University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 23rd, 2:00 PM - 2:15 PM

Session C5: Downstream Migration of the European Eel (A. anguilla): Movement Patterns and the Potential Impact of Environmental Factors

Florian Stein University of Potsdam; Technical University of Braunschweig; Karlstad University

Peer Doering-Arjes Humbold-Universität zu Berlin

Erik Fladung Institute of Inland Fisheries Potsdam- Sacrow

Uwe Brämick Institute of Inland Fisheries in Potsdam-Sacrow

Barry Bendal The Rivers Trust

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Stein, Florian; Doering-Arjes, Peer; Fladung, Erik; Brämick, Uwe; Bendal, Barry; and Schroder, Boris, "Session C5: Downstream Migration of the European Eel (A. anguilla): Movement Patterns and the Potential Impact of Environmental Factors" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 20. https://scholarworks.umass.edu/fishpassage_conference/2015/June23/20

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Presenter Information

Florian Stein, Peer Doering-Arjes, Erik Fladung, Uwe Brämick, Barry Bendal, and Boris Schroder

 $This \ event \ is \ available \ at \ Scholar Works @UMass \ Amherst: \ https://scholar works.umass.edu/fishpassage_conference/2015/June 23/20$

 FISH PASSAGE 2015
 International conference on river connectivity best practices and innovations
 June 22-24, 2015 | Groningen

Downstream migration of the European Eel (*A. anguilla*): movement patterns and the potential impact of environmental factors

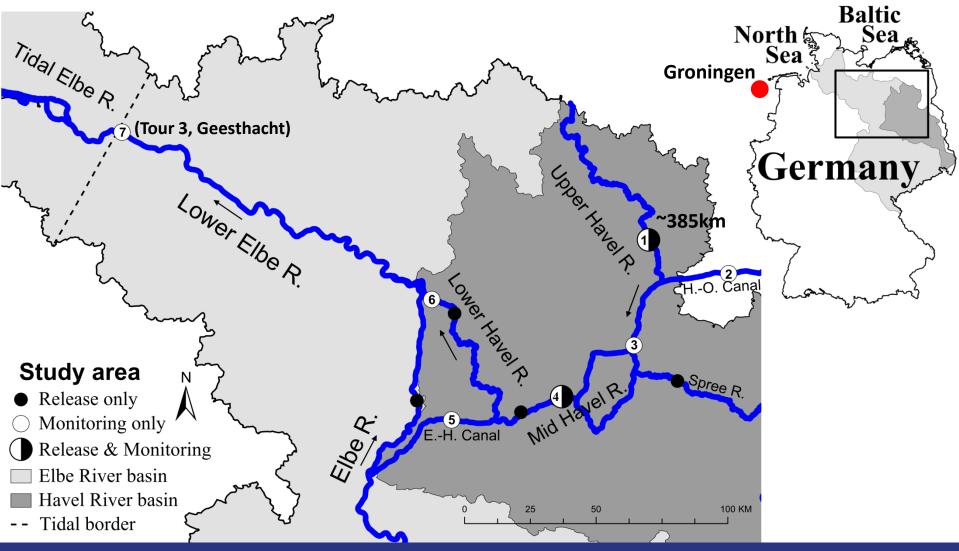
STEIN F, DOERING-ARJES P, FLADUNG E, BRÄMICK U, BENDALL B, SCHRÖDER B

FISH PASSAGE 2015 ► International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

AIMS

Obtain knowledge about:

- preferable environmental conditions
 - and resulting migration patterns
- Management of endangered species
- > achieve the EU targets (EC No 1100/2007)

