University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 22nd, 4:15 PM - 4:30 PM

Session B3: Alden Fish-Friendly Hydropower Turbine: History and Development Status

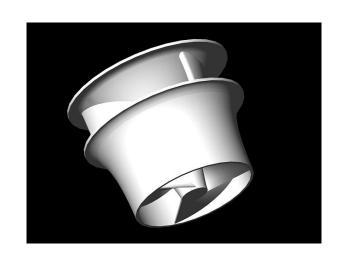
Douglas Dixon Electric Power Research Institute

Tim Hogan Alden Research Laboratory

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Dixon, Douglas and Hogan, Tim, "Session B3: Alden Fish-Friendly Hydropower Turbine: History and Development Status" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 30. https://scholarworks.umass.edu/fishpassage_conference/2015/June22/30

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.


Alden Fish-Friendly Turbine History & Status

Douglas Dixon, PhD

Session B3: Environmentally-enhanced Hydropower Turbines for Fish Passage

Alden Turbine Status Summary

- EPRI, U.S. Department of Energy
 & Hydropower Industry funding:
 - Buildable turbine design from collaborative completed
 - Model test indicates favorable turbine performance
- Ready for purchase, deployment and field demonstration at a <u>new</u> hydropower site
- Retrefit design in development
- Seeking U.S. or international site for 2016-18+ Demonstration Program

Overview of Presentation

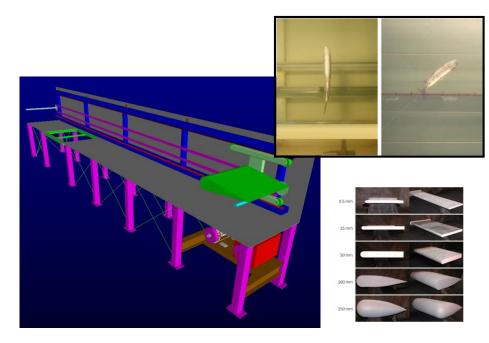
- Brief history of the Alden turbine
- Recent EPRI efforts to complete engineering design
- EPRI efforts to find demonstration site

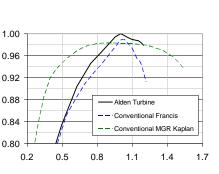
KEY QUESTIONS:

- 1. How to engage resource agencies and NGOs to support deployment?
- 2. How to engage investment and funding agencies and organizations to support deployment?

Brief History of the Alden Turbine

- 1995 EPRI-Industry-U.S. DOE Advanced turbine program
- Two turbine designs emerged:
 Minimum gap runner (MGR) and the
 Alden Turbine
 - MGR installed & "tested" in Pacific NW
 - Alden turbine only tested at pilot scale
- DOE Program canceled 2005
- EPRI took over Alden turbine's continued development

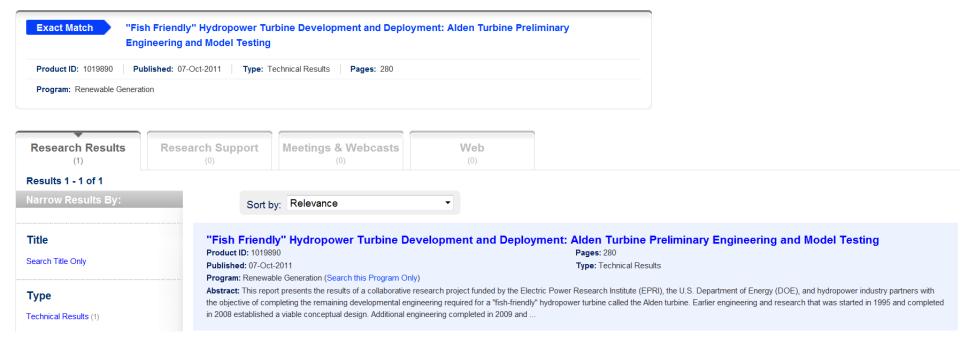




Brief History of the Alden Turbine (continued)

