University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 23rd, 11:20 AM - 11:35 AM

Session B4: Fine-Scale 2D Acoustic Tracking of the Behaviour of Salmonids to Investigate Delays and Failures in Fish Passage; Implications for Assessing the Efficiency of Fish Passes

Richard A. Noble University of Hull International Fisheries Institute

Jon D. Bolland University of Hull International Fisheries Institute

Jamie R. Dodd University of Hull International Fisheries Institute

Sam E. Walton University of Hull International Fisheries Institute

Terry Coddington University of Hull International Fisheries Institute

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Noble, Richard A.; Bolland, Jon D.; Dodd, Jamie R.; Walton, Sam E.; Coddington, Terry; Cowx, Ian G.; Hateley, Jon; and Gregory, Jim, "Session B4: Fine-Scale 2D Acoustic Tracking of the Behaviour of Salmonids to Investigate Delays and Failures in Fish Passage; Implications for Assessing the Efficiency of Fish Passes" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 9.

https://scholarworks.umass.edu/fishpassage_conference/2015/June23/9

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Presenter Information

Richard A. Noble, Jon D. Bolland, Jamie R. Dodd, Sam E. Walton, Terry Coddington, Ian G. Cowx, Jon Hateley, and Jim Gregory

 $This \ event \ is \ available \ at \ Scholar Works @UMass \ Amherst: \ https://scholar works.umass.edu/fishpassage_conference/2015/June 23/9$

Fine-scale 2D acoustic tracking of the behaviour of salmonids to investigate delays and failures in fish passage; implications for assessing the efficiency of fish passes

R. A. A. Noble, J. D. Bolland, J. Dodd, S. E. Walton, T. Coddington, I. G. Cowx

J. Hateley & J. Gregory

Ruswarp Weir – Yorkshire River Esk

Ruswarp Weir – Co-located fish pass & Turbine

After:

Larinier pass Low-head 50 kW HP (max abstraction 4 cumecs)

Before:

Pool-traverse pass

Changes in basic passage metrics for sea trout

(1) The *Attraction Efficiency* (proportion of tagged sea trout entering the array) **significantly higher** in post-commissioning dataset

 $35\% \rightarrow 70\%$

(2) The overall *Passage Efficiency* (proportion of tagged sea trout successfully ascending the weir) **significantly higher** in the post-commissioning dataset

 $35\% \rightarrow 53\%$

(3) The *Fish Pass Efficiency* (proportion of tagged sea trout detected in the array that ascended the weir via the primary [Larinier or Pool/Traverse] fish pass) **significantly lower** in the post-commissioning dataset

 $\mathbf{100\%} \rightarrow \mathbf{68\%}$

2D tracking

Fine-scale metrics

Sea Trout

Capture & Acoustic Tagging

Year	Dataset	Sea Trout		Tracks
		Tagged	Tracked	
2011	Baseline	38	14	37
2012	Baseline	10	3	48
2013	Post	46	31	491
2014	Post	44	31	464

Model 795LG acoustic tags 11-mm x 25 mm 4.6-g weight in air expected life of 220 days 307 kHz 2-3 second unique ping interval Hydroacoustic Technology Inc., Seattle, USA

All tagging done under Home Office Licence

Remote and ATS hydrophones

2D Tracking Analysis Methods & Metrics

Change the way you think about Hull | 23 June 2015 | 8

Time from first detection in array to passage

Median total time from first detection (array) to passage

Time spent in the array – sea trout

Change the way you think about Hull | 23 June 2015 | 10

2D Tracking Analysis

Simple - Passage

Simple – Non-Passage

One or more approaches?

2D Tracking Analysis

Resting – no approaches?

Non-passage: Evidence of attraction to HP outflow / deeper water (distraction)?

Timing of passage in relation to generation

- hydropower turbine active for 51% of the time (1/9/2014 to 31/12/2014) (58% in 2013)
- operating at near capacity (abstraction > 3.7 m³s⁻¹) for <1% of the time
- Sea trout were observed to ascend through the fish pass under most conditions

Pool use in relation to turbine discharge

Turbine discharge	Turbine discharge	Turbine discharge
o Cumecs (Off)	0.01 to 1.00 Cumecs	1.01 to 2.00 Cumecs
$n ext{ tracks} = 26$	$n ext{ tracks} = 13$	$n ext{ tracks} = 30$

Pool use in relation to turbine discharge

Turbine discharge 2.01 to 3.00 Cumecs

n tracks = 89

Turbine discharge

>3.01 Cumecs

n tracks = 228

Hot spots – unusual individuals or common trend?

Fish 2745

Track 18

Duration = 2.5 hours

Conditions:

Ebbing spring tide (5.3m) Non passage Early hours of the morning (3am) Abstraction = 3.33 cumecs Discharge = 6.31 cumecs

Pool use in relation to turbine and river discharge

≝@**堂**₩ UNIVERSITY OF **Hull**

Ruswarp Weir – changes to the approach pool

After:

Larinier pass Deepest on RH bank

Before:

Pool-traverse pass Shallow margins on RH bank

Pool Bathymetry (GIS kriging)

2011 Determined by ADCP

2014 Determined manually

Change the way you think about Hull | 23 June 2015 | 19

Conclusions

- (1) There is some evidence of attraction of fish to the area in front of the hydropower outfall screens
 - most apparent when the turbine was active at river flows <6m³s⁻¹
 - this area is also the deepest part of the pool
 - refuge in deep water or distraction from fish pass flow?
 - Further interrogation of behaviours required

(2) The delay between arrival in the pool and eventual passage was statistically significantly greater in 2013 and 2014 than in the baseline

- probably of little energetic consequence given the overall scale and duration of the sea trout migration
- possible consequences for increased predation risk
- predation is confirmed to occur within the vicinity of the pool

Thank you