#### University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2015

Jun 22nd, 11:10 AM - 11:25 AM

### Session C1: Assessing Longitudinal Connectivity Affected by Cross-Sectional Barriers in a Riverine Bidirectional Network

Gonzalo Rincón Sanz Universidad Politécnica de Madrid

Carlos Alonso Universidad Politécnica de Madrid

Joaquín Solana Universidad Politécnica de Madrid

Santiago Saura Universidad Politécnica de Madrid

Diego G. de Jalón Universidad Politécnica de Madrid

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage\_conference Part of the <u>Aquaculture and Fisheries Commons</u>, and the <u>Hydraulic Engineering Commons</u>

Sanz, Gonzalo Rincón; Alonso, Carlos; Solana, Joaquín; Saura, Santiago; and de Jalón, Diego G., "Session C1: Assessing Longitudinal Connectivity Affected by Cross-Sectional Barriers in a Riverine Bidirectional Network" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 32.

https://scholarworks.umass.edu/fishpassage\_conference/2015/June22/32

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.



## FISH PASSAGE 2015

International conference on river connectivity best practices and innovations

June 22-24, 2015 | Groningen (The Netherlands)

# Assessing longitudinal connectivity affected by cross-sectional barriers in a riverine bidirectional graph.



Grupo de Hidrobiología

Gonzalo Rincón Carlos Alonso Joaquín Solana Santiago Saura Diego García de Jalón



The importance of longitudinal connectivity in rivers

Introduction

- Alteration of longitudinal connectivity in fluvial systems by the presence of artificial barriers.
- There is a **need to restore longitudinal connectivity** in riverscapes in order to meet the good ecological status.
- Challenge: deal with short budgets in restoration strategies trying to reach the maximum cost-benefit ratio.

| Introduction | Methods | Results | Discussion | Conclusions |
|--------------|---------|---------|------------|-------------|
| Objectives   |         |         |            |             |

1. Quantifying the **loss of global connectivity** in a basin network due to the presence of barriers.

2. Prioritizing the target river segments to be preserved and the obstacles to be removed for connectivity conservation and restoration purposes.





### • Developed by Saura and Torné in 2009

Software package that **allows quantifying** the **importance** of **habitat areas** and **links** for the maintenance or improvement of <u>landscape connectivity</u>



#### Inputs:

- Graph representation of the fluvial network
- Passability value of each obstacle

Can we apply this idea to fluvial connectivity?

Free download at **www.conefor.org** 





#### **Downstream passability**



\* (González Fernández *et al.* 2010)

PI = 100 → Insurmountable. PI = 0 → Totally surmountable. Intermediate values of PI → crossing depends of flow conditions and the characteristics of the fish species.



| Introduction                                                            | Methods                                                                                                                                                                                                                                                   | Res         | sults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            | Discus                                                                                                                                                               | sion                                                                                                                                                                 | Conclu                                                                                                                                                                      | Conclusions                                                                                                                                |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Attribute values for                                                    | nodes and links                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                            |  |  |
| Attribute values for<br>Habitat attrik<br>segment lenght z<br>2011, Seg | Methods<br>nodes and links<br>pute value: river<br>x mean width (E<br>purado 2013)<br>159924<br>159924<br>159924<br>159924<br>159924<br>159924<br>11112<br>12<br>159924<br>11112<br>12<br>159924<br>11112<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | <b>Frös</b> | Sults<br>Link val<br>• PI = 1<br>• PI = 1 | ue be<br>100 - 2<br>$0 - 2$ $\beta$<br>ent<br>de<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Discuss<br>etween i<br>→ passa<br>bassabil<br>1<br>1<br>0<br>0.2<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | SION<br>nodes:<br>bility probab<br>ity probab<br>From node<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Conclu<br>bability =<br>bility = 1<br>Descent<br>To node<br>1<br>2<br>2<br>2<br>4<br>5<br>6<br>6<br>6<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>17<br>19 | ISIONS<br>0<br>1<br>1<br>1<br>1<br>0<br>0.4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |  |  |
|                                                                         |                                                                                                                                                                                                                                                           |             | 20<br>12<br>22<br>23<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>22<br>23<br>24<br>25                                                                                                                                 | 1<br>0<br>0<br>0<br>0                                                                                                                                                | 21<br>22<br>23<br>24<br>25                                                                                                                                           | 20<br>12<br>22<br>23<br>24                                                                                                                                                  | 1<br>0<br>0<br>0<br>0                                                                                                                      |  |  |
|                                                                         |                                                                                                                                                                                                                                                           |             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                         | 0                                                                                                                                                                    | 26                                                                                                                                                                   | 25                                                                                                                                                                          | 0                                                                                                                                          |  |  |