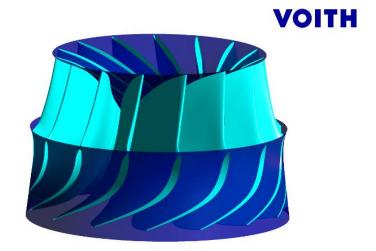
- 2006-2009: EPRI advanced turbine's conceptual design & scroll case (EPRI reports 1015600; 1014810)
- 2006-2011: EPRI turbine blade strike R&D (EPRI reports 1014937 and 1024684)
- 2009-2012: EPRI-DOE prototype & model test (EPRI report 1019890)
- 2011: EPRI-DOE turbine conference (EPRI report 1024609)
- 2012: DOE award for demonstration project...

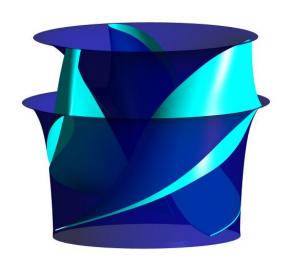
Accessing EPRI Reports


<u>www.epri.com</u> – enter report # in search box and download!

You Are Here: Member Center > Member Center Search

Search Results


Your search for 1019890 resulted in the following:



"Fish Friendly" Turbine Development: Alden Design - What's Different?

VOITH

Alden Turbine

What makes it "fish-friendly"? – larger diameter, slower rotation, reduced blades-vanes-gates, thickened leading edges on each, and eliminated damaging pressure and shear forces

Predicted Fish Survival

SPECIES TESTED

American eel

White sturgeon

Coho salmon

Rainbow trout

Smallmouth bass

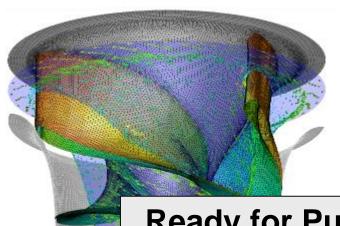
Alewife

PREDICTED FULL-SCALE SURVIVAL

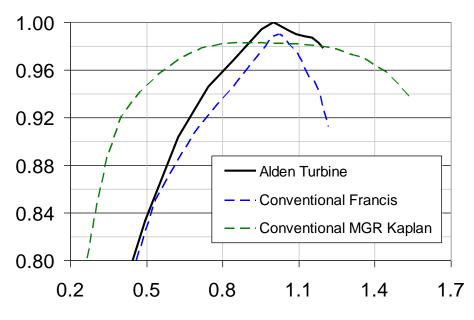
97 – 100 %

(based on pilot scale survival data)

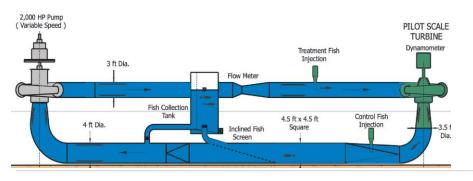
Comparable Kaplan and Francis turbines < 85%


EPRI-DOE Advanced Turbine Research: Conceptual to Engineering Design (2009-12)

+ 8 Industry Co-sponsors


- Turbine runner refinement
- Stay ring and stay vanes
- Wicket gates
- Head cover
- Shafting, bearings, and seals
- Model construction and testing
- Supply schedule
- Cost for prototype site

Ready for Purchase, Fabrication, Deployment and Field Testing



Turbine Model Performance & Fish Survival

Normalized Efficiency

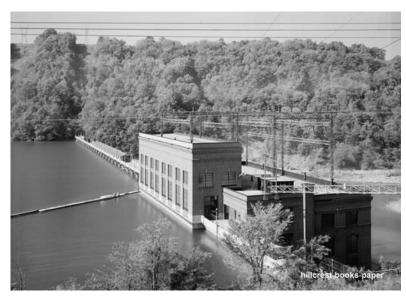
Normalized Power

- Mechanical design review indicates it is readily implementable for a range of applications
- Performance exceeded expectations (94% at BEP)
- Fish survival ~ 98% for juvenile fish & eels compared to <85% for Kaplan and Francis designs
- EPRI Report 1019890; download at www.epri.com