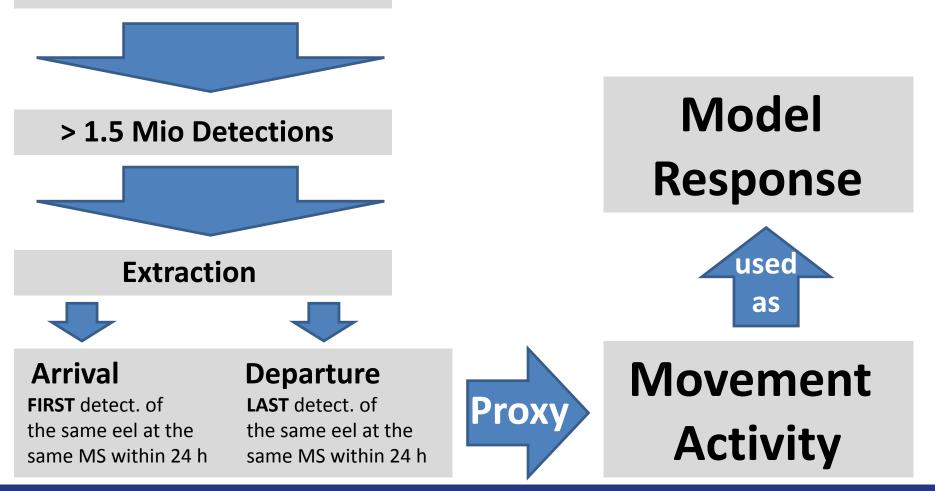


FISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

METHODS: Study area & Telemetry system


ISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

METHODS: Data aggregation

399 eels detected at 28 receivers (7 MS) between 2007 & 2011

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

METHODS: Analyses and Modelling

MODEL	DATA	RESPONSE
Complete	Entire study period	Movement activity
Spring	1 Jan – 30 July	Movement
/Autumn	1 Aug – 31 Dec	activity
River	Upper H, Mid H	Movement
sections	Lower H, Elbe	activity

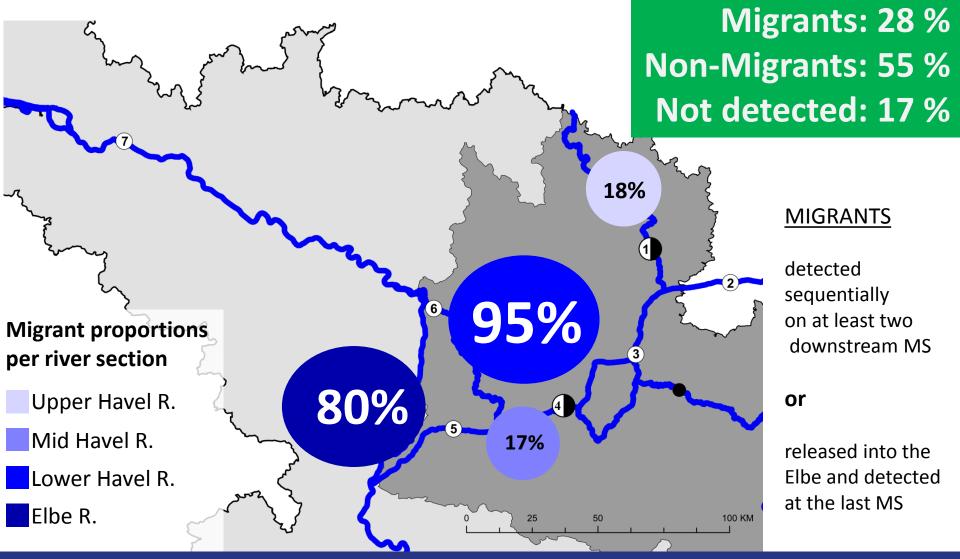
✓FISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

METHODS: Analyses and Modelling

MODEL	DATA	RESPONSE	PREDICTORS
Complete	Entire study period	Movement activity	Moonlight [fraction] Sunshine [h D ⁻¹]
Spring /Autumn	1 Jan – 30 July 1 Aug – 31 Dec	Movement activity	Discharge [m ³ s ⁻¹] Flow velocity [km ⁻¹]
River sections	Upper H, Mid H Lower H, Elbe	Movement activity	Water temperature [°C] Barometric pressure [hPa] Precipitation [mm D ⁻¹]
Migration probability	Migrant or Non-migrant?	Success or failure?	Distance [km] Holding period [D] Silver index