| Introduction Methods |      | Results | Discussion | Conclusions |
|----------------------|------|---------|------------|-------------|
| Connectivity index   | : PC |         |            |             |

 <u>Probability of Connectivity Index</u> (PC\*): probabilistic and asymmetric model.

# dPC = dPCintra + dPCflux + dPCconnector

Measures the variations of contribution of each fragment to total connectivity and habitat availability.

**dPCconnector** indicates the patch contribution to general connectivity as a connecting element or "stepping stone" between other habitat patches.

| Introduction Methods |                             |       |       |       |       |      |      | Results |     |      |      |      | Discussion |      |      |      |      | Conclusions |      |      |      |  |
|----------------------|-----------------------------|-------|-------|-------|-------|------|------|---------|-----|------|------|------|------------|------|------|------|------|-------------|------|------|------|--|
| Pri                  | Prioritizing river segments |       |       |       |       |      |      |         |     |      |      |      |            |      |      |      |      |             |      |      |      |  |
|                      |                             |       |       |       |       |      |      |         |     |      |      |      |            |      |      |      |      |             |      |      |      |  |
|                      | Node                        | 6     | 22    | 5     | 8     | 4    | 75   | 28      | 77  | 33   | 55   | 56   | 99         | 34   | 13   | 80   | 12   | 40          | 11   | 36   | 7    |  |
|                      | dPC                         | 27.77 | 19.91 | 17.78 | 13.17 | 8.51 | 6.03 | 5.02    | 4.5 | 4.17 | 3.31 | 3.12 | 2.82       | 2.44 | 2.21 | 2.16 | 1.94 | 1.64        | 1.61 | 1.49 | 1.48 |  |



| Introduction Methods |                             |      |      |      |      |      |      | Results |      |      |      |      | Discussion |      |      |      |     | Conclusions |      |       |      |  |
|----------------------|-----------------------------|------|------|------|------|------|------|---------|------|------|------|------|------------|------|------|------|-----|-------------|------|-------|------|--|
| Pr                   | Prioritizing river segments |      |      |      |      |      |      |         |      |      |      |      |            |      |      |      |     |             |      |       |      |  |
|                      | Node                        | 6    | 5    | 38   | 40   | 35   | 34   | 12      | 99   | 97   | 13   | 41   | 75         | 20   | 17   | 14   | 48  | 68          | 50   | 67    | 58   |  |
|                      | dPCconn                     | 5.68 | 4.04 | 1.42 | 1.35 | 1.32 | 1.19 | 0.99    | 0.76 | 0.69 | 0.59 | 0.33 | 0.29       | 0.28 | 0.27 | 0.26 | 0.2 | 0.18        | 0.17 | 0.171 | 0.16 |  |



*Link improvement* will calculate the positive potential impacts of **improving** as much as possible the **direct connection between each pair of nodes** (only one at time).

The idea is to assign **values of 1 to the connection of each pair of nodes**, which means that the strength or frequency of use of the direct connection between two river segments, *i* and *j*, will be improved for all the pairs of patches.

Examples:

PI = 70  $\rightarrow$  probability of passability = 0.3  $\rightarrow$  quite far away from 1 PI = 15  $\rightarrow$  probability of passability = 0.85  $\rightarrow$  easier to reach 1

In a riverine network, we only take into account **the pair of segments with direct connection** between them.



The tools developed for terrestrial connectivity could be **implemented successfully in fluvial connectivity**.

Graph modeling allows us to quantify the **loss of global connectivity and the most sensitive river segments** to its interruption.

Barriers will be **prioritized** with the aim to develop **efficient management and intervention plans** in which the **minimum possible actions recover high values of connectivity.** 

### Gonzalo Rincón Sanz gonzalorinconsanz@gmail.com

ATTENTK