Relative Turbine Costs

Cost Premium ~35%

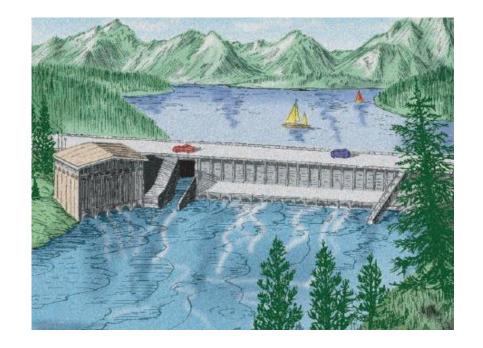
However, there are offsetting benefits


- Less powerhouse excavation (higher turbine setting)
- Generating with bypass flow (previously wasted/spilled)
- Avoid O&M and capital costs for downstream fish bypass systems
- Potential permitting benefits

True/final costs comparison of project components may be less for a Alden unit than conventional units

Where Can This Turbine Be Used?

- New development
- Added capacity at existing dams
- Powering non-powered dams
- Minimum flow releases and other bypass systems
- Have started developing a retrofit unit



Why Demonstration?

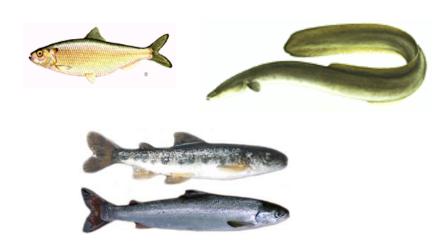
Many to convince that this new technology is viable:

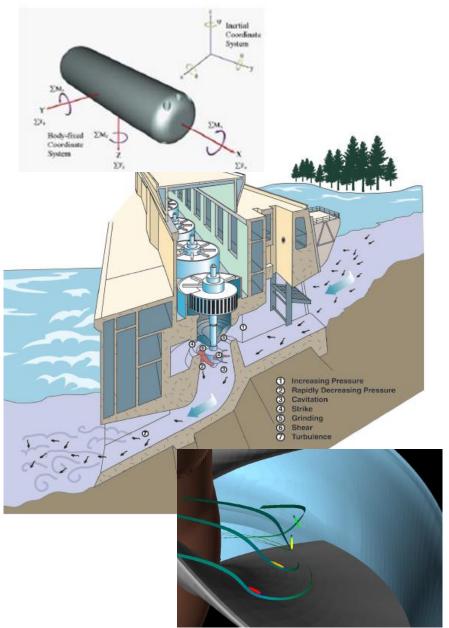
- Resource agencies
- NGOs (environmental groups)
- Industry (need better handle on cost & performance economics)

NEED Demos to reduce
uncertainties in
performance and cost and
we need collaborative
support to continue!

EPRI's Interest & Role in Supporting Demonstration

- EPRI's Mission: to conduct RD&D on key issues facing the electricity sector on behalf of our members, energy stakeholders, and society
- This demonstration advances an innovative electricity production option that is environmentally sustainable; low carbon and advances renewable energy options
- EPRI will support developer to reduce investment risk


Preferred/Ideal Features of a Test Site


- **Head** = 75' to 100' (ideal), 30' to 120' (acceptable)
 - Low Head Mortality due to blade strike is typically not a critical factor
 - High Head Mortality may be due to other factors
- Flow = 1,000 cfs to 1,800 cfs (ideal), 600 cfs to 2,500 cfs (acceptable depending on head)
- Fish Species juvenile anadromous salmon and/or herring, juvenile landlocked salmon, juvenile sturgeon, adult catadromous eels, juvenile and adult riverine/reservoir fish [need to validate pilot test predictions]

Future Testing

Summary

- Mechanical designs are ready for new development and will be ready for retrofit in near future
- Energy performance excellent
- There is a cost premium but offset by eliminating spillage and/or fish screening
- NEED to engage government resource and regulatory agencies, NGOs, and investment banks

EPRI, U.S. DOE and the Hydropower Industry

Together...Shaping the Future of Electricity

THANK YOU FOR YOUR ATTENTION!

Doug Dixon, ddixon@epri.com;

1-607-869-1025 New York USA Office