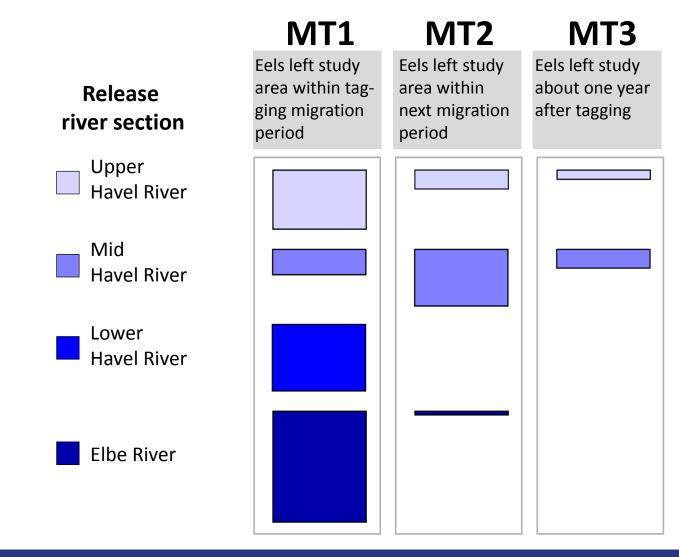


✓FISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

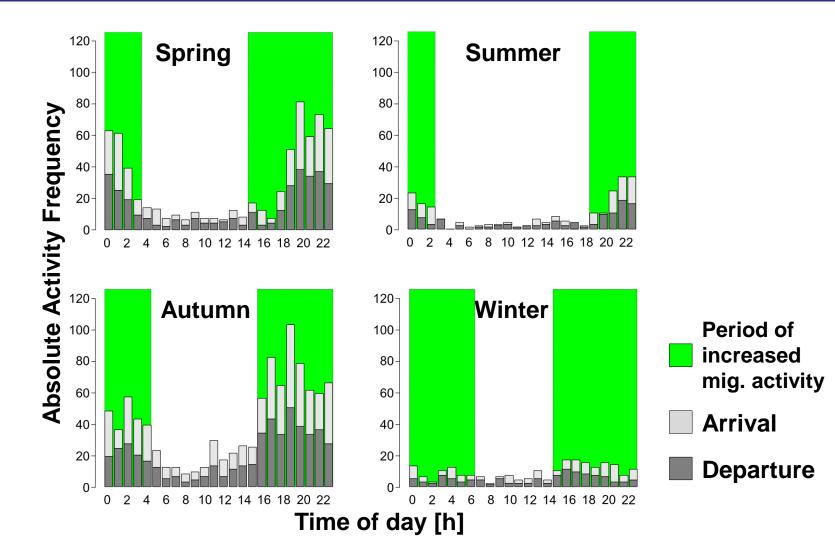
RESULTS: Migrant proportions



International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

RESULTS: Migration types

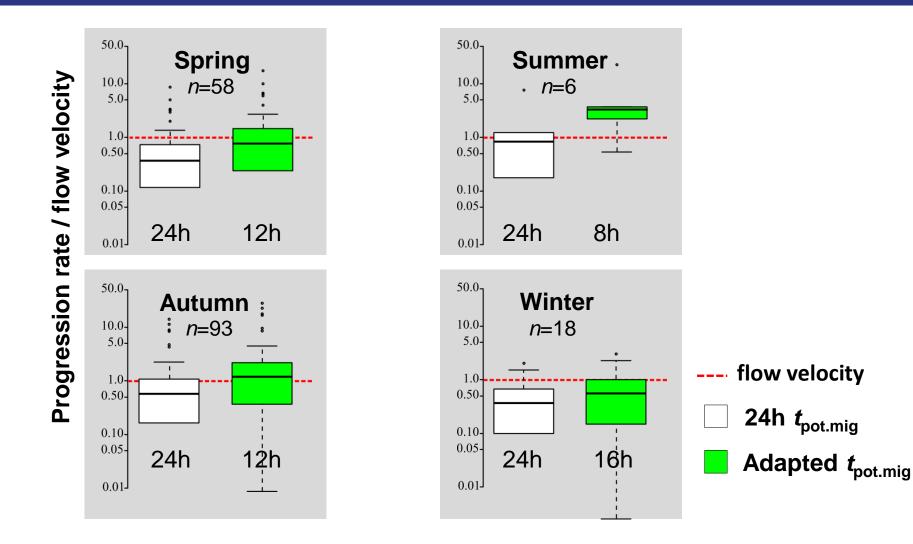


◆FISH PASSAGE 2015 ▶

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

RESULTS: Diel periodicity of mig. activity



◆FISH PASSAGE 2015 ▶

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

RESULTS: Progression rates

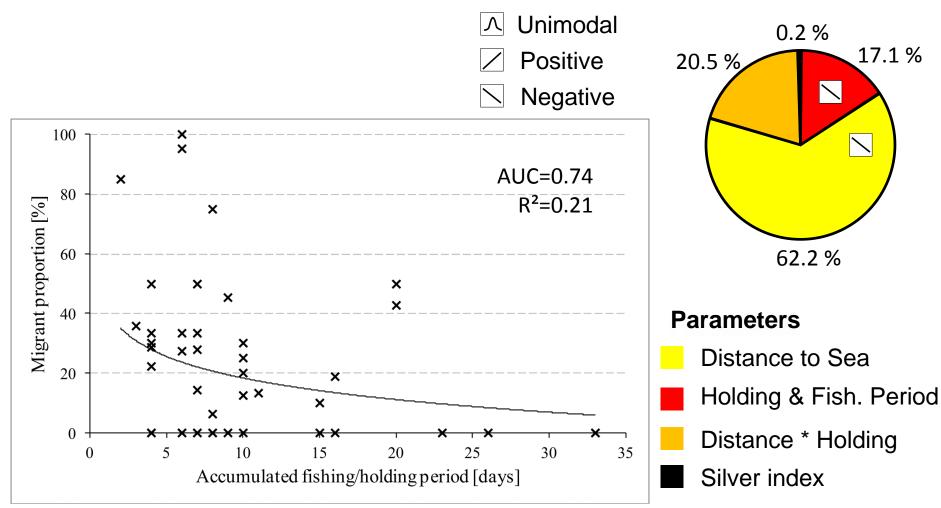


