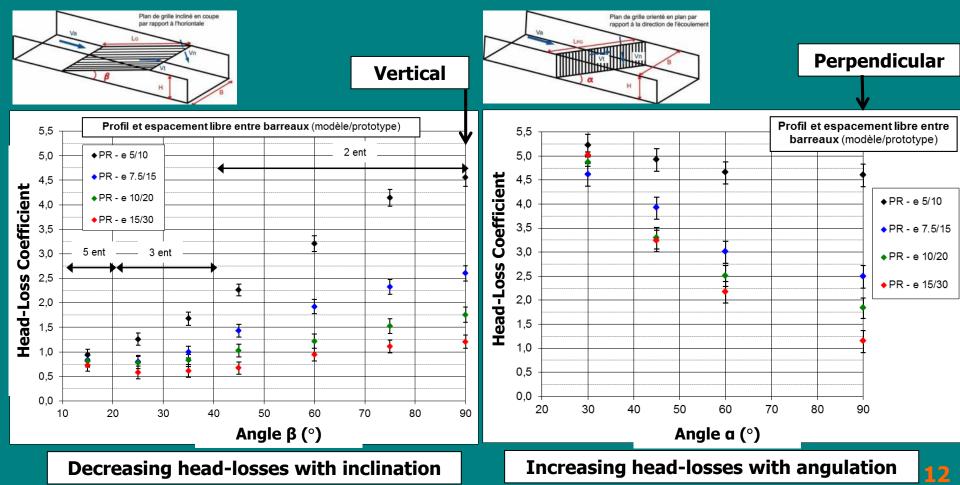
Baigts on Gave de Pau river Bypass Rack

3) Downstream transfer of fish → Inclined rack

- Surface bypasses at the top of the rack
- Criteria to determine bypass number and flow :
 - Velocity at the bypass entrance $V_b = 1.1 V_A$
 - Minimal dimensions recommended : 1 m wide (B_b) and 0.5 m deep (H_b)
 - Obstruction of the top of the rack, between bypasses, over the same depth
 to generate transversal velocities
 - − Maximal distance between bypasses : 4-5 m → Determination of the number of bypasses N_b

➔ From 5-6% of turbine discharge for small intakes, down to 2-3% for intakes > 50 m³/s

$$\boldsymbol{Q}_b = \boldsymbol{V}_b \ast \boldsymbol{H}_b \ast (\boldsymbol{N}_b \ast \boldsymbol{B}_b)$$



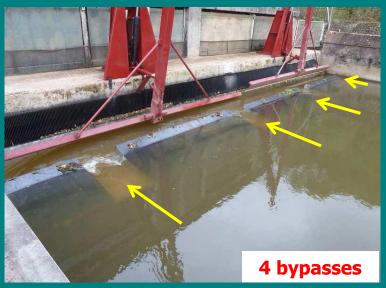
- 3) Downstream transfer of fish → Angled rack
- Bypass positioned at the downstream end of the rack
- Not a complete set of criteria nowadays :
 - Surface bypass : as deep as possible, ideally same depth as the intake → high flow ; difficulties to create a such deep bypass on existing site
 - Interrogation about bottom bypass, notably for eels :
 - » Sensible to clogging and difficult to clean
 - » Necessity ? → Eels seem to prospect all the water column if they are stopped by the rack.
 - Velocity at the bypass entrance $V_{\rm b}$ of about velocities at the downstream end of the rack :
 - » $V_b = 1.7 V_A$ for a "conventional" angled rack à 45° \rightarrow high flow
 - » $V_b = 1.0 V_A$ for a angled rack with streamwise bars
 - » Criteria for an angled rack with horizontal bars and rach in bank alignment ?

Head-losses and clogging issues

- Experimental measurement of head-losses
- Existing formulae not adapted to fish-friendly configurations
- → Production of new formulae (Raynal et al. 2013)

Conclusions

- Preference for inclined rack :
 - Lower head-losses
 - Compatible with high approach velocity
 - Existing solutions for rack cleaning \rightarrow Except for deep intakes and long racks
 - Bypass design criteria well-defined
 - But not adapted to forebay with water level fluctuations
- Angled rack reserved to deep intakes, or intake with fluctuating water levels, or in bank alignment
 - « Conventional » rack constraining (head-losses, admissible approach velocity)
 - − Rack with stream-wise bars → interesting solution, trashrake design to find
 - − Rack with horizontal bars ? → Feed back in Deutschland and Sweden
 - Design criteria for bypass to complete
- Absolute necessity to adapt the trashrake
- Feed back to acquire on operation and biological efficiency (ongoing)



Thank you for your attention

