University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 23rd, 2:00 PM - 2:15 PM

Session B5: 2D Modelling of Nature-Like Fish Passes

Tien Dung Tran Institute of Fluid Mechanics (IMFT)

Ludovic Cassan Institute of Fluid Mechanics (IMFT)

Jacques Chorda Institute of Fluid Mechanics (IMFT)

Pascale Laurens Institute of Fluid Mechanics (IMFT)

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Tran, Tien Dung; Cassan, Ludovic; Chorda, Jacques; and Laurens, Pascale, "Session B5: 2D Modelling of Nature-Like Fish Passes" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 12. https://scholarworks.umass.edu/fishpassage_conference/2015/June23/12

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Ludovic CASSAN

2D Modelling of nature-like fish passes

July, 24th 2015 1 / 14

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

2D Modelling of nature-like fish passes

Tien Dung TRAN, Ludovic CASSAN, Jacques CHORDA, Pascale LAURENS

July, 24th 2015

Ludovic CASSAN

2D Modelling of nature-like fish passes

July, 24th 2015 1 / 14

Context

- Passage of several fish species
- Low head
- Low risk of clogging and silting
- Better attractivity
- Transverse slope

July, 24th 2015 2 / 14

Objectives

- Design of nature-like fish pass (Block ramps).
- Knowledge of flow : velocity and turbulence.

Methodology

- Experimental measurements of hydrodynamic parameters for several fish passes (block number, slope, bed).
- Validation of a shallow water model, range of validity
- Use of the 2D model for determining hydrodynamic parameters and optimizing the fish pass.
 - Maximal Velocity
 - Resting area
 - Turbulent intensity

< E

Experimental Set up

Experimental Set up

Tilting Flume (7m * 1m)

Ludovic CASSAN

Experimental Set up

Arrangements of blocks

D	q		Fr		${\sf Re}_{D}=V_{g}D/ u$		${\sf Re}_h = V_g h/\nu$	
(<i>mm</i>)	(<i>I/s/m</i>)				(*10 ³)		(*10 ³)	
	min	max	min	max	min	max	min	max
115	10	90	0.36	1.6	50	120	30	140

æ July, 24th 2015 5/14

< E

Experimental Set up

Experimental measurements

Velocity

Acoustic Doppler Velocimeter (3 components, 50 Hz)

Waterdepth

Shallow water modelling

- Geometry = experimental channel
- Shallow water assumptions (hydrostatic pressure)
- k- ϵ model for turbulence
- Telemac 2D

Water surface colorized by the depth averaged velocity

Ludovic CASSAN

Series of experiments

	bed	h (mm)	Vg (m/s)		distance from bed (cm)	Experimental	Telemac2D	
Configuration C, S, Q							Ks Strickler	
13 %, 3%, 30l/s	Rough	89.9	0.52	0.56	5	Exp_1		
13 %, 5%, 50l/s	Smooth	80.9	0.97	1.08	5	Exp_2		
16 %, 1%, 20l/s	Rough	99	0.34	0.34	3	Exp_3	30	Tel_3
16 %, 2%, 40l/s	Smooth	124.1	0.57	0.48	3	Exp_4	60	Tel_4
16 %, 3%, 50l/s	Smooth	128.6	0.65	0.58	3	Exp_5	60	Tel_5
16 %, 5%, 50l/s	Rough	109.9	0.76	0.73	3	Exp_6	30	Tle_6
16 %, 5%, 50l/s	Smooth	100.4	0.83	0.73	3	Exp_7	60	Tel_7
16 %, 3%, 50l/s	Smooth	128.6	0.65	0.58	5	Exp_8		
Ludovic CASSAN	2D Mo	odelling of I	nature-like	s	July	, 24 th 2015		

8/14

Validation of Shallow Water model

Velocity and Water depth results

July, 24th 2015 9 / 14

Velocity

Turbulent Kinetic Energy

Range of validity

Stage-discharge relationship (q, h) $C_d = f(F)$, C=6,9,13,18,23 %

Resting zone

$$a = V_{limit} / V_g$$

Ludovic CASSAN

2D Modelling of nature-like fish passes

Conclusion

- Validation of 2D model F < 0.7
- Maximal velocity (*V_g*), and Froude number influence (vertical contraction)
- Turbulent properties
- Useful to complement the experimental results. Relationship discharge, velocity, TKE and geometrical configurations.
- Help to evaluate passability and to interpret future studies on fish behavior.

э

Conclusion

Further study : 3D model

July, 24th 2015 14 / 14