✓FISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

RESULTS: Seasonal migration

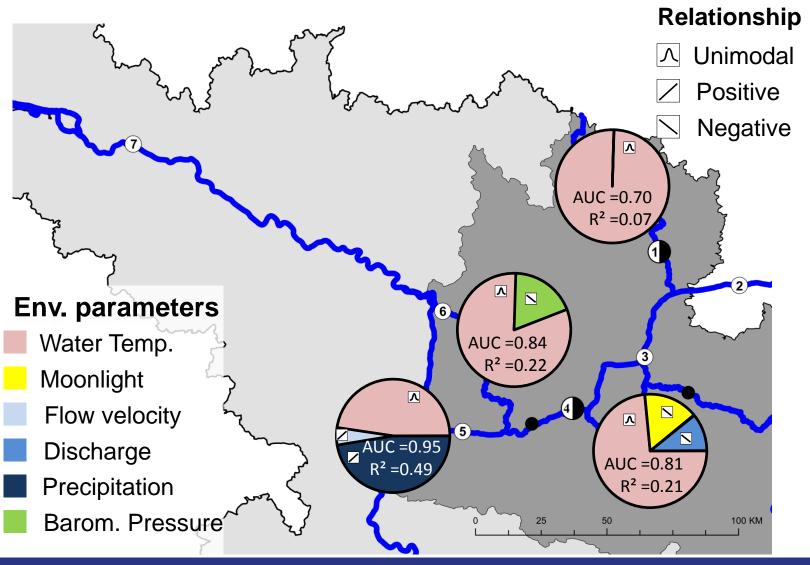

◆FISH PASSAGE 2015 ▶

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen

RESULTS: Effects on migration probability

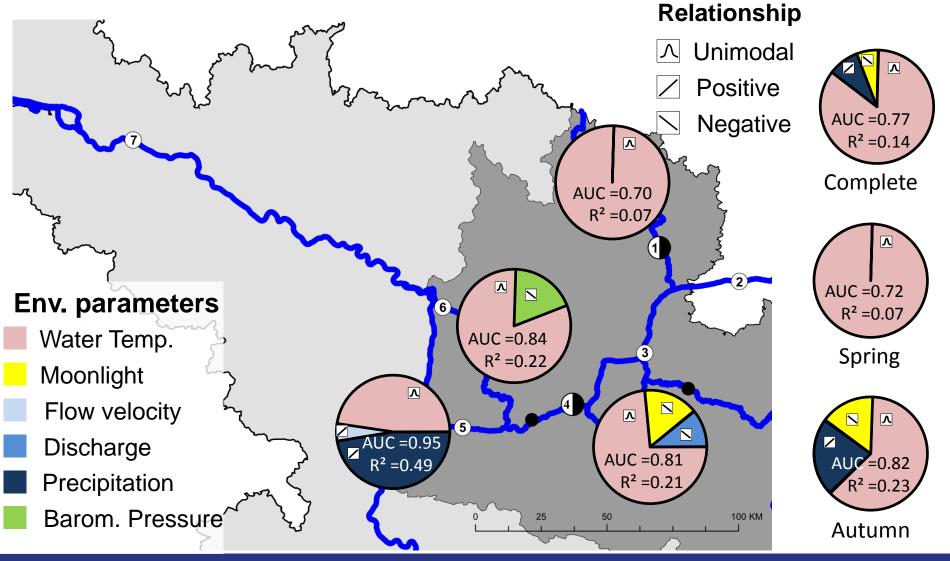
Relationship



ISH PASSAGE 2015 ►

International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

RESULTS: Factors affecting eel migration



International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

RESULTS: Factors affecting eel migration

FISH PASSAGE 2015 ► International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

CONCLUSIONS

- Distinct diel and seasonal migration pattern
- Increased activity under nocturnal and new moon conditions (strategy to minimize predation risk?)
- Migration probability increases by shortened Distance from the Sea and shortened holding periods (Handling effect)

FISH PASSAGE 2015 ► International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

CONCLUSIONS

- Stepwise migration: low progression rates (stopovers) and migration periods exceeding one mig. season
- Spring & Upstream location > Water temperature only
- Autumn & Downstream locations > Water temperature + additional parameters
- Not-detected (17 %) + Non-migrants (55 %): Mortality & Reversal to earlier non-migratory stage

FISH PASSAGE 2015 ► International conference on river connectivity best practices and innovations June 22-24, 2015 | Groningen

ACKNOWLEDGEMENTS

The study was funded by:

The Federal Ministry of Food, Agriculture and Consumer Protection, the Senate Department for Urban Development and the Environment (Berlin), the Ministry of Agriculture and Environment of the German Federal State of Sachsen–Anhalt, the Ministry for Rural

Development, the Environment and Consumer Protection of the German Federal State of Brandenburg, the European Fisheries Fund (EFF), the Potsdam Graduate School

We thank:

Janek Simon and Frank Weichler (Institute of Inland Fisheries Potsdam-Sacrow), Jens Puchmüller (Fischereiamt

Berlin), Wilfried Wiechmann (German Federal Institute of Hydrology), Michael Nobis (Swiss Federal Research Institute WSL), the Environmental Modelling working group at the Universität Potsdam, Andreas Kühl, Sven Ahlendorf, Jörg Kwiatkowski and Gernot Quaschny

Variable groups	Variable specification	Variable names	Number of variables
	Sunshine duation [h D ⁻¹]	Sunshine	1
	Fraction of the moon illuminated [01]	Moonlight	1
	Flow velocity [kmD ⁻¹]	V, V_{dif1} , V_{dif2} , V_{dif3} , V_{dif4} , V_{dif5} , V_{dif6} , V_{dif7}	8
Hydrological and climate predictors	Discharge [m³⁄s]	Q, Q _{dif1} , Q _{dif2} , Q _{dif3} , Q _{dif4} , Q _{dif5} , Q _{dif6} , Q _{dif7}	8
	Precipitation [mm/day]	P, P _{cum1} , P _{cum2} , P _{cum3} , P _{cum4} , P _{cum5} , P _{cum6} , P _{cum7}	8
	Barometric pressure [hPa]	Baro, Baro _{dif1} , Baro _{dif2} , Baro _{dif3} , Baro _{dif4} , Baro _{dif5} , Baro _{dif6} , Baro _{dif7}	8
Water temperature variables	Water temperature [°C]	T_{water} , $T_{water.dif1}$, $T_{water.dif2}$, $T_{water.dif3}$, $T_{water.dif4}$, $T_{water.dif5}$, $T_{water.dif6}$, $T_{water.dif7}$	8

We generated variables for cumulative precipitation (covering the preceding 7 days up through the present) as well as the differences between the present and the preceding 7 days for all hydrological and climate predictors. These additional variables were added to the data set as independent potential predictors.

Variable selection

- one variable of every variable group
- backward stepwise selection based on AIC (Akaike Information Criterion)

External Factors

Model Coefficients	Estimate	Std. Error	z value	$\Pr(> z)$	Independent effect [%]
(Intercept)	4.25	1.29	3.30	9e-4 ***	
SI [III-V]	0.14	0.20	0.71	0.48	0.2
Fishing/holding [days]	-0.34	0.15	-2.24	0.03 *	17.1
Distance [km]	-0.02	0.00	-4.74	2.1e-06 ***	62.2
Fishing/holding * Distance	0.00	0.00	1.86	0.06 .	20.5
Model performance	$R_N^2 = 0.21$	AUC = 0.74			

Auch diese Folien sollten lesbar sein und ansprechend formatiert

Complete

Model Coefficients	Estimate	Std. Error	z value	Pr (> z)	Independent
					effect [%]
(Intercept)	-5.19	0.27	-19.36	<2e-16 ***	
T _{water} [°C]	0.62	0.05	12.43	<2e-16 ***	01.4
T ² _{water} [°C]	-0.03	0.00	-12.65	<2e-16 ***	81.4
P _{cum7} [mm D ⁻¹]	0.01	0.00	3.58	3e-4 ***	10.5
Moonlight [01]	-0.74	0.17	-4.38	1.2e-05 ***	8.1
Model performance	$R_{N}^{2}=0.14$	AUC = 0.77			

Autumn

Model Coefficients	Estimate	Std. Error	z value	Pr(> z)	Independent
					effect [%]
(Intercept)	-5.30	0.45	-11.80	< 2e-16 ***	
T _{water} [°C]	0.76	0.09	8.82	< 2e-16 ***	62.3
T ² _{water} [°C]	-0.04	0.00	-9.39	< 2e-16 ***	02.5
P _{cum3} [mm S ⁻¹]	0.04	0.01	5.26	1.4e-07 ***	20.7
Moonlight [01]	-1.28	0.23	-5.50	3.8e-08 ***	17.0
Model performance	$R_N^2 = 0.23$	AUC = 0.82			

Spring

Model Coefficients	Estimate	Std. Error	z value	Pr(> z)	Independent
					effect [%]
(Intercept)	-5.10	0.32	-15.92	< 2e-16 ***	
T _{water} [°C]	0.44	0.06	6.88	6.0e-12 ***	
T ² _{water} [°C]	-0.02	0.00	-6.16	7.1e-10 ***	-
Model performance	$R_N^2 = 0.07$	AUC = 0.72			

Upper Havel

Model Coefficients	Estimate	Std. Error	z value	Pr(> z)	Independent
					effect [%]
(Intercept)	-3.92	0.28	-14.02	< 2e-16 ***	
T _{water} [°C]	0.36	0.07	5.38	7.6e-08 ***	
T ² _{water} [°C]	-0.02	0.00	-5.95	2.7e-09 ***	-
Model performance	$R_N^2 = 0.07$ A	UC = 0.70			

Mid Havel

Model Coefficients	Estimate	Std. Error	z value	Pr(> z)	Independent
					effect [%]
(Intercept)	-4.03	0.77	-5.20	2.0e-07 ***	
T _{water} [°C]	0.74	0.11	6.78	1.2e-11 ***	73 1
T ² _{water} [°C]	-0.03	0.00	-7.34	2.1e-13 ***	73.1
D [m ³ S ⁻¹]	-0.02	0.00	-3.50	4e-4 ***	11.9
Moonlight [01]	-1.34	0.34	-3.98	6.9e-05 ***	14.5
Model performance	fodel performance $R_N^2 = 0.21$ AUC = 0.81				

Lower Havel

Model Coefficients	Estimate	Std. Error	z value	Pr(> z)	Independent
					effect [%]
(Intercept)	-7.53	0.95	-7.96	1.8e-15 ***	
T _{water} [°C]	0.99	0.17	5.80	6.5e-09 ***	80.3
T ² _{water} [°C]	-0.04	0.01	-5.85	5.0e-09 ***	00.5
Baro _{dif7} [hPa]	-0.04	0.01	-3.71	2e-04 ***	19.7
Model performance	$R_N^2 = 0.22$ A				

Elbe River

Model Coefficients	Estimate	Std. Error	z value	Pr (> z)	Independent
	Estimate				effect [%]
(Intercept)	-27.99	3.53	-7.93	2.2e-15 ***	
T _{water} [°C]	3.50	0.50	7.07	1.6e-12 ***	49.2
T ² _{water} [°C]	-0.14	0.02	-7.09	1.4e-12 ***	48.3
P _{cum7} [mm D ⁻¹]	0.08	0.01	7.99	1.3e-15 ***	47.1
v [km D ⁻¹]	0.05	0.01	4.31	1.6e-05 ***	4.6
Model norfermance	$D_{2} = 0.40$ Å	UC = 0.05			

Model performance $R_{N}^{2} = 0.49$ AUC = 0.95